ath5k: honor FIF_BCN_PRBRESP_PROMISC in STA mode
[linux-2.6/mini2440.git] / drivers / char / stallion.c
blob963b03fb29e5583aa45e83f056c6cf1ff412ba43
1 /*****************************************************************************/
3 /*
4 * stallion.c -- stallion multiport serial driver.
6 * Copyright (C) 1996-1999 Stallion Technologies
7 * Copyright (C) 1994-1996 Greg Ungerer.
9 * This code is loosely based on the Linux serial driver, written by
10 * Linus Torvalds, Theodore T'so and others.
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
27 /*****************************************************************************/
29 #include <linux/module.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/tty.h>
33 #include <linux/tty_flip.h>
34 #include <linux/serial.h>
35 #include <linux/cd1400.h>
36 #include <linux/sc26198.h>
37 #include <linux/comstats.h>
38 #include <linux/stallion.h>
39 #include <linux/ioport.h>
40 #include <linux/init.h>
41 #include <linux/smp_lock.h>
42 #include <linux/device.h>
43 #include <linux/delay.h>
44 #include <linux/ctype.h>
46 #include <asm/io.h>
47 #include <asm/uaccess.h>
49 #include <linux/pci.h>
51 /*****************************************************************************/
54 * Define different board types. Use the standard Stallion "assigned"
55 * board numbers. Boards supported in this driver are abbreviated as
56 * EIO = EasyIO and ECH = EasyConnection 8/32.
58 #define BRD_EASYIO 20
59 #define BRD_ECH 21
60 #define BRD_ECHMC 22
61 #define BRD_ECHPCI 26
62 #define BRD_ECH64PCI 27
63 #define BRD_EASYIOPCI 28
65 struct stlconf {
66 unsigned int brdtype;
67 int ioaddr1;
68 int ioaddr2;
69 unsigned long memaddr;
70 int irq;
71 int irqtype;
74 static unsigned int stl_nrbrds;
76 /*****************************************************************************/
79 * Define some important driver characteristics. Device major numbers
80 * allocated as per Linux Device Registry.
82 #ifndef STL_SIOMEMMAJOR
83 #define STL_SIOMEMMAJOR 28
84 #endif
85 #ifndef STL_SERIALMAJOR
86 #define STL_SERIALMAJOR 24
87 #endif
88 #ifndef STL_CALLOUTMAJOR
89 #define STL_CALLOUTMAJOR 25
90 #endif
93 * Set the TX buffer size. Bigger is better, but we don't want
94 * to chew too much memory with buffers!
96 #define STL_TXBUFLOW 512
97 #define STL_TXBUFSIZE 4096
99 /*****************************************************************************/
102 * Define our local driver identity first. Set up stuff to deal with
103 * all the local structures required by a serial tty driver.
105 static char *stl_drvtitle = "Stallion Multiport Serial Driver";
106 static char *stl_drvname = "stallion";
107 static char *stl_drvversion = "5.6.0";
109 static struct tty_driver *stl_serial;
112 * Define a local default termios struct. All ports will be created
113 * with this termios initially. Basically all it defines is a raw port
114 * at 9600, 8 data bits, 1 stop bit.
116 static struct ktermios stl_deftermios = {
117 .c_cflag = (B9600 | CS8 | CREAD | HUPCL | CLOCAL),
118 .c_cc = INIT_C_CC,
119 .c_ispeed = 9600,
120 .c_ospeed = 9600,
124 * Define global place to put buffer overflow characters.
126 static char stl_unwanted[SC26198_RXFIFOSIZE];
128 /*****************************************************************************/
130 static DEFINE_MUTEX(stl_brdslock);
131 static struct stlbrd *stl_brds[STL_MAXBRDS];
134 * Per board state flags. Used with the state field of the board struct.
135 * Not really much here!
137 #define BRD_FOUND 0x1
138 #define STL_PROBED 0x2
142 * Define the port structure istate flags. These set of flags are
143 * modified at interrupt time - so setting and reseting them needs
144 * to be atomic. Use the bit clear/setting routines for this.
146 #define ASYI_TXBUSY 1
147 #define ASYI_TXLOW 2
148 #define ASYI_TXFLOWED 3
151 * Define an array of board names as printable strings. Handy for
152 * referencing boards when printing trace and stuff.
154 static char *stl_brdnames[] = {
155 NULL,
156 NULL,
157 NULL,
158 NULL,
159 NULL,
160 NULL,
161 NULL,
162 NULL,
163 NULL,
164 NULL,
165 NULL,
166 NULL,
167 NULL,
168 NULL,
169 NULL,
170 NULL,
171 NULL,
172 NULL,
173 NULL,
174 NULL,
175 "EasyIO",
176 "EC8/32-AT",
177 "EC8/32-MC",
178 NULL,
179 NULL,
180 NULL,
181 "EC8/32-PCI",
182 "EC8/64-PCI",
183 "EasyIO-PCI",
186 /*****************************************************************************/
189 * Define some string labels for arguments passed from the module
190 * load line. These allow for easy board definitions, and easy
191 * modification of the io, memory and irq resoucres.
193 static unsigned int stl_nargs;
194 static char *board0[4];
195 static char *board1[4];
196 static char *board2[4];
197 static char *board3[4];
199 static char **stl_brdsp[] = {
200 (char **) &board0,
201 (char **) &board1,
202 (char **) &board2,
203 (char **) &board3
207 * Define a set of common board names, and types. This is used to
208 * parse any module arguments.
211 static struct {
212 char *name;
213 int type;
214 } stl_brdstr[] = {
215 { "easyio", BRD_EASYIO },
216 { "eio", BRD_EASYIO },
217 { "20", BRD_EASYIO },
218 { "ec8/32", BRD_ECH },
219 { "ec8/32-at", BRD_ECH },
220 { "ec8/32-isa", BRD_ECH },
221 { "ech", BRD_ECH },
222 { "echat", BRD_ECH },
223 { "21", BRD_ECH },
224 { "ec8/32-mc", BRD_ECHMC },
225 { "ec8/32-mca", BRD_ECHMC },
226 { "echmc", BRD_ECHMC },
227 { "echmca", BRD_ECHMC },
228 { "22", BRD_ECHMC },
229 { "ec8/32-pc", BRD_ECHPCI },
230 { "ec8/32-pci", BRD_ECHPCI },
231 { "26", BRD_ECHPCI },
232 { "ec8/64-pc", BRD_ECH64PCI },
233 { "ec8/64-pci", BRD_ECH64PCI },
234 { "ech-pci", BRD_ECH64PCI },
235 { "echpci", BRD_ECH64PCI },
236 { "echpc", BRD_ECH64PCI },
237 { "27", BRD_ECH64PCI },
238 { "easyio-pc", BRD_EASYIOPCI },
239 { "easyio-pci", BRD_EASYIOPCI },
240 { "eio-pci", BRD_EASYIOPCI },
241 { "eiopci", BRD_EASYIOPCI },
242 { "28", BRD_EASYIOPCI },
246 * Define the module agruments.
249 module_param_array(board0, charp, &stl_nargs, 0);
250 MODULE_PARM_DESC(board0, "Board 0 config -> name[,ioaddr[,ioaddr2][,irq]]");
251 module_param_array(board1, charp, &stl_nargs, 0);
252 MODULE_PARM_DESC(board1, "Board 1 config -> name[,ioaddr[,ioaddr2][,irq]]");
253 module_param_array(board2, charp, &stl_nargs, 0);
254 MODULE_PARM_DESC(board2, "Board 2 config -> name[,ioaddr[,ioaddr2][,irq]]");
255 module_param_array(board3, charp, &stl_nargs, 0);
256 MODULE_PARM_DESC(board3, "Board 3 config -> name[,ioaddr[,ioaddr2][,irq]]");
258 /*****************************************************************************/
261 * Hardware ID bits for the EasyIO and ECH boards. These defines apply
262 * to the directly accessible io ports of these boards (not the uarts -
263 * they are in cd1400.h and sc26198.h).
265 #define EIO_8PORTRS 0x04
266 #define EIO_4PORTRS 0x05
267 #define EIO_8PORTDI 0x00
268 #define EIO_8PORTM 0x06
269 #define EIO_MK3 0x03
270 #define EIO_IDBITMASK 0x07
272 #define EIO_BRDMASK 0xf0
273 #define ID_BRD4 0x10
274 #define ID_BRD8 0x20
275 #define ID_BRD16 0x30
277 #define EIO_INTRPEND 0x08
278 #define EIO_INTEDGE 0x00
279 #define EIO_INTLEVEL 0x08
280 #define EIO_0WS 0x10
282 #define ECH_ID 0xa0
283 #define ECH_IDBITMASK 0xe0
284 #define ECH_BRDENABLE 0x08
285 #define ECH_BRDDISABLE 0x00
286 #define ECH_INTENABLE 0x01
287 #define ECH_INTDISABLE 0x00
288 #define ECH_INTLEVEL 0x02
289 #define ECH_INTEDGE 0x00
290 #define ECH_INTRPEND 0x01
291 #define ECH_BRDRESET 0x01
293 #define ECHMC_INTENABLE 0x01
294 #define ECHMC_BRDRESET 0x02
296 #define ECH_PNLSTATUS 2
297 #define ECH_PNL16PORT 0x20
298 #define ECH_PNLIDMASK 0x07
299 #define ECH_PNLXPID 0x40
300 #define ECH_PNLINTRPEND 0x80
302 #define ECH_ADDR2MASK 0x1e0
305 * Define the vector mapping bits for the programmable interrupt board
306 * hardware. These bits encode the interrupt for the board to use - it
307 * is software selectable (except the EIO-8M).
309 static unsigned char stl_vecmap[] = {
310 0xff, 0xff, 0xff, 0x04, 0x06, 0x05, 0xff, 0x07,
311 0xff, 0xff, 0x00, 0x02, 0x01, 0xff, 0xff, 0x03
315 * Lock ordering is that you may not take stallion_lock holding
316 * brd_lock.
319 static spinlock_t brd_lock; /* Guard the board mapping */
320 static spinlock_t stallion_lock; /* Guard the tty driver */
323 * Set up enable and disable macros for the ECH boards. They require
324 * the secondary io address space to be activated and deactivated.
325 * This way all ECH boards can share their secondary io region.
326 * If this is an ECH-PCI board then also need to set the page pointer
327 * to point to the correct page.
329 #define BRDENABLE(brdnr,pagenr) \
330 if (stl_brds[(brdnr)]->brdtype == BRD_ECH) \
331 outb((stl_brds[(brdnr)]->ioctrlval | ECH_BRDENABLE), \
332 stl_brds[(brdnr)]->ioctrl); \
333 else if (stl_brds[(brdnr)]->brdtype == BRD_ECHPCI) \
334 outb((pagenr), stl_brds[(brdnr)]->ioctrl);
336 #define BRDDISABLE(brdnr) \
337 if (stl_brds[(brdnr)]->brdtype == BRD_ECH) \
338 outb((stl_brds[(brdnr)]->ioctrlval | ECH_BRDDISABLE), \
339 stl_brds[(brdnr)]->ioctrl);
341 #define STL_CD1400MAXBAUD 230400
342 #define STL_SC26198MAXBAUD 460800
344 #define STL_BAUDBASE 115200
345 #define STL_CLOSEDELAY (5 * HZ / 10)
347 /*****************************************************************************/
350 * Define the Stallion PCI vendor and device IDs.
352 #ifndef PCI_VENDOR_ID_STALLION
353 #define PCI_VENDOR_ID_STALLION 0x124d
354 #endif
355 #ifndef PCI_DEVICE_ID_ECHPCI832
356 #define PCI_DEVICE_ID_ECHPCI832 0x0000
357 #endif
358 #ifndef PCI_DEVICE_ID_ECHPCI864
359 #define PCI_DEVICE_ID_ECHPCI864 0x0002
360 #endif
361 #ifndef PCI_DEVICE_ID_EIOPCI
362 #define PCI_DEVICE_ID_EIOPCI 0x0003
363 #endif
366 * Define structure to hold all Stallion PCI boards.
369 static struct pci_device_id stl_pcibrds[] = {
370 { PCI_DEVICE(PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_ECHPCI864),
371 .driver_data = BRD_ECH64PCI },
372 { PCI_DEVICE(PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_EIOPCI),
373 .driver_data = BRD_EASYIOPCI },
374 { PCI_DEVICE(PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_ECHPCI832),
375 .driver_data = BRD_ECHPCI },
376 { PCI_DEVICE(PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_87410),
377 .driver_data = BRD_ECHPCI },
380 MODULE_DEVICE_TABLE(pci, stl_pcibrds);
382 /*****************************************************************************/
385 * Define macros to extract a brd/port number from a minor number.
387 #define MINOR2BRD(min) (((min) & 0xc0) >> 6)
388 #define MINOR2PORT(min) ((min) & 0x3f)
391 * Define a baud rate table that converts termios baud rate selector
392 * into the actual baud rate value. All baud rate calculations are
393 * based on the actual baud rate required.
395 static unsigned int stl_baudrates[] = {
396 0, 50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800,
397 9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600
400 /*****************************************************************************/
403 * Declare all those functions in this driver!
406 static int stl_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg);
407 static int stl_brdinit(struct stlbrd *brdp);
408 static int stl_getportstats(struct tty_struct *tty, struct stlport *portp, comstats_t __user *cp);
409 static int stl_clrportstats(struct stlport *portp, comstats_t __user *cp);
410 static int stl_waitcarrier(struct tty_struct *tty, struct stlport *portp, struct file *filp);
413 * CD1400 uart specific handling functions.
415 static void stl_cd1400setreg(struct stlport *portp, int regnr, int value);
416 static int stl_cd1400getreg(struct stlport *portp, int regnr);
417 static int stl_cd1400updatereg(struct stlport *portp, int regnr, int value);
418 static int stl_cd1400panelinit(struct stlbrd *brdp, struct stlpanel *panelp);
419 static void stl_cd1400portinit(struct stlbrd *brdp, struct stlpanel *panelp, struct stlport *portp);
420 static void stl_cd1400setport(struct stlport *portp, struct ktermios *tiosp);
421 static int stl_cd1400getsignals(struct stlport *portp);
422 static void stl_cd1400setsignals(struct stlport *portp, int dtr, int rts);
423 static void stl_cd1400ccrwait(struct stlport *portp);
424 static void stl_cd1400enablerxtx(struct stlport *portp, int rx, int tx);
425 static void stl_cd1400startrxtx(struct stlport *portp, int rx, int tx);
426 static void stl_cd1400disableintrs(struct stlport *portp);
427 static void stl_cd1400sendbreak(struct stlport *portp, int len);
428 static void stl_cd1400flowctrl(struct stlport *portp, int state);
429 static void stl_cd1400sendflow(struct stlport *portp, int state);
430 static void stl_cd1400flush(struct stlport *portp);
431 static int stl_cd1400datastate(struct stlport *portp);
432 static void stl_cd1400eiointr(struct stlpanel *panelp, unsigned int iobase);
433 static void stl_cd1400echintr(struct stlpanel *panelp, unsigned int iobase);
434 static void stl_cd1400txisr(struct stlpanel *panelp, int ioaddr);
435 static void stl_cd1400rxisr(struct stlpanel *panelp, int ioaddr);
436 static void stl_cd1400mdmisr(struct stlpanel *panelp, int ioaddr);
438 static inline int stl_cd1400breakisr(struct stlport *portp, int ioaddr);
441 * SC26198 uart specific handling functions.
443 static void stl_sc26198setreg(struct stlport *portp, int regnr, int value);
444 static int stl_sc26198getreg(struct stlport *portp, int regnr);
445 static int stl_sc26198updatereg(struct stlport *portp, int regnr, int value);
446 static int stl_sc26198getglobreg(struct stlport *portp, int regnr);
447 static int stl_sc26198panelinit(struct stlbrd *brdp, struct stlpanel *panelp);
448 static void stl_sc26198portinit(struct stlbrd *brdp, struct stlpanel *panelp, struct stlport *portp);
449 static void stl_sc26198setport(struct stlport *portp, struct ktermios *tiosp);
450 static int stl_sc26198getsignals(struct stlport *portp);
451 static void stl_sc26198setsignals(struct stlport *portp, int dtr, int rts);
452 static void stl_sc26198enablerxtx(struct stlport *portp, int rx, int tx);
453 static void stl_sc26198startrxtx(struct stlport *portp, int rx, int tx);
454 static void stl_sc26198disableintrs(struct stlport *portp);
455 static void stl_sc26198sendbreak(struct stlport *portp, int len);
456 static void stl_sc26198flowctrl(struct stlport *portp, int state);
457 static void stl_sc26198sendflow(struct stlport *portp, int state);
458 static void stl_sc26198flush(struct stlport *portp);
459 static int stl_sc26198datastate(struct stlport *portp);
460 static void stl_sc26198wait(struct stlport *portp);
461 static void stl_sc26198txunflow(struct stlport *portp, struct tty_struct *tty);
462 static void stl_sc26198intr(struct stlpanel *panelp, unsigned int iobase);
463 static void stl_sc26198txisr(struct stlport *port);
464 static void stl_sc26198rxisr(struct stlport *port, unsigned int iack);
465 static void stl_sc26198rxbadch(struct stlport *portp, unsigned char status, char ch);
466 static void stl_sc26198rxbadchars(struct stlport *portp);
467 static void stl_sc26198otherisr(struct stlport *port, unsigned int iack);
469 /*****************************************************************************/
472 * Generic UART support structure.
474 typedef struct uart {
475 int (*panelinit)(struct stlbrd *brdp, struct stlpanel *panelp);
476 void (*portinit)(struct stlbrd *brdp, struct stlpanel *panelp, struct stlport *portp);
477 void (*setport)(struct stlport *portp, struct ktermios *tiosp);
478 int (*getsignals)(struct stlport *portp);
479 void (*setsignals)(struct stlport *portp, int dtr, int rts);
480 void (*enablerxtx)(struct stlport *portp, int rx, int tx);
481 void (*startrxtx)(struct stlport *portp, int rx, int tx);
482 void (*disableintrs)(struct stlport *portp);
483 void (*sendbreak)(struct stlport *portp, int len);
484 void (*flowctrl)(struct stlport *portp, int state);
485 void (*sendflow)(struct stlport *portp, int state);
486 void (*flush)(struct stlport *portp);
487 int (*datastate)(struct stlport *portp);
488 void (*intr)(struct stlpanel *panelp, unsigned int iobase);
489 } uart_t;
492 * Define some macros to make calling these functions nice and clean.
494 #define stl_panelinit (* ((uart_t *) panelp->uartp)->panelinit)
495 #define stl_portinit (* ((uart_t *) portp->uartp)->portinit)
496 #define stl_setport (* ((uart_t *) portp->uartp)->setport)
497 #define stl_getsignals (* ((uart_t *) portp->uartp)->getsignals)
498 #define stl_setsignals (* ((uart_t *) portp->uartp)->setsignals)
499 #define stl_enablerxtx (* ((uart_t *) portp->uartp)->enablerxtx)
500 #define stl_startrxtx (* ((uart_t *) portp->uartp)->startrxtx)
501 #define stl_disableintrs (* ((uart_t *) portp->uartp)->disableintrs)
502 #define stl_sendbreak (* ((uart_t *) portp->uartp)->sendbreak)
503 #define stl_flowctrl (* ((uart_t *) portp->uartp)->flowctrl)
504 #define stl_sendflow (* ((uart_t *) portp->uartp)->sendflow)
505 #define stl_flush (* ((uart_t *) portp->uartp)->flush)
506 #define stl_datastate (* ((uart_t *) portp->uartp)->datastate)
508 /*****************************************************************************/
511 * CD1400 UART specific data initialization.
513 static uart_t stl_cd1400uart = {
514 stl_cd1400panelinit,
515 stl_cd1400portinit,
516 stl_cd1400setport,
517 stl_cd1400getsignals,
518 stl_cd1400setsignals,
519 stl_cd1400enablerxtx,
520 stl_cd1400startrxtx,
521 stl_cd1400disableintrs,
522 stl_cd1400sendbreak,
523 stl_cd1400flowctrl,
524 stl_cd1400sendflow,
525 stl_cd1400flush,
526 stl_cd1400datastate,
527 stl_cd1400eiointr
531 * Define the offsets within the register bank of a cd1400 based panel.
532 * These io address offsets are common to the EasyIO board as well.
534 #define EREG_ADDR 0
535 #define EREG_DATA 4
536 #define EREG_RXACK 5
537 #define EREG_TXACK 6
538 #define EREG_MDACK 7
540 #define EREG_BANKSIZE 8
542 #define CD1400_CLK 25000000
543 #define CD1400_CLK8M 20000000
546 * Define the cd1400 baud rate clocks. These are used when calculating
547 * what clock and divisor to use for the required baud rate. Also
548 * define the maximum baud rate allowed, and the default base baud.
550 static int stl_cd1400clkdivs[] = {
551 CD1400_CLK0, CD1400_CLK1, CD1400_CLK2, CD1400_CLK3, CD1400_CLK4
554 /*****************************************************************************/
557 * SC26198 UART specific data initization.
