2 * eCryptfs: Linux filesystem encryption layer
4 * Copyright (C) 2007 International Business Machines Corp.
5 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as
9 * published by the Free Software Foundation; either version 2 of the
10 * License, or (at your option) any later version.
12 * This program is distributed in the hope that it will be useful, but
13 * WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
24 #include <linux/pagemap.h>
25 #include "ecryptfs_kernel.h"
28 * ecryptfs_write_lower
29 * @ecryptfs_inode: The eCryptfs inode
30 * @data: Data to write
31 * @offset: Byte offset in the lower file to which to write the data
32 * @size: Number of bytes from @data to write at @offset in the lower
35 * Write data to the lower file.
37 * Returns zero on success; non-zero on error
39 int ecryptfs_write_lower(struct inode
*ecryptfs_inode
, char *data
,
40 loff_t offset
, size_t size
)
42 struct ecryptfs_inode_info
*inode_info
;
43 ssize_t octets_written
;
47 inode_info
= ecryptfs_inode_to_private(ecryptfs_inode
);
48 mutex_lock(&inode_info
->lower_file_mutex
);
49 BUG_ON(!inode_info
->lower_file
);
50 inode_info
->lower_file
->f_pos
= offset
;
53 octets_written
= vfs_write(inode_info
->lower_file
, data
, size
,
54 &inode_info
->lower_file
->f_pos
);
56 if (octets_written
< 0) {
57 printk(KERN_ERR
"%s: octets_written = [%td]; "
58 "expected [%td]\n", __func__
, octets_written
, size
);
61 mutex_unlock(&inode_info
->lower_file_mutex
);
62 mark_inode_dirty_sync(ecryptfs_inode
);
67 * ecryptfs_write_lower_page_segment
68 * @ecryptfs_inode: The eCryptfs inode
69 * @page_for_lower: The page containing the data to be written to the
71 * @offset_in_page: The offset in the @page_for_lower from which to
72 * start writing the data
73 * @size: The amount of data from @page_for_lower to write to the
76 * Determines the byte offset in the file for the given page and
77 * offset within the page, maps the page, and makes the call to write
78 * the contents of @page_for_lower to the lower inode.
80 * Returns zero on success; non-zero otherwise
82 int ecryptfs_write_lower_page_segment(struct inode
*ecryptfs_inode
,
83 struct page
*page_for_lower
,
84 size_t offset_in_page
, size_t size
)
90 offset
= ((((loff_t
)page_for_lower
->index
) << PAGE_CACHE_SHIFT
)
92 virt
= kmap(page_for_lower
);
93 rc
= ecryptfs_write_lower(ecryptfs_inode
, virt
, offset
, size
);
94 kunmap(page_for_lower
);
100 * @ecryptfs_file: The eCryptfs file into which to write
101 * @data: Virtual address where data to write is located
102 * @offset: Offset in the eCryptfs file at which to begin writing the
104 * @size: The number of bytes to write from @data
106 * Write an arbitrary amount of data to an arbitrary location in the
107 * eCryptfs inode page cache. This is done on a page-by-page, and then
108 * by an extent-by-extent, basis; individual extents are encrypted and
109 * written to the lower page cache (via VFS writes). This function
110 * takes care of all the address translation to locations in the lower
111 * filesystem; it also handles truncate events, writing out zeros
114 * Returns zero on success; non-zero otherwise
116 int ecryptfs_write(struct file
*ecryptfs_file
, char *data
, loff_t offset
,
119 struct page
*ecryptfs_page
;
120 char *ecryptfs_page_virt
;
121 loff_t ecryptfs_file_size
=
122 i_size_read(ecryptfs_file
->f_dentry
->d_inode
);
123 loff_t data_offset
= 0;
128 * if we are writing beyond current size, then start pos
129 * at the current size - we'll fill in zeros from there.
