mISDN: comment out unused symbols
[linux-2.6/mini2440.git] / drivers / isdn / hardware / mISDN / hfcmulti.c
blob0668072320dd7d551cdbb5e94028bd17a52bf40f
1 /*
2 * hfcmulti.c low level driver for hfc-4s/hfc-8s/hfc-e1 based cards
4 * Author Andreas Eversberg (jolly@eversberg.eu)
5 * ported to mqueue mechanism:
6 * Peter Sprenger (sprengermoving-bytes.de)
8 * inspired by existing hfc-pci driver:
9 * Copyright 1999 by Werner Cornelius (werner@isdn-development.de)
10 * Copyright 2008 by Karsten Keil (kkeil@suse.de)
11 * Copyright 2008 by Andreas Eversberg (jolly@eversberg.eu)
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2, or (at your option)
16 * any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
28 * Thanks to Cologne Chip AG for this great controller!
32 * module parameters:
33 * type:
34 * By default (0), the card is automatically detected.
35 * Or use the following combinations:
36 * Bit 0-7 = 0x00001 = HFC-E1 (1 port)
37 * or Bit 0-7 = 0x00004 = HFC-4S (4 ports)
38 * or Bit 0-7 = 0x00008 = HFC-8S (8 ports)
39 * Bit 8 = 0x00100 = uLaw (instead of aLaw)
40 * Bit 9 = 0x00200 = Disable DTMF detect on all B-channels via hardware
41 * Bit 10 = spare
42 * Bit 11 = 0x00800 = Force PCM bus into slave mode. (otherwhise auto)
43 * or Bit 12 = 0x01000 = Force PCM bus into master mode. (otherwhise auto)
44 * Bit 13 = spare
45 * Bit 14 = 0x04000 = Use external ram (128K)
46 * Bit 15 = 0x08000 = Use external ram (512K)
47 * Bit 16 = 0x10000 = Use 64 timeslots instead of 32
48 * or Bit 17 = 0x20000 = Use 128 timeslots instead of anything else
49 * Bit 18 = spare
50 * Bit 19 = 0x80000 = Send the Watchdog a Signal (Dual E1 with Watchdog)
51 * (all other bits are reserved and shall be 0)
52 * example: 0x20204 one HFC-4S with dtmf detection and 128 timeslots on PCM
53 * bus (PCM master)
55 * port: (optional or required for all ports on all installed cards)
56 * HFC-4S/HFC-8S only bits:
57 * Bit 0 = 0x001 = Use master clock for this S/T interface
58 * (ony once per chip).
59 * Bit 1 = 0x002 = transmitter line setup (non capacitive mode)
60 * Don't use this unless you know what you are doing!
61 * Bit 2 = 0x004 = Disable E-channel. (No E-channel processing)
62 * example: 0x0001,0x0000,0x0000,0x0000 one HFC-4S with master clock
63 * received from port 1
65 * HFC-E1 only bits:
66 * Bit 0 = 0x0001 = interface: 0=copper, 1=optical
67 * Bit 1 = 0x0002 = reserved (later for 32 B-channels transparent mode)
68 * Bit 2 = 0x0004 = Report LOS
69 * Bit 3 = 0x0008 = Report AIS
70 * Bit 4 = 0x0010 = Report SLIP
71 * Bit 5 = 0x0020 = Report RDI
72 * Bit 8 = 0x0100 = Turn off CRC-4 Multiframe Mode, use double frame
73 * mode instead.
74 * Bit 9 = 0x0200 = Force get clock from interface, even in NT mode.
75 * or Bit 10 = 0x0400 = Force put clock to interface, even in TE mode.
76 * Bit 11 = 0x0800 = Use direct RX clock for PCM sync rather than PLL.
77 * (E1 only)
78 * Bit 12-13 = 0xX000 = elastic jitter buffer (1-3), Set both bits to 0
79 * for default.
80 * (all other bits are reserved and shall be 0)
82 * debug:
83 * NOTE: only one debug value must be given for all cards
84 * enable debugging (see hfc_multi.h for debug options)
86 * poll:
87 * NOTE: only one poll value must be given for all cards
88 * Give the number of samples for each fifo process.
89 * By default 128 is used. Decrease to reduce delay, increase to
90 * reduce cpu load. If unsure, don't mess with it!
91 * Valid is 8, 16, 32, 64, 128, 256.
93 * pcm:
94 * NOTE: only one pcm value must be given for every card.
95 * The PCM bus id tells the mISDNdsp module about the connected PCM bus.
96 * By default (0), the PCM bus id is 100 for the card that is PCM master.
97 * If multiple cards are PCM master (because they are not interconnected),
98 * each card with PCM master will have increasing PCM id.
99 * All PCM busses with the same ID are expected to be connected and have
100 * common time slots slots.
101 * Only one chip of the PCM bus must be master, the others slave.
102 * -1 means no support of PCM bus not even.
103 * Omit this value, if all cards are interconnected or none is connected.
104 * If unsure, don't give this parameter.
106 * dslot:
107 * NOTE: only one poll value must be given for every card.
108 * Also this value must be given for non-E1 cards. If omitted, the E1
109 * card has D-channel on time slot 16, which is default.
110 * If 1..15 or 17..31, an alternate time slot is used for D-channel.
111 * In this case, the application must be able to handle this.
112 * If -1 is given, the D-channel is disabled and all 31 slots can be used
113 * for B-channel. (only for specific applications)
114 * If you don't know how to use it, you don't need it!
116 * iomode:
117 * NOTE: only one mode value must be given for every card.
118 * -> See hfc_multi.h for HFC_IO_MODE_* values
119 * By default, the IO mode is pci memory IO (MEMIO).
120 * Some cards requre specific IO mode, so it cannot be changed.
121 * It may be usefull to set IO mode to register io (REGIO) to solve
122 * PCI bridge problems.
123 * If unsure, don't give this parameter.
125 * clockdelay_nt:
126 * NOTE: only one clockdelay_nt value must be given once for all cards.
127 * Give the value of the clock control register (A_ST_CLK_DLY)
128 * of the S/T interfaces in NT mode.
129 * This register is needed for the TBR3 certification, so don't change it.
131 * clockdelay_te:
132 * NOTE: only one clockdelay_te value must be given once
133 * Give the value of the clock control register (A_ST_CLK_DLY)
134 * of the S/T interfaces in TE mode.
135 * This register is needed for the TBR3 certification, so don't change it.
139 * debug register access (never use this, it will flood your system log)
140 * #define HFC_REGISTER_DEBUG
143 static const char *hfcmulti_revision = "2.02";
145 #include <linux/module.h>
146 #include <linux/pci.h>
147 #include <linux/delay.h>
148 #include <linux/mISDNhw.h>
149 #include <linux/mISDNdsp.h>
152 #define IRQCOUNT_DEBUG
153 #define IRQ_DEBUG
156 #include "hfc_multi.h"
157 #ifdef ECHOPREP
158 #include "gaintab.h"
159 #endif
161 #define MAX_CARDS 8
162 #define MAX_PORTS (8 * MAX_CARDS)
164 static LIST_HEAD(HFClist);
165 static spinlock_t HFClock; /* global hfc list lock */
167 static void ph_state_change(struct dchannel *);
168 static void (*hfc_interrupt)(void);
169 static void (*register_interrupt)(void);
170 static int (*unregister_interrupt)(void);
171 static int interrupt_registered;
173 static struct hfc_multi *syncmaster;
174 static int plxsd_master; /* if we have a master card (yet) */
175 static spinlock_t plx_lock; /* may not acquire other lock inside */
177 #define TYP_E1 1
178 #define TYP_4S 4
179 #define TYP_8S 8
181 static int poll_timer = 6; /* default = 128 samples = 16ms */
182 /* number of POLL_TIMER interrupts for G2 timeout (ca 1s) */
183 static int nt_t1_count[] = { 3840, 1920, 960, 480, 240, 120, 60, 30 };
184 #define CLKDEL_TE 0x0f /* CLKDEL in TE mode */
185 #define CLKDEL_NT 0x6c /* CLKDEL in NT mode
186 (0x60 MUST be included!) */
187 static u_char silence = 0xff; /* silence by LAW */
189 #define DIP_4S 0x1 /* DIP Switches for Beronet 1S/2S/4S cards */
190 #define DIP_8S 0x2 /* DIP Switches for Beronet 8S+ cards */
191 #define DIP_E1 0x3 /* DIP Switches for Beronet E1 cards */
194 * module stuff
197 static uint type[MAX_CARDS];
198 static uint pcm[MAX_CARDS];
199 static uint dslot[MAX_CARDS];
200 static uint iomode[MAX_CARDS];
201 static uint port[MAX_PORTS];
202 static uint debug;
203 static uint poll;
204 static uint timer;
205 static uint clockdelay_te = CLKDEL_TE;
206 static uint clockdelay_nt = CLKDEL_NT;
208 static int HFC_cnt, Port_cnt, PCM_cnt = 99;
210 MODULE_AUTHOR("Andreas Eversberg");
211 MODULE_LICENSE("GPL");
212 module_param(debug, uint, S_IRUGO | S_IWUSR);
213 module_param(poll, uint, S_IRUGO | S_IWUSR);
214 module_param(timer, uint, S_IRUGO | S_IWUSR);
215 module_param(clockdelay_te, uint, S_IRUGO | S_IWUSR);
216 module_param(clockdelay_nt, uint, S_IRUGO | S_IWUSR);
217 module_param_array(type, uint, NULL, S_IRUGO | S_IWUSR);
218 module_param_array(pcm, uint, NULL, S_IRUGO | S_IWUSR);
219 module_param_array(dslot, uint, NULL, S_IRUGO | S_IWUSR);
220 module_param_array(iomode, uint, NULL, S_IRUGO | S_IWUSR);
221 module_param_array(port, uint, NULL, S_IRUGO | S_IWUSR);
223 #ifdef HFC_REGISTER_DEBUG
224 #define HFC_outb(hc, reg, val) \
225 (hc->HFC_outb(hc, reg, val, __func__, __LINE__))
226 #define HFC_outb_nodebug(hc, reg, val) \
227 (hc->HFC_outb_nodebug(hc, reg, val, __func__, __LINE__))
228 #define HFC_inb(hc, reg) \
229 (hc->HFC_inb(hc, reg, __func__, __LINE__))
230 #define HFC_inb_nodebug(hc, reg) \
231 (hc->HFC_inb_nodebug(hc, reg, __func__, __LINE__))
232 #define HFC_inw(hc, reg) \
233 (hc->HFC_inw(hc, reg, __func__, __LINE__))
234 #define HFC_inw_nodebug(hc, reg) \
235 (hc->HFC_inw_nodebug(hc, reg, __func__, __LINE__))
236 #define HFC_wait(hc) \
237 (hc->HFC_wait(hc, __func__, __LINE__))
238 #define HFC_wait_nodebug(hc) \
239 (hc->HFC_wait_nodebug(hc, __func__, __LINE__))
240 #else
241 #define HFC_outb(hc, reg, val) (hc->HFC_outb(hc, reg, val))
242 #define HFC_outb_nodebug(hc, reg, val) (hc->HFC_outb_nodebug(hc, reg, val))
243 #define HFC_inb(hc, reg) (hc->HFC_inb(hc, reg))
244 #define HFC_inb_nodebug(hc, reg) (hc->HFC_inb_nodebug(hc, reg))
245 #define HFC_inw(hc, reg) (hc->HFC_inw(hc, reg))
246 #define HFC_inw_nodebug(hc, reg) (hc->HFC_inw_nodebug(hc, reg))
247 #define HFC_wait(hc) (hc->HFC_wait(hc))
248 #define HFC_wait_nodebug(hc) (hc->HFC_wait_nodebug(hc))
249 #endif
251 /* HFC_IO_MODE_PCIMEM */
252 static void
253 #ifdef HFC_REGISTER_DEBUG
254 HFC_outb_pcimem(struct hfc_multi *hc, u_char reg, u_char val,
255 const char *function, int line)
256 #else
257 HFC_outb_pcimem(struct hfc_multi *hc, u_char reg, u_char val)
258 #endif
260 writeb(val, (hc->pci_membase)+reg);
262 static u_char
263 #ifdef HFC_REGISTER_DEBUG
264 HFC_inb_pcimem(struct hfc_multi *hc, u_char reg, const char *function, int line)
265 #else
266 HFC_inb_pcimem(struct hfc_multi *hc, u_char reg)
267 #endif
269 return readb((hc->pci_membase)+reg);
271 static u_short
272 #ifdef HFC_REGISTER_DEBUG
273 HFC_inw_pcimem(struct hfc_multi *hc, u_char reg, const char *function, int line)
274 #else
275 HFC_inw_pcimem(struct hfc_multi *hc, u_char reg)
276 #endif
278 return readw((hc->pci_membase)+reg);
280 static void
281 #ifdef HFC_REGISTER_DEBUG
282 HFC_wait_pcimem(struct hfc_multi *hc, const char *function, int line)
283 #else
284 HFC_wait_pcimem(struct hfc_multi *hc)
285 #endif
287 while (readb((hc->pci_membase)+R_STATUS) & V_BUSY);
290 /* HFC_IO_MODE_REGIO */
291 static void
292 #ifdef HFC_REGISTER_DEBUG
293 HFC_outb_regio(struct hfc_multi *hc, u_char reg, u_char val,
294 const char *function, int line)
295 #else
296 HFC_outb_regio(struct hfc_multi *hc, u_char reg, u_char val)
297 #endif
299 outb(reg, (hc->pci_iobase)+4);