559 static uart_t stl_sc26198uart = {
560 stl_sc26198panelinit,
561 stl_sc26198portinit,
562 stl_sc26198setport,
563 stl_sc26198getsignals,
564 stl_sc26198setsignals,
565 stl_sc26198enablerxtx,
566 stl_sc26198startrxtx,
567 stl_sc26198disableintrs,
568 stl_sc26198sendbreak,
569 stl_sc26198flowctrl,
570 stl_sc26198sendflow,
571 stl_sc26198flush,
572 stl_sc26198datastate,
573 stl_sc26198intr
577 * Define the offsets within the register bank of a sc26198 based panel.
579 #define XP_DATA 0
580 #define XP_ADDR 1
581 #define XP_MODID 2
582 #define XP_STATUS 2
583 #define XP_IACK 3
585 #define XP_BANKSIZE 4
588 * Define the sc26198 baud rate table. Offsets within the table
589 * represent the actual baud rate selector of sc26198 registers.
591 static unsigned int sc26198_baudtable[] = {
592 50, 75, 150, 200, 300, 450, 600, 900, 1200, 1800, 2400, 3600,
593 4800, 7200, 9600, 14400, 19200, 28800, 38400, 57600, 115200,
594 230400, 460800, 921600
597 #define SC26198_NRBAUDS ARRAY_SIZE(sc26198_baudtable)
599 /*****************************************************************************/
602 * Define the driver info for a user level control device. Used mainly
603 * to get at port stats - only not using the port device itself.
605 static const struct file_operations stl_fsiomem = {
606 .owner = THIS_MODULE,
607 .ioctl = stl_memioctl,
610 static struct class *stallion_class;
612 static void stl_cd_change(struct stlport *portp)
614 unsigned int oldsigs = portp->sigs;
615 struct tty_struct *tty = tty_port_tty_get(&portp->port);
617 if (!tty)
618 return;
620 portp->sigs = stl_getsignals(portp);
622 if ((portp->sigs & TIOCM_CD) && ((oldsigs & TIOCM_CD) == 0))
623 wake_up_interruptible(&portp->port.open_wait);
625 if ((oldsigs & TIOCM_CD) && ((portp->sigs & TIOCM_CD) == 0))
626 if (portp->port.flags & ASYNC_CHECK_CD)
627 tty_hangup(tty);
628 tty_kref_put(tty);
632 * Check for any arguments passed in on the module load command line.
635 /*****************************************************************************/
638 * Parse the supplied argument string, into the board conf struct.
641 static int __init stl_parsebrd(struct stlconf *confp, char **argp)
643 char *sp;
644 unsigned int i;
646 pr_debug("stl_parsebrd(confp=%p,argp=%p)\n", confp, argp);
648 if ((argp[0] == NULL) || (*argp[0] == 0))
649 return 0;
651 for (sp = argp[0], i = 0; (*sp != 0) && (i < 25); sp++, i++)
652 *sp = tolower(*sp);
654 for (i = 0; i < ARRAY_SIZE(stl_brdstr); i++)
655 if (strcmp(stl_brdstr[i].name, argp[0]) == 0)
656 break;
658 if (i == ARRAY_SIZE(stl_brdstr)) {
659 printk("STALLION: unknown board name, %s?\n", argp[0]);
660 return 0;
663 confp->brdtype = stl_brdstr[i].type;
665 i = 1;
666 if ((argp[i] != NULL) && (*argp[i] != 0))
667 confp->ioaddr1 = simple_strtoul(argp[i], NULL, 0);
668 i++;
669 if (confp->brdtype == BRD_ECH) {
670 if ((argp[i] != NULL) && (*argp[i] != 0))
671 confp->ioaddr2 = simple_strtoul(argp[i], NULL, 0);
672 i++;
674 if ((argp[i] != NULL) && (*argp[i] != 0))
675 confp->irq = simple_strtoul(argp[i], NULL, 0);
676 return 1;
679 /*****************************************************************************/
682 * Allocate a new board structure. Fill out the basic info in it.
685 static struct stlbrd *stl_allocbrd(void)
687 struct stlbrd *brdp;
689 brdp = kzalloc(sizeof(struct stlbrd), GFP_KERNEL);
690 if (!brdp) {
691 printk("STALLION: failed to allocate memory (size=%Zd)\n",
692 sizeof(struct stlbrd));
693 return NULL;
696 brdp->magic = STL_BOARDMAGIC;
697 return brdp;
700 /*****************************************************************************/
702 static int stl_open(struct tty_struct *tty, struct file *filp)
704 struct stlport *portp;
705 struct stlbrd *brdp;
706 unsigned int minordev, brdnr, panelnr;
707 int portnr, rc;
709 pr_debug("stl_open(tty=%p,filp=%p): device=%s\n", tty, filp, tty->name);
711 minordev = tty->index;
712 brdnr = MINOR2BRD(minordev);
713 if (brdnr >= stl_nrbrds)
714 return -ENODEV;
715 brdp = stl_brds[brdnr];
716 if (brdp == NULL)
717 return -ENODEV;
718 minordev = MINOR2PORT(minordev);
719 for (portnr = -1, panelnr = 0; panelnr < STL_MAXPANELS; panelnr++) {
720 if (brdp->panels[panelnr] == NULL)
721 break;
722 if (minordev < brdp->panels[panelnr]->nrports) {
723 portnr = minordev;
724 break;
726 minordev -= brdp->panels[panelnr]->nrports;
728 if (portnr < 0)
729 return -ENODEV;
731 portp = brdp->panels[panelnr]->ports[portnr];
732 if (portp == NULL)
733 return -ENODEV;
736 * On the first open of the device setup the port hardware, and
737 * initialize the per port data structure.
739 tty_port_tty_set(&portp->port, tty);
740 tty->driver_data = portp;
741 portp->port.count++;
743 if ((portp->port.flags & ASYNC_INITIALIZED) == 0) {
744 if (!portp->tx.buf) {
745 portp->tx.buf = kmalloc(STL_TXBUFSIZE, GFP_KERNEL);
746 if (!portp->tx.buf)
747 return -ENOMEM;
748 portp->tx.head = portp->tx.buf;
749 portp->tx.tail = portp->tx.buf;
751 stl_setport(portp, tty->termios);
752 portp->sigs = stl_getsignals(portp);
753 stl_setsignals(portp, 1, 1);
754 stl_enablerxtx(portp, 1, 1);
755 stl_startrxtx(portp, 1, 0);
756 clear_bit(TTY_IO_ERROR, &tty->flags);
757 portp->port.flags |= ASYNC_INITIALIZED;
761 * Check if this port is in the middle of closing. If so then wait
762 * until it is closed then return error status, based on flag settings.
763 * The sleep here does not need interrupt protection since the wakeup
764 * for it is done with the same context.
766 if (portp->port.flags & ASYNC_CLOSING) {
767 interruptible_sleep_on(&portp->port.close_wait);
768 if (portp->port.flags & ASYNC_HUP_NOTIFY)
769 return -EAGAIN;
770 return -ERESTARTSYS;
774 * Based on type of open being done check if it can overlap with any
775 * previous opens still in effect. If we are a normal serial device
776 * then also we might have to wait for carrier.
778 if (!(filp->f_flags & O_NONBLOCK))
779 if ((rc = stl_waitcarrier(tty, portp, filp)) != 0)
780 return rc;
782 portp->port.flags |= ASYNC_NORMAL_ACTIVE;
784 return 0;
787 /*****************************************************************************/
790 * Possibly need to wait for carrier (DCD signal) to come high. Say
791 * maybe because if we are clocal then we don't need to wait...
794 static int stl_waitcarrier(struct tty_struct *tty, struct stlport *portp,
795 struct file *filp)
797 unsigned long flags;
798 int rc, doclocal;
800 pr_debug("stl_waitcarrier(portp=%p,filp=%p)\n", portp, filp);
802 rc = 0;
803 doclocal = 0;
805 spin_lock_irqsave(&stallion_lock, flags);
807 if (tty->termios->c_cflag & CLOCAL)
808 doclocal++;
810 portp->openwaitcnt++;
811 if (! tty_hung_up_p(filp))
812 portp->port.count--;
814 for (;;) {
815 /* Takes brd_lock internally */
816 stl_setsignals(portp, 1, 1);
817 if (tty_hung_up_p(filp) ||
818 ((portp->port.flags & ASYNC_INITIALIZED) == 0)) {
819 if (portp->port.flags & ASYNC_HUP_NOTIFY)
820 rc = -EBUSY;
821 else
822 rc = -ERESTARTSYS;
823 break;
825 if (((portp->port.flags & ASYNC_CLOSING) == 0) &&
826 (doclocal || (portp->sigs & TIOCM_CD)))
827 break;
828 if (signal_pending(current)) {
829 rc = -ERESTARTSYS;
830 break;
832 /* FIXME */
833 interruptible_sleep_on(&portp->port.open_wait);
836 if (! tty_hung_up_p(filp))
837 portp->port.count++;
838 portp->openwaitcnt--;
839 spin_unlock_irqrestore(&stallion_lock, flags);
841 return rc;
844 /*****************************************************************************/
846 static void stl_flushbuffer(struct tty_struct *tty)
848 struct stlport *portp;
850 pr_debug("stl_flushbuffer(tty=%p)\n", tty);
852 portp = tty->driver_data;
853 if (portp == NULL)
854 return;
856 stl_flush(portp);
857 tty_wakeup(tty);
860 /*****************************************************************************/
862 static void stl_waituntilsent(struct tty_struct *tty, int timeout)
864 struct stlport *portp;
865 unsigned long tend;
867 pr_debug("stl_waituntilsent(tty=%p,timeout=%d)\n", tty, timeout);
869 portp = tty->driver_data;
870 if (portp == NULL)
871 return;
873 if (timeout == 0)
874 timeout = HZ;
875 tend = jiffies + timeout;
877 lock_kernel();
878 while (stl_datastate(portp)) {
879 if (signal_pending(current))
880 break;
881 msleep_interruptible(20);
882 if (time_after_eq(jiffies, tend))
883 break;
885 unlock_kernel();
888 /*****************************************************************************/
890 static void stl_close(struct tty_struct *tty, struct file *filp)
892 struct stlport *portp;
893 unsigned long flags;
895 pr_debug("stl_close(tty=%p,filp=%p)\n", tty, filp);
897 portp = tty->driver_data;
898 if (portp == NULL)
899 return;
901 spin_lock_irqsave(&stallion_lock, flags);
902 if (tty_hung_up_p(filp)) {
903 spin_unlock_irqrestore(&stallion_lock, flags);
904 return;
906 if ((tty->count == 1) && (portp->port.count != 1))
907 portp->port.count = 1;
908 if (portp->port.count-- > 1) {
909 spin_unlock_irqrestore(&stallion_lock, flags);
910 return;
913 portp->port.count = 0;
914 portp->port.flags |= ASYNC_CLOSING;
917 * May want to wait for any data to drain before closing. The BUSY
918 * flag keeps track of whether we are still sending or not - it is
919 * very accurate for the cd1400, not quite so for the sc26198.
920 * (The sc26198 has no "end-of-data" interrupt only empty FIFO)
922 tty->closing = 1;
924 spin_unlock_irqrestore(&stallion_lock, flags);
926 if (portp->closing_wait != ASYNC_CLOSING_WAIT_NONE)
927 tty_wait_until_sent(tty, portp->closing_wait);
928 stl_waituntilsent(tty, (HZ / 2));
931 spin_lock_irqsave(&stallion_lock, flags);
932 portp->port.flags &= ~ASYNC_INITIALIZED;
933 spin_unlock_irqrestore(&stallion_lock, flags);
935 stl_disableintrs(portp);
936 if (tty->termios->c_cflag & HUPCL)
937 stl_setsignals(portp, 0, 0);
938 stl_enablerxtx(portp, 0, 0);
939 stl_flushbuffer(tty);
940 portp->istate = 0;
941 if (portp->tx.buf != NULL) {
942 kfree(portp->tx.buf);
943 portp->tx.buf = NULL;
944 portp->tx.head = NULL;
945 portp->tx.tail = NULL;
947 set_bit(TTY_IO_ERROR, &tty->flags);
948 tty_ldisc_flush(tty);
950 tty->closing = 0;
951 tty_port_tty_set(&portp->port, NULL);
953 if (portp->openwaitcnt) {
954 if (portp->close_delay)
955 msleep_interruptible(jiffies_to_msecs(portp->close_delay));
956 wake_up_interruptible(&portp->port.open_wait);
959 portp->port.flags &= ~(ASYNC_NORMAL_ACTIVE|ASYNC_CLOSING);
960 wake_up_interruptible(&portp->port.close_wait);
963 /*****************************************************************************/
966 * Write routine. Take data and stuff it in to the TX ring queue.
967 * If transmit interrupts are not running then start them.
970 static int stl_write(struct tty_struct *tty, const unsigned char *buf, int count)
972 struct stlport *portp;
973 unsigned int len, stlen;
974 unsigned char *chbuf;
975 char *head, *tail;
977 pr_debug("stl_write(tty=%p,buf=%p,count=%d)\n", tty, buf, count);
979 portp = tty->driver_data;
980 if (portp == NULL)
981 return 0;
982 if (portp->tx.buf == NULL)
983 return 0;
986 * If copying direct from user space we must cater for page faults,
987 * causing us to "sleep" here for a while. To handle this copy in all
988 * the data we need now, into a local buffer. Then when we got it all
989 * copy it into the TX buffer.
991 chbuf = (unsigned char *) buf;
993 head = portp->tx.head;
994 tail = portp->tx.tail;
995 if (head >= tail) {
996 len = STL_TXBUFSIZE - (head - tail) - 1;
997 stlen = STL_TXBUFSIZE - (head - portp->tx.buf);
998 } else {
999 len = tail - head - 1;
1000 stlen = len;
1003 len = min(len, (unsigned int)count);
1004 count = 0;
1005 while (len > 0) {
1006 stlen = min(len, stlen);
1007 memcpy(head, chbuf, stlen);
1008 len -= stlen;
1009 chbuf += stlen;
1010 count += stlen;
1011 head += stlen;
1012 if (head >= (portp->tx.buf + STL_TXBUFSIZE)) {
1013 head = portp->tx.buf;
1014 stlen = tail - head;
1017 portp->tx.head = head;
1019 clear_bit(ASYI_TXLOW, &portp->istate);
1020 stl_startrxtx(portp, -1, 1);
1022 return count;
1025 /*****************************************************************************/
1027 static int stl_putchar(struct tty_struct *tty, unsigned char ch)
1029 struct stlport *portp;
1030 unsigned int len;
1031 char *head, *tail;
1033 pr_debug("stl_putchar(tty=%p,ch=%x)\n", tty, ch);
1035 portp = tty->driver_data;
1036 if (portp == NULL)
1037 return -EINVAL;
1038 if (portp->tx.buf == NULL)
1039 return -EINVAL;
1041 head = portp->tx.head;
1042 tail = portp->tx.tail;
1044 len = (head >= tail) ? (STL_TXBUFSIZE - (head - tail)) : (tail - head);
1045 len--;
1047 if (len > 0) {
1048 *head++ = ch;
1049 if (head >= (portp->tx.buf + STL_TXBUFSIZE))
1050 head = portp->tx.buf;
1052 portp->tx.head = head;
1053 return 0;
1056 /*****************************************************************************/
1059 * If there are any characters in the buffer then make sure that TX
1060 * interrupts are on and get'em out. Normally used after the putchar
1061 * routine has been called.
1064 static void stl_flushchars(struct tty_struct *tty)
1066 struct stlport *portp;
1068 pr_debug("stl_flushchars(tty=%p)\n", tty);
1070 portp = tty->driver_data;
1071 if (portp == NULL)
1072 return;
1073 if (portp->tx.buf == NULL)
1074 return;
1076 stl_startrxtx(portp, -1, 1);
1079 /*****************************************************************************/
1081 static int stl_writeroom(struct tty_struct *tty)
1083 struct stlport *portp;
1084 char *head, *tail;
1086 pr_debug("stl_writeroom(tty=%p)\n", tty);
1088 portp = tty->driver_data;
1089 if (portp == NULL)
1090 return 0;
1091 if (portp->tx.buf == NULL)
1092 return 0;
1094 head = portp->tx.head;
1095 tail = portp->tx.tail;
1096 return (head >= tail) ? (STL_TXBUFSIZE - (head - tail) - 1) : (tail - head - 1);
1099 /*****************************************************************************/
1102 * Return number of chars in the TX buffer. Normally we would just
1103 * calculate the number of chars in the buffer and return that, but if
1104 * the buffer is empty and TX interrupts are still on then we return
1105 * that the buffer still has 1 char in it. This way whoever called us
1106 * will not think that ALL chars have drained - since the UART still
1107 * must have some chars in it (we are busy after all).
1110 static int stl_charsinbuffer(struct tty_struct *tty)
1112 struct stlport *portp;
1113 unsigned int size;
1114 char *head, *tail;
1116 pr_debug("stl_charsinbuffer(tty=%p)\n", tty);
1118 portp = tty->driver_data;
1119 if (portp == NULL)
1120 return 0;
1121 if (portp->tx.buf == NULL)
1122 return 0;
1124 head = portp->tx.head;
1125 tail = portp->tx.tail;
1126 size = (head >= tail) ? (head - tail) : (STL_TXBUFSIZE - (tail - head));
1127 if ((size == 0) && test_bit(ASYI_TXBUSY, &portp->istate))
1128 size = 1;
1129 return size;
1132 /*****************************************************************************/
1135 * Generate the serial struct info.
1138 static int stl_getserial(struct stlport *portp, struct serial_struct __user *sp)
1140 struct serial_struct sio;
1141 struct stlbrd *brdp;
1143 pr_debug("stl_getserial(portp=%p,sp=%p)\n", portp, sp);
1145 memset(&sio, 0, sizeof(struct serial_struct));
1146 sio.line = portp->portnr;
1147 sio.port = portp->ioaddr;
1148 sio.flags = portp->port.flags;
1149 sio.baud_base = portp->baud_base;
1150 sio.close_delay = portp->close_delay;
1151 sio.closing_wait = portp->closing_wait;
1152 sio.custom_divisor = portp->custom_divisor;
1153 sio.hub6 = 0;
1154 if (portp->uartp == &stl_cd1400uart) {
1155 sio.type = PORT_CIRRUS;
1156 sio.xmit_fifo_size = CD1400_TXFIFOSIZE;
1157 } else {
1158 sio.type = PORT_UNKNOWN;
1159 sio.xmit_fifo_size = SC26198_TXFIFOSIZE;
1162 brdp = stl_brds[portp->brdnr];
1163 if (brdp != NULL)
1164 sio.irq = brdp->irq;
1166 return copy_to_user(sp, &sio, sizeof(struct serial_struct)) ? -EFAULT : 0;
1169 /*****************************************************************************/
1172 * Set port according to the serial struct info.
1173 * At this point we do not do any auto-configure stuff, so we will
1174 * just quietly ignore any requests to change irq, etc.