131 if (offset
> ecryptfs_file_size
)
132 pos
= ecryptfs_file_size
;
135 while (pos
< (offset
+ size
)) {
136 pgoff_t ecryptfs_page_idx
= (pos
>> PAGE_CACHE_SHIFT
);
137 size_t start_offset_in_page
= (pos
& ~PAGE_CACHE_MASK
);
138 size_t num_bytes
= (PAGE_CACHE_SIZE
- start_offset_in_page
);
139 size_t total_remaining_bytes
= ((offset
+ size
) - pos
);
141 if (num_bytes
> total_remaining_bytes
)
142 num_bytes
= total_remaining_bytes
;
144 /* remaining zeros to write, up to destination offset */
145 size_t total_remaining_zeros
= (offset
- pos
);
147 if (num_bytes
> total_remaining_zeros
)
148 num_bytes
= total_remaining_zeros
;
150 ecryptfs_page
= ecryptfs_get_locked_page(ecryptfs_file
,
152 if (IS_ERR(ecryptfs_page
)) {
153 rc
= PTR_ERR(ecryptfs_page
);
154 printk(KERN_ERR
"%s: Error getting page at "
155 "index [%ld] from eCryptfs inode "
156 "mapping; rc = [%d]\n", __func__
,
157 ecryptfs_page_idx
, rc
);
160 ecryptfs_page_virt
= kmap_atomic(ecryptfs_page
, KM_USER0
);
163 * pos: where we're now writing, offset: where the request was
164 * If current pos is before request, we are filling zeros
165 * If we are at or beyond request, we are writing the *data*
166 * If we're in a fresh page beyond eof, zero it in either case
168 if (pos
< offset
|| !start_offset_in_page
) {
169 /* We are extending past the previous end of the file.
170 * Fill in zero values to the end of the page */
171 memset(((char *)ecryptfs_page_virt
172 + start_offset_in_page
), 0,
173 PAGE_CACHE_SIZE
- start_offset_in_page
);
176 /* pos >= offset, we are now writing the data request */
178 memcpy(((char *)ecryptfs_page_virt
179 + start_offset_in_page
),
180 (data
+ data_offset
), num_bytes
);
181 data_offset
+= num_bytes
;
183 kunmap_atomic(ecryptfs_page_virt
, KM_USER0
);
184 flush_dcache_page(ecryptfs_page
);
185 SetPageUptodate(ecryptfs_page
);
186 unlock_page(ecryptfs_page
);
187 rc
= ecryptfs_encrypt_page(ecryptfs_page
);
188 page_cache_release(ecryptfs_page
);
190 printk(KERN_ERR
"%s: Error encrypting "
191 "page; rc = [%d]\n", __func__
, rc
);
196 if ((offset
+ size
) > ecryptfs_file_size
) {
197 i_size_write(ecryptfs_file
->f_dentry
->d_inode
, (offset
+ size
));
198 rc
= ecryptfs_write_inode_size_to_metadata(
199 ecryptfs_file
->f_dentry
->d_inode
);
201 printk(KERN_ERR
"Problem with "
202 "ecryptfs_write_inode_size_to_metadata; "
212 * ecryptfs_read_lower
213 * @data: The read data is stored here by this function
214 * @offset: Byte offset in the lower file from which to read the data
215 * @size: Number of bytes to read from @offset of the lower file and
217 * @ecryptfs_inode: The eCryptfs inode
219 * Read @size bytes of data at byte offset @offset from the lower
220 * inode into memory location @data.
222 * Returns zero on success; non-zero on error
224 int ecryptfs_read_lower(char *data
, loff_t offset
, size_t size
,
225 struct inode
*ecryptfs_inode
)
227 struct ecryptfs_inode_info
*inode_info
=
228 ecryptfs_inode_to_private(ecryptfs_inode
);
230 mm_segment_t fs_save
;
233 mutex_lock(&inode_info
->lower_file_mutex
);
234 BUG_ON(!inode_info
->lower_file
);
235 inode_info
->lower_file
->f_pos
= offset
;
238 octets_read
= vfs_read(inode_info
->lower_file
, data
, size
,
239 &inode_info
->lower_file
->f_pos
);
241 if (octets_read
< 0) {
242 printk(KERN_ERR
"%s: octets_read = [%td]; "
243 "expected [%td]\n", __func__
, octets_read
, size
);
246 mutex_unlock(&inode_info
->lower_file_mutex
);
251 * ecryptfs_read_lower_page_segment
252 * @page_for_ecryptfs: The page into which data for eCryptfs will be
254 * @offset_in_page: Offset in @page_for_ecryptfs from which to start
256 * @size: The number of bytes to write into @page_for_ecryptfs
257 * @ecryptfs_inode: The eCryptfs inode
259 * Determines the byte offset in the file for the given page and
260 * offset within the page, maps the page, and makes the call to read
261 * the contents of @page_for_ecryptfs from the lower inode.