300 outb(val, hc->pci_iobase);
302 static u_char
303 #ifdef HFC_REGISTER_DEBUG
304 HFC_inb_regio(struct hfc_multi *hc, u_char reg, const char *function, int line)
305 #else
306 HFC_inb_regio(struct hfc_multi *hc, u_char reg)
307 #endif
309 outb(reg, (hc->pci_iobase)+4);
310 return inb(hc->pci_iobase);
312 static u_short
313 #ifdef HFC_REGISTER_DEBUG
314 HFC_inw_regio(struct hfc_multi *hc, u_char reg, const char *function, int line)
315 #else
316 HFC_inw_regio(struct hfc_multi *hc, u_char reg)
317 #endif
319 outb(reg, (hc->pci_iobase)+4);
320 return inw(hc->pci_iobase);
322 static void
323 #ifdef HFC_REGISTER_DEBUG
324 HFC_wait_regio(struct hfc_multi *hc, const char *function, int line)
325 #else
326 HFC_wait_regio(struct hfc_multi *hc)
327 #endif
329 outb(R_STATUS, (hc->pci_iobase)+4);
330 while (inb(hc->pci_iobase) & V_BUSY);
333 #ifdef HFC_REGISTER_DEBUG
334 static void
335 HFC_outb_debug(struct hfc_multi *hc, u_char reg, u_char val,
336 const char *function, int line)
338 char regname[256] = "", bits[9] = "xxxxxxxx";
339 int i;
341 i = -1;
342 while (hfc_register_names[++i].name) {
343 if (hfc_register_names[i].reg == reg)
344 strcat(regname, hfc_register_names[i].name);
346 if (regname[0] == '\0')
347 strcpy(regname, "register");
349 bits[7] = '0'+(!!(val&1));
350 bits[6] = '0'+(!!(val&2));
351 bits[5] = '0'+(!!(val&4));
352 bits[4] = '0'+(!!(val&8));
353 bits[3] = '0'+(!!(val&16));
354 bits[2] = '0'+(!!(val&32));
355 bits[1] = '0'+(!!(val&64));
356 bits[0] = '0'+(!!(val&128));
357 printk(KERN_DEBUG
358 "HFC_outb(chip %d, %02x=%s, 0x%02x=%s); in %s() line %d\n",
359 hc->id, reg, regname, val, bits, function, line);
360 HFC_outb_nodebug(hc, reg, val);
362 static u_char
363 HFC_inb_debug(struct hfc_multi *hc, u_char reg, const char *function, int line)
365 char regname[256] = "", bits[9] = "xxxxxxxx";
366 u_char val = HFC_inb_nodebug(hc, reg);
367 int i;
369 i = 0;
370 while (hfc_register_names[i++].name)
372 while (hfc_register_names[++i].name) {
373 if (hfc_register_names[i].reg == reg)
374 strcat(regname, hfc_register_names[i].name);
376 if (regname[0] == '\0')
377 strcpy(regname, "register");
379 bits[7] = '0'+(!!(val&1));
380 bits[6] = '0'+(!!(val&2));
381 bits[5] = '0'+(!!(val&4));
382 bits[4] = '0'+(!!(val&8));
383 bits[3] = '0'+(!!(val&16));
384 bits[2] = '0'+(!!(val&32));
385 bits[1] = '0'+(!!(val&64));
386 bits[0] = '0'+(!!(val&128));
387 printk(KERN_DEBUG
388 "HFC_inb(chip %d, %02x=%s) = 0x%02x=%s; in %s() line %d\n",
389 hc->id, reg, regname, val, bits, function, line);
390 return val;
392 static u_short
393 HFC_inw_debug(struct hfc_multi *hc, u_char reg, const char *function, int line)
395 char regname[256] = "";
396 u_short val = HFC_inw_nodebug(hc, reg);
397 int i;
399 i = 0;
400 while (hfc_register_names[i++].name)
402 while (hfc_register_names[++i].name) {
403 if (hfc_register_names[i].reg == reg)
404 strcat(regname, hfc_register_names[i].name);
406 if (regname[0] == '\0')
407 strcpy(regname, "register");
409 printk(KERN_DEBUG
410 "HFC_inw(chip %d, %02x=%s) = 0x%04x; in %s() line %d\n",
411 hc->id, reg, regname, val, function, line);
412 return val;
414 static void
415 HFC_wait_debug(struct hfc_multi *hc, const char *function, int line)
417 printk(KERN_DEBUG "HFC_wait(chip %d); in %s() line %d\n",
418 hc->id, function, line);
419 HFC_wait_nodebug(hc);
421 #endif
423 /* write fifo data (REGIO) */
424 static void
425 write_fifo_regio(struct hfc_multi *hc, u_char *data, int len)
427 outb(A_FIFO_DATA0, (hc->pci_iobase)+4);
428 while (len>>2) {
429 outl(cpu_to_le32(*(u32 *)data), hc->pci_iobase);
430 data += 4;
431 len -= 4;
433 while (len>>1) {
434 outw(cpu_to_le16(*(u16 *)data), hc->pci_iobase);
435 data += 2;
436 len -= 2;
438 while (len) {
439 outb(*data, hc->pci_iobase);
440 data++;
441 len--;
444 /* write fifo data (PCIMEM) */
445 static void
446 write_fifo_pcimem(struct hfc_multi *hc, u_char *data, int len)
448 while (len>>2) {
449 writel(cpu_to_le32(*(u32 *)data),
450 hc->pci_membase + A_FIFO_DATA0);
451 data += 4;
452 len -= 4;
454 while (len>>1) {
455 writew(cpu_to_le16(*(u16 *)data),
456 hc->pci_membase + A_FIFO_DATA0);
457 data += 2;
458 len -= 2;
460 while (len) {
461 writeb(*data, hc->pci_membase + A_FIFO_DATA0);
462 data++;
463 len--;
466 /* read fifo data (REGIO) */
467 static void
468 read_fifo_regio(struct hfc_multi *hc, u_char *data, int len)
470 outb(A_FIFO_DATA0, (hc->pci_iobase)+4);
471 while (len>>2) {
472 *(u32 *)data = le32_to_cpu(inl(hc->pci_iobase));
473 data += 4;
474 len -= 4;
476 while (len>>1) {
477 *(u16 *)data = le16_to_cpu(inw(hc->pci_iobase));
478 data += 2;
479 len -= 2;
481 while (len) {
482 *data = inb(hc->pci_iobase);
483 data++;
484 len--;
488 /* read fifo data (PCIMEM) */
489 static void
490 read_fifo_pcimem(struct hfc_multi *hc, u_char *data, int len)
492 while (len>>2) {
493 *(u32 *)data =
494 le32_to_cpu(readl(hc->pci_membase + A_FIFO_DATA0));
495 data += 4;
496 len -= 4;
498 while (len>>1) {
499 *(u16 *)data =
500 le16_to_cpu(readw(hc->pci_membase + A_FIFO_DATA0));
501 data += 2;
502 len -= 2;
504 while (len) {
505 *data = readb(hc->pci_membase + A_FIFO_DATA0);
506 data++;
507 len--;
512 static void
513 enable_hwirq(struct hfc_multi *hc)
515 hc->hw.r_irq_ctrl |= V_GLOB_IRQ_EN;
516 HFC_outb(hc, R_IRQ_CTRL, hc->hw.r_irq_ctrl);
519 static void
520 disable_hwirq(struct hfc_multi *hc)
522 hc->hw.r_irq_ctrl &= ~((u_char)V_GLOB_IRQ_EN);
523 HFC_outb(hc, R_IRQ_CTRL, hc->hw.r_irq_ctrl);
526 #define NUM_EC 2
527 #define MAX_TDM_CHAN 32
530 inline void
531 enablepcibridge(struct hfc_multi *c)
533 HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x3); /* was _io before */
536 inline void
537 disablepcibridge(struct hfc_multi *c)
539 HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x2); /* was _io before */
542 inline unsigned char
543 readpcibridge(struct hfc_multi *hc, unsigned char address)
545 unsigned short cipv;
546 unsigned char data;
548 if (!hc->pci_iobase)
549 return 0;
551 /* slow down a PCI read access by 1 PCI clock cycle */
552 HFC_outb(hc, R_CTRL, 0x4); /*was _io before*/
554 if (address == 0)
555 cipv = 0x4000;
556 else
557 cipv = 0x5800;
559 /* select local bridge port address by writing to CIP port */
560 /* data = HFC_inb(c, cipv); * was _io before */
561 outw(cipv, hc->pci_iobase + 4);
562 data = inb(hc->pci_iobase);
564 /* restore R_CTRL for normal PCI read cycle speed */
565 HFC_outb(hc, R_CTRL, 0x0); /* was _io before */
567 return data;
570 inline void
571 writepcibridge(struct hfc_multi *hc, unsigned char address, unsigned char data)
573 unsigned short cipv;
574 unsigned int datav;
576 if (!hc->pci_iobase)
577 return;
579 if (address == 0)
580 cipv = 0x4000;
581 else
582 cipv = 0x5800;
584 /* select local bridge port address by writing to CIP port */
585 outw(cipv, hc->pci_iobase + 4);
586 /* define a 32 bit dword with 4 identical bytes for write sequence */
587 datav = data | ((__u32) data << 8) | ((__u32) data << 16) |
588 ((__u32) data << 24);
591 * write this 32 bit dword to the bridge data port
592 * this will initiate a write sequence of up to 4 writes to the same
593 * address on the local bus interface the number of write accesses
594 * is undefined but >=1 and depends on the next PCI transaction
595 * during write sequence on the local bus
597 outl(datav, hc->pci_iobase);
600 inline void
601 cpld_set_reg(struct hfc_multi *hc, unsigned char reg)
603 /* Do data pin read low byte */
604 HFC_outb(hc, R_GPIO_OUT1, reg);
607 inline void
608 cpld_write_reg(struct hfc_multi *hc, unsigned char reg, unsigned char val)
610 cpld_set_reg(hc, reg);
612 enablepcibridge(hc);
613 writepcibridge(hc, 1, val);
614 disablepcibridge(hc);
616 return;
619 inline unsigned char
620 cpld_read_reg(struct hfc_multi *hc, unsigned char reg)
622 unsigned char bytein;
624 cpld_set_reg(hc, reg);
626 /* Do data pin read low byte */
627 HFC_outb(hc, R_GPIO_OUT1, reg);
629 enablepcibridge(hc);
630 bytein = readpcibridge(hc, 1);
631 disablepcibridge(hc);
633 return bytein;
636 inline void
637 vpm_write_address(struct hfc_multi *hc, unsigned short addr)
639 cpld_write_reg(hc, 0, 0xff & addr);
640 cpld_write_reg(hc, 1, 0x01 & (addr >> 8));
643 inline unsigned short
644 vpm_read_address(struct hfc_multi *c)
646 unsigned short addr;
647 unsigned short highbit;
649 addr = cpld_read_reg(c, 0);
650 highbit = cpld_read_reg(c, 1);
652 addr = addr | (highbit << 8);
654 return addr & 0x1ff;
657 inline unsigned char
658 vpm_in(struct hfc_multi *c, int which, unsigned short addr)
660 unsigned char res;
662 vpm_write_address(c, addr);
664 if (!which)
665 cpld_set_reg(c, 2);
666 else
667 cpld_set_reg(c, 3);
669 enablepcibridge(c);
670 res = readpcibridge(c, 1);
671 disablepcibridge(c);
673 cpld_set_reg(c, 0);
675 return res;
678 inline void
679 vpm_out(struct hfc_multi *c, int which, unsigned short addr,
680 unsigned char data)
682 vpm_write_address(c, addr);
684 enablepcibridge(c);
686 if (!which)
687 cpld_set_reg(c, 2);
688 else
689 cpld_set_reg(c, 3);
691 writepcibridge(c, 1, data);
693 cpld_set_reg(c, 0);
695 disablepcibridge(c);
698 unsigned char regin;
699 regin = vpm_in(c, which, addr);
700 if (regin != data)
701 printk(KERN_DEBUG "Wrote 0x%x to register 0x%x but got back "
702 "0x%x\n", data, addr, regin);
708 static void
709 vpm_init(struct hfc_multi *wc)
711 unsigned char reg;
712 unsigned int mask;
713 unsigned int i, x, y;
714 unsigned int ver;
716 for (x = 0; x < NUM_EC; x++) {
717 /* Setup GPIO's */
718 if (!x) {
719 ver = vpm_in(wc, x, 0x1a0);
720 printk(KERN_DEBUG "VPM: Chip %d: ver %02x\n", x, ver);
723 for (y = 0; y < 4; y++) {
724 vpm_out(wc, x, 0x1a8 + y, 0x00); /* GPIO out */
725 vpm_out(wc, x, 0x1ac + y, 0x00); /* GPIO dir */
726 vpm_out(wc, x, 0x1b0 + y, 0x00); /* GPIO sel */
729 /* Setup TDM path - sets fsync and tdm_clk as inputs */
730 reg = vpm_in(wc, x, 0x1a3); /* misc_con */
731 vpm_out(wc, x, 0x1a3, reg & ~2);
733 /* Setup Echo length (256 taps) */
734 vpm_out(wc, x, 0x022, 1);
735 vpm_out(wc, x, 0x023, 0xff);
737 /* Setup timeslots */
738 vpm_out(wc, x, 0x02f, 0x00);
739 mask = 0x02020202 << (x * 4);
741 /* Setup the tdm channel masks for all chips */
742 for (i = 0; i < 4; i++)
743 vpm_out(wc, x, 0x33 - i, (mask >> (i << 3)) & 0xff);
745 /* Setup convergence rate */
746 printk(KERN_DEBUG "VPM: A-law mode\n");
747 reg = 0x00 | 0x10 | 0x01;
748 vpm_out(wc, x, 0x20, reg);
749 printk(KERN_DEBUG "VPM reg 0x20 is %x\n", reg);
750 /*vpm_out(wc, x, 0x20, (0x00 | 0x08 | 0x20 | 0x10)); */
752 vpm_out(wc, x, 0x24, 0x02);
753 reg = vpm_in(wc, x, 0x24);
754 printk(KERN_DEBUG "NLP Thresh is set to %d (0x%x)\n", reg, reg);
756 /* Initialize echo cans */
757 for (i = 0; i < MAX_TDM_CHAN; i++) {
758 if (mask & (0x00000001 << i))
759 vpm_out(wc, x, i, 0x00);
763 * ARM arch at least disallows a udelay of
764 * more than 2ms... it gives a fake "__bad_udelay"
765 * reference at link-time.