1177 static int stl_setserial(struct tty_struct *tty, struct serial_struct __user *sp)
1179 struct stlport * portp = tty->driver_data;
1180 struct serial_struct sio;
1182 pr_debug("stl_setserial(portp=%p,sp=%p)\n", portp, sp);
1184 if (copy_from_user(&sio, sp, sizeof(struct serial_struct)))
1185 return -EFAULT;
1186 if (!capable(CAP_SYS_ADMIN)) {
1187 if ((sio.baud_base != portp->baud_base) ||
1188 (sio.close_delay != portp->close_delay) ||
1189 ((sio.flags & ~ASYNC_USR_MASK) !=
1190 (portp->port.flags & ~ASYNC_USR_MASK)))
1191 return -EPERM;
1194 portp->port.flags = (portp->port.flags & ~ASYNC_USR_MASK) |
1195 (sio.flags & ASYNC_USR_MASK);
1196 portp->baud_base = sio.baud_base;
1197 portp->close_delay = sio.close_delay;
1198 portp->closing_wait = sio.closing_wait;
1199 portp->custom_divisor = sio.custom_divisor;
1200 stl_setport(portp, tty->termios);
1201 return 0;
1204 /*****************************************************************************/
1206 static int stl_tiocmget(struct tty_struct *tty, struct file *file)
1208 struct stlport *portp;
1210 portp = tty->driver_data;
1211 if (portp == NULL)
1212 return -ENODEV;
1213 if (tty->flags & (1 << TTY_IO_ERROR))
1214 return -EIO;
1216 return stl_getsignals(portp);
1219 static int stl_tiocmset(struct tty_struct *tty, struct file *file,
1220 unsigned int set, unsigned int clear)
1222 struct stlport *portp;
1223 int rts = -1, dtr = -1;
1225 portp = tty->driver_data;
1226 if (portp == NULL)
1227 return -ENODEV;
1228 if (tty->flags & (1 << TTY_IO_ERROR))
1229 return -EIO;
1231 if (set & TIOCM_RTS)
1232 rts = 1;
1233 if (set & TIOCM_DTR)
1234 dtr = 1;
1235 if (clear & TIOCM_RTS)
1236 rts = 0;
1237 if (clear & TIOCM_DTR)
1238 dtr = 0;
1240 stl_setsignals(portp, dtr, rts);
1241 return 0;
1244 static int stl_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg)
1246 struct stlport *portp;
1247 int rc;
1248 void __user *argp = (void __user *)arg;
1250 pr_debug("stl_ioctl(tty=%p,file=%p,cmd=%x,arg=%lx)\n", tty, file, cmd,
1251 arg);
1253 portp = tty->driver_data;
1254 if (portp == NULL)
1255 return -ENODEV;
1257 if ((cmd != TIOCGSERIAL) && (cmd != TIOCSSERIAL) &&
1258 (cmd != COM_GETPORTSTATS) && (cmd != COM_CLRPORTSTATS))
1259 if (tty->flags & (1 << TTY_IO_ERROR))
1260 return -EIO;
1262 rc = 0;
1264 lock_kernel();
1266 switch (cmd) {
1267 case TIOCGSERIAL:
1268 rc = stl_getserial(portp, argp);
1269 break;
1270 case TIOCSSERIAL:
1271 rc = stl_setserial(tty, argp);
1272 break;
1273 case COM_GETPORTSTATS:
1274 rc = stl_getportstats(tty, portp, argp);
1275 break;
1276 case COM_CLRPORTSTATS:
1277 rc = stl_clrportstats(portp, argp);
1278 break;
1279 case TIOCSERCONFIG:
1280 case TIOCSERGWILD:
1281 case TIOCSERSWILD:
1282 case TIOCSERGETLSR:
1283 case TIOCSERGSTRUCT:
1284 case TIOCSERGETMULTI:
1285 case TIOCSERSETMULTI:
1286 default:
1287 rc = -ENOIOCTLCMD;
1288 break;
1290 unlock_kernel();
1291 return rc;
1294 /*****************************************************************************/
1297 * Start the transmitter again. Just turn TX interrupts back on.
1300 static void stl_start(struct tty_struct *tty)
1302 struct stlport *portp;
1304 pr_debug("stl_start(tty=%p)\n", tty);
1306 portp = tty->driver_data;
1307 if (portp == NULL)
1308 return;
1309 stl_startrxtx(portp, -1, 1);
1312 /*****************************************************************************/
1314 static void stl_settermios(struct tty_struct *tty, struct ktermios *old)
1316 struct stlport *portp;
1317 struct ktermios *tiosp;
1319 pr_debug("stl_settermios(tty=%p,old=%p)\n", tty, old);
1321 portp = tty->driver_data;
1322 if (portp == NULL)
1323 return;
1325 tiosp = tty->termios;
1326 if ((tiosp->c_cflag == old->c_cflag) &&
1327 (tiosp->c_iflag == old->c_iflag))
1328 return;
1330 stl_setport(portp, tiosp);
1331 stl_setsignals(portp, ((tiosp->c_cflag & (CBAUD & ~CBAUDEX)) ? 1 : 0),
1332 -1);
1333 if ((old->c_cflag & CRTSCTS) && ((tiosp->c_cflag & CRTSCTS) == 0)) {
1334 tty->hw_stopped = 0;
1335 stl_start(tty);
1337 if (((old->c_cflag & CLOCAL) == 0) && (tiosp->c_cflag & CLOCAL))
1338 wake_up_interruptible(&portp->port.open_wait);
1341 /*****************************************************************************/
1344 * Attempt to flow control who ever is sending us data. Based on termios
1345 * settings use software or/and hardware flow control.
1348 static void stl_throttle(struct tty_struct *tty)
1350 struct stlport *portp;
1352 pr_debug("stl_throttle(tty=%p)\n", tty);
1354 portp = tty->driver_data;
1355 if (portp == NULL)
1356 return;
1357 stl_flowctrl(portp, 0);
1360 /*****************************************************************************/
1363 * Unflow control the device sending us data...
1366 static void stl_unthrottle(struct tty_struct *tty)
1368 struct stlport *portp;
1370 pr_debug("stl_unthrottle(tty=%p)\n", tty);
1372 portp = tty->driver_data;
1373 if (portp == NULL)
1374 return;
1375 stl_flowctrl(portp, 1);
1378 /*****************************************************************************/
1381 * Stop the transmitter. Basically to do this we will just turn TX
1382 * interrupts off.
1385 static void stl_stop(struct tty_struct *tty)
1387 struct stlport *portp;
1389 pr_debug("stl_stop(tty=%p)\n", tty);
1391 portp = tty->driver_data;
1392 if (portp == NULL)
1393 return;
1394 stl_startrxtx(portp, -1, 0);
1397 /*****************************************************************************/
1400 * Hangup this port. This is pretty much like closing the port, only
1401 * a little more brutal. No waiting for data to drain. Shutdown the
1402 * port and maybe drop signals.
1405 static void stl_hangup(struct tty_struct *tty)
1407 struct stlport *portp;
1409 pr_debug("stl_hangup(tty=%p)\n", tty);
1411 portp = tty->driver_data;
1412 if (portp == NULL)
1413 return;
1415 portp->port.flags &= ~ASYNC_INITIALIZED;
1416 stl_disableintrs(portp);
1417 if (tty->termios->c_cflag & HUPCL)
1418 stl_setsignals(portp, 0, 0);
1419 stl_enablerxtx(portp, 0, 0);
1420 stl_flushbuffer(tty);
1421 portp->istate = 0;
1422 set_bit(TTY_IO_ERROR, &tty->flags);
1423 if (portp->tx.buf != NULL) {
1424 kfree(portp->tx.buf);
1425 portp->tx.buf = NULL;
1426 portp->tx.head = NULL;
1427 portp->tx.tail = NULL;
1429 tty_port_tty_set(&portp->port, NULL);
1430 portp->port.flags &= ~ASYNC_NORMAL_ACTIVE;
1431 portp->port.count = 0;
1432 wake_up_interruptible(&portp->port.open_wait);
1435 /*****************************************************************************/
1437 static int stl_breakctl(struct tty_struct *tty, int state)
1439 struct stlport *portp;
1441 pr_debug("stl_breakctl(tty=%p,state=%d)\n", tty, state);
1443 portp = tty->driver_data;
1444 if (portp == NULL)
1445 return -EINVAL;
1447 stl_sendbreak(portp, ((state == -1) ? 1 : 2));
1448 return 0;
1451 /*****************************************************************************/
1453 static void stl_sendxchar(struct tty_struct *tty, char ch)
1455 struct stlport *portp;
1457 pr_debug("stl_sendxchar(tty=%p,ch=%x)\n", tty, ch);
1459 portp = tty->driver_data;
1460 if (portp == NULL)
1461 return;
1463 if (ch == STOP_CHAR(tty))
1464 stl_sendflow(portp, 0);
1465 else if (ch == START_CHAR(tty))
1466 stl_sendflow(portp, 1);
1467 else
1468 stl_putchar(tty, ch);
1471 /*****************************************************************************/
1473 #define MAXLINE 80
1476 * Format info for a specified port. The line is deliberately limited
1477 * to 80 characters. (If it is too long it will be truncated, if too
1478 * short then padded with spaces).
1481 static int stl_portinfo(struct stlport *portp, int portnr, char *pos)
1483 char *sp;
1484 int sigs, cnt;
1486 sp = pos;
1487 sp += sprintf(sp, "%d: uart:%s tx:%d rx:%d",
1488 portnr, (portp->hwid == 1) ? "SC26198" : "CD1400",
1489 (int) portp->stats.txtotal, (int) portp->stats.rxtotal);
1491 if (portp->stats.rxframing)
1492 sp += sprintf(sp, " fe:%d", (int) portp->stats.rxframing);
1493 if (portp->stats.rxparity)
1494 sp += sprintf(sp, " pe:%d", (int) portp->stats.rxparity);
1495 if (portp->stats.rxbreaks)
1496 sp += sprintf(sp, " brk:%d", (int) portp->stats.rxbreaks);
1497 if (portp->stats.rxoverrun)
1498 sp += sprintf(sp, " oe:%d", (int) portp->stats.rxoverrun);
1500 sigs = stl_getsignals(portp);
1501 cnt = sprintf(sp, "%s%s%s%s%s ",
1502 (sigs & TIOCM_RTS) ? "|RTS" : "",
1503 (sigs & TIOCM_CTS) ? "|CTS" : "",
1504 (sigs & TIOCM_DTR) ? "|DTR" : "",
1505 (sigs & TIOCM_CD) ? "|DCD" : "",
1506 (sigs & TIOCM_DSR) ? "|DSR" : "");
1507 *sp = ' ';
1508 sp += cnt;
1510 for (cnt = sp - pos; cnt < (MAXLINE - 1); cnt++)
1511 *sp++ = ' ';
1512 if (cnt >= MAXLINE)
1513 pos[(MAXLINE - 2)] = '+';
1514 pos[(MAXLINE - 1)] = '\n';
1516 return MAXLINE;
1519 /*****************************************************************************/
1522 * Port info, read from the /proc file system.
1525 static int stl_readproc(char *page, char **start, off_t off, int count, int *eof, void *data)
1527 struct stlbrd *brdp;
1528 struct stlpanel *panelp;
1529 struct stlport *portp;
1530 unsigned int brdnr, panelnr, portnr;
1531 int totalport, curoff, maxoff;
1532 char *pos;
1534 pr_debug("stl_readproc(page=%p,start=%p,off=%lx,count=%d,eof=%p,"
1535 "data=%p\n", page, start, off, count, eof, data);
1537 pos = page;
1538 totalport = 0;
1539 curoff = 0;
1541 if (off == 0) {
1542 pos += sprintf(pos, "%s: version %s", stl_drvtitle,
1543 stl_drvversion);
1544 while (pos < (page + MAXLINE - 1))
1545 *pos++ = ' ';
1546 *pos++ = '\n';
1548 curoff = MAXLINE;
1551 * We scan through for each board, panel and port. The offset is
1552 * calculated on the fly, and irrelevant ports are skipped.
1554 for (brdnr = 0; brdnr < stl_nrbrds; brdnr++) {
1555 brdp = stl_brds[brdnr];
1556 if (brdp == NULL)
1557 continue;
1558 if (brdp->state == 0)
1559 continue;
1561 maxoff = curoff + (brdp->nrports * MAXLINE);
1562 if (off >= maxoff) {
1563 curoff = maxoff;
1564 continue;
1567 totalport = brdnr * STL_MAXPORTS;
1568 for (panelnr = 0; panelnr < brdp->nrpanels; panelnr++) {
1569 panelp = brdp->panels[panelnr];
1570 if (panelp == NULL)
1571 continue;
1573 maxoff = curoff + (panelp->nrports * MAXLINE);
1574 if (off >= maxoff) {
1575 curoff = maxoff;
1576 totalport += panelp->nrports;
1577 continue;
1580 for (portnr = 0; portnr < panelp->nrports; portnr++,
1581 totalport++) {
1582 portp = panelp->ports[portnr];
1583 if (portp == NULL)
1584 continue;
1585 if (off >= (curoff += MAXLINE))
1586 continue;
1587 if ((pos - page + MAXLINE) > count)
1588 goto stl_readdone;
1589 pos += stl_portinfo(portp, totalport, pos);
1594 *eof = 1;
1596 stl_readdone:
1597 *start = page;
1598 return pos - page;
1601 /*****************************************************************************/
1604 * All board interrupts are vectored through here first. This code then
1605 * calls off to the approrpriate board interrupt handlers.
1608 static irqreturn_t stl_intr(int irq, void *dev_id)
1610 struct stlbrd *brdp = dev_id;
1612 pr_debug("stl_intr(brdp=%p,irq=%d)\n", brdp, brdp->irq);
1614 return IRQ_RETVAL((* brdp->isr)(brdp));
1617 /*****************************************************************************/
1620 * Interrupt service routine for EasyIO board types.
1623 static int stl_eiointr(struct stlbrd *brdp)
1625 struct stlpanel *panelp;
1626 unsigned int iobase;
1627 int handled = 0;
1629 spin_lock(&brd_lock);
1630 panelp = brdp->panels[0];
1631 iobase = panelp->iobase;
1632 while (inb(brdp->iostatus) & EIO_INTRPEND) {
1633 handled = 1;
1634 (* panelp->isr)(panelp, iobase);
1636 spin_unlock(&brd_lock);
1637 return handled;
1640 /*****************************************************************************/
1643 * Interrupt service routine for ECH-AT board types.
1646 static int stl_echatintr(struct stlbrd *brdp)
1648 struct stlpanel *panelp;
1649 unsigned int ioaddr, bnknr;
1650 int handled = 0;
1652 outb((brdp->ioctrlval | ECH_BRDENABLE), brdp->ioctrl);
1654 while (inb(brdp->iostatus) & ECH_INTRPEND) {
1655 handled = 1;
1656 for (bnknr = 0; bnknr < brdp->nrbnks; bnknr++) {
1657 ioaddr = brdp->bnkstataddr[bnknr];
1658 if (inb(ioaddr) & ECH_PNLINTRPEND) {
1659 panelp = brdp->bnk2panel[bnknr];
1660 (* panelp->isr)(panelp, (ioaddr & 0xfffc));
1665 outb((brdp->ioctrlval | ECH_BRDDISABLE), brdp->ioctrl);
1667 return handled;
1670 /*****************************************************************************/
1673 * Interrupt service routine for ECH-MCA board types.
1676 static int stl_echmcaintr(struct stlbrd *brdp)
1678 struct stlpanel *panelp;
1679 unsigned int ioaddr, bnknr;
1680 int handled = 0;
1682 while (inb(brdp->iostatus) & ECH_INTRPEND) {
1683 handled = 1;
1684 for (bnknr = 0; bnknr < brdp->nrbnks; bnknr++) {
1685 ioaddr = brdp->bnkstataddr[bnknr];
1686 if (inb(ioaddr) & ECH_PNLINTRPEND) {
1687 panelp = brdp->bnk2panel[bnknr];
1688 (* panelp->isr)(panelp, (ioaddr & 0xfffc));
1692 return handled;
1695 /*****************************************************************************/
1698 * Interrupt service routine for ECH-PCI board types.
1701 static int stl_echpciintr(struct stlbrd *brdp)
1703 struct stlpanel *panelp;
1704 unsigned int ioaddr, bnknr, recheck;
1705 int handled = 0;
1707 while (1) {
1708 recheck = 0;
1709 for (bnknr = 0; bnknr < brdp->nrbnks; bnknr++) {
1710 outb(brdp->bnkpageaddr[bnknr], brdp->ioctrl);
1711 ioaddr = brdp->bnkstataddr[bnknr];
1712 if (inb(ioaddr) & ECH_PNLINTRPEND) {
1713 panelp = brdp->bnk2panel[bnknr];
1714 (* panelp->isr)(panelp, (ioaddr & 0xfffc));
1715 recheck++;
1716 handled = 1;
1719 if (! recheck)
1720 break;
1722 return handled;
1725 /*****************************************************************************/
1728 * Interrupt service routine for ECH-8/64-PCI board types.
1731 static int stl_echpci64intr(struct stlbrd *brdp)
1733 struct stlpanel *panelp;
1734 unsigned int ioaddr, bnknr;
1735 int handled = 0;
1737 while (inb(brdp->ioctrl) & 0x1) {
1738 handled = 1;
1739 for (bnknr = 0; bnknr < brdp->nrbnks; bnknr++) {
1740 ioaddr = brdp->bnkstataddr[bnknr];
1741 if (inb(ioaddr) & ECH_PNLINTRPEND) {
1742 panelp = brdp->bnk2panel[bnknr];
1743 (* panelp->isr)(panelp, (ioaddr & 0xfffc));
1748 return handled;
1751 /*****************************************************************************/
1754 * Initialize all the ports on a panel.
1757 static int __devinit stl_initports(struct stlbrd *brdp, struct stlpanel *panelp)
1759 struct stlport *portp;
1760 unsigned int i;
1761 int chipmask;
1763 pr_debug("stl_initports(brdp=%p,panelp=%p)\n", brdp, panelp);
1765 chipmask = stl_panelinit(brdp, panelp);
1768 * All UART's are initialized (if found!). Now go through and setup
1769 * each ports data structures.
1771 for (i = 0; i < panelp->nrports; i++) {
1772 portp = kzalloc(sizeof(struct stlport), GFP_KERNEL);
1773 if (!portp) {
1774 printk("STALLION: failed to allocate memory "
1775 "(size=%Zd)\n", sizeof(struct stlport));
1776 break;
1778 tty_port_init(&portp->port);
1779 portp->magic = STL_PORTMAGIC;
1780 portp->portnr = i;
1781 portp->brdnr = panelp->brdnr;
1782 portp->panelnr = panelp->panelnr;
1783 portp->uartp = panelp->uartp;
1784 portp->clk = brdp->clk;
1785 portp->baud_base = STL_BAUDBASE;
1786 portp->close_delay = STL_CLOSEDELAY;
1787 portp->closing_wait = 30 * HZ;
1788 init_waitqueue_head(&portp->port.open_wait);
1789 init_waitqueue_head(&portp->port.close_wait);
1790 portp->stats.brd = portp->brdnr;
1791 portp->stats.panel = portp->panelnr;
1792 portp->stats.port = portp->portnr;
1793 panelp->ports[i] = portp;
1794 stl_portinit(brdp, panelp, portp);
1797 return 0;
1800 static void stl_cleanup_panels(struct stlbrd *brdp)
1802 struct stlpanel *panelp;
1803 struct stlport *portp;
1804 unsigned int j, k;
1805 struct tty_struct *tty;
1807 for (j = 0; j < STL_MAXPANELS; j++) {
1808 panelp = brdp->panels[j];
1809 if (panelp == NULL)
1810 continue;
1811 for (k = 0; k < STL_PORTSPERPANEL; k++) {
1812 portp = panelp->ports[k];
1813 if (portp == NULL)
1814 continue;
1815 tty = tty_port_tty_get(&portp->port);
1816 if (tty != NULL) {
1817 stl_hangup(tty);
1818 tty_kref_put(tty);
1820 kfree(portp->tx.buf);
1821 kfree(portp);
1823 kfree(panelp);
1827 /*****************************************************************************/
1830 * Try to find and initialize an EasyIO board.
1833 static int __devinit stl_initeio(struct stlbrd *brdp)
1835 struct stlpanel *panelp;
1836 unsigned int status;
1837 char *name;
1838 int retval;
1840 pr_debug("stl_initeio(brdp=%p)\n", brdp);
1842 brdp->ioctrl = brdp->ioaddr1 + 1;
1843 brdp->iostatus = brdp->ioaddr1 + 2;
1845 status = inb(brdp->iostatus);
1846 if ((status & EIO_IDBITMASK) == EIO_MK3)
1847 brdp->ioctrl++;
1850 * Handle board specific stuff now. The real difference is PCI
1851 * or not PCI.
1853 if (brdp->brdtype == BRD_EASYIOPCI) {
1854 brdp->iosize1 = 0x80;
1855 brdp->iosize2 = 0x80;
1856 name = "serial(EIO-PCI)";
1857 outb(0x41, (brdp->ioaddr2 + 0x4c));
1858 } else {
1859 brdp->iosize1 = 8;
1860 name = "serial(EIO)";
1861 if ((brdp->irq < 0) || (brdp->irq > 15) ||
1862 (stl_vecmap[brdp->irq] == (unsigned char) 0xff)) {
1863 printk("STALLION: invalid irq=%d for brd=%d\n",
1864 brdp->irq, brdp->brdnr);
1865 retval = -EINVAL;
1866 goto err;
1868 outb((stl_vecmap[brdp->irq] | EIO_0WS |
1869 ((brdp->irqtype) ? EIO_INTLEVEL : EIO_INTEDGE)),
1870 brdp->ioctrl);
1873 retval = -EBUSY;
1874 if (!request_region(brdp->ioaddr1, brdp->iosize1, name)) {
1875 printk(KERN_WARNING "STALLION: Warning, board %d I/O address "
1876 "%x conflicts with another device\n", brdp->brdnr,
1877 brdp->ioaddr1);
1878 goto err;
1881 if (brdp->iosize2 > 0)
1882 if (!request_region(brdp->ioaddr2, brdp->iosize2, name)) {
1883 printk(KERN_WARNING "STALLION: Warning, board %d I/O "
1884 "address %x conflicts with another device\n",
1885 brdp->brdnr, brdp->ioaddr2);
1886 printk(KERN_WARNING "STALLION: Warning, also "
1887 "releasing board %d I/O address %x \n",
1888 brdp->brdnr, brdp->ioaddr1);
1889 goto err_rel1;
1893 * Everything looks OK, so let's go ahead and probe for the hardware.