263 * Returns zero on success; non-zero otherwise
265 int ecryptfs_read_lower_page_segment(struct page
*page_for_ecryptfs
,
267 size_t offset_in_page
, size_t size
,
268 struct inode
*ecryptfs_inode
)
274 offset
= ((((loff_t
)page_index
) << PAGE_CACHE_SHIFT
) + offset_in_page
);
275 virt
= kmap(page_for_ecryptfs
);
276 rc
= ecryptfs_read_lower(virt
, offset
, size
, ecryptfs_inode
);
277 kunmap(page_for_ecryptfs
);
278 flush_dcache_page(page_for_ecryptfs
);
285 * @data: The virtual address into which to write the data read (and
286 * possibly decrypted) from the lower file
287 * @offset: The offset in the decrypted view of the file from which to
289 * @size: The number of bytes to read into @data
290 * @ecryptfs_file: The eCryptfs file from which to read
292 * Read an arbitrary amount of data from an arbitrary location in the
293 * eCryptfs page cache. This is done on an extent-by-extent basis;
294 * individual extents are decrypted and read from the lower page
295 * cache (via VFS reads). This function takes care of all the
296 * address translation to locations in the lower filesystem.
298 * Returns zero on success; non-zero otherwise
300 int ecryptfs_read(char *data
, loff_t offset
, size_t size
,
301 struct file
*ecryptfs_file
)
303 struct page
*ecryptfs_page
;
304 char *ecryptfs_page_virt
;
305 loff_t ecryptfs_file_size
=
306 i_size_read(ecryptfs_file
->f_dentry
->d_inode
);
307 loff_t data_offset
= 0;
311 if ((offset
+ size
) > ecryptfs_file_size
) {
313 printk(KERN_ERR
"%s: Attempt to read data past the end of the "
314 "file; offset = [%lld]; size = [%td]; "
315 "ecryptfs_file_size = [%lld]\n",
316 __func__
, offset
, size
, ecryptfs_file_size
);
320 while (pos
< (offset
+ size
)) {
321 pgoff_t ecryptfs_page_idx
= (pos
>> PAGE_CACHE_SHIFT
);
322 size_t start_offset_in_page
= (pos
& ~PAGE_CACHE_MASK
);
323 size_t num_bytes
= (PAGE_CACHE_SIZE
- start_offset_in_page
);
324 size_t total_remaining_bytes
= ((offset
+ size
) - pos
);
326 if (num_bytes
> total_remaining_bytes
)
327 num_bytes
= total_remaining_bytes
;
328 ecryptfs_page
= ecryptfs_get_locked_page(ecryptfs_file
,
330 if (IS_ERR(ecryptfs_page
)) {
331 rc
= PTR_ERR(ecryptfs_page
);
332 printk(KERN_ERR
"%s: Error getting page at "
333 "index [%ld] from eCryptfs inode "
334 "mapping; rc = [%d]\n", __func__
,
335 ecryptfs_page_idx
, rc
);
338 ecryptfs_page_virt
= kmap_atomic(ecryptfs_page
, KM_USER0
);
339 memcpy((data
+ data_offset
),
340 ((char *)ecryptfs_page_virt
+ start_offset_in_page
),
342 kunmap_atomic(ecryptfs_page_virt
, KM_USER0
);
343 flush_dcache_page(ecryptfs_page
);
344 SetPageUptodate(ecryptfs_page
);
345 unlock_page(ecryptfs_page
);
346 page_cache_release(ecryptfs_page
);
348 data_offset
+= num_bytes
;