766 * long delays in kernel code are pretty sucky anyway
767 * for now work around it using 5 x 2ms instead of 1 x 10ms
770 udelay(2000);
771 udelay(2000);
772 udelay(2000);
773 udelay(2000);
774 udelay(2000);
776 /* Put in bypass mode */
777 for (i = 0; i < MAX_TDM_CHAN; i++) {
778 if (mask & (0x00000001 << i))
779 vpm_out(wc, x, i, 0x01);
782 /* Enable bypass */
783 for (i = 0; i < MAX_TDM_CHAN; i++) {
784 if (mask & (0x00000001 << i))
785 vpm_out(wc, x, 0x78 + i, 0x01);
791 #ifdef UNUSED
792 static void
793 vpm_check(struct hfc_multi *hctmp)
795 unsigned char gpi2;
797 gpi2 = HFC_inb(hctmp, R_GPI_IN2);
799 if ((gpi2 & 0x3) != 0x3)
800 printk(KERN_DEBUG "Got interrupt 0x%x from VPM!\n", gpi2);
802 #endif /* UNUSED */
806 * Interface to enable/disable the HW Echocan
808 * these functions are called within a spin_lock_irqsave on
809 * the channel instance lock, so we are not disturbed by irqs
811 * we can later easily change the interface to make other
812 * things configurable, for now we configure the taps
816 static void
817 vpm_echocan_on(struct hfc_multi *hc, int ch, int taps)
819 unsigned int timeslot;
820 unsigned int unit;
821 struct bchannel *bch = hc->chan[ch].bch;
822 #ifdef TXADJ
823 int txadj = -4;
824 struct sk_buff *skb;
825 #endif
826 if (hc->chan[ch].protocol != ISDN_P_B_RAW)
827 return;
829 if (!bch)
830 return;
832 #ifdef TXADJ
833 skb = _alloc_mISDN_skb(PH_CONTROL_IND, HFC_VOL_CHANGE_TX,
834 sizeof(int), &txadj, GFP_ATOMIC);
835 if (skb)
836 recv_Bchannel_skb(bch, skb);
837 #endif
839 timeslot = ((ch/4)*8) + ((ch%4)*4) + 1;
840 unit = ch % 4;
842 printk(KERN_NOTICE "vpm_echocan_on called taps [%d] on timeslot %d\n",
843 taps, timeslot);
845 vpm_out(hc, unit, timeslot, 0x7e);
848 static void
849 vpm_echocan_off(struct hfc_multi *hc, int ch)
851 unsigned int timeslot;
852 unsigned int unit;
853 struct bchannel *bch = hc->chan[ch].bch;
854 #ifdef TXADJ
855 int txadj = 0;
856 struct sk_buff *skb;
857 #endif
859 if (hc->chan[ch].protocol != ISDN_P_B_RAW)
860 return;
862 if (!bch)
863 return;
865 #ifdef TXADJ
866 skb = _alloc_mISDN_skb(PH_CONTROL_IND, HFC_VOL_CHANGE_TX,
867 sizeof(int), &txadj, GFP_ATOMIC);
868 if (skb)
869 recv_Bchannel_skb(bch, skb);
870 #endif
872 timeslot = ((ch/4)*8) + ((ch%4)*4) + 1;
873 unit = ch % 4;
875 printk(KERN_NOTICE "vpm_echocan_off called on timeslot %d\n",
876 timeslot);
877 /* FILLME */
878 vpm_out(hc, unit, timeslot, 0x01);
883 * Speech Design resync feature
884 * NOTE: This is called sometimes outside interrupt handler.
885 * We must lock irqsave, so no other interrupt (other card) will occurr!
886 * Also multiple interrupts may nest, so must lock each access (lists, card)!
888 static inline void
889 hfcmulti_resync(struct hfc_multi *locked, struct hfc_multi *newmaster, int rm)
891 struct hfc_multi *hc, *next, *pcmmaster = NULL;
892 u_int *plx_acc_32, pv;
893 u_long flags;
895 spin_lock_irqsave(&HFClock, flags);
896 spin_lock(&plx_lock); /* must be locked inside other locks */
898 if (debug & DEBUG_HFCMULTI_PLXSD)
899 printk(KERN_DEBUG "%s: RESYNC(syncmaster=0x%p)\n",
900 __func__, syncmaster);
902 /* select new master */
903 if (newmaster) {
904 if (debug & DEBUG_HFCMULTI_PLXSD)
905 printk(KERN_DEBUG "using provided controller\n");
906 } else {
907 list_for_each_entry_safe(hc, next, &HFClist, list) {
908 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
909 if (hc->syncronized) {
910 newmaster = hc;
911 break;
917 /* Disable sync of all cards */
918 list_for_each_entry_safe(hc, next, &HFClist, list) {
919 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
920 plx_acc_32 = (u_int *)(hc->plx_membase+PLX_GPIOC);
921 pv = readl(plx_acc_32);
922 pv &= ~PLX_SYNC_O_EN;
923 writel(pv, plx_acc_32);
924 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)) {
925 pcmmaster = hc;
926 if (hc->type == 1) {
927 if (debug & DEBUG_HFCMULTI_PLXSD)
928 printk(KERN_DEBUG
929 "Schedule SYNC_I\n");
930 hc->e1_resync |= 1; /* get SYNC_I */
936 if (newmaster) {
937 hc = newmaster;
938 if (debug & DEBUG_HFCMULTI_PLXSD)
939 printk(KERN_DEBUG "id=%d (0x%p) = syncronized with "
940 "interface.\n", hc->id, hc);
941 /* Enable new sync master */
942 plx_acc_32 = (u_int *)(hc->plx_membase+PLX_GPIOC);
943 pv = readl(plx_acc_32);
944 pv |= PLX_SYNC_O_EN;
945 writel(pv, plx_acc_32);
946 /* switch to jatt PLL, if not disabled by RX_SYNC */
947 if (hc->type == 1 && !test_bit(HFC_CHIP_RX_SYNC, &hc->chip)) {
948 if (debug & DEBUG_HFCMULTI_PLXSD)
949 printk(KERN_DEBUG "Schedule jatt PLL\n");
950 hc->e1_resync |= 2; /* switch to jatt */
952 } else {
953 if (pcmmaster) {
954 hc = pcmmaster;
955 if (debug & DEBUG_HFCMULTI_PLXSD)
956 printk(KERN_DEBUG
957 "id=%d (0x%p) = PCM master syncronized "
958 "with QUARTZ\n", hc->id, hc);
959 if (hc->type == 1) {
960 /* Use the crystal clock for the PCM
961 master card */
962 if (debug & DEBUG_HFCMULTI_PLXSD)
963 printk(KERN_DEBUG
964 "Schedule QUARTZ for HFC-E1\n");
965 hc->e1_resync |= 4; /* switch quartz */
966 } else {
967 if (debug & DEBUG_HFCMULTI_PLXSD)
968 printk(KERN_DEBUG
969 "QUARTZ is automatically "
970 "enabled by HFC-%dS\n", hc->type);
972 plx_acc_32 = (u_int *)(hc->plx_membase+PLX_GPIOC);
973 pv = readl(plx_acc_32);
974 pv |= PLX_SYNC_O_EN;
975 writel(pv, plx_acc_32);
976 } else
977 if (!rm)
978 printk(KERN_ERR "%s no pcm master, this MUST "
979 "not happen!\n", __func__);
981 syncmaster = newmaster;
983 spin_unlock(&plx_lock);
984 spin_unlock_irqrestore(&HFClock, flags);
987 /* This must be called AND hc must be locked irqsave!!! */
988 inline void
989 plxsd_checksync(struct hfc_multi *hc, int rm)
991 if (hc->syncronized) {
992 if (syncmaster == NULL) {
993 if (debug & DEBUG_HFCMULTI_PLXSD)
994 printk(KERN_WARNING "%s: GOT sync on card %d"
995 " (id=%d)\n", __func__, hc->id + 1,
996 hc->id);
997 hfcmulti_resync(hc, hc, rm);
999 } else {
1000 if (syncmaster == hc) {
1001 if (debug & DEBUG_HFCMULTI_PLXSD)
1002 printk(KERN_WARNING "%s: LOST sync on card %d"
1003 " (id=%d)\n", __func__, hc->id + 1,
1004 hc->id);
1005 hfcmulti_resync(hc, NULL, rm);
1012 * free hardware resources used by driver
1014 static void
1015 release_io_hfcmulti(struct hfc_multi *hc)
1017 u_int *plx_acc_32, pv;
1018 u_long plx_flags;
1020 if (debug & DEBUG_HFCMULTI_INIT)
1021 printk(KERN_DEBUG "%s: entered\n", __func__);
1023 /* soft reset also masks all interrupts */
1024 hc->hw.r_cirm |= V_SRES;
1025 HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1026 udelay(1000);
1027 hc->hw.r_cirm &= ~V_SRES;
1028 HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1029 udelay(1000); /* instead of 'wait' that may cause locking */
1031 /* release Speech Design card, if PLX was initialized */
1032 if (test_bit(HFC_CHIP_PLXSD, &hc->chip) && hc->plx_membase) {
1033 if (debug & DEBUG_HFCMULTI_PLXSD)
1034 printk(KERN_DEBUG "%s: release PLXSD card %d\n",
1035 __func__, hc->id + 1);
1036 spin_lock_irqsave(&plx_lock, plx_flags);
1037 plx_acc_32 = (u_int *)(hc->plx_membase+PLX_GPIOC);
1038 writel(PLX_GPIOC_INIT, plx_acc_32);
1039 pv = readl(plx_acc_32);
1040 /* Termination off */
1041 pv &= ~PLX_TERM_ON;
1042 /* Disconnect the PCM */
1043 pv |= PLX_SLAVE_EN_N;
1044 pv &= ~PLX_MASTER_EN;
1045 pv &= ~PLX_SYNC_O_EN;
1046 /* Put the DSP in Reset */
1047 pv &= ~PLX_DSP_RES_N;
1048 writel(pv, plx_acc_32);
1049 if (debug & DEBUG_HFCMULTI_INIT)
1050 printk(KERN_WARNING "%s: PCM off: PLX_GPIO=%x\n",
1051 __func__, pv);
1052 spin_unlock_irqrestore(&plx_lock, plx_flags);
1055 /* disable memory mapped ports / io ports */
1056 test_and_clear_bit(HFC_CHIP_PLXSD, &hc->chip); /* prevent resync */
1057 pci_write_config_word(hc->pci_dev, PCI_COMMAND, 0);
1058 if (hc->pci_membase)
1059 iounmap((void *)hc->pci_membase);
1060 if (hc->plx_membase)
1061 iounmap((void *)hc->plx_membase);
1062 if (hc->pci_iobase)
1063 release_region(hc->pci_iobase, 8);
1065 if (hc->pci_dev) {
1066 pci_disable_device(hc->pci_dev);
1067 pci_set_drvdata(hc->pci_dev, NULL);
1069 if (debug & DEBUG_HFCMULTI_INIT)
1070 printk(KERN_DEBUG "%s: done\n", __func__);
1074 * function called to reset the HFC chip. A complete software reset of chip
1075 * and fifos is done. All configuration of the chip is done.
1078 static int
1079 init_chip(struct hfc_multi *hc)
1081 u_long flags, val, val2 = 0, rev;
1082 int i, err = 0;
1083 u_char r_conf_en, rval;
1084 u_int *plx_acc_32, pv;
1085 u_long plx_flags, hfc_flags;
1086 int plx_count;
1087 struct hfc_multi *pos, *next, *plx_last_hc;
1089 spin_lock_irqsave(&hc->lock, flags);
1090 /* reset all registers */
1091 memset(&hc->hw, 0, sizeof(struct hfcm_hw));
1093 /* revision check */
1094 if (debug & DEBUG_HFCMULTI_INIT)
1095 printk(KERN_DEBUG "%s: entered\n", __func__);
1096 val = HFC_inb(hc, R_CHIP_ID)>>4;
1097 if (val != 0x8 && val != 0xc && val != 0xe) {
1098 printk(KERN_INFO "HFC_multi: unknown CHIP_ID:%x\n", (u_int)val);
1099 err = -EIO;
1100 goto out;
1102 rev = HFC_inb(hc, R_CHIP_RV);
1103 printk(KERN_INFO
1104 "HFC_multi: detected HFC with chip ID=0x%lx revision=%ld%s\n",
1105 val, rev, (rev == 0) ? " (old FIFO handling)" : "");
1106 if (rev == 0) {
1107 test_and_set_bit(HFC_CHIP_REVISION0, &hc->chip);
1108 printk(KERN_WARNING
1109 "HFC_multi: NOTE: Your chip is revision 0, "
1110 "ask Cologne Chip for update. Newer chips "
1111 "have a better FIFO handling. Old chips "
1112 "still work but may have slightly lower "
1113 "HDLC transmit performance.\n");
1115 if (rev > 1) {
1116 printk(KERN_WARNING "HFC_multi: WARNING: This driver doesn't "
1117 "consider chip revision = %ld. The chip / "
1118 "bridge may not work.\n", rev);
1121 /* set s-ram size */
1122 hc->Flen = 0x10;
1123 hc->Zmin = 0x80;
1124 hc->Zlen = 384;
1125 hc->DTMFbase = 0x1000;
1126 if (test_bit(HFC_CHIP_EXRAM_128, &hc->chip)) {
1127 if (debug & DEBUG_HFCMULTI_INIT)
1128 printk(KERN_DEBUG "%s: changing to 128K extenal RAM\n",
1129 __func__);
1130 hc->hw.r_ctrl |= V_EXT_RAM;
1131 hc->hw.r_ram_sz = 1;
1132 hc->Flen = 0x20;
1133 hc->Zmin = 0xc0;
1134 hc->Zlen = 1856;
1135 hc->DTMFbase = 0x2000;
1137 if (test_bit(HFC_CHIP_EXRAM_512, &hc->chip)) {
1138 if (debug & DEBUG_HFCMULTI_INIT)
1139 printk(KERN_DEBUG "%s: changing to 512K extenal RAM\n",
1140 __func__);
1141 hc->hw.r_ctrl |= V_EXT_RAM;
1142 hc->hw.r_ram_sz = 2;
1143 hc->Flen = 0x20;
1144 hc->Zmin = 0xc0;
1145 hc->Zlen = 8000;
1146 hc->DTMFbase = 0x2000;
1148 hc->max_trans = poll << 1;
1149 if (hc->max_trans > hc->Zlen)
1150 hc->max_trans = hc->Zlen;
1152 /* Speech Design PLX bridge */
1153 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1154 if (debug & DEBUG_HFCMULTI_PLXSD)
1155 printk(KERN_DEBUG "%s: initializing PLXSD card %d\n",
1156 __func__, hc->id + 1);
1157 spin_lock_irqsave(&plx_lock, plx_flags);
1158 plx_acc_32 = (u_int *)(hc->plx_membase+PLX_GPIOC);
1159 writel(PLX_GPIOC_INIT, plx_acc_32);
1160 pv = readl(plx_acc_32);
1161 /* The first and the last cards are terminating the PCM bus */
1162 pv |= PLX_TERM_ON; /* hc is currently the last */
1163 /* Disconnect the PCM */
1164 pv |= PLX_SLAVE_EN_N;
1165 pv &= ~PLX_MASTER_EN;
1166 pv &= ~PLX_SYNC_O_EN;
1167 /* Put the DSP in Reset */
1168 pv &= ~PLX_DSP_RES_N;
1169 writel(pv, plx_acc_32);
1170 spin_unlock_irqrestore(&plx_lock, plx_flags);
1171 if (debug & DEBUG_HFCMULTI_INIT)
1172 printk(KERN_WARNING "%s: slave/term: PLX_GPIO=%x\n",
1173 __func__, pv);
1175 * If we are the 3rd PLXSD card or higher, we must turn
1176 * termination of last PLXSD card off.