1895 brdp->clk = CD1400_CLK;
1896 brdp->isr = stl_eiointr;
1898 retval = -ENODEV;
1899 switch (status & EIO_IDBITMASK) {
1900 case EIO_8PORTM:
1901 brdp->clk = CD1400_CLK8M;
1902 /* fall thru */
1903 case EIO_8PORTRS:
1904 case EIO_8PORTDI:
1905 brdp->nrports = 8;
1906 break;
1907 case EIO_4PORTRS:
1908 brdp->nrports = 4;
1909 break;
1910 case EIO_MK3:
1911 switch (status & EIO_BRDMASK) {
1912 case ID_BRD4:
1913 brdp->nrports = 4;
1914 break;
1915 case ID_BRD8:
1916 brdp->nrports = 8;
1917 break;
1918 case ID_BRD16:
1919 brdp->nrports = 16;
1920 break;
1921 default:
1922 goto err_rel2;
1924 break;
1925 default:
1926 goto err_rel2;
1930 * We have verified that the board is actually present, so now we
1931 * can complete the setup.
1934 panelp = kzalloc(sizeof(struct stlpanel), GFP_KERNEL);
1935 if (!panelp) {
1936 printk(KERN_WARNING "STALLION: failed to allocate memory "
1937 "(size=%Zd)\n", sizeof(struct stlpanel));
1938 retval = -ENOMEM;
1939 goto err_rel2;
1942 panelp->magic = STL_PANELMAGIC;
1943 panelp->brdnr = brdp->brdnr;
1944 panelp->panelnr = 0;
1945 panelp->nrports = brdp->nrports;
1946 panelp->iobase = brdp->ioaddr1;
1947 panelp->hwid = status;
1948 if ((status & EIO_IDBITMASK) == EIO_MK3) {
1949 panelp->uartp = &stl_sc26198uart;
1950 panelp->isr = stl_sc26198intr;
1951 } else {
1952 panelp->uartp = &stl_cd1400uart;
1953 panelp->isr = stl_cd1400eiointr;
1956 brdp->panels[0] = panelp;
1957 brdp->nrpanels = 1;
1958 brdp->state |= BRD_FOUND;
1959 brdp->hwid = status;
1960 if (request_irq(brdp->irq, stl_intr, IRQF_SHARED, name, brdp) != 0) {
1961 printk("STALLION: failed to register interrupt "
1962 "routine for %s irq=%d\n", name, brdp->irq);
1963 retval = -ENODEV;
1964 goto err_fr;
1967 return 0;
1968 err_fr:
1969 stl_cleanup_panels(brdp);
1970 err_rel2:
1971 if (brdp->iosize2 > 0)
1972 release_region(brdp->ioaddr2, brdp->iosize2);
1973 err_rel1:
1974 release_region(brdp->ioaddr1, brdp->iosize1);
1975 err:
1976 return retval;
1979 /*****************************************************************************/
1982 * Try to find an ECH board and initialize it. This code is capable of
1983 * dealing with all types of ECH board.
1986 static int __devinit stl_initech(struct stlbrd *brdp)
1988 struct stlpanel *panelp;
1989 unsigned int status, nxtid, ioaddr, conflict, panelnr, banknr, i;
1990 int retval;
1991 char *name;
1993 pr_debug("stl_initech(brdp=%p)\n", brdp);
1995 status = 0;
1996 conflict = 0;
1999 * Set up the initial board register contents for boards. This varies a
2000 * bit between the different board types. So we need to handle each
2001 * separately. Also do a check that the supplied IRQ is good.
2003 switch (brdp->brdtype) {
2005 case BRD_ECH:
2006 brdp->isr = stl_echatintr;
2007 brdp->ioctrl = brdp->ioaddr1 + 1;
2008 brdp->iostatus = brdp->ioaddr1 + 1;
2009 status = inb(brdp->iostatus);
2010 if ((status & ECH_IDBITMASK) != ECH_ID) {
2011 retval = -ENODEV;
2012 goto err;
2014 if ((brdp->irq < 0) || (brdp->irq > 15) ||
2015 (stl_vecmap[brdp->irq] == (unsigned char) 0xff)) {
2016 printk("STALLION: invalid irq=%d for brd=%d\n",
2017 brdp->irq, brdp->brdnr);
2018 retval = -EINVAL;
2019 goto err;
2021 status = ((brdp->ioaddr2 & ECH_ADDR2MASK) >> 1);
2022 status |= (stl_vecmap[brdp->irq] << 1);
2023 outb((status | ECH_BRDRESET), brdp->ioaddr1);
2024 brdp->ioctrlval = ECH_INTENABLE |
2025 ((brdp->irqtype) ? ECH_INTLEVEL : ECH_INTEDGE);
2026 for (i = 0; i < 10; i++)
2027 outb((brdp->ioctrlval | ECH_BRDENABLE), brdp->ioctrl);
2028 brdp->iosize1 = 2;
2029 brdp->iosize2 = 32;
2030 name = "serial(EC8/32)";
2031 outb(status, brdp->ioaddr1);
2032 break;
2034 case BRD_ECHMC:
2035 brdp->isr = stl_echmcaintr;
2036 brdp->ioctrl = brdp->ioaddr1 + 0x20;
2037 brdp->iostatus = brdp->ioctrl;
2038 status = inb(brdp->iostatus);
2039 if ((status & ECH_IDBITMASK) != ECH_ID) {
2040 retval = -ENODEV;
2041 goto err;
2043 if ((brdp->irq < 0) || (brdp->irq > 15) ||
2044 (stl_vecmap[brdp->irq] == (unsigned char) 0xff)) {
2045 printk("STALLION: invalid irq=%d for brd=%d\n",
2046 brdp->irq, brdp->brdnr);
2047 retval = -EINVAL;
2048 goto err;
2050 outb(ECHMC_BRDRESET, brdp->ioctrl);
2051 outb(ECHMC_INTENABLE, brdp->ioctrl);
2052 brdp->iosize1 = 64;
2053 name = "serial(EC8/32-MC)";
2054 break;
2056 case BRD_ECHPCI:
2057 brdp->isr = stl_echpciintr;
2058 brdp->ioctrl = brdp->ioaddr1 + 2;
2059 brdp->iosize1 = 4;
2060 brdp->iosize2 = 8;
2061 name = "serial(EC8/32-PCI)";
2062 break;
2064 case BRD_ECH64PCI:
2065 brdp->isr = stl_echpci64intr;
2066 brdp->ioctrl = brdp->ioaddr2 + 0x40;
2067 outb(0x43, (brdp->ioaddr1 + 0x4c));
2068 brdp->iosize1 = 0x80;
2069 brdp->iosize2 = 0x80;
2070 name = "serial(EC8/64-PCI)";
2071 break;
2073 default:
2074 printk("STALLION: unknown board type=%d\n", brdp->brdtype);
2075 retval = -EINVAL;
2076 goto err;
2080 * Check boards for possible IO address conflicts and return fail status
2081 * if an IO conflict found.
2083 retval = -EBUSY;
2084 if (!request_region(brdp->ioaddr1, brdp->iosize1, name)) {
2085 printk(KERN_WARNING "STALLION: Warning, board %d I/O address "
2086 "%x conflicts with another device\n", brdp->brdnr,
2087 brdp->ioaddr1);
2088 goto err;
2091 if (brdp->iosize2 > 0)
2092 if (!request_region(brdp->ioaddr2, brdp->iosize2, name)) {
2093 printk(KERN_WARNING "STALLION: Warning, board %d I/O "
2094 "address %x conflicts with another device\n",
2095 brdp->brdnr, brdp->ioaddr2);
2096 printk(KERN_WARNING "STALLION: Warning, also "
2097 "releasing board %d I/O address %x \n",
2098 brdp->brdnr, brdp->ioaddr1);
2099 goto err_rel1;
2103 * Scan through the secondary io address space looking for panels.
2104 * As we find'em allocate and initialize panel structures for each.
2106 brdp->clk = CD1400_CLK;
2107 brdp->hwid = status;
2109 ioaddr = brdp->ioaddr2;
2110 banknr = 0;
2111 panelnr = 0;
2112 nxtid = 0;
2114 for (i = 0; i < STL_MAXPANELS; i++) {
2115 if (brdp->brdtype == BRD_ECHPCI) {
2116 outb(nxtid, brdp->ioctrl);
2117 ioaddr = brdp->ioaddr2;
2119 status = inb(ioaddr + ECH_PNLSTATUS);
2120 if ((status & ECH_PNLIDMASK) != nxtid)
2121 break;
2122 panelp = kzalloc(sizeof(struct stlpanel), GFP_KERNEL);
2123 if (!panelp) {
2124 printk("STALLION: failed to allocate memory "
2125 "(size=%Zd)\n", sizeof(struct stlpanel));
2126 retval = -ENOMEM;
2127 goto err_fr;
2129 panelp->magic = STL_PANELMAGIC;
2130 panelp->brdnr = brdp->brdnr;
2131 panelp->panelnr = panelnr;
2132 panelp->iobase = ioaddr;
2133 panelp->pagenr = nxtid;
2134 panelp->hwid = status;
2135 brdp->bnk2panel[banknr] = panelp;
2136 brdp->bnkpageaddr[banknr] = nxtid;
2137 brdp->bnkstataddr[banknr++] = ioaddr + ECH_PNLSTATUS;
2139 if (status & ECH_PNLXPID) {
2140 panelp->uartp = &stl_sc26198uart;
2141 panelp->isr = stl_sc26198intr;
2142 if (status & ECH_PNL16PORT) {
2143 panelp->nrports = 16;
2144 brdp->bnk2panel[banknr] = panelp;
2145 brdp->bnkpageaddr[banknr] = nxtid;
2146 brdp->bnkstataddr[banknr++] = ioaddr + 4 +
2147 ECH_PNLSTATUS;
2148 } else
2149 panelp->nrports = 8;
2150 } else {
2151 panelp->uartp = &stl_cd1400uart;
2152 panelp->isr = stl_cd1400echintr;
2153 if (status & ECH_PNL16PORT) {
2154 panelp->nrports = 16;
2155 panelp->ackmask = 0x80;
2156 if (brdp->brdtype != BRD_ECHPCI)
2157 ioaddr += EREG_BANKSIZE;
2158 brdp->bnk2panel[banknr] = panelp;
2159 brdp->bnkpageaddr[banknr] = ++nxtid;
2160 brdp->bnkstataddr[banknr++] = ioaddr +
2161 ECH_PNLSTATUS;
2162 } else {
2163 panelp->nrports = 8;
2164 panelp->ackmask = 0xc0;
2168 nxtid++;
2169 ioaddr += EREG_BANKSIZE;
2170 brdp->nrports += panelp->nrports;
2171 brdp->panels[panelnr++] = panelp;
2172 if ((brdp->brdtype != BRD_ECHPCI) &&
2173 (ioaddr >= (brdp->ioaddr2 + brdp->iosize2))) {
2174 retval = -EINVAL;
2175 goto err_fr;
2179 brdp->nrpanels = panelnr;
2180 brdp->nrbnks = banknr;
2181 if (brdp->brdtype == BRD_ECH)
2182 outb((brdp->ioctrlval | ECH_BRDDISABLE), brdp->ioctrl);
2184 brdp->state |= BRD_FOUND;
2185 if (request_irq(brdp->irq, stl_intr, IRQF_SHARED, name, brdp) != 0) {
2186 printk("STALLION: failed to register interrupt "
2187 "routine for %s irq=%d\n", name, brdp->irq);
2188 retval = -ENODEV;
2189 goto err_fr;
2192 return 0;
2193 err_fr:
2194 stl_cleanup_panels(brdp);
2195 if (brdp->iosize2 > 0)
2196 release_region(brdp->ioaddr2, brdp->iosize2);
2197 err_rel1:
2198 release_region(brdp->ioaddr1, brdp->iosize1);
2199 err:
2200 return retval;
2203 /*****************************************************************************/
2206 * Initialize and configure the specified board.
2207 * Scan through all the boards in the configuration and see what we
2208 * can find. Handle EIO and the ECH boards a little differently here
2209 * since the initial search and setup is very different.
2212 static int __devinit stl_brdinit(struct stlbrd *brdp)
2214 int i, retval;
2216 pr_debug("stl_brdinit(brdp=%p)\n", brdp);
2218 switch (brdp->brdtype) {
2219 case BRD_EASYIO:
2220 case BRD_EASYIOPCI:
2221 retval = stl_initeio(brdp);
2222 if (retval)
2223 goto err;
2224 break;
2225 case BRD_ECH:
2226 case BRD_ECHMC:
2227 case BRD_ECHPCI:
2228 case BRD_ECH64PCI:
2229 retval = stl_initech(brdp);
2230 if (retval)
2231 goto err;
2232 break;
2233 default:
2234 printk("STALLION: board=%d is unknown board type=%d\n",
2235 brdp->brdnr, brdp->brdtype);
2236 retval = -ENODEV;
2237 goto err;
2240 if ((brdp->state & BRD_FOUND) == 0) {
2241 printk("STALLION: %s board not found, board=%d io=%x irq=%d\n",
2242 stl_brdnames[brdp->brdtype], brdp->brdnr,
2243 brdp->ioaddr1, brdp->irq);
2244 goto err_free;
2247 for (i = 0; i < STL_MAXPANELS; i++)
2248 if (brdp->panels[i] != NULL)
2249 stl_initports(brdp, brdp->panels[i]);
2251 printk("STALLION: %s found, board=%d io=%x irq=%d "
2252 "nrpanels=%d nrports=%d\n", stl_brdnames[brdp->brdtype],
2253 brdp->brdnr, brdp->ioaddr1, brdp->irq, brdp->nrpanels,
2254 brdp->nrports);
2256 return 0;
2257 err_free:
2258 free_irq(brdp->irq, brdp);
2260 stl_cleanup_panels(brdp);
2262 release_region(brdp->ioaddr1, brdp->iosize1);
2263 if (brdp->iosize2 > 0)
2264 release_region(brdp->ioaddr2, brdp->iosize2);
2265 err:
2266 return retval;
2269 /*****************************************************************************/
2272 * Find the next available board number that is free.
2275 static int __devinit stl_getbrdnr(void)
2277 unsigned int i;
2279 for (i = 0; i < STL_MAXBRDS; i++)
2280 if (stl_brds[i] == NULL) {
2281 if (i >= stl_nrbrds)
2282 stl_nrbrds = i + 1;
2283 return i;
2286 return -1;
2289 /*****************************************************************************/
2291 * We have a Stallion board. Allocate a board structure and
2292 * initialize it. Read its IO and IRQ resources from PCI
2293 * configuration space.
2296 static int __devinit stl_pciprobe(struct pci_dev *pdev,
2297 const struct pci_device_id *ent)
2299 struct stlbrd *brdp;
2300 unsigned int i, brdtype = ent->driver_data;
2301 int brdnr, retval = -ENODEV;
2303 if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE)
2304 goto err;
2306 retval = pci_enable_device(pdev);
2307 if (retval)
2308 goto err;
2309 brdp = stl_allocbrd();
2310 if (brdp == NULL) {
2311 retval = -ENOMEM;
2312 goto err;
2314 mutex_lock(&stl_brdslock);
2315 brdnr = stl_getbrdnr();
2316 if (brdnr < 0) {
2317 dev_err(&pdev->dev, "too many boards found, "
2318 "maximum supported %d\n", STL_MAXBRDS);
2319 mutex_unlock(&stl_brdslock);
2320 retval = -ENODEV;
2321 goto err_fr;
2323 brdp->brdnr = (unsigned int)brdnr;
2324 stl_brds[brdp->brdnr] = brdp;
2325 mutex_unlock(&stl_brdslock);
2327 brdp->brdtype = brdtype;
2328 brdp->state |= STL_PROBED;
2331 * We have all resources from the board, so let's setup the actual
2332 * board structure now.
2334 switch (brdtype) {
2335 case BRD_ECHPCI:
2336 brdp->ioaddr2 = pci_resource_start(pdev, 0);
2337 brdp->ioaddr1 = pci_resource_start(pdev, 1);
2338 break;
2339 case BRD_ECH64PCI:
2340 brdp->ioaddr2 = pci_resource_start(pdev, 2);
2341 brdp->ioaddr1 = pci_resource_start(pdev, 1);
2342 break;
2343 case BRD_EASYIOPCI:
2344 brdp->ioaddr1 = pci_resource_start(pdev, 2);
2345 brdp->ioaddr2 = pci_resource_start(pdev, 1);
2346 break;
2347 default:
2348 dev_err(&pdev->dev, "unknown PCI board type=%u\n", brdtype);
2349 break;
2352 brdp->irq = pdev->irq;
2353 retval = stl_brdinit(brdp);
2354 if (retval)
2355 goto err_null;
2357 pci_set_drvdata(pdev, brdp);
2359 for (i = 0; i < brdp->nrports; i++)
2360 tty_register_device(stl_serial,
2361 brdp->brdnr * STL_MAXPORTS + i, &pdev->dev);
2363 return 0;
2364 err_null:
2365 stl_brds[brdp->brdnr] = NULL;
2366 err_fr:
2367 kfree(brdp);
2368 err:
2369 return retval;
2372 static void __devexit stl_pciremove(struct pci_dev *pdev)
2374 struct stlbrd *brdp = pci_get_drvdata(pdev);
2375 unsigned int i;
2377 free_irq(brdp->irq, brdp);
2379 stl_cleanup_panels(brdp);
2381 release_region(brdp->ioaddr1, brdp->iosize1);
2382 if (brdp->iosize2 > 0)
2383 release_region(brdp->ioaddr2, brdp->iosize2);
2385 for (i = 0; i < brdp->nrports; i++)
2386 tty_unregister_device(stl_serial,
2387 brdp->brdnr * STL_MAXPORTS + i);
2389 stl_brds[brdp->brdnr] = NULL;
2390 kfree(brdp);
2393 static struct pci_driver stl_pcidriver = {
2394 .name = "stallion",
2395 .id_table = stl_pcibrds,
2396 .probe = stl_pciprobe,
2397 .remove = __devexit_p(stl_pciremove)
2400 /*****************************************************************************/
2403 * Return the board stats structure to user app.
2406 static int stl_getbrdstats(combrd_t __user *bp)
2408 combrd_t stl_brdstats;
2409 struct stlbrd *brdp;
2410 struct stlpanel *panelp;
2411 unsigned int i;
2413 if (copy_from_user(&stl_brdstats, bp, sizeof(combrd_t)))
2414 return -EFAULT;
2415 if (stl_brdstats.brd >= STL_MAXBRDS)
2416 return -ENODEV;
2417 brdp = stl_brds[stl_brdstats.brd];
2418 if (brdp == NULL)
2419 return -ENODEV;
2421 memset(&stl_brdstats, 0, sizeof(combrd_t));
2422 stl_brdstats.brd = brdp->brdnr;
2423 stl_brdstats.type = brdp->brdtype;
2424 stl_brdstats.hwid = brdp->hwid;
2425 stl_brdstats.state = brdp->state;
2426 stl_brdstats.ioaddr = brdp->ioaddr1;
2427 stl_brdstats.ioaddr2 = brdp->ioaddr2;
2428 stl_brdstats.irq = brdp->irq;
2429 stl_brdstats.nrpanels = brdp->nrpanels;
2430 stl_brdstats.nrports = brdp->nrports;
2431 for (i = 0; i < brdp->nrpanels; i++) {
2432 panelp = brdp->panels[i];
2433 stl_brdstats.panels[i].panel = i;
2434 stl_brdstats.panels[i].hwid = panelp->hwid;
2435 stl_brdstats.panels[i].nrports = panelp->nrports;
2438 return copy_to_user(bp, &stl_brdstats, sizeof(combrd_t)) ? -EFAULT : 0;
2441 /*****************************************************************************/
2444 * Resolve the referenced port number into a port struct pointer.
2447 static struct stlport *stl_getport(int brdnr, int panelnr, int portnr)
2449 struct stlbrd *brdp;
2450 struct stlpanel *panelp;
2452 if (brdnr < 0 || brdnr >= STL_MAXBRDS)
2453 return NULL;
2454 brdp = stl_brds[brdnr];
2455 if (brdp == NULL)
2456 return NULL;
2457 if (panelnr < 0 || (unsigned int)panelnr >= brdp->nrpanels)
2458 return NULL;
2459 panelp = brdp->panels[panelnr];
2460 if (panelp == NULL)
2461 return NULL;
2462 if (portnr < 0 || (unsigned int)portnr >= panelp->nrports)
2463 return NULL;
2464 return panelp->ports[portnr];
2467 /*****************************************************************************/
2470 * Return the port stats structure to user app. A NULL port struct
2471 * pointer passed in means that we need to find out from the app
2472 * what port to get stats for (used through board control device).