1178 spin_lock_irqsave(&HFClock, hfc_flags);
1179 plx_count = 0;
1180 plx_last_hc = NULL;
1181 list_for_each_entry_safe(pos, next, &HFClist, list) {
1182 if (test_bit(HFC_CHIP_PLXSD, &pos->chip)) {
1183 plx_count++;
1184 if (pos != hc)
1185 plx_last_hc = pos;
1188 if (plx_count >= 3) {
1189 if (debug & DEBUG_HFCMULTI_PLXSD)
1190 printk(KERN_DEBUG "%s: card %d is between, so "
1191 "we disable termination\n",
1192 __func__, plx_last_hc->id + 1);
1193 spin_lock_irqsave(&plx_lock, plx_flags);
1194 plx_acc_32 = (u_int *)(plx_last_hc->plx_membase
1195 + PLX_GPIOC);
1196 pv = readl(plx_acc_32);
1197 pv &= ~PLX_TERM_ON;
1198 writel(pv, plx_acc_32);
1199 spin_unlock_irqrestore(&plx_lock, plx_flags);
1200 if (debug & DEBUG_HFCMULTI_INIT)
1201 printk(KERN_WARNING "%s: term off: PLX_GPIO=%x\n",
1202 __func__, pv);
1204 spin_unlock_irqrestore(&HFClock, hfc_flags);
1205 hc->hw.r_pcm_md0 = V_F0_LEN; /* shift clock for DSP */
1208 /* we only want the real Z2 read-pointer for revision > 0 */
1209 if (!test_bit(HFC_CHIP_REVISION0, &hc->chip))
1210 hc->hw.r_ram_sz |= V_FZ_MD;
1212 /* select pcm mode */
1213 if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
1214 if (debug & DEBUG_HFCMULTI_INIT)
1215 printk(KERN_DEBUG "%s: setting PCM into slave mode\n",
1216 __func__);
1217 } else
1218 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip) && !plxsd_master) {
1219 if (debug & DEBUG_HFCMULTI_INIT)
1220 printk(KERN_DEBUG "%s: setting PCM into master mode\n",
1221 __func__);
1222 hc->hw.r_pcm_md0 |= V_PCM_MD;
1223 } else {
1224 if (debug & DEBUG_HFCMULTI_INIT)
1225 printk(KERN_DEBUG "%s: performing PCM auto detect\n",
1226 __func__);
1229 /* soft reset */
1230 HFC_outb(hc, R_CTRL, hc->hw.r_ctrl);
1231 HFC_outb(hc, R_RAM_SZ, hc->hw.r_ram_sz);
1232 HFC_outb(hc, R_FIFO_MD, 0);
1233 hc->hw.r_cirm = V_SRES | V_HFCRES | V_PCMRES | V_STRES | V_RLD_EPR;
1234 HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1235 udelay(100);
1236 hc->hw.r_cirm = 0;
1237 HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1238 udelay(100);
1239 HFC_outb(hc, R_RAM_SZ, hc->hw.r_ram_sz);
1241 /* Speech Design PLX bridge pcm and sync mode */
1242 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1243 spin_lock_irqsave(&plx_lock, plx_flags);
1244 plx_acc_32 = (u_int *)(hc->plx_membase+PLX_GPIOC);
1245 pv = readl(plx_acc_32);
1246 /* Connect PCM */
1247 if (hc->hw.r_pcm_md0 & V_PCM_MD) {
1248 pv |= PLX_MASTER_EN | PLX_SLAVE_EN_N;
1249 pv |= PLX_SYNC_O_EN;
1250 if (debug & DEBUG_HFCMULTI_INIT)
1251 printk(KERN_WARNING "%s: master: PLX_GPIO=%x\n",
1252 __func__, pv);
1253 } else {
1254 pv &= ~(PLX_MASTER_EN | PLX_SLAVE_EN_N);
1255 pv &= ~PLX_SYNC_O_EN;
1256 if (debug & DEBUG_HFCMULTI_INIT)
1257 printk(KERN_WARNING "%s: slave: PLX_GPIO=%x\n",
1258 __func__, pv);
1260 writel(pv, plx_acc_32);
1261 spin_unlock_irqrestore(&plx_lock, plx_flags);
1264 /* PCM setup */
1265 HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x90);
1266 if (hc->slots == 32)
1267 HFC_outb(hc, R_PCM_MD1, 0x00);
1268 if (hc->slots == 64)
1269 HFC_outb(hc, R_PCM_MD1, 0x10);
1270 if (hc->slots == 128)
1271 HFC_outb(hc, R_PCM_MD1, 0x20);
1272 HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0xa0);
1273 if (test_bit(HFC_CHIP_PLXSD, &hc->chip))
1274 HFC_outb(hc, R_PCM_MD2, V_SYNC_SRC); /* sync via SYNC_I / O */
1275 else
1276 HFC_outb(hc, R_PCM_MD2, 0x00); /* sync from interface */
1277 HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x00);
1278 for (i = 0; i < 256; i++) {
1279 HFC_outb_nodebug(hc, R_SLOT, i);
1280 HFC_outb_nodebug(hc, A_SL_CFG, 0);
1281 HFC_outb_nodebug(hc, A_CONF, 0);
1282 hc->slot_owner[i] = -1;
1285 /* set clock speed */
1286 if (test_bit(HFC_CHIP_CLOCK2, &hc->chip)) {
1287 if (debug & DEBUG_HFCMULTI_INIT)
1288 printk(KERN_DEBUG
1289 "%s: setting double clock\n", __func__);
1290 HFC_outb(hc, R_BRG_PCM_CFG, V_PCM_CLK);
1293 /* B410P GPIO */
1294 if (test_bit(HFC_CHIP_B410P, &hc->chip)) {
1295 printk(KERN_NOTICE "Setting GPIOs\n");
1296 HFC_outb(hc, R_GPIO_SEL, 0x30);
1297 HFC_outb(hc, R_GPIO_EN1, 0x3);
1298 udelay(1000);
1299 printk(KERN_NOTICE "calling vpm_init\n");
1300 vpm_init(hc);
1303 /* check if R_F0_CNT counts (8 kHz frame count) */
1304 val = HFC_inb(hc, R_F0_CNTL);
1305 val += HFC_inb(hc, R_F0_CNTH) << 8;
1306 if (debug & DEBUG_HFCMULTI_INIT)
1307 printk(KERN_DEBUG
1308 "HFC_multi F0_CNT %ld after reset\n", val);
1309 spin_unlock_irqrestore(&hc->lock, flags);
1310 set_current_state(TASK_UNINTERRUPTIBLE);
1311 schedule_timeout((HZ/100)?:1); /* Timeout minimum 10ms */
1312 spin_lock_irqsave(&hc->lock, flags);
1313 val2 = HFC_inb(hc, R_F0_CNTL);
1314 val2 += HFC_inb(hc, R_F0_CNTH) << 8;
1315 if (debug & DEBUG_HFCMULTI_INIT)
1316 printk(KERN_DEBUG
1317 "HFC_multi F0_CNT %ld after 10 ms (1st try)\n",
1318 val2);
1319 if (val2 >= val+8) { /* 1 ms */
1320 /* it counts, so we keep the pcm mode */
1321 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip))
1322 printk(KERN_INFO "controller is PCM bus MASTER\n");
1323 else
1324 if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip))
1325 printk(KERN_INFO "controller is PCM bus SLAVE\n");
1326 else {
1327 test_and_set_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
1328 printk(KERN_INFO "controller is PCM bus SLAVE "
1329 "(auto detected)\n");
1331 } else {
1332 /* does not count */
1333 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)) {
1334 controller_fail:
1335 printk(KERN_ERR "HFC_multi ERROR, getting no 125us "
1336 "pulse. Seems that controller fails.\n");
1337 err = -EIO;
1338 goto out;
1340 if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
1341 printk(KERN_INFO "controller is PCM bus SLAVE "
1342 "(ignoring missing PCM clock)\n");
1343 } else {
1344 /* only one pcm master */
1345 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)
1346 && plxsd_master) {
1347 printk(KERN_ERR "HFC_multi ERROR, no clock "
1348 "on another Speech Design card found. "
1349 "Please be sure to connect PCM cable.\n");
1350 err = -EIO;
1351 goto out;
1353 /* retry with master clock */
1354 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1355 spin_lock_irqsave(&plx_lock, plx_flags);
1356 plx_acc_32 = (u_int *)(hc->plx_membase +
1357 PLX_GPIOC);
1358 pv = readl(plx_acc_32);
1359 pv |= PLX_MASTER_EN | PLX_SLAVE_EN_N;
1360 pv |= PLX_SYNC_O_EN;
1361 writel(pv, plx_acc_32);
1362 spin_unlock_irqrestore(&plx_lock, plx_flags);
1363 if (debug & DEBUG_HFCMULTI_INIT)
1364 printk(KERN_WARNING "%s: master: PLX_GPIO"
1365 "=%x\n", __func__, pv);
1367 hc->hw.r_pcm_md0 |= V_PCM_MD;
1368 HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x00);
1369 spin_unlock_irqrestore(&hc->lock, flags);
1370 set_current_state(TASK_UNINTERRUPTIBLE);
1371 schedule_timeout((HZ/100)?:1); /* Timeout min. 10ms */
1372 spin_lock_irqsave(&hc->lock, flags);
1373 val2 = HFC_inb(hc, R_F0_CNTL);
1374 val2 += HFC_inb(hc, R_F0_CNTH) << 8;
1375 if (debug & DEBUG_HFCMULTI_INIT)
1376 printk(KERN_DEBUG "HFC_multi F0_CNT %ld after "
1377 "10 ms (2nd try)\n", val2);
1378 if (val2 >= val+8) { /* 1 ms */
1379 test_and_set_bit(HFC_CHIP_PCM_MASTER,
1380 &hc->chip);
1381 printk(KERN_INFO "controller is PCM bus MASTER "
1382 "(auto detected)\n");
1383 } else
1384 goto controller_fail;
1388 /* Release the DSP Reset */
1389 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1390 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip))
1391 plxsd_master = 1;
1392 spin_lock_irqsave(&plx_lock, plx_flags);
1393 plx_acc_32 = (u_int *)(hc->plx_membase+PLX_GPIOC);
1394 pv = readl(plx_acc_32);
1395 pv |= PLX_DSP_RES_N;
1396 writel(pv, plx_acc_32);
1397 spin_unlock_irqrestore(&plx_lock, plx_flags);
1398 if (debug & DEBUG_HFCMULTI_INIT)
1399 printk(KERN_WARNING "%s: reset off: PLX_GPIO=%x\n",
1400 __func__, pv);
1403 /* pcm id */
1404 if (hc->pcm)
1405 printk(KERN_INFO "controller has given PCM BUS ID %d\n",
1406 hc->pcm);
1407 else {
1408 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)
1409 || test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1410 PCM_cnt++; /* SD has proprietary bridging */
1412 hc->pcm = PCM_cnt;
1413 printk(KERN_INFO "controller has PCM BUS ID %d "
1414 "(auto selected)\n", hc->pcm);
1417 /* set up timer */
1418 HFC_outb(hc, R_TI_WD, poll_timer);
1419 hc->hw.r_irqmsk_misc |= V_TI_IRQMSK;
1422 * set up 125us interrupt, only if function pointer is available
1423 * and module parameter timer is set
1425 if (timer && hfc_interrupt && register_interrupt) {
1426 /* only one chip should use this interrupt */
1427 timer = 0;
1428 interrupt_registered = 1;
1429 hc->hw.r_irqmsk_misc |= V_PROC_IRQMSK;
1430 /* deactivate other interrupts in ztdummy */
1431 register_interrupt();
1434 /* set E1 state machine IRQ */
1435 if (hc->type == 1)
1436 hc->hw.r_irqmsk_misc |= V_STA_IRQMSK;
1438 /* set DTMF detection */
1439 if (test_bit(HFC_CHIP_DTMF, &hc->chip)) {
1440 if (debug & DEBUG_HFCMULTI_INIT)
1441 printk(KERN_DEBUG "%s: enabling DTMF detection "
1442 "for all B-channel\n", __func__);
1443 hc->hw.r_dtmf = V_DTMF_EN | V_DTMF_STOP;
1444 if (test_bit(HFC_CHIP_ULAW, &hc->chip))
1445 hc->hw.r_dtmf |= V_ULAW_SEL;
1446 HFC_outb(hc, R_DTMF_N, 102 - 1);
1447 hc->hw.r_irqmsk_misc |= V_DTMF_IRQMSK;
1450 /* conference engine */
1451 if (test_bit(HFC_CHIP_ULAW, &hc->chip))
1452 r_conf_en = V_CONF_EN | V_ULAW;
1453 else
1454 r_conf_en = V_CONF_EN;
1455 HFC_outb(hc, R_CONF_EN, r_conf_en);
1457 /* setting leds */
1458 switch (hc->leds) {
1459 case 1: /* HFC-E1 OEM */
1460 if (test_bit(HFC_CHIP_WATCHDOG, &hc->chip))
1461 HFC_outb(hc, R_GPIO_SEL, 0x32);
1462 else
1463 HFC_outb(hc, R_GPIO_SEL, 0x30);
1465 HFC_outb(hc, R_GPIO_EN1, 0x0f);
1466 HFC_outb(hc, R_GPIO_OUT1, 0x00);
1468 HFC_outb(hc, R_GPIO_EN0, V_GPIO_EN2 | V_GPIO_EN3);
1469 break;
1471 case 2: /* HFC-4S OEM */
1472 case 3:
1473 HFC_outb(hc, R_GPIO_SEL, 0xf0);
1474 HFC_outb(hc, R_GPIO_EN1, 0xff);
1475 HFC_outb(hc, R_GPIO_OUT1, 0x00);
1476 break;
1479 /* set master clock */
1480 if (hc->masterclk >= 0) {
1481 if (debug & DEBUG_HFCMULTI_INIT)
1482 printk(KERN_DEBUG "%s: setting ST master clock "
1483 "to port %d (0..%d)\n",
1484 __func__, hc->masterclk, hc->ports-1);
1485 hc->hw.r_st_sync = hc->masterclk | V_AUTO_SYNC;
1486 HFC_outb(hc, R_ST_SYNC, hc->hw.r_st_sync);
1489 /* setting misc irq */
1490 HFC_outb(hc, R_IRQMSK_MISC, hc->hw.r_irqmsk_misc);
1491 if (debug & DEBUG_HFCMULTI_INIT)
1492 printk(KERN_DEBUG "r_irqmsk_misc.2: 0x%x\n",
1493 hc->hw.r_irqmsk_misc);
1495 /* RAM access test */
1496 HFC_outb(hc, R_RAM_ADDR0, 0);
1497 HFC_outb(hc, R_RAM_ADDR1, 0);
1498 HFC_outb(hc, R_RAM_ADDR2, 0);
1499 for (i = 0; i < 256; i++) {
1500 HFC_outb_nodebug(hc, R_RAM_ADDR0, i);
1501 HFC_outb_nodebug(hc, R_RAM_DATA, ((i*3)&0xff));
1503 for (i = 0; i < 256; i++) {
1504 HFC_outb_nodebug(hc, R_RAM_ADDR0, i);
1505 HFC_inb_nodebug(hc, R_RAM_DATA);
1506 rval = HFC_inb_nodebug(hc, R_INT_DATA);
1507 if (rval != ((i * 3) & 0xff)) {
1508 printk(KERN_DEBUG
1509 "addr:%x val:%x should:%x\n", i, rval,
1510 (i * 3) & 0xff);
1511 err++;
1514 if (err) {
1515 printk(KERN_DEBUG "aborting - %d RAM access errors\n", err);
1516 err = -EIO;
1517 goto out;
1520 if (debug & DEBUG_HFCMULTI_INIT)
1521 printk(KERN_DEBUG "%s: done\n", __func__);
1522 out:
1523 spin_unlock_irqrestore(&hc->lock, flags);
1524 return err;
1529 * control the watchdog
1531 static void
1532 hfcmulti_watchdog(struct hfc_multi *hc)
1534 hc->wdcount++;
1536 if (hc->wdcount > 10) {
1537 hc->wdcount = 0;
1538 hc->wdbyte = hc->wdbyte == V_GPIO_OUT2 ?