2475 static int stl_getportstats(struct tty_struct *tty, struct stlport *portp, comstats_t __user *cp)
2477 comstats_t stl_comstats;
2478 unsigned char *head, *tail;
2479 unsigned long flags;
2481 if (!portp) {
2482 if (copy_from_user(&stl_comstats, cp, sizeof(comstats_t)))
2483 return -EFAULT;
2484 portp = stl_getport(stl_comstats.brd, stl_comstats.panel,
2485 stl_comstats.port);
2486 if (portp == NULL)
2487 return -ENODEV;
2490 portp->stats.state = portp->istate;
2491 portp->stats.flags = portp->port.flags;
2492 portp->stats.hwid = portp->hwid;
2494 portp->stats.ttystate = 0;
2495 portp->stats.cflags = 0;
2496 portp->stats.iflags = 0;
2497 portp->stats.oflags = 0;
2498 portp->stats.lflags = 0;
2499 portp->stats.rxbuffered = 0;
2501 spin_lock_irqsave(&stallion_lock, flags);
2502 if (tty != NULL && portp->port.tty == tty) {
2503 portp->stats.ttystate = tty->flags;
2504 /* No longer available as a statistic */
2505 portp->stats.rxbuffered = 1; /*tty->flip.count; */
2506 if (tty->termios != NULL) {
2507 portp->stats.cflags = tty->termios->c_cflag;
2508 portp->stats.iflags = tty->termios->c_iflag;
2509 portp->stats.oflags = tty->termios->c_oflag;
2510 portp->stats.lflags = tty->termios->c_lflag;
2513 spin_unlock_irqrestore(&stallion_lock, flags);
2515 head = portp->tx.head;
2516 tail = portp->tx.tail;
2517 portp->stats.txbuffered = (head >= tail) ? (head - tail) :
2518 (STL_TXBUFSIZE - (tail - head));
2520 portp->stats.signals = (unsigned long) stl_getsignals(portp);
2522 return copy_to_user(cp, &portp->stats,
2523 sizeof(comstats_t)) ? -EFAULT : 0;
2526 /*****************************************************************************/
2529 * Clear the port stats structure. We also return it zeroed out...
2532 static int stl_clrportstats(struct stlport *portp, comstats_t __user *cp)
2534 comstats_t stl_comstats;
2536 if (!portp) {
2537 if (copy_from_user(&stl_comstats, cp, sizeof(comstats_t)))
2538 return -EFAULT;
2539 portp = stl_getport(stl_comstats.brd, stl_comstats.panel,
2540 stl_comstats.port);
2541 if (portp == NULL)
2542 return -ENODEV;
2545 memset(&portp->stats, 0, sizeof(comstats_t));
2546 portp->stats.brd = portp->brdnr;
2547 portp->stats.panel = portp->panelnr;
2548 portp->stats.port = portp->portnr;
2549 return copy_to_user(cp, &portp->stats,
2550 sizeof(comstats_t)) ? -EFAULT : 0;
2553 /*****************************************************************************/
2556 * Return the entire driver ports structure to a user app.
2559 static int stl_getportstruct(struct stlport __user *arg)
2561 struct stlport stl_dummyport;
2562 struct stlport *portp;
2564 if (copy_from_user(&stl_dummyport, arg, sizeof(struct stlport)))
2565 return -EFAULT;
2566 portp = stl_getport(stl_dummyport.brdnr, stl_dummyport.panelnr,
2567 stl_dummyport.portnr);
2568 if (!portp)
2569 return -ENODEV;
2570 return copy_to_user(arg, portp, sizeof(struct stlport)) ? -EFAULT : 0;
2573 /*****************************************************************************/
2576 * Return the entire driver board structure to a user app.
2579 static int stl_getbrdstruct(struct stlbrd __user *arg)
2581 struct stlbrd stl_dummybrd;
2582 struct stlbrd *brdp;
2584 if (copy_from_user(&stl_dummybrd, arg, sizeof(struct stlbrd)))
2585 return -EFAULT;
2586 if (stl_dummybrd.brdnr >= STL_MAXBRDS)
2587 return -ENODEV;
2588 brdp = stl_brds[stl_dummybrd.brdnr];
2589 if (!brdp)
2590 return -ENODEV;
2591 return copy_to_user(arg, brdp, sizeof(struct stlbrd)) ? -EFAULT : 0;
2594 /*****************************************************************************/
2597 * The "staliomem" device is also required to do some special operations
2598 * on the board and/or ports. In this driver it is mostly used for stats
2599 * collection.
2602 static int stl_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg)
2604 int brdnr, rc;
2605 void __user *argp = (void __user *)arg;
2607 pr_debug("stl_memioctl(ip=%p,fp=%p,cmd=%x,arg=%lx)\n", ip, fp, cmd,arg);
2609 brdnr = iminor(ip);
2610 if (brdnr >= STL_MAXBRDS)
2611 return -ENODEV;
2612 rc = 0;
2614 switch (cmd) {
2615 case COM_GETPORTSTATS:
2616 rc = stl_getportstats(NULL, NULL, argp);
2617 break;
2618 case COM_CLRPORTSTATS:
2619 rc = stl_clrportstats(NULL, argp);
2620 break;
2621 case COM_GETBRDSTATS:
2622 rc = stl_getbrdstats(argp);
2623 break;
2624 case COM_READPORT:
2625 rc = stl_getportstruct(argp);
2626 break;
2627 case COM_READBOARD:
2628 rc = stl_getbrdstruct(argp);
2629 break;
2630 default:
2631 rc = -ENOIOCTLCMD;
2632 break;
2635 return rc;
2638 static const struct tty_operations stl_ops = {
2639 .open = stl_open,
2640 .close = stl_close,
2641 .write = stl_write,
2642 .put_char = stl_putchar,
2643 .flush_chars = stl_flushchars,
2644 .write_room = stl_writeroom,
2645 .chars_in_buffer = stl_charsinbuffer,
2646 .ioctl = stl_ioctl,
2647 .set_termios = stl_settermios,
2648 .throttle = stl_throttle,
2649 .unthrottle = stl_unthrottle,
2650 .stop = stl_stop,
2651 .start = stl_start,
2652 .hangup = stl_hangup,
2653 .flush_buffer = stl_flushbuffer,
2654 .break_ctl = stl_breakctl,
2655 .wait_until_sent = stl_waituntilsent,
2656 .send_xchar = stl_sendxchar,
2657 .read_proc = stl_readproc,
2658 .tiocmget = stl_tiocmget,
2659 .tiocmset = stl_tiocmset,
2662 /*****************************************************************************/
2663 /* CD1400 HARDWARE FUNCTIONS */
2664 /*****************************************************************************/
2667 * These functions get/set/update the registers of the cd1400 UARTs.
2668 * Access to the cd1400 registers is via an address/data io port pair.
2669 * (Maybe should make this inline...)
2672 static int stl_cd1400getreg(struct stlport *portp, int regnr)
2674 outb((regnr + portp->uartaddr), portp->ioaddr);
2675 return inb(portp->ioaddr + EREG_DATA);
2678 static void stl_cd1400setreg(struct stlport *portp, int regnr, int value)
2680 outb(regnr + portp->uartaddr, portp->ioaddr);
2681 outb(value, portp->ioaddr + EREG_DATA);
2684 static int stl_cd1400updatereg(struct stlport *portp, int regnr, int value)
2686 outb(regnr + portp->uartaddr, portp->ioaddr);
2687 if (inb(portp->ioaddr + EREG_DATA) != value) {
2688 outb(value, portp->ioaddr + EREG_DATA);
2689 return 1;
2691 return 0;
2694 /*****************************************************************************/
2697 * Inbitialize the UARTs in a panel. We don't care what sort of board
2698 * these ports are on - since the port io registers are almost
2699 * identical when dealing with ports.
2702 static int stl_cd1400panelinit(struct stlbrd *brdp, struct stlpanel *panelp)
2704 unsigned int gfrcr;
2705 int chipmask, i, j;
2706 int nrchips, uartaddr, ioaddr;
2707 unsigned long flags;
2709 pr_debug("stl_panelinit(brdp=%p,panelp=%p)\n", brdp, panelp);
2711 spin_lock_irqsave(&brd_lock, flags);
2712 BRDENABLE(panelp->brdnr, panelp->pagenr);
2715 * Check that each chip is present and started up OK.
2717 chipmask = 0;
2718 nrchips = panelp->nrports / CD1400_PORTS;
2719 for (i = 0; i < nrchips; i++) {
2720 if (brdp->brdtype == BRD_ECHPCI) {
2721 outb((panelp->pagenr + (i >> 1)), brdp->ioctrl);
2722 ioaddr = panelp->iobase;
2723 } else
2724 ioaddr = panelp->iobase + (EREG_BANKSIZE * (i >> 1));
2725 uartaddr = (i & 0x01) ? 0x080 : 0;
2726 outb((GFRCR + uartaddr), ioaddr);
2727 outb(0, (ioaddr + EREG_DATA));
2728 outb((CCR + uartaddr), ioaddr);
2729 outb(CCR_RESETFULL, (ioaddr + EREG_DATA));
2730 outb(CCR_RESETFULL, (ioaddr + EREG_DATA));
2731 outb((GFRCR + uartaddr), ioaddr);
2732 for (j = 0; j < CCR_MAXWAIT; j++)
2733 if ((gfrcr = inb(ioaddr + EREG_DATA)) != 0)
2734 break;
2736 if ((j >= CCR_MAXWAIT) || (gfrcr < 0x40) || (gfrcr > 0x60)) {
2737 printk("STALLION: cd1400 not responding, "
2738 "brd=%d panel=%d chip=%d\n",
2739 panelp->brdnr, panelp->panelnr, i);
2740 continue;
2742 chipmask |= (0x1 << i);
2743 outb((PPR + uartaddr), ioaddr);
2744 outb(PPR_SCALAR, (ioaddr + EREG_DATA));
2747 BRDDISABLE(panelp->brdnr);
2748 spin_unlock_irqrestore(&brd_lock, flags);
2749 return chipmask;
2752 /*****************************************************************************/
2755 * Initialize hardware specific port registers.
2758 static void stl_cd1400portinit(struct stlbrd *brdp, struct stlpanel *panelp, struct stlport *portp)
2760 unsigned long flags;
2761 pr_debug("stl_cd1400portinit(brdp=%p,panelp=%p,portp=%p)\n", brdp,
2762 panelp, portp);
2764 if ((brdp == NULL) || (panelp == NULL) ||
2765 (portp == NULL))
2766 return;
2768 spin_lock_irqsave(&brd_lock, flags);
2769 portp->ioaddr = panelp->iobase + (((brdp->brdtype == BRD_ECHPCI) ||
2770 (portp->portnr < 8)) ? 0 : EREG_BANKSIZE);
2771 portp->uartaddr = (portp->portnr & 0x04) << 5;
2772 portp->pagenr = panelp->pagenr + (portp->portnr >> 3);
2774 BRDENABLE(portp->brdnr, portp->pagenr);
2775 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
2776 stl_cd1400setreg(portp, LIVR, (portp->portnr << 3));
2777 portp->hwid = stl_cd1400getreg(portp, GFRCR);
2778 BRDDISABLE(portp->brdnr);
2779 spin_unlock_irqrestore(&brd_lock, flags);
2782 /*****************************************************************************/
2785 * Wait for the command register to be ready. We will poll this,
2786 * since it won't usually take too long to be ready.
2789 static void stl_cd1400ccrwait(struct stlport *portp)
2791 int i;
2793 for (i = 0; i < CCR_MAXWAIT; i++)
2794 if (stl_cd1400getreg(portp, CCR) == 0)
2795 return;
2797 printk("STALLION: cd1400 not responding, port=%d panel=%d brd=%d\n",
2798 portp->portnr, portp->panelnr, portp->brdnr);
2801 /*****************************************************************************/
2804 * Set up the cd1400 registers for a port based on the termios port
2805 * settings.
2808 static void stl_cd1400setport(struct stlport *portp, struct ktermios *tiosp)
2810 struct stlbrd *brdp;
2811 unsigned long flags;
2812 unsigned int clkdiv, baudrate;
2813 unsigned char cor1, cor2, cor3;
2814 unsigned char cor4, cor5, ccr;
2815 unsigned char srer, sreron, sreroff;
2816 unsigned char mcor1, mcor2, rtpr;
2817 unsigned char clk, div;
2819 cor1 = 0;
2820 cor2 = 0;
2821 cor3 = 0;
2822 cor4 = 0;
2823 cor5 = 0;
2824 ccr = 0;
2825 rtpr = 0;
2826 clk = 0;
2827 div = 0;
2828 mcor1 = 0;
2829 mcor2 = 0;
2830 sreron = 0;
2831 sreroff = 0;
2833 brdp = stl_brds[portp->brdnr];
2834 if (brdp == NULL)
2835 return;
2838 * Set up the RX char ignore mask with those RX error types we
2839 * can ignore. We can get the cd1400 to help us out a little here,
2840 * it will ignore parity errors and breaks for us.
2842 portp->rxignoremsk = 0;
2843 if (tiosp->c_iflag & IGNPAR) {
2844 portp->rxignoremsk |= (ST_PARITY | ST_FRAMING | ST_OVERRUN);
2845 cor1 |= COR1_PARIGNORE;
2847 if (tiosp->c_iflag & IGNBRK) {
2848 portp->rxignoremsk |= ST_BREAK;
2849 cor4 |= COR4_IGNBRK;
2852 portp->rxmarkmsk = ST_OVERRUN;
2853 if (tiosp->c_iflag & (INPCK | PARMRK))
2854 portp->rxmarkmsk |= (ST_PARITY | ST_FRAMING);
2855 if (tiosp->c_iflag & BRKINT)
2856 portp->rxmarkmsk |= ST_BREAK;
2859 * Go through the char size, parity and stop bits and set all the
2860 * option register appropriately.
2862 switch (tiosp->c_cflag & CSIZE) {
2863 case CS5:
2864 cor1 |= COR1_CHL5;
2865 break;
2866 case CS6:
2867 cor1 |= COR1_CHL6;
2868 break;
2869 case CS7:
2870 cor1 |= COR1_CHL7;
2871 break;
2872 default:
2873 cor1 |= COR1_CHL8;
2874 break;
2877 if (tiosp->c_cflag & CSTOPB)
2878 cor1 |= COR1_STOP2;
2879 else
2880 cor1 |= COR1_STOP1;
2882 if (tiosp->c_cflag & PARENB) {
2883 if (tiosp->c_cflag & PARODD)
2884 cor1 |= (COR1_PARENB | COR1_PARODD);
2885 else
2886 cor1 |= (COR1_PARENB | COR1_PAREVEN);
2887 } else {
2888 cor1 |= COR1_PARNONE;
2892 * Set the RX FIFO threshold at 6 chars. This gives a bit of breathing
2893 * space for hardware flow control and the like. This should be set to
2894 * VMIN. Also here we will set the RX data timeout to 10ms - this should
2895 * really be based on VTIME.
2897 cor3 |= FIFO_RXTHRESHOLD;
2898 rtpr = 2;
2901 * Calculate the baud rate timers. For now we will just assume that
2902 * the input and output baud are the same. Could have used a baud
2903 * table here, but this way we can generate virtually any baud rate
2904 * we like!
2906 baudrate = tiosp->c_cflag & CBAUD;
2907 if (baudrate & CBAUDEX) {
2908 baudrate &= ~CBAUDEX;
2909 if ((baudrate < 1) || (baudrate > 4))
2910 tiosp->c_cflag &= ~CBAUDEX;
2911 else
2912 baudrate += 15;
2914 baudrate = stl_baudrates[baudrate];
2915 if ((tiosp->c_cflag & CBAUD) == B38400) {
2916 if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI)
2917 baudrate = 57600;
2918 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI)
2919 baudrate = 115200;
2920 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI)
2921 baudrate = 230400;
2922 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP)
2923 baudrate = 460800;
2924 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST)
2925 baudrate = (portp->baud_base / portp->custom_divisor);
2927 if (baudrate > STL_CD1400MAXBAUD)
2928 baudrate = STL_CD1400MAXBAUD;
2930 if (baudrate > 0) {
2931 for (clk = 0; clk < CD1400_NUMCLKS; clk++) {
2932 clkdiv = (portp->clk / stl_cd1400clkdivs[clk]) / baudrate;
2933 if (clkdiv < 0x100)
2934 break;
2936 div = (unsigned char) clkdiv;
2940 * Check what form of modem signaling is required and set it up.
2942 if ((tiosp->c_cflag & CLOCAL) == 0) {
2943 mcor1 |= MCOR1_DCD;
2944 mcor2 |= MCOR2_DCD;
2945 sreron |= SRER_MODEM;
2946 portp->port.flags |= ASYNC_CHECK_CD;
2947 } else
2948 portp->port.flags &= ~ASYNC_CHECK_CD;
2951 * Setup cd1400 enhanced modes if we can. In particular we want to
2952 * handle as much of the flow control as possible automatically. As
2953 * well as saving a few CPU cycles it will also greatly improve flow
2954 * control reliability.
2956 if (tiosp->c_iflag & IXON) {
2957 cor2 |= COR2_TXIBE;
2958 cor3 |= COR3_SCD12;
2959 if (tiosp->c_iflag & IXANY)
2960 cor2 |= COR2_IXM;
2963 if (tiosp->c_cflag & CRTSCTS) {
2964 cor2 |= COR2_CTSAE;
2965 mcor1 |= FIFO_RTSTHRESHOLD;
2969 * All cd1400 register values calculated so go through and set
2970 * them all up.
2973 pr_debug("SETPORT: portnr=%d panelnr=%d brdnr=%d\n",
2974 portp->portnr, portp->panelnr, portp->brdnr);
2975 pr_debug(" cor1=%x cor2=%x cor3=%x cor4=%x cor5=%x\n",
2976 cor1, cor2, cor3, cor4, cor5);
2977 pr_debug(" mcor1=%x mcor2=%x rtpr=%x sreron=%x sreroff=%x\n",
2978 mcor1, mcor2, rtpr, sreron, sreroff);
2979 pr_debug(" tcor=%x tbpr=%x rcor=%x rbpr=%x\n", clk, div, clk, div);
2980 pr_debug(" schr1=%x schr2=%x schr3=%x schr4=%x\n",
2981 tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP],
2982 tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP]);
2984 spin_lock_irqsave(&brd_lock, flags);
2985 BRDENABLE(portp->brdnr, portp->pagenr);
2986 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x3));
2987 srer = stl_cd1400getreg(portp, SRER);
2988 stl_cd1400setreg(portp, SRER, 0);
2989 if (stl_cd1400updatereg(portp, COR1, cor1))
2990 ccr = 1;
2991 if (stl_cd1400updatereg(portp, COR2, cor2))
2992 ccr = 1;
2993 if (stl_cd1400updatereg(portp, COR3, cor3))
2994 ccr = 1;
2995 if (ccr) {
2996 stl_cd1400ccrwait(portp);
2997 stl_cd1400setreg(portp, CCR, CCR_CORCHANGE);
2999 stl_cd1400setreg(portp, COR4, cor4);
3000 stl_cd1400setreg(portp, COR5, cor5);
3001 stl_cd1400setreg(portp, MCOR1, mcor1);
3002 stl_cd1400setreg(portp, MCOR2, mcor2);
3003 if (baudrate > 0) {
3004 stl_cd1400setreg(portp, TCOR, clk);
3005 stl_cd1400setreg(portp, TBPR, div);
3006 stl_cd1400setreg(portp, RCOR, clk);
3007 stl_cd1400setreg(portp, RBPR, div);
3009 stl_cd1400setreg(portp, SCHR1, tiosp->c_cc[VSTART]);
3010 stl_cd1400setreg(portp, SCHR2, tiosp->c_cc[VSTOP]);
3011 stl_cd1400setreg(portp, SCHR3, tiosp->c_cc[VSTART]);
3012 stl_cd1400setreg(portp, SCHR4, tiosp->c_cc[VSTOP]);
3013 stl_cd1400setreg(portp, RTPR, rtpr);
3014 mcor1 = stl_cd1400getreg(portp, MSVR1);
3015 if (mcor1 & MSVR1_DCD)
3016 portp->sigs |= TIOCM_CD;
3017 else
3018 portp->sigs &= ~TIOCM_CD;
3019 stl_cd1400setreg(portp, SRER, ((srer & ~sreroff) | sreron));
3020 BRDDISABLE(portp->brdnr);
3021 spin_unlock_irqrestore(&brd_lock, flags);
3024 /*****************************************************************************/
3027 * Set the state of the DTR and RTS signals.
3030 static void stl_cd1400setsignals(struct stlport *portp, int dtr, int rts)
3032 unsigned char msvr1, msvr2;
3033 unsigned long flags;
3035 pr_debug("stl_cd1400setsignals(portp=%p,dtr=%d,rts=%d)\n",
3036 portp, dtr, rts);
3038 msvr1 = 0;
3039 msvr2 = 0;
3040 if (dtr > 0)
3041 msvr1 = MSVR1_DTR;
3042 if (rts > 0)
3043 msvr2 = MSVR2_RTS;
3045 spin_lock_irqsave(&brd_lock, flags);
3046 BRDENABLE(portp->brdnr, portp->pagenr);
3047 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3048 if (rts >= 0)
3049 stl_cd1400setreg(portp, MSVR2, msvr2);
3050 if (dtr >= 0)
3051 stl_cd1400setreg(portp, MSVR1, msvr1);
3052 BRDDISABLE(portp->brdnr);
3053 spin_unlock_irqrestore(&brd_lock, flags);
3056 /*****************************************************************************/
3059 * Return the state of the signals.
3062 static int stl_cd1400getsignals(struct stlport *portp)
3064 unsigned char msvr1, msvr2;
3065 unsigned long flags;
3066 int sigs;
3068 pr_debug("stl_cd1400getsignals(portp=%p)\n", portp);
3070 spin_lock_irqsave(&brd_lock, flags);
3071 BRDENABLE(portp->brdnr, portp->pagenr);
3072 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3073 msvr1 = stl_cd1400getreg(portp, MSVR1);
3074 msvr2 = stl_cd1400getreg(portp, MSVR2);
3075 BRDDISABLE(portp->brdnr);
3076 spin_unlock_irqrestore(&brd_lock, flags);
3078 sigs = 0;
3079 sigs |= (msvr1 & MSVR1_DCD) ? TIOCM_CD : 0;
3080 sigs |= (msvr1 & MSVR1_CTS) ? TIOCM_CTS : 0;
3081 sigs |= (msvr1 & MSVR1_DTR) ? TIOCM_DTR : 0;
3082 sigs |= (msvr2 & MSVR2_RTS) ? TIOCM_RTS : 0;
3083 #if 0
3084 sigs |= (msvr1 & MSVR1_RI) ? TIOCM_RI : 0;
3085 sigs |= (msvr1 & MSVR1_DSR) ? TIOCM_DSR : 0;
3086 #else
3087 sigs |= TIOCM_DSR;
3088 #endif
3089 return sigs;
3092 /*****************************************************************************/
3095 * Enable/Disable the Transmitter and/or Receiver.
3098 static void stl_cd1400enablerxtx(struct stlport *portp, int rx, int tx)
3100 unsigned char ccr;
3101 unsigned long flags;
3103 pr_debug("stl_cd1400enablerxtx(portp=%p,rx=%d,tx=%d)\n", portp, rx, tx);
3105 ccr = 0;
3107 if (tx == 0)
3108 ccr |= CCR_TXDISABLE;
3109 else if (tx > 0)
3110 ccr |= CCR_TXENABLE;
3111 if (rx == 0)
3112 ccr |= CCR_RXDISABLE;
3113 else if (rx > 0)
3114 ccr |= CCR_RXENABLE;
3116 spin_lock_irqsave(&brd_lock, flags);
3117 BRDENABLE(portp->brdnr, portp->pagenr);
3118 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3119 stl_cd1400ccrwait(portp);
3120 stl_cd1400setreg(portp, CCR, ccr);
3121 stl_cd1400ccrwait(portp);
3122 BRDDISABLE(portp->brdnr);
3123 spin_unlock_irqrestore(&brd_lock, flags);
3126 /*****************************************************************************/
3129 * Start/stop the Transmitter and/or Receiver.
3132 static void stl_cd1400startrxtx(struct stlport *portp, int rx, int tx)
3134 unsigned char sreron, sreroff;
3135 unsigned long flags;
3137 pr_debug("stl_cd1400startrxtx(portp=%p,rx=%d,tx=%d)\n", portp, rx, tx);
3139 sreron = 0;
3140 sreroff = 0;
3141 if (tx == 0)
3142 sreroff |= (SRER_TXDATA | SRER_TXEMPTY);
3143 else if (tx == 1)
3144 sreron |= SRER_TXDATA;
3145 else if (tx >= 2)
3146 sreron |= SRER_TXEMPTY;
3147 if (rx == 0)
3148 sreroff |= SRER_RXDATA;
3149 else if (rx > 0)
3150 sreron |= SRER_RXDATA;
3152 spin_lock_irqsave(&brd_lock, flags);
3153 BRDENABLE(portp->brdnr, portp->pagenr);
3154 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3155 stl_cd1400setreg(portp, SRER,
3156 ((stl_cd1400getreg(portp, SRER) & ~sreroff) | sreron));
3157 BRDDISABLE(portp->brdnr);
3158 if (tx > 0)
3159 set_bit(ASYI_TXBUSY, &portp->istate);
3160 spin_unlock_irqrestore(&brd_lock, flags);
3163 /*****************************************************************************/
3166 * Disable all interrupts from this port.
3169 static void stl_cd1400disableintrs(struct stlport *portp)
3171 unsigned long flags;
3173 pr_debug("stl_cd1400disableintrs(portp=%p)\n", portp);
3175 spin_lock_irqsave(&brd_lock, flags);
3176 BRDENABLE(portp->brdnr, portp->pagenr);
3177 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3178 stl_cd1400setreg(portp, SRER, 0);
3179 BRDDISABLE(portp->brdnr);
3180 spin_unlock_irqrestore(&brd_lock, flags);
3183 /*****************************************************************************/
3185 static void stl_cd1400sendbreak(struct stlport *portp, int len)
3187 unsigned long flags;
3189 pr_debug("stl_cd1400sendbreak(portp=%p,len=%d)\n", portp, len);
3191 spin_lock_irqsave(&brd_lock, flags);
3192 BRDENABLE(portp->brdnr, portp->pagenr);
3193 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3194 stl_cd1400setreg(portp, SRER,
3195 ((stl_cd1400getreg(portp, SRER) & ~SRER_TXDATA) |
3196 SRER_TXEMPTY));
3197 BRDDISABLE(portp->brdnr);
3198 portp->brklen = len;
3199 if (len == 1)
3200 portp->stats.txbreaks++;
3201 spin_unlock_irqrestore(&brd_lock, flags);
3204 /*****************************************************************************/
3207 * Take flow control actions...
3210 static void stl_cd1400flowctrl(struct stlport *portp, int state)
3212 struct tty_struct *tty;
3213 unsigned long flags;
3215 pr_debug("stl_cd1400flowctrl(portp=%p,state=%x)\n", portp, state);
3217 if (portp == NULL)
3218 return;
3219 tty = tty_port_tty_get(&portp->port);
3220 if (tty == NULL)
3221 return;
3223 spin_lock_irqsave(&brd_lock, flags);
3224 BRDENABLE(portp->brdnr, portp->pagenr);
3225 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3227 if (state) {
3228 if (tty->termios->c_iflag & IXOFF) {
3229 stl_cd1400ccrwait(portp);
3230 stl_cd1400setreg(portp, CCR, CCR_SENDSCHR1);
3231 portp->stats.rxxon++;
3232 stl_cd1400ccrwait(portp);
3235 * Question: should we return RTS to what it was before? It may
3236 * have been set by an ioctl... Suppose not, since if you have
3237 * hardware flow control set then it is pretty silly to go and
3238 * set the RTS line by hand.
3240 if (tty->termios->c_cflag & CRTSCTS) {
3241 stl_cd1400setreg(portp, MCOR1,
3242 (stl_cd1400getreg(portp, MCOR1) |
3243 FIFO_RTSTHRESHOLD));
3244 stl_cd1400setreg(portp, MSVR2, MSVR2_RTS);
3245 portp->stats.rxrtson++;
3247 } else {
3248 if (tty->termios->c_iflag & IXOFF) {
3249 stl_cd1400ccrwait(portp);
3250 stl_cd1400setreg(portp, CCR, CCR_SENDSCHR2);
3251 portp->stats.rxxoff++;
3252 stl_cd1400ccrwait(portp);
3254 if (tty->termios->c_cflag & CRTSCTS) {
3255 stl_cd1400setreg(portp, MCOR1,
3256 (stl_cd1400getreg(portp, MCOR1) & 0xf0));
3257 stl_cd1400setreg(portp, MSVR2, 0);
3258 portp->stats.rxrtsoff++;
3262 BRDDISABLE(portp->brdnr);
3263 spin_unlock_irqrestore(&brd_lock, flags);
3264 tty_kref_put(tty);
3267 /*****************************************************************************/
3270 * Send a flow control character...
3273 static void stl_cd1400sendflow(struct stlport *portp, int state)
3275 struct tty_struct *tty;
3276 unsigned long flags;
3278 pr_debug("stl_cd1400sendflow(portp=%p,state=%x)\n", portp, state);
3280 if (portp == NULL)
3281 return;
3282 tty = tty_port_tty_get(&portp->port);
3283 if (tty == NULL)
3284 return;
3286 spin_lock_irqsave(&brd_lock, flags);
3287 BRDENABLE(portp->brdnr, portp->pagenr);
3288 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3289 if (state) {
3290 stl_cd1400ccrwait(portp);
3291 stl_cd1400setreg(portp, CCR, CCR_SENDSCHR1);
3292 portp->stats.rxxon++;
3293 stl_cd1400ccrwait(portp);
3294 } else {
3295 stl_cd1400ccrwait(portp);
3296 stl_cd1400setreg(portp, CCR, CCR_SENDSCHR2);
3297 portp->stats.rxxoff++;
3298 stl_cd1400ccrwait(portp);
3300 BRDDISABLE(portp->brdnr);
3301 spin_unlock_irqrestore(&brd_lock, flags);
3302 tty_kref_put(tty);
3305 /*****************************************************************************/
3307 static void stl_cd1400flush(struct stlport *portp)
3309 unsigned long flags;
3311 pr_debug("stl_cd1400flush(portp=%p)\n", portp);
3313 if (portp == NULL)
3314 return;
3316 spin_lock_irqsave(&brd_lock, flags);
3317 BRDENABLE(portp->brdnr, portp->pagenr);
3318 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3319 stl_cd1400ccrwait(portp);
3320 stl_cd1400setreg(portp, CCR, CCR_TXFLUSHFIFO);
3321 stl_cd1400ccrwait(portp);
3322 portp->tx.tail = portp->tx.head;
3323 BRDDISABLE(portp->brdnr);
3324 spin_unlock_irqrestore(&brd_lock, flags);
3327 /*****************************************************************************/
3330 * Return the current state of data flow on this port. This is only
3331 * really interresting when determining if data has fully completed
3332 * transmission or not... This is easy for the cd1400, it accurately
3333 * maintains the busy port flag.
3336 static int stl_cd1400datastate(struct stlport *portp)
3338 pr_debug("stl_cd1400datastate(portp=%p)\n", portp);
3340 if (portp == NULL)
3341 return 0;
3343 return test_bit(ASYI_TXBUSY, &portp->istate) ? 1 : 0;
3346 /*****************************************************************************/
3349 * Interrupt service routine for cd1400 EasyIO boards.
3352 static void stl_cd1400eiointr(struct stlpanel *panelp, unsigned int iobase)
3354 unsigned char svrtype;
3356 pr_debug("stl_cd1400eiointr(panelp=%p,iobase=%x)\n", panelp, iobase);
3358 spin_lock(&brd_lock);
3359 outb(SVRR, iobase);
3360 svrtype = inb(iobase + EREG_DATA);
3361 if (panelp->nrports > 4) {
3362 outb((SVRR + 0x80), iobase);
3363 svrtype |= inb(iobase + EREG_DATA);
3366 if (svrtype & SVRR_RX)
3367 stl_cd1400rxisr(panelp, iobase);
3368 else if (svrtype & SVRR_TX)
3369 stl_cd1400txisr(panelp, iobase);
3370 else if (svrtype & SVRR_MDM)
3371 stl_cd1400mdmisr(panelp, iobase);
3373 spin_unlock(&brd_lock);
3376 /*****************************************************************************/
3379 * Interrupt service routine for cd1400 panels.
3382 static void stl_cd1400echintr(struct stlpanel *panelp, unsigned int iobase)
3384 unsigned char svrtype;
3386 pr_debug("stl_cd1400echintr(panelp=%p,iobase=%x)\n", panelp, iobase);
3388 outb(SVRR, iobase);
3389 svrtype = inb(iobase + EREG_DATA);
3390 outb((SVRR + 0x80), iobase);
3391 svrtype |= inb(iobase + EREG_DATA);
3392 if (svrtype & SVRR_RX)
3393 stl_cd1400rxisr(panelp, iobase);
3394 else if (svrtype & SVRR_TX)
3395 stl_cd1400txisr(panelp, iobase);
3396 else if (svrtype & SVRR_MDM)
3397 stl_cd1400mdmisr(panelp, iobase);
3401 /*****************************************************************************/
3404 * Unfortunately we need to handle breaks in the TX data stream, since
3405 * this is the only way to generate them on the cd1400.
3408 static int stl_cd1400breakisr(struct stlport *portp, int ioaddr)
3410 if (portp->brklen == 1) {
3411 outb((COR2 + portp->uartaddr), ioaddr);
3412 outb((inb(ioaddr + EREG_DATA) | COR2_ETC),
3413 (ioaddr + EREG_DATA));
3414 outb((TDR + portp->uartaddr), ioaddr);
3415 outb(ETC_CMD, (ioaddr + EREG_DATA));
3416 outb(ETC_STARTBREAK, (ioaddr + EREG_DATA));
3417 outb((SRER + portp->uartaddr), ioaddr);
3418 outb((inb(ioaddr + EREG_DATA) & ~(SRER_TXDATA | SRER_TXEMPTY)),
3419 (ioaddr + EREG_DATA));
3420 return 1;
3421 } else if (portp->brklen > 1) {
3422 outb((TDR + portp->uartaddr), ioaddr);
3423 outb(ETC_CMD, (ioaddr + EREG_DATA));
3424 outb(ETC_STOPBREAK, (ioaddr + EREG_DATA));
3425 portp->brklen = -1;
3426 return 1;
3427 } else {
3428 outb((COR2 + portp->uartaddr), ioaddr);
3429 outb((inb(ioaddr + EREG_DATA) & ~COR2_ETC),
3430 (ioaddr + EREG_DATA));
3431 portp->brklen = 0;
3433 return 0;
3436 /*****************************************************************************/
3439 * Transmit interrupt handler. This has gotta be fast! Handling TX
3440 * chars is pretty simple, stuff as many as possible from the TX buffer
3441 * into the cd1400 FIFO. Must also handle TX breaks here, since they
3442 * are embedded as commands in the data stream. Oh no, had to use a goto!
3443 * This could be optimized more, will do when I get time...
3444 * In practice it is possible that interrupts are enabled but that the
3445 * port has been hung up. Need to handle not having any TX buffer here,
3446 * this is done by using the side effect that head and tail will also
3447 * be NULL if the buffer has been freed.
3450 static void stl_cd1400txisr(struct stlpanel *panelp, int ioaddr)
3452 struct stlport *portp;
3453 int len, stlen;
3454 char *head, *tail;
3455 unsigned char ioack, srer;
3456 struct tty_struct *tty;
3458 pr_debug("stl_cd1400txisr(panelp=%p,ioaddr=%x)\n", panelp, ioaddr);
3460 ioack = inb(ioaddr + EREG_TXACK);
3461 if (((ioack & panelp->ackmask) != 0) ||
3462 ((ioack & ACK_TYPMASK) != ACK_TYPTX)) {
3463 printk("STALLION: bad TX interrupt ack value=%x\n", ioack);
3464 return;
3466 portp = panelp->ports[(ioack >> 3)];
3469 * Unfortunately we need to handle breaks in the data stream, since
3470 * this is the only way to generate them on the cd1400. Do it now if
3471 * a break is to be sent.
3473 if (portp->brklen != 0)
3474 if (stl_cd1400breakisr(portp, ioaddr))
3475 goto stl_txalldone;
3477 head = portp->tx.head;
3478 tail = portp->tx.tail;
3479 len = (head >= tail) ? (head - tail) : (STL_TXBUFSIZE - (tail - head));
3480 if ((len == 0) || ((len < STL_TXBUFLOW) &&
3481 (test_bit(ASYI_TXLOW, &portp->istate) == 0))) {
3482 set_bit(ASYI_TXLOW, &portp->istate);
3483 tty = tty_port_tty_get(&portp->port);
3484 if (tty) {
3485 tty_wakeup(tty);
3486 tty_kref_put(tty);
3490 if (len == 0) {
3491 outb((SRER + portp->uartaddr), ioaddr);
3492 srer = inb(ioaddr + EREG_DATA);
3493 if (srer & SRER_TXDATA) {
3494 srer = (srer & ~SRER_TXDATA) | SRER_TXEMPTY;
3495 } else {
3496 srer &= ~(SRER_TXDATA | SRER_TXEMPTY);
3497 clear_bit(ASYI_TXBUSY, &portp->istate);
3499 outb(srer, (ioaddr + EREG_DATA));
3500 } else {
3501 len = min(len, CD1400_TXFIFOSIZE);
3502 portp->stats.txtotal += len;
3503 stlen = min_t(unsigned int, len,
3504 (portp->tx.buf + STL_TXBUFSIZE) - tail);
3505 outb((TDR + portp->uartaddr), ioaddr);
3506 outsb((ioaddr + EREG_DATA), tail, stlen);
3507 len -= stlen;
3508 tail += stlen;
3509 if (tail >= (portp->tx.buf + STL_TXBUFSIZE))
3510 tail = portp->tx.buf;
3511 if (len > 0) {
3512 outsb((ioaddr + EREG_DATA), tail, len);
3513 tail += len;
3515 portp->tx.tail = tail;
3518 stl_txalldone:
3519 outb((EOSRR + portp->uartaddr), ioaddr);
3520 outb(0, (ioaddr + EREG_DATA));
3523 /*****************************************************************************/
3526 * Receive character interrupt handler. Determine if we have good chars
3527 * or bad chars and then process appropriately. Good chars are easy
3528 * just shove the lot into the RX buffer and set all status byte to 0.
3529 * If a bad RX char then process as required. This routine needs to be
3530 * fast! In practice it is possible that we get an interrupt on a port
3531 * that is closed. This can happen on hangups - since they completely
3532 * shutdown a port not in user context. Need to handle this case.
3535 static void stl_cd1400rxisr(struct stlpanel *panelp, int ioaddr)
3537 struct stlport *portp;
3538 struct tty_struct *tty;
3539 unsigned int ioack, len, buflen;
3540 unsigned char status;
3541 char ch;
3543 pr_debug("stl_cd1400rxisr(panelp=%p,ioaddr=%x)\n", panelp, ioaddr);
3545 ioack = inb(ioaddr + EREG_RXACK);
3546 if ((ioack & panelp->ackmask) != 0) {
3547 printk("STALLION: bad RX interrupt ack value=%x\n", ioack);
3548 return;
3550 portp = panelp->ports[(ioack >> 3)];
3551 tty = tty_port_tty_get(&portp->port);
3553 if ((ioack & ACK_TYPMASK) == ACK_TYPRXGOOD) {
3554 outb((RDCR + portp->uartaddr), ioaddr);
3555 len = inb(ioaddr + EREG_DATA);
3556 if (tty == NULL || (buflen = tty_buffer_request_room(tty, len)) == 0) {
3557 len = min_t(unsigned int, len, sizeof(stl_unwanted));
3558 outb((RDSR + portp->uartaddr), ioaddr);
3559 insb((ioaddr + EREG_DATA), &stl_unwanted[0], len);
3560 portp->stats.rxlost += len;
3561 portp->stats.rxtotal += len;
3562 } else {
3563 len = min(len, buflen);
3564 if (len > 0) {
3565 unsigned char *ptr;
3566 outb((RDSR + portp->uartaddr), ioaddr);
3567 tty_prepare_flip_string(tty, &ptr, len);
3568 insb((ioaddr + EREG_DATA), ptr, len);
3569 tty_schedule_flip(tty);
3570 portp->stats.rxtotal += len;
3573 } else if ((ioack & ACK_TYPMASK) == ACK_TYPRXBAD) {
3574 outb((RDSR + portp->uartaddr), ioaddr);
3575 status = inb(ioaddr + EREG_DATA);
3576 ch = inb(ioaddr + EREG_DATA);
3577 if (status & ST_PARITY)
3578 portp->stats.rxparity++;
3579 if (status & ST_FRAMING)
3580 portp->stats.rxframing++;
3581 if (status & ST_OVERRUN)
3582 portp->stats.rxoverrun++;
3583 if (status & ST_BREAK)
3584 portp->stats.rxbreaks++;
3585 if (status & ST_SCHARMASK) {
3586 if ((status & ST_SCHARMASK) == ST_SCHAR1)
3587 portp->stats.txxon++;
3588 if ((status & ST_SCHARMASK) == ST_SCHAR2)
3589 portp->stats.txxoff++;
3590 goto stl_rxalldone;
3592 if (tty != NULL && (portp->rxignoremsk & status) == 0) {
3593 if (portp->rxmarkmsk & status) {
3594 if (status & ST_BREAK) {
3595 status = TTY_BREAK;
3596 if (portp->port.flags & ASYNC_SAK) {
3597 do_SAK(tty);
3598 BRDENABLE(portp->brdnr, portp->pagenr);
3600 } else if (status & ST_PARITY)
3601 status = TTY_PARITY;
3602 else if (status & ST_FRAMING)
3603 status = TTY_FRAME;
3604 else if(status & ST_OVERRUN)
3605 status = TTY_OVERRUN;
3606 else
3607 status = 0;
3608 } else
3609 status = 0;
3610 tty_insert_flip_char(tty, ch, status);
3611 tty_schedule_flip(tty);
3613 } else {
3614 printk("STALLION: bad RX interrupt ack value=%x\n", ioack);
3615 tty_kref_put(tty);
3616 return;
3619 stl_rxalldone:
3620 tty_kref_put(tty);
3621 outb((EOSRR + portp->uartaddr), ioaddr);
3622 outb(0, (ioaddr + EREG_DATA));
3625 /*****************************************************************************/
3628 * Modem interrupt handler. The is called when the modem signal line
3629 * (DCD) has changed state. Leave most of the work to the off-level
3630 * processing routine.