1539 V_GPIO_OUT3 : V_GPIO_OUT2;
1541 /* printk("Sending Watchdog Kill %x\n",hc->wdbyte); */
1542 HFC_outb(hc, R_GPIO_EN0, V_GPIO_EN2 | V_GPIO_EN3);
1543 HFC_outb(hc, R_GPIO_OUT0, hc->wdbyte);
1550 * output leds
1552 static void
1553 hfcmulti_leds(struct hfc_multi *hc)
1555 unsigned long lled;
1556 unsigned long leddw;
1557 int i, state, active, leds;
1558 struct dchannel *dch;
1559 int led[4];
1561 hc->ledcount += poll;
1562 if (hc->ledcount > 4096) {
1563 hc->ledcount -= 4096;
1564 hc->ledstate = 0xAFFEAFFE;
1567 switch (hc->leds) {
1568 case 1: /* HFC-E1 OEM */
1569 /* 2 red blinking: NT mode deactivate
1570 * 2 red steady: TE mode deactivate
1571 * left green: L1 active
1572 * left red: frame sync, but no L1
1573 * right green: L2 active
1575 if (hc->chan[hc->dslot].sync != 2) { /* no frame sync */
1576 if (hc->chan[hc->dslot].dch->dev.D.protocol
1577 != ISDN_P_NT_E1) {
1578 led[0] = 1;
1579 led[1] = 1;
1580 } else if (hc->ledcount>>11) {
1581 led[0] = 1;
1582 led[1] = 1;
1583 } else {
1584 led[0] = 0;
1585 led[1] = 0;
1587 led[2] = 0;
1588 led[3] = 0;
1589 } else { /* with frame sync */
1590 /* TODO make it work */
1591 led[0] = 0;
1592 led[1] = 0;
1593 led[2] = 0;
1594 led[3] = 1;
1596 leds = (led[0] | (led[1]<<2) | (led[2]<<1) | (led[3]<<3))^0xF;
1597 /* leds are inverted */
1598 if (leds != (int)hc->ledstate) {
1599 HFC_outb_nodebug(hc, R_GPIO_OUT1, leds);
1600 hc->ledstate = leds;
1602 break;
1604 case 2: /* HFC-4S OEM */
1605 /* red blinking = PH_DEACTIVATE NT Mode
1606 * red steady = PH_DEACTIVATE TE Mode
1607 * green steady = PH_ACTIVATE
1609 for (i = 0; i < 4; i++) {
1610 state = 0;
1611 active = -1;
1612 dch = hc->chan[(i << 2) | 2].dch;
1613 if (dch) {
1614 state = dch->state;
1615 if (dch->dev.D.protocol == ISDN_P_NT_S0)
1616 active = 3;
1617 else
1618 active = 7;
1620 if (state) {
1621 if (state == active) {
1622 led[i] = 1; /* led green */
1623 } else
1624 if (dch->dev.D.protocol == ISDN_P_TE_S0)
1625 /* TE mode: led red */
1626 led[i] = 2;
1627 else
1628 if (hc->ledcount>>11)
1629 /* led red */
1630 led[i] = 2;
1631 else
1632 /* led off */
1633 led[i] = 0;
1634 } else
1635 led[i] = 0; /* led off */
1637 if (test_bit(HFC_CHIP_B410P, &hc->chip)) {
1638 leds = 0;
1639 for (i = 0; i < 4; i++) {
1640 if (led[i] == 1) {
1641 /*green*/
1642 leds |= (0x2 << (i * 2));
1643 } else if (led[i] == 2) {
1644 /*red*/
1645 leds |= (0x1 << (i * 2));
1648 if (leds != (int)hc->ledstate) {
1649 vpm_out(hc, 0, 0x1a8 + 3, leds);
1650 hc->ledstate = leds;
1652 } else {
1653 leds = ((led[3] > 0) << 0) | ((led[1] > 0) << 1) |
1654 ((led[0] > 0) << 2) | ((led[2] > 0) << 3) |
1655 ((led[3] & 1) << 4) | ((led[1] & 1) << 5) |
1656 ((led[0] & 1) << 6) | ((led[2] & 1) << 7);
1657 if (leds != (int)hc->ledstate) {
1658 HFC_outb_nodebug(hc, R_GPIO_EN1, leds & 0x0F);
1659 HFC_outb_nodebug(hc, R_GPIO_OUT1, leds >> 4);
1660 hc->ledstate = leds;
1663 break;
1665 case 3: /* HFC 1S/2S Beronet */
1666 /* red blinking = PH_DEACTIVATE NT Mode
1667 * red steady = PH_DEACTIVATE TE Mode
1668 * green steady = PH_ACTIVATE
1670 for (i = 0; i < 2; i++) {
1671 state = 0;
1672 active = -1;
1673 dch = hc->chan[(i << 2) | 2].dch;
1674 if (dch) {
1675 state = dch->state;
1676 if (dch->dev.D.protocol == ISDN_P_NT_S0)
1677 active = 3;
1678 else
1679 active = 7;
1681 if (state) {
1682 if (state == active) {
1683 led[i] = 1; /* led green */
1684 } else
1685 if (dch->dev.D.protocol == ISDN_P_TE_S0)
1686 /* TE mode: led red */
1687 led[i] = 2;
1688 else
1689 if (hc->ledcount >> 11)
1690 /* led red */
1691 led[i] = 2;
1692 else
1693 /* led off */
1694 led[i] = 0;
1695 } else
1696 led[i] = 0; /* led off */
1700 leds = (led[0] > 0) | ((led[1] > 0)<<1) | ((led[0]&1)<<2)
1701 | ((led[1]&1)<<3);
1702 if (leds != (int)hc->ledstate) {
1703 HFC_outb_nodebug(hc, R_GPIO_EN1,
1704 ((led[0] > 0) << 2) | ((led[1] > 0) << 3));
1705 HFC_outb_nodebug(hc, R_GPIO_OUT1,
1706 ((led[0] & 1) << 2) | ((led[1] & 1) << 3));
1707 hc->ledstate = leds;
1709 break;
1710 case 8: /* HFC 8S+ Beronet */
1711 lled = 0;
1713 for (i = 0; i < 8; i++) {
1714 state = 0;
1715 active = -1;
1716 dch = hc->chan[(i << 2) | 2].dch;
1717 if (dch) {
1718 state = dch->state;
1719 if (dch->dev.D.protocol == ISDN_P_NT_S0)
1720 active = 3;
1721 else
1722 active = 7;
1724 if (state) {
1725 if (state == active) {
1726 lled |= 0 << i;
1727 } else
1728 if (hc->ledcount >> 11)
1729 lled |= 0 << i;
1730 else
1731 lled |= 1 << i;
1732 } else
1733 lled |= 1 << i;
1735 leddw = lled << 24 | lled << 16 | lled << 8 | lled;
1736 if (leddw != hc->ledstate) {
1737 /* HFC_outb(hc, R_BRG_PCM_CFG, 1);
1738 HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x3); */
1739 /* was _io before */
1740 HFC_outb_nodebug(hc, R_BRG_PCM_CFG, 1 | V_PCM_CLK);
1741 outw(0x4000, hc->pci_iobase + 4);
1742 outl(leddw, hc->pci_iobase);
1743 HFC_outb_nodebug(hc, R_BRG_PCM_CFG, V_PCM_CLK);
1744 hc->ledstate = leddw;
1746 break;
1750 * read dtmf coefficients
1753 static void
1754 hfcmulti_dtmf(struct hfc_multi *hc)
1756 s32 *coeff;
1757 u_int mantissa;
1758 int co, ch;
1759 struct bchannel *bch = NULL;
1760 u8 exponent;
1761 int dtmf = 0;
1762 int addr;
1763 u16 w_float;
1764 struct sk_buff *skb;
1765 struct mISDNhead *hh;
1767 if (debug & DEBUG_HFCMULTI_DTMF)
1768 printk(KERN_DEBUG "%s: dtmf detection irq\n", __func__);
1769 for (ch = 0; ch <= 31; ch++) {
1770 /* only process enabled B-channels */
1771 bch = hc->chan[ch].bch;
1772 if (!bch)
1773 continue;
1774 if (!hc->created[hc->chan[ch].port])
1775 continue;
1776 if (!test_bit(FLG_TRANSPARENT, &bch->Flags))
1777 continue;
1778 if (debug & DEBUG_HFCMULTI_DTMF)
1779 printk(KERN_DEBUG "%s: dtmf channel %d:",
1780 __func__, ch);
1781 coeff = &(hc->chan[ch].coeff[hc->chan[ch].coeff_count * 16]);
1782 dtmf = 1;
1783 for (co = 0; co < 8; co++) {
1784 /* read W(n-1) coefficient */
1785 addr = hc->DTMFbase + ((co<<7) | (ch<<2));
1786 HFC_outb_nodebug(hc, R_RAM_ADDR0, addr);
1787 HFC_outb_nodebug(hc, R_RAM_ADDR1, addr>>8);
1788 HFC_outb_nodebug(hc, R_RAM_ADDR2, (addr>>16)
1789 | V_ADDR_INC);
1790 w_float = HFC_inb_nodebug(hc, R_RAM_DATA);
1791 w_float |= (HFC_inb_nodebug(hc, R_RAM_DATA) << 8);
1792 if (debug & DEBUG_HFCMULTI_DTMF)
1793 printk(" %04x", w_float);
1795 /* decode float (see chip doc) */
1796 mantissa = w_float & 0x0fff;
1797 if (w_float & 0x8000)
1798 mantissa |= 0xfffff000;
1799 exponent = (w_float>>12) & 0x7;
1800 if (exponent) {
1801 mantissa ^= 0x1000;
1802 mantissa <<= (exponent-1);
1805 /* store coefficient */
1806 coeff[co<<1] = mantissa;
1808 /* read W(n) coefficient */
1809 w_float = HFC_inb_nodebug(hc, R_RAM_DATA);
1810 w_float |= (HFC_inb_nodebug(hc, R_RAM_DATA) << 8);
1811 if (debug & DEBUG_HFCMULTI_DTMF)
1812 printk(" %04x", w_float);
1814 /* decode float (see chip doc) */
1815 mantissa = w_float & 0x0fff;
1816 if (w_float & 0x8000)
1817 mantissa |= 0xfffff000;
1818 exponent = (w_float>>12) & 0x7;
1819 if (exponent) {
1820 mantissa ^= 0x1000;
1821 mantissa <<= (exponent-1);
1824 /* store coefficient */
1825 coeff[(co<<1)|1] = mantissa;
1827 if (debug & DEBUG_HFCMULTI_DTMF)
1828 printk("%s: DTMF ready %08x %08x %08x %08x "
1829 "%08x %08x %08x %08x\n", __func__,
1830 coeff[0], coeff[1], coeff[2], coeff[3],
1831 coeff[4], coeff[5], coeff[6], coeff[7]);
1832 hc->chan[ch].coeff_count++;
1833 if (hc->chan[ch].coeff_count == 8) {
1834 hc->chan[ch].coeff_count = 0;
1835 skb = mI_alloc_skb(512, GFP_ATOMIC);
1836 if (!skb) {
1837 printk(KERN_WARNING "%s: No memory for skb\n",
1838 __func__);
1839 continue;
1841 hh = mISDN_HEAD_P(skb);
1842 hh->prim = PH_CONTROL_IND;
1843 hh->id = DTMF_HFC_COEF;
1844 memcpy(skb_put(skb, 512), hc->chan[ch].coeff, 512);
1845 recv_Bchannel_skb(bch, skb);
1849 /* restart DTMF processing */
1850 hc->dtmf = dtmf;
1851 if (dtmf)
1852 HFC_outb_nodebug(hc, R_DTMF, hc->hw.r_dtmf | V_RST_DTMF);
1857 * fill fifo as much as possible
1860 static void
1861 hfcmulti_tx(struct hfc_multi *hc, int ch)
1863 int i, ii, temp, len = 0;
1864 int Zspace, z1, z2; /* must be int for calculation */
1865 int Fspace, f1, f2;
1866 u_char *d;
1867 int *txpending, slot_tx;
1868 struct bchannel *bch;
1869 struct dchannel *dch;
1870 struct sk_buff **sp = NULL;
1871 int *idxp;
1873 bch = hc->chan[ch].bch;
1874 dch = hc->chan[ch].dch;
1875 if ((!dch) && (!bch))
1876 return;
1878 txpending = &hc->chan[ch].txpending;
1879 slot_tx = hc->chan[ch].slot_tx;
1880 if (dch) {
1881 if (!test_bit(FLG_ACTIVE, &dch->Flags))
1882 return;
1883 sp = &dch->tx_skb;
1884 idxp = &dch->tx_idx;
1885 } else {
1886 if (!test_bit(FLG_ACTIVE, &bch->Flags))
1887 return;
1888 sp = &bch->tx_skb;
1889 idxp = &bch->tx_idx;
1891 if (*sp)
1892 len = (*sp)->len;
1894 if ((!len) && *txpending != 1)
1895 return; /* no data */
1897 if (test_bit(HFC_CHIP_B410P, &hc->chip) &&
1898 (hc->chan[ch].protocol == ISDN_P_B_RAW) &&
1899 (hc->chan[ch].slot_rx < 0) &&
1900 (hc->chan[ch].slot_tx < 0))
1901 HFC_outb_nodebug(hc, R_FIFO, 0x20 | (ch << 1));
1902 else
1903 HFC_outb_nodebug(hc, R_FIFO, ch << 1);
1904 HFC_wait_nodebug(hc);
1906 if (*txpending == 2) {
1907 /* reset fifo */
1908 HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F);
1909 HFC_wait_nodebug(hc);
1910 HFC_outb(hc, A_SUBCH_CFG, 0);
1911 *txpending = 1;
1913 next_frame:
1914 if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
1915 f1 = HFC_inb_nodebug(hc, A_F1);
1916 f2 = HFC_inb_nodebug(hc, A_F2);
1917 while (f2 != (temp = HFC_inb_nodebug(hc, A_F2))) {
1918 if (debug & DEBUG_HFCMULTI_FIFO)
1919 printk(KERN_DEBUG
1920 "%s(card %d): reread f2 because %d!=%d\n",
1921 __func__, hc->id + 1, temp, f2);
1922 f2 = temp; /* repeat until F2 is equal */
1924 Fspace = f2 - f1 - 1;
1925 if (Fspace < 0)
1926 Fspace += hc->Flen;
1928 * Old FIFO handling doesn't give us the current Z2 read
1929 * pointer, so we cannot send the next frame before the fifo
1930 * is empty. It makes no difference except for a slightly
1931 * lower performance.