3633 static void stl_cd1400mdmisr(struct stlpanel *panelp, int ioaddr)
3635 struct stlport *portp;
3636 unsigned int ioack;
3637 unsigned char misr;
3639 pr_debug("stl_cd1400mdmisr(panelp=%p)\n", panelp);
3641 ioack = inb(ioaddr + EREG_MDACK);
3642 if (((ioack & panelp->ackmask) != 0) ||
3643 ((ioack & ACK_TYPMASK) != ACK_TYPMDM)) {
3644 printk("STALLION: bad MODEM interrupt ack value=%x\n", ioack);
3645 return;
3647 portp = panelp->ports[(ioack >> 3)];
3649 outb((MISR + portp->uartaddr), ioaddr);
3650 misr = inb(ioaddr + EREG_DATA);
3651 if (misr & MISR_DCD) {
3652 stl_cd_change(portp);
3653 portp->stats.modem++;
3656 outb((EOSRR + portp->uartaddr), ioaddr);
3657 outb(0, (ioaddr + EREG_DATA));
3660 /*****************************************************************************/
3661 /* SC26198 HARDWARE FUNCTIONS */
3662 /*****************************************************************************/
3665 * These functions get/set/update the registers of the sc26198 UARTs.
3666 * Access to the sc26198 registers is via an address/data io port pair.
3667 * (Maybe should make this inline...)
3670 static int stl_sc26198getreg(struct stlport *portp, int regnr)
3672 outb((regnr | portp->uartaddr), (portp->ioaddr + XP_ADDR));
3673 return inb(portp->ioaddr + XP_DATA);
3676 static void stl_sc26198setreg(struct stlport *portp, int regnr, int value)
3678 outb((regnr | portp->uartaddr), (portp->ioaddr + XP_ADDR));
3679 outb(value, (portp->ioaddr + XP_DATA));
3682 static int stl_sc26198updatereg(struct stlport *portp, int regnr, int value)
3684 outb((regnr | portp->uartaddr), (portp->ioaddr + XP_ADDR));
3685 if (inb(portp->ioaddr + XP_DATA) != value) {
3686 outb(value, (portp->ioaddr + XP_DATA));
3687 return 1;
3689 return 0;
3692 /*****************************************************************************/
3695 * Functions to get and set the sc26198 global registers.
3698 static int stl_sc26198getglobreg(struct stlport *portp, int regnr)
3700 outb(regnr, (portp->ioaddr + XP_ADDR));
3701 return inb(portp->ioaddr + XP_DATA);
3704 #if 0
3705 static void stl_sc26198setglobreg(struct stlport *portp, int regnr, int value)
3707 outb(regnr, (portp->ioaddr + XP_ADDR));
3708 outb(value, (portp->ioaddr + XP_DATA));
3710 #endif
3712 /*****************************************************************************/
3715 * Inbitialize the UARTs in a panel. We don't care what sort of board
3716 * these ports are on - since the port io registers are almost
3717 * identical when dealing with ports.
3720 static int stl_sc26198panelinit(struct stlbrd *brdp, struct stlpanel *panelp)
3722 int chipmask, i;
3723 int nrchips, ioaddr;
3725 pr_debug("stl_sc26198panelinit(brdp=%p,panelp=%p)\n", brdp, panelp);
3727 BRDENABLE(panelp->brdnr, panelp->pagenr);
3730 * Check that each chip is present and started up OK.
3732 chipmask = 0;
3733 nrchips = (panelp->nrports + 4) / SC26198_PORTS;
3734 if (brdp->brdtype == BRD_ECHPCI)
3735 outb(panelp->pagenr, brdp->ioctrl);
3737 for (i = 0; i < nrchips; i++) {
3738 ioaddr = panelp->iobase + (i * 4);
3739 outb(SCCR, (ioaddr + XP_ADDR));
3740 outb(CR_RESETALL, (ioaddr + XP_DATA));
3741 outb(TSTR, (ioaddr + XP_ADDR));
3742 if (inb(ioaddr + XP_DATA) != 0) {
3743 printk("STALLION: sc26198 not responding, "
3744 "brd=%d panel=%d chip=%d\n",
3745 panelp->brdnr, panelp->panelnr, i);
3746 continue;
3748 chipmask |= (0x1 << i);
3749 outb(GCCR, (ioaddr + XP_ADDR));
3750 outb(GCCR_IVRTYPCHANACK, (ioaddr + XP_DATA));
3751 outb(WDTRCR, (ioaddr + XP_ADDR));
3752 outb(0xff, (ioaddr + XP_DATA));
3755 BRDDISABLE(panelp->brdnr);
3756 return chipmask;
3759 /*****************************************************************************/
3762 * Initialize hardware specific port registers.
3765 static void stl_sc26198portinit(struct stlbrd *brdp, struct stlpanel *panelp, struct stlport *portp)
3767 pr_debug("stl_sc26198portinit(brdp=%p,panelp=%p,portp=%p)\n", brdp,
3768 panelp, portp);
3770 if ((brdp == NULL) || (panelp == NULL) ||
3771 (portp == NULL))
3772 return;
3774 portp->ioaddr = panelp->iobase + ((portp->portnr < 8) ? 0 : 4);
3775 portp->uartaddr = (portp->portnr & 0x07) << 4;
3776 portp->pagenr = panelp->pagenr;
3777 portp->hwid = 0x1;
3779 BRDENABLE(portp->brdnr, portp->pagenr);
3780 stl_sc26198setreg(portp, IOPCR, IOPCR_SETSIGS);
3781 BRDDISABLE(portp->brdnr);
3784 /*****************************************************************************/
3787 * Set up the sc26198 registers for a port based on the termios port
3788 * settings.
3791 static void stl_sc26198setport(struct stlport *portp, struct ktermios *tiosp)
3793 struct stlbrd *brdp;
3794 unsigned long flags;
3795 unsigned int baudrate;
3796 unsigned char mr0, mr1, mr2, clk;
3797 unsigned char imron, imroff, iopr, ipr;
3799 mr0 = 0;
3800 mr1 = 0;
3801 mr2 = 0;
3802 clk = 0;
3803 iopr = 0;
3804 imron = 0;
3805 imroff = 0;
3807 brdp = stl_brds[portp->brdnr];
3808 if (brdp == NULL)
3809 return;
3812 * Set up the RX char ignore mask with those RX error types we
3813 * can ignore.
3815 portp->rxignoremsk = 0;
3816 if (tiosp->c_iflag & IGNPAR)
3817 portp->rxignoremsk |= (SR_RXPARITY | SR_RXFRAMING |
3818 SR_RXOVERRUN);
3819 if (tiosp->c_iflag & IGNBRK)
3820 portp->rxignoremsk |= SR_RXBREAK;
3822 portp->rxmarkmsk = SR_RXOVERRUN;
3823 if (tiosp->c_iflag & (INPCK | PARMRK))
3824 portp->rxmarkmsk |= (SR_RXPARITY | SR_RXFRAMING);
3825 if (tiosp->c_iflag & BRKINT)
3826 portp->rxmarkmsk |= SR_RXBREAK;
3829 * Go through the char size, parity and stop bits and set all the
3830 * option register appropriately.
3832 switch (tiosp->c_cflag & CSIZE) {
3833 case CS5:
3834 mr1 |= MR1_CS5;
3835 break;
3836 case CS6:
3837 mr1 |= MR1_CS6;
3838 break;
3839 case CS7:
3840 mr1 |= MR1_CS7;
3841 break;
3842 default:
3843 mr1 |= MR1_CS8;
3844 break;
3847 if (tiosp->c_cflag & CSTOPB)
3848 mr2 |= MR2_STOP2;
3849 else
3850 mr2 |= MR2_STOP1;
3852 if (tiosp->c_cflag & PARENB) {
3853 if (tiosp->c_cflag & PARODD)
3854 mr1 |= (MR1_PARENB | MR1_PARODD);
3855 else
3856 mr1 |= (MR1_PARENB | MR1_PAREVEN);
3857 } else
3858 mr1 |= MR1_PARNONE;
3860 mr1 |= MR1_ERRBLOCK;
3863 * Set the RX FIFO threshold at 8 chars. This gives a bit of breathing
3864 * space for hardware flow control and the like. This should be set to
3865 * VMIN.
3867 mr2 |= MR2_RXFIFOHALF;
3870 * Calculate the baud rate timers. For now we will just assume that
3871 * the input and output baud are the same. The sc26198 has a fixed
3872 * baud rate table, so only discrete baud rates possible.
3874 baudrate = tiosp->c_cflag & CBAUD;
3875 if (baudrate & CBAUDEX) {
3876 baudrate &= ~CBAUDEX;
3877 if ((baudrate < 1) || (baudrate > 4))
3878 tiosp->c_cflag &= ~CBAUDEX;
3879 else
3880 baudrate += 15;
3882 baudrate = stl_baudrates[baudrate];
3883 if ((tiosp->c_cflag & CBAUD) == B38400) {
3884 if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI)
3885 baudrate = 57600;
3886 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI)
3887 baudrate = 115200;
3888 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI)
3889 baudrate = 230400;
3890 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP)
3891 baudrate = 460800;
3892 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST)
3893 baudrate = (portp->baud_base / portp->custom_divisor);
3895 if (baudrate > STL_SC26198MAXBAUD)
3896 baudrate = STL_SC26198MAXBAUD;
3898 if (baudrate > 0)
3899 for (clk = 0; clk < SC26198_NRBAUDS; clk++)
3900 if (baudrate <= sc26198_baudtable[clk])
3901 break;
3904 * Check what form of modem signaling is required and set it up.
3906 if (tiosp->c_cflag & CLOCAL) {
3907 portp->port.flags &= ~ASYNC_CHECK_CD;
3908 } else {
3909 iopr |= IOPR_DCDCOS;
3910 imron |= IR_IOPORT;
3911 portp->port.flags |= ASYNC_CHECK_CD;
3915 * Setup sc26198 enhanced modes if we can. In particular we want to
3916 * handle as much of the flow control as possible automatically. As
3917 * well as saving a few CPU cycles it will also greatly improve flow
3918 * control reliability.
3920 if (tiosp->c_iflag & IXON) {
3921 mr0 |= MR0_SWFTX | MR0_SWFT;
3922 imron |= IR_XONXOFF;
3923 } else
3924 imroff |= IR_XONXOFF;
3926 if (tiosp->c_iflag & IXOFF)
3927 mr0 |= MR0_SWFRX;
3929 if (tiosp->c_cflag & CRTSCTS) {
3930 mr2 |= MR2_AUTOCTS;
3931 mr1 |= MR1_AUTORTS;
3935 * All sc26198 register values calculated so go through and set
3936 * them all up.
3939 pr_debug("SETPORT: portnr=%d panelnr=%d brdnr=%d\n",
3940 portp->portnr, portp->panelnr, portp->brdnr);
3941 pr_debug(" mr0=%x mr1=%x mr2=%x clk=%x\n", mr0, mr1, mr2, clk);
3942 pr_debug(" iopr=%x imron=%x imroff=%x\n", iopr, imron, imroff);
3943 pr_debug(" schr1=%x schr2=%x schr3=%x schr4=%x\n",
3944 tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP],
3945 tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP]);
3947 spin_lock_irqsave(&brd_lock, flags);
3948 BRDENABLE(portp->brdnr, portp->pagenr);
3949 stl_sc26198setreg(portp, IMR, 0);
3950 stl_sc26198updatereg(portp, MR0, mr0);
3951 stl_sc26198updatereg(portp, MR1, mr1);
3952 stl_sc26198setreg(portp, SCCR, CR_RXERRBLOCK);
3953 stl_sc26198updatereg(portp, MR2, mr2);
3954 stl_sc26198updatereg(portp, IOPIOR,
3955 ((stl_sc26198getreg(portp, IOPIOR) & ~IPR_CHANGEMASK) | iopr));
3957 if (baudrate > 0) {
3958 stl_sc26198setreg(portp, TXCSR, clk);
3959 stl_sc26198setreg(portp, RXCSR, clk);
3962 stl_sc26198setreg(portp, XONCR, tiosp->c_cc[VSTART]);
3963 stl_sc26198setreg(portp, XOFFCR, tiosp->c_cc[VSTOP]);
3965 ipr = stl_sc26198getreg(portp, IPR);
3966 if (ipr & IPR_DCD)
3967 portp->sigs &= ~TIOCM_CD;
3968 else
3969 portp->sigs |= TIOCM_CD;
3971 portp->imr = (portp->imr & ~imroff) | imron;
3972 stl_sc26198setreg(portp, IMR, portp->imr);
3973 BRDDISABLE(portp->brdnr);
3974 spin_unlock_irqrestore(&brd_lock, flags);
3977 /*****************************************************************************/
3980 * Set the state of the DTR and RTS signals.
3983 static void stl_sc26198setsignals(struct stlport *portp, int dtr, int rts)
3985 unsigned char iopioron, iopioroff;
3986 unsigned long flags;
3988 pr_debug("stl_sc26198setsignals(portp=%p,dtr=%d,rts=%d)\n", portp,
3989 dtr, rts);
3991 iopioron = 0;
3992 iopioroff = 0;
3993 if (dtr == 0)
3994 iopioroff |= IPR_DTR;
3995 else if (dtr > 0)
3996 iopioron |= IPR_DTR;
3997 if (rts == 0)
3998 iopioroff |= IPR_RTS;
3999 else if (rts > 0)
4000 iopioron |= IPR_RTS;
4002 spin_lock_irqsave(&brd_lock, flags);
4003 BRDENABLE(portp->brdnr, portp->pagenr);
4004 stl_sc26198setreg(portp, IOPIOR,
4005 ((stl_sc26198getreg(portp, IOPIOR) & ~iopioroff) | iopioron));
4006 BRDDISABLE(portp->brdnr);
4007 spin_unlock_irqrestore(&brd_lock, flags);
4010 /*****************************************************************************/
4013 * Return the state of the signals.
4016 static int stl_sc26198getsignals(struct stlport *portp)
4018 unsigned char ipr;
4019 unsigned long flags;
4020 int sigs;
4022 pr_debug("stl_sc26198getsignals(portp=%p)\n", portp);
4024 spin_lock_irqsave(&brd_lock, flags);
4025 BRDENABLE(portp->brdnr, portp->pagenr);
4026 ipr = stl_sc26198getreg(portp, IPR);
4027 BRDDISABLE(portp->brdnr);
4028 spin_unlock_irqrestore(&brd_lock, flags);
4030 sigs = 0;
4031 sigs |= (ipr & IPR_DCD) ? 0 : TIOCM_CD;
4032 sigs |= (ipr & IPR_CTS) ? 0 : TIOCM_CTS;
4033 sigs |= (ipr & IPR_DTR) ? 0: TIOCM_DTR;
4034 sigs |= (ipr & IPR_RTS) ? 0: TIOCM_RTS;
4035 sigs |= TIOCM_DSR;
4036 return sigs;
4039 /*****************************************************************************/
4042 * Enable/Disable the Transmitter and/or Receiver.
4045 static void stl_sc26198enablerxtx(struct stlport *portp, int rx, int tx)
4047 unsigned char ccr;
4048 unsigned long flags;
4050 pr_debug("stl_sc26198enablerxtx(portp=%p,rx=%d,tx=%d)\n", portp, rx,tx);
4052 ccr = portp->crenable;
4053 if (tx == 0)
4054 ccr &= ~CR_TXENABLE;
4055 else if (tx > 0)
4056 ccr |= CR_TXENABLE;
4057 if (rx == 0)
4058 ccr &= ~CR_RXENABLE;
4059 else if (rx > 0)
4060 ccr |= CR_RXENABLE;
4062 spin_lock_irqsave(&brd_lock, flags);
4063 BRDENABLE(portp->brdnr, portp->pagenr);
4064 stl_sc26198setreg(portp, SCCR, ccr);
4065 BRDDISABLE(portp->brdnr);
4066 portp->crenable = ccr;
4067 spin_unlock_irqrestore(&brd_lock, flags);
4070 /*****************************************************************************/
4073 * Start/stop the Transmitter and/or Receiver.
4076 static void stl_sc26198startrxtx(struct stlport *portp, int rx, int tx)
4078 unsigned char imr;
4079 unsigned long flags;
4081 pr_debug("stl_sc26198startrxtx(portp=%p,rx=%d,tx=%d)\n", portp, rx, tx);
4083 imr = portp->imr;
4084 if (tx == 0)
4085 imr &= ~IR_TXRDY;
4086 else if (tx == 1)
4087 imr |= IR_TXRDY;
4088 if (rx == 0)
4089 imr &= ~(IR_RXRDY | IR_RXBREAK | IR_RXWATCHDOG);
4090 else if (rx > 0)
4091 imr |= IR_RXRDY | IR_RXBREAK | IR_RXWATCHDOG;
4093 spin_lock_irqsave(&brd_lock, flags);
4094 BRDENABLE(portp->brdnr, portp->pagenr);
4095 stl_sc26198setreg(portp, IMR, imr);
4096 BRDDISABLE(portp->brdnr);
4097 portp->imr = imr;
4098 if (tx > 0)
4099 set_bit(ASYI_TXBUSY, &portp->istate);
4100 spin_unlock_irqrestore(&brd_lock, flags);
4103 /*****************************************************************************/
4106 * Disable all interrupts from this port.
4109 static void stl_sc26198disableintrs(struct stlport *portp)
4111 unsigned long flags;
4113 pr_debug("stl_sc26198disableintrs(portp=%p)\n", portp);
4115 spin_lock_irqsave(&brd_lock, flags);
4116 BRDENABLE(portp->brdnr, portp->pagenr);
4117 portp->imr = 0;
4118 stl_sc26198setreg(portp, IMR, 0);
4119 BRDDISABLE(portp->brdnr);
4120 spin_unlock_irqrestore(&brd_lock, flags);
4123 /*****************************************************************************/
4125 static void stl_sc26198sendbreak(struct stlport *portp, int len)
4127 unsigned long flags;
4129 pr_debug("stl_sc26198sendbreak(portp=%p,len=%d)\n", portp, len);
4131 spin_lock_irqsave(&brd_lock, flags);
4132 BRDENABLE(portp->brdnr, portp->pagenr);
4133 if (len == 1) {
4134 stl_sc26198setreg(portp, SCCR, CR_TXSTARTBREAK);
4135 portp->stats.txbreaks++;
4136 } else
4137 stl_sc26198setreg(portp, SCCR, CR_TXSTOPBREAK);
4139 BRDDISABLE(portp->brdnr);
4140 spin_unlock_irqrestore(&brd_lock, flags);
4143 /*****************************************************************************/
4146 * Take flow control actions...
4149 static void stl_sc26198flowctrl(struct stlport *portp, int state)
4151 struct tty_struct *tty;
4152 unsigned long flags;
4153 unsigned char mr0;
4155 pr_debug("stl_sc26198flowctrl(portp=%p,state=%x)\n", portp, state);
4157 if (portp == NULL)
4158 return;
4159 tty = tty_port_tty_get(&portp->port);
4160 if (tty == NULL)
4161 return;
4163 spin_lock_irqsave(&brd_lock, flags);
4164 BRDENABLE(portp->brdnr, portp->pagenr);
4166 if (state) {
4167 if (tty->termios->c_iflag & IXOFF) {
4168 mr0 = stl_sc26198getreg(portp, MR0);
4169 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4170 stl_sc26198setreg(portp, SCCR, CR_TXSENDXON);
4171 mr0 |= MR0_SWFRX;
4172 portp->stats.rxxon++;
4173 stl_sc26198wait(portp);
4174 stl_sc26198setreg(portp, MR0, mr0);
4177 * Question: should we return RTS to what it was before? It may
4178 * have been set by an ioctl... Suppose not, since if you have
4179 * hardware flow control set then it is pretty silly to go and
4180 * set the RTS line by hand.
4182 if (tty->termios->c_cflag & CRTSCTS) {
4183 stl_sc26198setreg(portp, MR1,
4184 (stl_sc26198getreg(portp, MR1) | MR1_AUTORTS));
4185 stl_sc26198setreg(portp, IOPIOR,
4186 (stl_sc26198getreg(portp, IOPIOR) | IOPR_RTS));
4187 portp->stats.rxrtson++;
4189 } else {
4190 if (tty->termios->c_iflag & IXOFF) {
4191 mr0 = stl_sc26198getreg(portp, MR0);
4192 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4193 stl_sc26198setreg(portp, SCCR, CR_TXSENDXOFF);
4194 mr0 &= ~MR0_SWFRX;
4195 portp->stats.rxxoff++;
4196 stl_sc26198wait(portp);
4197 stl_sc26198setreg(portp, MR0, mr0);
4199 if (tty->termios->c_cflag & CRTSCTS) {
4200 stl_sc26198setreg(portp, MR1,
4201 (stl_sc26198getreg(portp, MR1) & ~MR1_AUTORTS));
4202 stl_sc26198setreg(portp, IOPIOR,
4203 (stl_sc26198getreg(portp, IOPIOR) & ~IOPR_RTS));
4204 portp->stats.rxrtsoff++;
4208 BRDDISABLE(portp->brdnr);
4209 spin_unlock_irqrestore(&brd_lock, flags);
4210 tty_kref_put(tty);
4213 /*****************************************************************************/
4216 * Send a flow control character.