1933 if (test_bit(HFC_CHIP_REVISION0, &hc->chip)) {
1934 if (f1 != f2)
1935 Fspace = 0;
1936 else
1937 Fspace = 1;
1939 /* one frame only for ST D-channels, to allow resending */
1940 if (hc->type != 1 && dch) {
1941 if (f1 != f2)
1942 Fspace = 0;
1944 /* F-counter full condition */
1945 if (Fspace == 0)
1946 return;
1948 z1 = HFC_inw_nodebug(hc, A_Z1) - hc->Zmin;
1949 z2 = HFC_inw_nodebug(hc, A_Z2) - hc->Zmin;
1950 while (z2 != (temp = (HFC_inw_nodebug(hc, A_Z2) - hc->Zmin))) {
1951 if (debug & DEBUG_HFCMULTI_FIFO)
1952 printk(KERN_DEBUG "%s(card %d): reread z2 because "
1953 "%d!=%d\n", __func__, hc->id + 1, temp, z2);
1954 z2 = temp; /* repeat unti Z2 is equal */
1956 Zspace = z2 - z1;
1957 if (Zspace <= 0)
1958 Zspace += hc->Zlen;
1959 Zspace -= 4; /* keep not too full, so pointers will not overrun */
1960 /* fill transparent data only to maxinum transparent load (minus 4) */
1961 if (bch && test_bit(FLG_TRANSPARENT, &bch->Flags))
1962 Zspace = Zspace - hc->Zlen + hc->max_trans;
1963 if (Zspace <= 0) /* no space of 4 bytes */
1964 return;
1966 /* if no data */
1967 if (!len) {
1968 if (z1 == z2) { /* empty */
1969 /* if done with FIFO audio data during PCM connection */
1970 if (bch && (!test_bit(FLG_HDLC, &bch->Flags)) &&
1971 *txpending && slot_tx >= 0) {
1972 if (debug & DEBUG_HFCMULTI_MODE)
1973 printk(KERN_DEBUG
1974 "%s: reconnecting PCM due to no "
1975 "more FIFO data: channel %d "
1976 "slot_tx %d\n",
1977 __func__, ch, slot_tx);
1978 /* connect slot */
1979 HFC_outb(hc, A_CON_HDLC, 0xc0 | 0x00 |
1980 V_HDLC_TRP | V_IFF);
1981 HFC_outb_nodebug(hc, R_FIFO, ch<<1 | 1);
1982 HFC_wait_nodebug(hc);
1983 HFC_outb(hc, A_CON_HDLC, 0xc0 | 0x00 |
1984 V_HDLC_TRP | V_IFF);
1985 HFC_outb_nodebug(hc, R_FIFO, ch<<1);
1986 HFC_wait_nodebug(hc);
1988 *txpending = 0;
1990 return; /* no data */
1993 /* if audio data and connected slot */
1994 if (bch && (!test_bit(FLG_HDLC, &bch->Flags)) && (!*txpending)
1995 && slot_tx >= 0) {
1996 if (debug & DEBUG_HFCMULTI_MODE)
1997 printk(KERN_DEBUG "%s: disconnecting PCM due to "
1998 "FIFO data: channel %d slot_tx %d\n",
1999 __func__, ch, slot_tx);
2000 /* disconnect slot */
2001 HFC_outb(hc, A_CON_HDLC, 0x80 | 0x00 | V_HDLC_TRP | V_IFF);
2002 HFC_outb_nodebug(hc, R_FIFO, ch<<1 | 1);
2003 HFC_wait_nodebug(hc);
2004 HFC_outb(hc, A_CON_HDLC, 0x80 | 0x00 | V_HDLC_TRP | V_IFF);
2005 HFC_outb_nodebug(hc, R_FIFO, ch<<1);
2006 HFC_wait_nodebug(hc);
2008 *txpending = 1;
2010 /* show activity */
2011 hc->activity[hc->chan[ch].port] = 1;
2013 /* fill fifo to what we have left */
2014 ii = len;
2015 if (dch || test_bit(FLG_HDLC, &bch->Flags))
2016 temp = 1;
2017 else
2018 temp = 0;
2019 i = *idxp;
2020 d = (*sp)->data + i;
2021 if (ii - i > Zspace)
2022 ii = Zspace + i;
2023 if (debug & DEBUG_HFCMULTI_FIFO)
2024 printk(KERN_DEBUG "%s(card %d): fifo(%d) has %d bytes space "
2025 "left (z1=%04x, z2=%04x) sending %d of %d bytes %s\n",
2026 __func__, hc->id + 1, ch, Zspace, z1, z2, ii-i, len-i,
2027 temp ? "HDLC":"TRANS");
2030 /* Have to prep the audio data */
2031 hc->write_fifo(hc, d, ii - i);
2032 *idxp = ii;
2034 /* if not all data has been written */
2035 if (ii != len) {
2036 /* NOTE: fifo is started by the calling function */
2037 return;
2040 /* if all data has been written, terminate frame */
2041 if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
2042 /* increment f-counter */
2043 HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_INC_F);
2044 HFC_wait_nodebug(hc);
2047 /* send confirm, since get_net_bframe will not do it with trans */
2048 if (bch && test_bit(FLG_TRANSPARENT, &bch->Flags))
2049 confirm_Bsend(bch);
2051 /* check for next frame */
2052 dev_kfree_skb(*sp);
2053 if (bch && get_next_bframe(bch)) { /* hdlc is confirmed here */
2054 len = (*sp)->len;
2055 goto next_frame;
2057 if (dch && get_next_dframe(dch)) {
2058 len = (*sp)->len;
2059 goto next_frame;
2063 * now we have no more data, so in case of transparent,
2064 * we set the last byte in fifo to 'silence' in case we will get
2065 * no more data at all. this prevents sending an undefined value.
2067 if (bch && test_bit(FLG_TRANSPARENT, &bch->Flags))
2068 HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, silence);
2072 /* NOTE: only called if E1 card is in active state */
2073 static void
2074 hfcmulti_rx(struct hfc_multi *hc, int ch)
2076 int temp;
2077 int Zsize, z1, z2 = 0; /* = 0, to make GCC happy */
2078 int f1 = 0, f2 = 0; /* = 0, to make GCC happy */
2079 int again = 0;
2080 struct bchannel *bch;
2081 struct dchannel *dch;
2082 struct sk_buff *skb, **sp = NULL;
2083 int maxlen;
2085 bch = hc->chan[ch].bch;
2086 dch = hc->chan[ch].dch;
2087 if ((!dch) && (!bch))
2088 return;
2089 if (dch) {
2090 if (!test_bit(FLG_ACTIVE, &dch->Flags))
2091 return;
2092 sp = &dch->rx_skb;
2093 maxlen = dch->maxlen;
2094 } else {
2095 if (!test_bit(FLG_ACTIVE, &bch->Flags))
2096 return;
2097 sp = &bch->rx_skb;
2098 maxlen = bch->maxlen;
2100 next_frame:
2101 /* on first AND before getting next valid frame, R_FIFO must be written
2102 to. */
2103 if (test_bit(HFC_CHIP_B410P, &hc->chip) &&
2104 (hc->chan[ch].protocol == ISDN_P_B_RAW) &&
2105 (hc->chan[ch].slot_rx < 0) &&
2106 (hc->chan[ch].slot_tx < 0))
2107 HFC_outb_nodebug(hc, R_FIFO, 0x20 | (ch<<1) | 1);
2108 else
2109 HFC_outb_nodebug(hc, R_FIFO, (ch<<1)|1);
2110 HFC_wait_nodebug(hc);
2112 /* ignore if rx is off BUT change fifo (above) to start pending TX */
2113 if (hc->chan[ch].rx_off)
2114 return;
2116 if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
2117 f1 = HFC_inb_nodebug(hc, A_F1);
2118 while (f1 != (temp = HFC_inb_nodebug(hc, A_F1))) {
2119 if (debug & DEBUG_HFCMULTI_FIFO)
2120 printk(KERN_DEBUG
2121 "%s(card %d): reread f1 because %d!=%d\n",
2122 __func__, hc->id + 1, temp, f1);
2123 f1 = temp; /* repeat until F1 is equal */
2125 f2 = HFC_inb_nodebug(hc, A_F2);
2127 z1 = HFC_inw_nodebug(hc, A_Z1) - hc->Zmin;
2128 while (z1 != (temp = (HFC_inw_nodebug(hc, A_Z1) - hc->Zmin))) {
2129 if (debug & DEBUG_HFCMULTI_FIFO)
2130 printk(KERN_DEBUG "%s(card %d): reread z2 because "
2131 "%d!=%d\n", __func__, hc->id + 1, temp, z2);
2132 z1 = temp; /* repeat until Z1 is equal */
2134 z2 = HFC_inw_nodebug(hc, A_Z2) - hc->Zmin;
2135 Zsize = z1 - z2;
2136 if ((dch || test_bit(FLG_HDLC, &bch->Flags)) && f1 != f2)
2137 /* complete hdlc frame */
2138 Zsize++;
2139 if (Zsize < 0)
2140 Zsize += hc->Zlen;
2141 /* if buffer is empty */
2142 if (Zsize <= 0)
2143 return;
2145 if (*sp == NULL) {
2146 *sp = mI_alloc_skb(maxlen + 3, GFP_ATOMIC);
2147 if (*sp == NULL) {
2148 printk(KERN_DEBUG "%s: No mem for rx_skb\n",
2149 __func__);
2150 return;
2153 /* show activity */
2154 hc->activity[hc->chan[ch].port] = 1;
2156 /* empty fifo with what we have */
2157 if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
2158 if (debug & DEBUG_HFCMULTI_FIFO)
2159 printk(KERN_DEBUG "%s(card %d): fifo(%d) reading %d "
2160 "bytes (z1=%04x, z2=%04x) HDLC %s (f1=%d, f2=%d) "
2161 "got=%d (again %d)\n", __func__, hc->id + 1, ch,
2162 Zsize, z1, z2, (f1 == f2) ? "fragment" : "COMPLETE",
2163 f1, f2, Zsize + (*sp)->len, again);
2164 /* HDLC */
2165 if ((Zsize + (*sp)->len) > (maxlen + 3)) {
2166 if (debug & DEBUG_HFCMULTI_FIFO)
2167 printk(KERN_DEBUG
2168 "%s(card %d): hdlc-frame too large.\n",
2169 __func__, hc->id + 1);
2170 skb_trim(*sp, 0);
2171 HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F);
2172 HFC_wait_nodebug(hc);
2173 return;
2176 hc->read_fifo(hc, skb_put(*sp, Zsize), Zsize);
2178 if (f1 != f2) {
2179 /* increment Z2,F2-counter */
2180 HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_INC_F);
2181 HFC_wait_nodebug(hc);
2182 /* check size */
2183 if ((*sp)->len < 4) {
2184 if (debug & DEBUG_HFCMULTI_FIFO)
2185 printk(KERN_DEBUG
2186 "%s(card %d): Frame below minimum "
2187 "size\n", __func__, hc->id + 1);
2188 skb_trim(*sp, 0);
2189 goto next_frame;
2191 /* there is at least one complete frame, check crc */
2192 if ((*sp)->data[(*sp)->len - 1]) {
2193 if (debug & DEBUG_HFCMULTI_CRC)
2194 printk(KERN_DEBUG
2195 "%s: CRC-error\n", __func__);
2196 skb_trim(*sp, 0);
2197 goto next_frame;
2199 skb_trim(*sp, (*sp)->len - 3);
2200 if ((*sp)->len < MISDN_COPY_SIZE) {
2201 skb = *sp;
2202 *sp = mI_alloc_skb(skb->len, GFP_ATOMIC);
2203 if (*sp) {
2204 memcpy(skb_put(*sp, skb->len),
2205 skb->data, skb->len);
2206 skb_trim(skb, 0);
2207 } else {
2208 printk(KERN_DEBUG "%s: No mem\n",
2209 __func__);
2210 *sp = skb;
2211 skb = NULL;
2213 } else {
2214 skb = NULL;
2216 if (debug & DEBUG_HFCMULTI_FIFO) {
2217 printk(KERN_DEBUG "%s(card %d):",
2218 __func__, hc->id + 1);
2219 temp = 0;
2220 while (temp < (*sp)->len)
2221 printk(" %02x", (*sp)->data[temp++]);
2222 printk("\n");
2224 if (dch)
2225 recv_Dchannel(dch);
2226 else
2227 recv_Bchannel(bch);
2228 *sp = skb;
2229 again++;
2230 goto next_frame;
2232 /* there is an incomplete frame */
2233 } else {
2234 /* transparent */
2235 if (Zsize > skb_tailroom(*sp))
2236 Zsize = skb_tailroom(*sp);
2237 hc->read_fifo(hc, skb_put(*sp, Zsize), Zsize);
2238 if (((*sp)->len) < MISDN_COPY_SIZE) {
2239 skb = *sp;
2240 *sp = mI_alloc_skb(skb->len, GFP_ATOMIC);
2241 if (*sp) {
2242 memcpy(skb_put(*sp, skb->len),
2243 skb->data, skb->len);
2244 skb_trim(skb, 0);
2245 } else {
2246 printk(KERN_DEBUG "%s: No mem\n", __func__);
2247 *sp = skb;
2248 skb = NULL;
2250 } else {
2251 skb = NULL;
2253 if (debug & DEBUG_HFCMULTI_FIFO)
2254 printk(KERN_DEBUG
2255 "%s(card %d): fifo(%d) reading %d bytes "
2256 "(z1=%04x, z2=%04x) TRANS\n",
2257 __func__, hc->id + 1, ch, Zsize, z1, z2);
2258 /* only bch is transparent */
2259 recv_Bchannel(bch);
2260 *sp = skb;
2266 * Interrupt handler
2268 static void
2269 signal_state_up(struct dchannel *dch, int info, char *msg)
2271 struct sk_buff *skb;
2272 int id, data = info;
2274 if (debug & DEBUG_HFCMULTI_STATE)
2275 printk(KERN_DEBUG "%s: %s\n", __func__, msg);
2277 id = TEI_SAPI | (GROUP_TEI << 8); /* manager address */
2279 skb = _alloc_mISDN_skb(MPH_INFORMATION_IND, id, sizeof(data), &data,
2280 GFP_ATOMIC);
2281 if (!skb)
2282 return;
2283 recv_Dchannel_skb(dch, skb);
2286 static inline void
2287 handle_timer_irq(struct hfc_multi *hc)
2289 int ch, temp;
2290 struct dchannel *dch;
2291 u_long flags;
2293 /* process queued resync jobs */
2294 if (hc->e1_resync) {
2295 /* lock, so e1_resync gets not changed */
2296 spin_lock_irqsave(&HFClock, flags);
2297 if (hc->e1_resync & 1) {
2298 if (debug & DEBUG_HFCMULTI_PLXSD)
2299 printk(KERN_DEBUG "Enable SYNC_I\n");
2300 HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC);
2301 /* disable JATT, if RX_SYNC is set */
2302 if (test_bit(HFC_CHIP_RX_SYNC, &hc->chip))
2303 HFC_outb(hc, R_SYNC_OUT, V_SYNC_E1_RX);
2305 if (hc->e1_resync & 2) {
2306 if (debug & DEBUG_HFCMULTI_PLXSD)
2307 printk(KERN_DEBUG "Enable jatt PLL\n");
2308 HFC_outb(hc, R_SYNC_CTRL, V_SYNC_OFFS);
2310 if (hc->e1_resync & 4) {
2311 if (debug & DEBUG_HFCMULTI_PLXSD)
2312 printk(KERN_DEBUG
2313 "Enable QUARTZ for HFC-E1\n");
2314 /* set jatt to quartz */
2315 HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC
2316 | V_JATT_OFF);
2317 /* switch to JATT, in case it is not already */
2318 HFC_outb(hc, R_SYNC_OUT, 0);
2320 hc->e1_resync = 0;
2321 spin_unlock_irqrestore(&HFClock, flags);
2324 if (hc->type != 1 || hc->e1_state == 1)
2325 for (ch = 0; ch <= 31; ch++) {
2326 if (hc->created[hc->chan[ch].port]) {
2327 hfcmulti_tx(hc, ch);
2328 /* fifo is started when switching to rx-fifo */
2329 hfcmulti_rx(hc, ch);
2330 if (hc->chan[ch].dch &&
2331 hc->chan[ch].nt_timer > -1) {
2332 dch = hc->chan[ch].dch;
2333 if (!(--hc->chan[ch].nt_timer)) {
2334 schedule_event(dch,
2335 FLG_PHCHANGE);
2336 if (debug &
2337 DEBUG_HFCMULTI_STATE)
2338 printk(KERN_DEBUG
2339 "%s: nt_timer at "
2340 "state %x\n",
2341 __func__,
2342 dch->state);
2347 if (hc->type == 1 && hc->created[0]) {
2348 dch = hc->chan[hc->dslot].dch;
2349 if (test_bit(HFC_CFG_REPORT_LOS, &hc->chan[hc->dslot].cfg)) {
2350 /* LOS */
2351 temp = HFC_inb_nodebug(hc, R_SYNC_STA) & V_SIG_LOS;
2352 if (!temp && hc->chan[hc->dslot].los)
2353 signal_state_up(dch, L1_SIGNAL_LOS_ON,
2354 "LOS detected");
2355 if (temp && !hc->chan[hc->dslot].los)
2356 signal_state_up(dch, L1_SIGNAL_LOS_OFF,
2357 "LOS gone");
2358 hc->chan[hc->dslot].los = temp;
2360 if (test_bit(HFC_CFG_REPORT_AIS, &hc->chan[hc->dslot].cfg)) {
2361 /* AIS */
2362 temp = HFC_inb_nodebug(hc, R_SYNC_STA) & V_AIS;
2363 if (!temp && hc->chan[hc->dslot].ais)
2364 signal_state_up(dch, L1_SIGNAL_AIS_ON,
2365 "AIS detected");
2366 if (temp && !hc->chan[hc->dslot].ais)
2367 signal_state_up(dch, L1_SIGNAL_AIS_OFF,
2368 "AIS gone");
2369 hc->chan[hc->dslot].ais = temp;
2371 if (test_bit(HFC_CFG_REPORT_SLIP, &hc->chan[hc->dslot].cfg)) {
2372 /* SLIP */
2373 temp = HFC_inb_nodebug(hc, R_SLIP) & V_FOSLIP_RX;
2374 if (!temp && hc->chan[hc->dslot].slip_rx)
2375 signal_state_up(dch, L1_SIGNAL_SLIP_RX,
2376 " bit SLIP detected RX");
2377 hc->chan[hc->dslot].slip_rx = temp;
2378 temp = HFC_inb_nodebug(hc, R_SLIP) & V_FOSLIP_TX;
2379 if (!temp && hc->chan[hc->dslot].slip_tx)
2380 signal_state_up(dch, L1_SIGNAL_SLIP_TX,
2381 " bit SLIP detected TX");
2382 hc->chan[hc->dslot].slip_tx = temp;
2384 if (test_bit(HFC_CFG_REPORT_RDI, &hc->chan[hc->dslot].cfg)) {
2385 /* RDI */
2386 temp = HFC_inb_nodebug(hc, R_RX_SL0_0) & V_A;
2387 if (!temp && hc->chan[hc->dslot].rdi)
2388 signal_state_up(dch, L1_SIGNAL_RDI_ON,
2389 "RDI detected");
2390 if (temp && !hc->chan[hc->dslot].rdi)
2391 signal_state_up(dch, L1_SIGNAL_RDI_OFF,
2392 "RDI gone");
2393 hc->chan[hc->dslot].rdi = temp;
2395 temp = HFC_inb_nodebug(hc, R_JATT_DIR);
2396 switch (hc->chan[hc->dslot].sync) {
2397 case 0:
2398 if ((temp & 0x60) == 0x60) {
2399 if (debug & DEBUG_HFCMULTI_SYNC)
2400 printk(KERN_DEBUG
2401 "%s: (id=%d) E1 now "
2402 "in clock sync\n",
2403 __func__, hc->id);
2404 HFC_outb(hc, R_RX_OFF,
2405 hc->chan[hc->dslot].jitter | V_RX_INIT);
2406 HFC_outb(hc, R_TX_OFF,
2407 hc->chan[hc->dslot].jitter | V_RX_INIT);
2408 hc->chan[hc->dslot].sync = 1;
2409 goto check_framesync;
2411 break;
2412 case 1:
2413 if ((temp & 0x60) != 0x60) {
2414 if (debug & DEBUG_HFCMULTI_SYNC)
2415 printk(KERN_DEBUG
2416 "%s: (id=%d) E1 "
2417 "lost clock sync\n",
2418 __func__, hc->id);
2419 hc->chan[hc->dslot].sync = 0;
2420 break;
2422 check_framesync:
2423 temp = HFC_inb_nodebug(hc, R_SYNC_STA);
2424 if (temp == 0x27) {
2425 if (debug & DEBUG_HFCMULTI_SYNC)
2426 printk(KERN_DEBUG
2427 "%s: (id=%d) E1 "
2428 "now in frame sync\n",
2429 __func__, hc->id);
2430 hc->chan[hc->dslot].sync = 2;
2432 break;
2433 case 2:
2434 if ((temp & 0x60) != 0x60) {
2435 if (debug & DEBUG_HFCMULTI_SYNC)
2436 printk(KERN_DEBUG
2437 "%s: (id=%d) E1 lost "
2438 "clock & frame sync\n",
2439 __func__, hc->id);
2440 hc->chan[hc->dslot].sync = 0;
2441 break;
2443 temp = HFC_inb_nodebug(hc, R_SYNC_STA);
2444 if (temp != 0x27) {
2445 if (debug & DEBUG_HFCMULTI_SYNC)
2446 printk(KERN_DEBUG
2447 "%s: (id=%d) E1 "
2448 "lost frame sync\n",
2449 __func__, hc->id);
2450 hc->chan[hc->dslot].sync = 1;
2452 break;
2456 if (test_bit(HFC_CHIP_WATCHDOG, &hc->chip))
2457 hfcmulti_watchdog(hc);
2459 if (hc->leds)
2460 hfcmulti_leds(hc);
2463 static void
2464 ph_state_irq(struct hfc_multi *hc, u_char r_irq_statech)
2466 struct dchannel *dch;
2467 int ch;
2468 int active;
2469 u_char st_status, temp;
2471 /* state machine */
2472 for (ch = 0; ch <= 31; ch++) {
2473 if (hc->chan[ch].dch) {
2474 dch = hc->chan[ch].dch;
2475 if (r_irq_statech & 1) {
2476 HFC_outb_nodebug(hc, R_ST_SEL,
2477 hc->chan[ch].port);
2478 /* undocumented: delay after R_ST_SEL */
2479 udelay(1);
2480 /* undocumented: status changes during read */
2481 st_status = HFC_inb_nodebug(hc, A_ST_RD_STATE);
2482 while (st_status != (temp =
2483 HFC_inb_nodebug(hc, A_ST_RD_STATE))) {
2484 if (debug & DEBUG_HFCMULTI_STATE)
2485 printk(KERN_DEBUG "%s: reread "
2486 "STATE because %d!=%d\n",
2487 __func__, temp,
2488 st_status);
2489 st_status = temp; /* repeat */
2492 /* Speech Design TE-sync indication */
2493 if (test_bit(HFC_CHIP_PLXSD, &hc->chip) &&
2494 dch->dev.D.protocol == ISDN_P_TE_S0) {
2495 if (st_status & V_FR_SYNC_ST)
2496 hc->syncronized |=
2497 (1 << hc->chan[ch].port);
2498 else
2499 hc->syncronized &=
2500 ~(1 << hc->chan[ch].port);
2502 dch->state = st_status & 0x0f;
2503 if (dch->dev.D.protocol == ISDN_P_NT_S0)
2504 active = 3;
2505 else
2506 active = 7;
2507 if (dch->state == active) {
2508 HFC_outb_nodebug(hc, R_FIFO,
2509 (ch << 1) | 1);
2510 HFC_wait_nodebug(hc);
2511 HFC_outb_nodebug(hc,
2512 R_INC_RES_FIFO, V_RES_F);
2513 HFC_wait_nodebug(hc);
2514 dch->tx_idx = 0;
2516 schedule_event(dch, FLG_PHCHANGE);
2517 if (debug & DEBUG_HFCMULTI_STATE)
2518 printk(KERN_DEBUG
2519 "%s: S/T newstate %x port %d\n",
2520 __func__, dch->state,
2521 hc->chan[ch].port);
2523 r_irq_statech >>= 1;
2526 if (test_bit(HFC_CHIP_PLXSD, &hc->chip))
2527 plxsd_checksync(hc, 0);
2530 static void
2531 fifo_irq(struct hfc_multi *hc, int block)
2533 int ch, j;
2534 struct dchannel *dch;
2535 struct bchannel *bch;
2536 u_char r_irq_fifo_bl;
2538 r_irq_fifo_bl = HFC_inb_nodebug(hc, R_IRQ_FIFO_BL0 + block);
2539 j = 0;
2540 while (j < 8) {
2541 ch = (block << 2) + (j >> 1);
2542 dch = hc->chan[ch].dch;
2543 bch = hc->chan[ch].bch;
2544 if (((!dch) && (!bch)) || (!hc->created[hc->chan[ch].port])) {
2545 j += 2;
2546 continue;
2548 if (dch && (r_irq_fifo_bl & (1 << j)) &&
2549 test_bit(FLG_ACTIVE, &dch->Flags)) {
2550 hfcmulti_tx(hc, ch);
2551 /* start fifo */
2552 HFC_outb_nodebug(hc, R_FIFO, 0);
2553 HFC_wait_nodebug(hc);
2555 if (bch && (r_irq_fifo_bl & (1 << j)) &&
2556 test_bit(FLG_ACTIVE, &bch->Flags)) {
2557 hfcmulti_tx(hc, ch);
2558 /* start fifo */
2559 HFC_outb_nodebug(hc, R_FIFO, 0);
2560 HFC_wait_nodebug(hc);
2562 j++;
2563 if (dch && (r_irq_fifo_bl & (1 << j)) &&
2564 test_bit(FLG_ACTIVE, &dch->Flags)) {
2565 hfcmulti_rx(hc, ch);
2567 if (bch && (r_irq_fifo_bl & (1 << j)) &&
2568 test_bit(FLG_ACTIVE, &bch->Flags)) {
2569 hfcmulti_rx(hc, ch);
2571 j++;
2575 #ifdef IRQ_DEBUG
2576 int irqsem;
2577 #endif
2578 static irqreturn_t
2579 hfcmulti_interrupt(int intno, void *dev_id)
2581 #ifdef IRQCOUNT_DEBUG
2582 static int iq1 = 0, iq2 = 0, iq3 = 0, iq4 = 0,
2583 iq5 = 0, iq6 = 0, iqcnt = 0;
2584 #endif
2585 static int count;
2586 struct hfc_multi *hc = dev_id;
2587 struct dchannel *dch;
2588 u_char r_irq_statech, status, r_irq_misc, r_irq_oview;
2589 int i;
2590 u_short *plx_acc, wval;
2591 u_char e1_syncsta, temp;
2592 u_long flags;
2594 if (!hc) {
2595 printk(KERN_ERR "HFC-multi: Spurious interrupt!\n");
2596 return IRQ_NONE;
2599 spin_lock(&hc->lock);
2601 #ifdef IRQ_DEBUG
2602 if (irqsem)
2603 printk(KERN_ERR "irq for card %d during irq from "
2604 "card %d, this is no bug.\n", hc->id + 1, irqsem);
2605 irqsem = hc->id + 1;
2606 #endif
2608 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
2609 spin_lock_irqsave(&plx_lock, flags);
2610 plx_acc = (u_short *)(hc->plx_membase + PLX_INTCSR);