4219 static void stl_sc26198sendflow(struct stlport *portp, int state)
4221 struct tty_struct *tty;
4222 unsigned long flags;
4223 unsigned char mr0;
4225 pr_debug("stl_sc26198sendflow(portp=%p,state=%x)\n", portp, state);
4227 if (portp == NULL)
4228 return;
4229 tty = tty_port_tty_get(&portp->port);
4230 if (tty == NULL)
4231 return;
4233 spin_lock_irqsave(&brd_lock, flags);
4234 BRDENABLE(portp->brdnr, portp->pagenr);
4235 if (state) {
4236 mr0 = stl_sc26198getreg(portp, MR0);
4237 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4238 stl_sc26198setreg(portp, SCCR, CR_TXSENDXON);
4239 mr0 |= MR0_SWFRX;
4240 portp->stats.rxxon++;
4241 stl_sc26198wait(portp);
4242 stl_sc26198setreg(portp, MR0, mr0);
4243 } else {
4244 mr0 = stl_sc26198getreg(portp, MR0);
4245 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4246 stl_sc26198setreg(portp, SCCR, CR_TXSENDXOFF);
4247 mr0 &= ~MR0_SWFRX;
4248 portp->stats.rxxoff++;
4249 stl_sc26198wait(portp);
4250 stl_sc26198setreg(portp, MR0, mr0);
4252 BRDDISABLE(portp->brdnr);
4253 spin_unlock_irqrestore(&brd_lock, flags);
4254 tty_kref_put(tty);
4257 /*****************************************************************************/
4259 static void stl_sc26198flush(struct stlport *portp)
4261 unsigned long flags;
4263 pr_debug("stl_sc26198flush(portp=%p)\n", portp);
4265 if (portp == NULL)
4266 return;
4268 spin_lock_irqsave(&brd_lock, flags);
4269 BRDENABLE(portp->brdnr, portp->pagenr);
4270 stl_sc26198setreg(portp, SCCR, CR_TXRESET);
4271 stl_sc26198setreg(portp, SCCR, portp->crenable);
4272 BRDDISABLE(portp->brdnr);
4273 portp->tx.tail = portp->tx.head;
4274 spin_unlock_irqrestore(&brd_lock, flags);
4277 /*****************************************************************************/
4280 * Return the current state of data flow on this port. This is only
4281 * really interresting when determining if data has fully completed
4282 * transmission or not... The sc26198 interrupt scheme cannot
4283 * determine when all data has actually drained, so we need to
4284 * check the port statusy register to be sure.
4287 static int stl_sc26198datastate(struct stlport *portp)
4289 unsigned long flags;
4290 unsigned char sr;
4292 pr_debug("stl_sc26198datastate(portp=%p)\n", portp);
4294 if (portp == NULL)
4295 return 0;
4296 if (test_bit(ASYI_TXBUSY, &portp->istate))
4297 return 1;
4299 spin_lock_irqsave(&brd_lock, flags);
4300 BRDENABLE(portp->brdnr, portp->pagenr);
4301 sr = stl_sc26198getreg(portp, SR);
4302 BRDDISABLE(portp->brdnr);
4303 spin_unlock_irqrestore(&brd_lock, flags);
4305 return (sr & SR_TXEMPTY) ? 0 : 1;
4308 /*****************************************************************************/
4311 * Delay for a small amount of time, to give the sc26198 a chance
4312 * to process a command...
4315 static void stl_sc26198wait(struct stlport *portp)
4317 int i;
4319 pr_debug("stl_sc26198wait(portp=%p)\n", portp);
4321 if (portp == NULL)
4322 return;
4324 for (i = 0; i < 20; i++)
4325 stl_sc26198getglobreg(portp, TSTR);
4328 /*****************************************************************************/
4331 * If we are TX flow controlled and in IXANY mode then we may
4332 * need to unflow control here. We gotta do this because of the
4333 * automatic flow control modes of the sc26198.
4336 static void stl_sc26198txunflow(struct stlport *portp, struct tty_struct *tty)
4338 unsigned char mr0;
4340 mr0 = stl_sc26198getreg(portp, MR0);
4341 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4342 stl_sc26198setreg(portp, SCCR, CR_HOSTXON);
4343 stl_sc26198wait(portp);
4344 stl_sc26198setreg(portp, MR0, mr0);
4345 clear_bit(ASYI_TXFLOWED, &portp->istate);
4348 /*****************************************************************************/
4351 * Interrupt service routine for sc26198 panels.
4354 static void stl_sc26198intr(struct stlpanel *panelp, unsigned int iobase)
4356 struct stlport *portp;
4357 unsigned int iack;
4359 spin_lock(&brd_lock);
4362 * Work around bug in sc26198 chip... Cannot have A6 address
4363 * line of UART high, else iack will be returned as 0.
4365 outb(0, (iobase + 1));
4367 iack = inb(iobase + XP_IACK);
4368 portp = panelp->ports[(iack & IVR_CHANMASK) + ((iobase & 0x4) << 1)];
4370 if (iack & IVR_RXDATA)
4371 stl_sc26198rxisr(portp, iack);
4372 else if (iack & IVR_TXDATA)
4373 stl_sc26198txisr(portp);
4374 else
4375 stl_sc26198otherisr(portp, iack);
4377 spin_unlock(&brd_lock);
4380 /*****************************************************************************/
4383 * Transmit interrupt handler. This has gotta be fast! Handling TX
4384 * chars is pretty simple, stuff as many as possible from the TX buffer
4385 * into the sc26198 FIFO.
4386 * In practice it is possible that interrupts are enabled but that the
4387 * port has been hung up. Need to handle not having any TX buffer here,
4388 * this is done by using the side effect that head and tail will also
4389 * be NULL if the buffer has been freed.
4392 static void stl_sc26198txisr(struct stlport *portp)
4394 struct tty_struct *tty;
4395 unsigned int ioaddr;
4396 unsigned char mr0;
4397 int len, stlen;
4398 char *head, *tail;
4400 pr_debug("stl_sc26198txisr(portp=%p)\n", portp);
4402 ioaddr = portp->ioaddr;
4403 head = portp->tx.head;
4404 tail = portp->tx.tail;
4405 len = (head >= tail) ? (head - tail) : (STL_TXBUFSIZE - (tail - head));
4406 if ((len == 0) || ((len < STL_TXBUFLOW) &&
4407 (test_bit(ASYI_TXLOW, &portp->istate) == 0))) {
4408 set_bit(ASYI_TXLOW, &portp->istate);
4409 tty = tty_port_tty_get(&portp->port);
4410 if (tty) {
4411 tty_wakeup(tty);
4412 tty_kref_put(tty);
4416 if (len == 0) {
4417 outb((MR0 | portp->uartaddr), (ioaddr + XP_ADDR));
4418 mr0 = inb(ioaddr + XP_DATA);
4419 if ((mr0 & MR0_TXMASK) == MR0_TXEMPTY) {
4420 portp->imr &= ~IR_TXRDY;
4421 outb((IMR | portp->uartaddr), (ioaddr + XP_ADDR));
4422 outb(portp->imr, (ioaddr + XP_DATA));
4423 clear_bit(ASYI_TXBUSY, &portp->istate);
4424 } else {
4425 mr0 |= ((mr0 & ~MR0_TXMASK) | MR0_TXEMPTY);
4426 outb(mr0, (ioaddr + XP_DATA));
4428 } else {
4429 len = min(len, SC26198_TXFIFOSIZE);
4430 portp->stats.txtotal += len;
4431 stlen = min_t(unsigned int, len,
4432 (portp->tx.buf + STL_TXBUFSIZE) - tail);
4433 outb(GTXFIFO, (ioaddr + XP_ADDR));
4434 outsb((ioaddr + XP_DATA), tail, stlen);
4435 len -= stlen;
4436 tail += stlen;
4437 if (tail >= (portp->tx.buf + STL_TXBUFSIZE))
4438 tail = portp->tx.buf;
4439 if (len > 0) {
4440 outsb((ioaddr + XP_DATA), tail, len);
4441 tail += len;
4443 portp->tx.tail = tail;
4447 /*****************************************************************************/
4450 * Receive character interrupt handler. Determine if we have good chars
4451 * or bad chars and then process appropriately. Good chars are easy
4452 * just shove the lot into the RX buffer and set all status byte to 0.
4453 * If a bad RX char then process as required. This routine needs to be
4454 * fast! In practice it is possible that we get an interrupt on a port
4455 * that is closed. This can happen on hangups - since they completely
4456 * shutdown a port not in user context. Need to handle this case.
4459 static void stl_sc26198rxisr(struct stlport *portp, unsigned int iack)
4461 struct tty_struct *tty;
4462 unsigned int len, buflen, ioaddr;
4464 pr_debug("stl_sc26198rxisr(portp=%p,iack=%x)\n", portp, iack);
4466 tty = tty_port_tty_get(&portp->port);
4467 ioaddr = portp->ioaddr;
4468 outb(GIBCR, (ioaddr + XP_ADDR));
4469 len = inb(ioaddr + XP_DATA) + 1;
4471 if ((iack & IVR_TYPEMASK) == IVR_RXDATA) {
4472 if (tty == NULL || (buflen = tty_buffer_request_room(tty, len)) == 0) {
4473 len = min_t(unsigned int, len, sizeof(stl_unwanted));
4474 outb(GRXFIFO, (ioaddr + XP_ADDR));
4475 insb((ioaddr + XP_DATA), &stl_unwanted[0], len);
4476 portp->stats.rxlost += len;
4477 portp->stats.rxtotal += len;
4478 } else {
4479 len = min(len, buflen);
4480 if (len > 0) {
4481 unsigned char *ptr;
4482 outb(GRXFIFO, (ioaddr + XP_ADDR));
4483 tty_prepare_flip_string(tty, &ptr, len);
4484 insb((ioaddr + XP_DATA), ptr, len);
4485 tty_schedule_flip(tty);
4486 portp->stats.rxtotal += len;
4489 } else {
4490 stl_sc26198rxbadchars(portp);
4494 * If we are TX flow controlled and in IXANY mode then we may need
4495 * to unflow control here. We gotta do this because of the automatic
4496 * flow control modes of the sc26198.
4498 if (test_bit(ASYI_TXFLOWED, &portp->istate)) {
4499 if ((tty != NULL) &&
4500 (tty->termios != NULL) &&
4501 (tty->termios->c_iflag & IXANY)) {
4502 stl_sc26198txunflow(portp, tty);
4505 tty_kref_put(tty);
4508 /*****************************************************************************/
4511 * Process an RX bad character.
4514 static void stl_sc26198rxbadch(struct stlport *portp, unsigned char status, char ch)
4516 struct tty_struct *tty;
4517 unsigned int ioaddr;
4519 tty = tty_port_tty_get(&portp->port);
4520 ioaddr = portp->ioaddr;
4522 if (status & SR_RXPARITY)
4523 portp->stats.rxparity++;
4524 if (status & SR_RXFRAMING)
4525 portp->stats.rxframing++;
4526 if (status & SR_RXOVERRUN)
4527 portp->stats.rxoverrun++;
4528 if (status & SR_RXBREAK)
4529 portp->stats.rxbreaks++;
4531 if ((tty != NULL) &&
4532 ((portp->rxignoremsk & status) == 0)) {
4533 if (portp->rxmarkmsk & status) {
4534 if (status & SR_RXBREAK) {
4535 status = TTY_BREAK;
4536 if (portp->port.flags & ASYNC_SAK) {
4537 do_SAK(tty);
4538 BRDENABLE(portp->brdnr, portp->pagenr);
4540 } else if (status & SR_RXPARITY)
4541 status = TTY_PARITY;
4542 else if (status & SR_RXFRAMING)
4543 status = TTY_FRAME;
4544 else if(status & SR_RXOVERRUN)
4545 status = TTY_OVERRUN;
4546 else
4547 status = 0;
4548 } else
4549 status = 0;
4551 tty_insert_flip_char(tty, ch, status);
4552 tty_schedule_flip(tty);
4554 if (status == 0)
4555 portp->stats.rxtotal++;
4557 tty_kref_put(tty);
4560 /*****************************************************************************/
4563 * Process all characters in the RX FIFO of the UART. Check all char
4564 * status bytes as well, and process as required. We need to check
4565 * all bytes in the FIFO, in case some more enter the FIFO while we
4566 * are here. To get the exact character error type we need to switch
4567 * into CHAR error mode (that is why we need to make sure we empty
4568 * the FIFO).
4571 static void stl_sc26198rxbadchars(struct stlport *portp)
4573 unsigned char status, mr1;
4574 char ch;
4577 * To get the precise error type for each character we must switch
4578 * back into CHAR error mode.
4580 mr1 = stl_sc26198getreg(portp, MR1);
4581 stl_sc26198setreg(portp, MR1, (mr1 & ~MR1_ERRBLOCK));
4583 while ((status = stl_sc26198getreg(portp, SR)) & SR_RXRDY) {
4584 stl_sc26198setreg(portp, SCCR, CR_CLEARRXERR);
4585 ch = stl_sc26198getreg(portp, RXFIFO);
4586 stl_sc26198rxbadch(portp, status, ch);
4590 * To get correct interrupt class we must switch back into BLOCK
4591 * error mode.
4593 stl_sc26198setreg(portp, MR1, mr1);
4596 /*****************************************************************************/
4599 * Other interrupt handler. This includes modem signals, flow
4600 * control actions, etc. Most stuff is left to off-level interrupt
4601 * processing time.
4604 static void stl_sc26198otherisr(struct stlport *portp, unsigned int iack)
4606 unsigned char cir, ipr, xisr;
4608 pr_debug("stl_sc26198otherisr(portp=%p,iack=%x)\n", portp, iack);
4610 cir = stl_sc26198getglobreg(portp, CIR);
4612 switch (cir & CIR_SUBTYPEMASK) {
4613 case CIR_SUBCOS:
4614 ipr = stl_sc26198getreg(portp, IPR);
4615 if (ipr & IPR_DCDCHANGE) {
4616 stl_cd_change(portp);
4617 portp->stats.modem++;
4619 break;
4620 case CIR_SUBXONXOFF:
4621 xisr = stl_sc26198getreg(portp, XISR);
4622 if (xisr & XISR_RXXONGOT) {
4623 set_bit(ASYI_TXFLOWED, &portp->istate);
4624 portp->stats.txxoff++;
4626 if (xisr & XISR_RXXOFFGOT) {
4627 clear_bit(ASYI_TXFLOWED, &portp->istate);
4628 portp->stats.txxon++;
4630 break;
4631 case CIR_SUBBREAK:
4632 stl_sc26198setreg(portp, SCCR, CR_BREAKRESET);
4633 stl_sc26198rxbadchars(portp);
4634 break;
4635 default:
4636 break;
4640 static void stl_free_isabrds(void)
4642 struct stlbrd *brdp;
4643 unsigned int i;
4645 for (i = 0; i < stl_nrbrds; i++) {
4646 if ((brdp = stl_brds[i]) == NULL || (brdp->state & STL_PROBED))
4647 continue;
4649 free_irq(brdp->irq, brdp);
4651 stl_cleanup_panels(brdp);
4653 release_region(brdp->ioaddr1, brdp->iosize1);
4654 if (brdp->iosize2 > 0)
4655 release_region(brdp->ioaddr2, brdp->iosize2);
4657 kfree(brdp);
4658 stl_brds[i] = NULL;
4663 * Loadable module initialization stuff.
4665 static int __init stallion_module_init(void)
4667 struct stlbrd *brdp;
4668 struct stlconf conf;
4669 unsigned int i, j;
4670 int retval;
4672 printk(KERN_INFO "%s: version %s\n", stl_drvtitle, stl_drvversion);
4674 spin_lock_init(&stallion_lock);
4675 spin_lock_init(&brd_lock);
4677 stl_serial = alloc_tty_driver(STL_MAXBRDS * STL_MAXPORTS);
4678 if (!stl_serial) {
4679 retval = -ENOMEM;
4680 goto err;
4683 stl_serial->owner = THIS_MODULE;
4684 stl_serial->driver_name = stl_drvname;
4685 stl_serial->name = "ttyE";
4686 stl_serial->major = STL_SERIALMAJOR;
4687 stl_serial->minor_start = 0;
4688 stl_serial->type = TTY_DRIVER_TYPE_SERIAL;
4689 stl_serial->subtype = SERIAL_TYPE_NORMAL;
4690 stl_serial->init_termios = stl_deftermios;
4691 stl_serial->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
4692 tty_set_operations(stl_serial, &stl_ops);
4694 retval = tty_register_driver(stl_serial);
4695 if (retval) {
4696 printk("STALLION: failed to register serial driver\n");
4697 goto err_frtty;
4701 * Find any dynamically supported boards. That is via module load
4702 * line options.
4704 for (i = stl_nrbrds; i < stl_nargs; i++) {
4705 memset(&conf, 0, sizeof(conf));
4706 if (stl_parsebrd(&conf, stl_brdsp[i]) == 0)
4707 continue;
4708 if ((brdp = stl_allocbrd()) == NULL)
4709 continue;
4710 brdp->brdnr = i;
4711 brdp->brdtype = conf.brdtype;
4712 brdp->ioaddr1 = conf.ioaddr1;
4713 brdp->ioaddr2 = conf.ioaddr2;
4714 brdp->irq = conf.irq;
4715 brdp->irqtype = conf.irqtype;
4716 stl_brds[brdp->brdnr] = brdp;
4717 if (stl_brdinit(brdp)) {
4718 stl_brds[brdp->brdnr] = NULL;
4719 kfree(brdp);
4720 } else {
4721 for (j = 0; j < brdp->nrports; j++)
4722 tty_register_device(stl_serial,
4723 brdp->brdnr * STL_MAXPORTS + j, NULL);
4724 stl_nrbrds = i + 1;
4728 /* this has to be _after_ isa finding because of locking */
4729 retval = pci_register_driver(&stl_pcidriver);
4730 if (retval && stl_nrbrds == 0) {
4731 printk(KERN_ERR "STALLION: can't register pci driver\n");
4732 goto err_unrtty;
4736 * Set up a character driver for per board stuff. This is mainly used
4737 * to do stats ioctls on the ports.
4739 if (register_chrdev(STL_SIOMEMMAJOR, "staliomem", &stl_fsiomem))
4740 printk("STALLION: failed to register serial board device\n");
4742 stallion_class = class_create(THIS_MODULE, "staliomem");
4743 if (IS_ERR(stallion_class))
4744 printk("STALLION: failed to create class\n");
4745 for (i = 0; i < 4; i++)
4746 device_create(stallion_class, NULL, MKDEV(STL_SIOMEMMAJOR, i),
4747 NULL, "staliomem%d", i);
4749 return 0;
4750 err_unrtty:
4751 tty_unregister_driver(stl_serial);
4752 err_frtty:
4753 put_tty_driver(stl_serial);
4754 err:
4755 return retval;
4758 static void __exit stallion_module_exit(void)
4760 struct stlbrd *brdp;
4761 unsigned int i, j;
4763 pr_debug("cleanup_module()\n");
4765 printk(KERN_INFO "Unloading %s: version %s\n", stl_drvtitle,
4766 stl_drvversion);
4769 * Free up all allocated resources used by the ports. This includes
4770 * memory and interrupts. As part of this process we will also do
4771 * a hangup on every open port - to try to flush out any processes
4772 * hanging onto ports.
4774 for (i = 0; i < stl_nrbrds; i++) {
4775 if ((brdp = stl_brds[i]) == NULL || (brdp->state & STL_PROBED))
4776 continue;
4777 for (j = 0; j < brdp->nrports; j++)
4778 tty_unregister_device(stl_serial,
4779 brdp->brdnr * STL_MAXPORTS + j);
4782 for (i = 0; i < 4; i++)
4783 device_destroy(stallion_class, MKDEV(STL_SIOMEMMAJOR, i));
4784 unregister_chrdev(STL_SIOMEMMAJOR, "staliomem");
4785 class_destroy(stallion_class);
4787 pci_unregister_driver(&stl_pcidriver);
4789 stl_free_isabrds();
4791 tty_unregister_driver(stl_serial);
4792 put_tty_driver(stl_serial);
4795 module_init(stallion_module_init);
4796 module_exit(stallion_module_exit);
4798 MODULE_AUTHOR("Greg Ungerer");
4799 MODULE_DESCRIPTION("Stallion Multiport Serial Driver");
4800 MODULE_LICENSE("GPL");