2611 wval = readw(plx_acc);
2612 spin_unlock_irqrestore(&plx_lock, flags);
2613 if (!(wval & PLX_INTCSR_LINTI1_STATUS))
2614 goto irq_notforus;
2617 status = HFC_inb_nodebug(hc, R_STATUS);
2618 r_irq_statech = HFC_inb_nodebug(hc, R_IRQ_STATECH);
2619 #ifdef IRQCOUNT_DEBUG
2620 if (r_irq_statech)
2621 iq1++;
2622 if (status & V_DTMF_STA)
2623 iq2++;
2624 if (status & V_LOST_STA)
2625 iq3++;
2626 if (status & V_EXT_IRQSTA)
2627 iq4++;
2628 if (status & V_MISC_IRQSTA)
2629 iq5++;
2630 if (status & V_FR_IRQSTA)
2631 iq6++;
2632 if (iqcnt++ > 5000) {
2633 printk(KERN_ERR "iq1:%x iq2:%x iq3:%x iq4:%x iq5:%x iq6:%x\n",
2634 iq1, iq2, iq3, iq4, iq5, iq6);
2635 iqcnt = 0;
2637 #endif
2638 if (!r_irq_statech &&
2639 !(status & (V_DTMF_STA | V_LOST_STA | V_EXT_IRQSTA |
2640 V_MISC_IRQSTA | V_FR_IRQSTA))) {
2641 /* irq is not for us */
2642 goto irq_notforus;
2644 hc->irqcnt++;
2645 if (r_irq_statech) {
2646 if (hc->type != 1)
2647 ph_state_irq(hc, r_irq_statech);
2649 if (status & V_EXT_IRQSTA)
2650 ; /* external IRQ */
2651 if (status & V_LOST_STA) {
2652 /* LOST IRQ */
2653 HFC_outb(hc, R_INC_RES_FIFO, V_RES_LOST); /* clear irq! */
2655 if (status & V_MISC_IRQSTA) {
2656 /* misc IRQ */
2657 r_irq_misc = HFC_inb_nodebug(hc, R_IRQ_MISC);
2658 if (r_irq_misc & V_STA_IRQ) {
2659 if (hc->type == 1) {
2660 /* state machine */
2661 dch = hc->chan[hc->dslot].dch;
2662 e1_syncsta = HFC_inb_nodebug(hc, R_SYNC_STA);
2663 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)
2664 && hc->e1_getclock) {
2665 if (e1_syncsta & V_FR_SYNC_E1)
2666 hc->syncronized = 1;
2667 else
2668 hc->syncronized = 0;
2670 /* undocumented: status changes during read */
2671 dch->state = HFC_inb_nodebug(hc, R_E1_RD_STA);
2672 while (dch->state != (temp =
2673 HFC_inb_nodebug(hc, R_E1_RD_STA))) {
2674 if (debug & DEBUG_HFCMULTI_STATE)
2675 printk(KERN_DEBUG "%s: reread "
2676 "STATE because %d!=%d\n",
2677 __func__, temp,
2678 dch->state);
2679 dch->state = temp; /* repeat */
2681 dch->state = HFC_inb_nodebug(hc, R_E1_RD_STA)
2682 & 0x7;
2683 schedule_event(dch, FLG_PHCHANGE);
2684 if (debug & DEBUG_HFCMULTI_STATE)
2685 printk(KERN_DEBUG
2686 "%s: E1 (id=%d) newstate %x\n",
2687 __func__, hc->id, dch->state);
2688 if (test_bit(HFC_CHIP_PLXSD, &hc->chip))
2689 plxsd_checksync(hc, 0);
2692 if (r_irq_misc & V_TI_IRQ)
2693 handle_timer_irq(hc);
2695 if (r_irq_misc & V_DTMF_IRQ) {
2696 /* -> DTMF IRQ */
2697 hfcmulti_dtmf(hc);
2699 /* TODO: REPLACE !!!! 125 us Interrupts are not acceptable */
2700 if (r_irq_misc & V_IRQ_PROC) {
2701 /* IRQ every 125us */
2702 count++;
2703 /* generate 1kHz signal */
2704 if (count == 8) {
2705 if (hfc_interrupt)
2706 hfc_interrupt();
2707 count = 0;
2712 if (status & V_FR_IRQSTA) {
2713 /* FIFO IRQ */
2714 r_irq_oview = HFC_inb_nodebug(hc, R_IRQ_OVIEW);
2715 for (i = 0; i < 8; i++) {
2716 if (r_irq_oview & (1 << i))
2717 fifo_irq(hc, i);
2721 #ifdef IRQ_DEBUG
2722 irqsem = 0;
2723 #endif
2724 spin_unlock(&hc->lock);
2725 return IRQ_HANDLED;
2727 irq_notforus:
2728 #ifdef IRQ_DEBUG
2729 irqsem = 0;
2730 #endif
2731 spin_unlock(&hc->lock);
2732 return IRQ_NONE;
2737 * timer callback for D-chan busy resolution. Currently no function
2740 static void
2741 hfcmulti_dbusy_timer(struct hfc_multi *hc)
2747 * activate/deactivate hardware for selected channels and mode
2749 * configure B-channel with the given protocol
2750 * ch eqals to the HFC-channel (0-31)
2751 * ch is the number of channel (0-4,4-7,8-11,12-15,16-19,20-23,24-27,28-31
2752 * for S/T, 1-31 for E1)
2753 * the hdlc interrupts will be set/unset
2755 static int
2756 mode_hfcmulti(struct hfc_multi *hc, int ch, int protocol, int slot_tx,
2757 int bank_tx, int slot_rx, int bank_rx)
2759 int flow_tx = 0, flow_rx = 0, routing = 0;
2760 int oslot_tx, oslot_rx;
2761 int conf;
2763 if (ch < 0 || ch > 31)
2764 return EINVAL;
2765 oslot_tx = hc->chan[ch].slot_tx;
2766 oslot_rx = hc->chan[ch].slot_rx;
2767 conf = hc->chan[ch].conf;
2769 if (debug & DEBUG_HFCMULTI_MODE)
2770 printk(KERN_DEBUG
2771 "%s: card %d channel %d protocol %x slot old=%d new=%d "
2772 "bank new=%d (TX) slot old=%d new=%d bank new=%d (RX)\n",
2773 __func__, hc->id, ch, protocol, oslot_tx, slot_tx,
2774 bank_tx, oslot_rx, slot_rx, bank_rx);
2776 if (oslot_tx >= 0 && slot_tx != oslot_tx) {
2777 /* remove from slot */
2778 if (debug & DEBUG_HFCMULTI_MODE)
2779 printk(KERN_DEBUG "%s: remove from slot %d (TX)\n",
2780 __func__, oslot_tx);
2781 if (hc->slot_owner[oslot_tx<<1] == ch) {
2782 HFC_outb(hc, R_SLOT, oslot_tx << 1);
2783 HFC_outb(hc, A_SL_CFG, 0);
2784 HFC_outb(hc, A_CONF, 0);
2785 hc->slot_owner[oslot_tx<<1] = -1;
2786 } else {
2787 if (debug & DEBUG_HFCMULTI_MODE)
2788 printk(KERN_DEBUG
2789 "%s: we are not owner of this tx slot "
2790 "anymore, channel %d is.\n",
2791 __func__, hc->slot_owner[oslot_tx<<1]);
2795 if (oslot_rx >= 0 && slot_rx != oslot_rx) {
2796 /* remove from slot */
2797 if (debug & DEBUG_HFCMULTI_MODE)
2798 printk(KERN_DEBUG
2799 "%s: remove from slot %d (RX)\n",
2800 __func__, oslot_rx);
2801 if (hc->slot_owner[(oslot_rx << 1) | 1] == ch) {
2802 HFC_outb(hc, R_SLOT, (oslot_rx << 1) | V_SL_DIR);
2803 HFC_outb(hc, A_SL_CFG, 0);
2804 hc->slot_owner[(oslot_rx << 1) | 1] = -1;
2805 } else {
2806 if (debug & DEBUG_HFCMULTI_MODE)
2807 printk(KERN_DEBUG
2808 "%s: we are not owner of this rx slot "
2809 "anymore, channel %d is.\n",
2810 __func__,
2811 hc->slot_owner[(oslot_rx << 1) | 1]);
2815 if (slot_tx < 0) {
2816 flow_tx = 0x80; /* FIFO->ST */
2817 /* disable pcm slot */
2818 hc->chan[ch].slot_tx = -1;
2819 hc->chan[ch].bank_tx = 0;
2820 } else {
2821 /* set pcm slot */
2822 if (hc->chan[ch].txpending)
2823 flow_tx = 0x80; /* FIFO->ST */
2824 else
2825 flow_tx = 0xc0; /* PCM->ST */
2826 /* put on slot */
2827 routing = bank_tx ? 0xc0 : 0x80;
2828 if (conf >= 0 || bank_tx > 1)
2829 routing = 0x40; /* loop */
2830 if (debug & DEBUG_HFCMULTI_MODE)
2831 printk(KERN_DEBUG "%s: put channel %d to slot %d bank"
2832 " %d flow %02x routing %02x conf %d (TX)\n",
2833 __func__, ch, slot_tx, bank_tx,
2834 flow_tx, routing, conf);
2835 HFC_outb(hc, R_SLOT, slot_tx << 1);
2836 HFC_outb(hc, A_SL_CFG, (ch<<1) | routing);
2837 HFC_outb(hc, A_CONF, (conf < 0) ? 0 : (conf | V_CONF_SL));
2838 hc->slot_owner[slot_tx << 1] = ch;
2839 hc->chan[ch].slot_tx = slot_tx;
2840 hc->chan[ch].bank_tx = bank_tx;
2842 if (slot_rx < 0) {
2843 /* disable pcm slot */
2844 flow_rx = 0x80; /* ST->FIFO */
2845 hc->chan[ch].slot_rx = -1;
2846 hc->chan[ch].bank_rx = 0;
2847 } else {
2848 /* set pcm slot */
2849 if (hc->chan[ch].txpending)
2850 flow_rx = 0x80; /* ST->FIFO */
2851 else
2852 flow_rx = 0xc0; /* ST->(FIFO,PCM) */
2853 /* put on slot */
2854 routing = bank_rx?0x80:0xc0; /* reversed */
2855 if (conf >= 0 || bank_rx > 1)
2856 routing = 0x40; /* loop */
2857 if (debug & DEBUG_HFCMULTI_MODE)
2858 printk(KERN_DEBUG "%s: put channel %d to slot %d bank"
2859 " %d flow %02x routing %02x conf %d (RX)\n",
2860 __func__, ch, slot_rx, bank_rx,
2861 flow_rx, routing, conf);
2862 HFC_outb(hc, R_SLOT, (slot_rx<<1) | V_SL_DIR);
2863 HFC_outb(hc, A_SL_CFG, (ch<<1) | V_CH_DIR | routing);
2864 hc->slot_owner[(slot_rx<<1)|1] = ch;
2865 hc->chan[ch].slot_rx = slot_rx;
2866 hc->chan[ch].bank_rx = bank_rx;
2869 switch (protocol) {
2870 case (ISDN_P_NONE):
2871 /* disable TX fifo */
2872 HFC_outb(hc, R_FIFO, ch << 1);
2873 HFC_wait(hc);
2874 HFC_outb(hc, A_CON_HDLC, flow_tx | 0x00 | V_IFF);
2875 HFC_outb(hc, A_SUBCH_CFG, 0);
2876 HFC_outb(hc, A_IRQ_MSK, 0);
2877 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
2878 HFC_wait(hc);
2879 /* disable RX fifo */
2880 HFC_outb(hc, R_FIFO, (ch<<1)|1);
2881 HFC_wait(hc);
2882 HFC_outb(hc, A_CON_HDLC, flow_rx | 0x00);
2883 HFC_outb(hc, A_SUBCH_CFG, 0);
2884 HFC_outb(hc, A_IRQ_MSK, 0);
2885 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
2886 HFC_wait(hc);
2887 if (hc->chan[ch].bch && hc->type != 1) {
2888 hc->hw.a_st_ctrl0[hc->chan[ch].port] &=
2889 ((ch & 0x3) == 0)? ~V_B1_EN: ~V_B2_EN;
2890 HFC_outb(hc, R_ST_SEL, hc->chan[ch].port);
2891 /* undocumented: delay after R_ST_SEL */
2892 udelay(1);
2893 HFC_outb(hc, A_ST_CTRL0,
2894 hc->hw.a_st_ctrl0[hc->chan[ch].port]);
2896 if (hc->chan[ch].bch) {
2897 test_and_clear_bit(FLG_HDLC, &hc->chan[ch].bch->Flags);
2898 test_and_clear_bit(FLG_TRANSPARENT,
2899 &hc->chan[ch].bch->Flags);
2901 break;
2902 case (ISDN_P_B_RAW): /* B-channel */
2904 if (test_bit(HFC_CHIP_B410P, &hc->chip) &&
2905 (hc->chan[ch].slot_rx < 0) &&
2906 (hc->chan[ch].slot_tx < 0)) {
2908 printk(KERN_DEBUG
2909 "Setting B-channel %d to echo cancelable "
2910 "state on PCM slot %d\n", ch,
2911 ((ch / 4) * 8) + ((ch % 4) * 4) + 1);
2912 printk(KERN_DEBUG
2913 "Enabling pass through for channel\n");
2914 vpm_out(hc, ch, ((ch / 4) * 8) +
2915 ((ch % 4) * 4) + 1, 0x01);
2916 /* rx path */
2917 /* S/T -> PCM */
2918 HFC_outb(hc, R_FIFO, (ch << 1));
2919 HFC_wait(hc);
2920 HFC_outb(hc, A_CON_HDLC, 0xc0 | V_HDLC_TRP | V_IFF);
2921 HFC_outb(hc, R_SLOT, (((ch / 4) * 8) +
2922 ((ch % 4) * 4) + 1) << 1);
2923 HFC_outb(hc, A_SL_CFG, 0x80 | (ch << 1));
2925 /* PCM -> FIFO */
2926 HFC_outb(hc, R_FIFO, 0x20 | (ch << 1) | 1);
2927 HFC_wait(hc);
2928 HFC_outb(hc, A_CON_HDLC, 0x20 | V_HDLC_TRP | V_IFF);
2929 HFC_outb(hc, A_SUBCH_CFG, 0);
2930 HFC_outb(hc, A_IRQ_MSK, 0);
2931 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
2932 HFC_wait(hc);
2933 HFC_outb(hc, R_SLOT, ((((ch / 4) * 8) +
2934 ((ch % 4) * 4) + 1) << 1) | 1);
2935 HFC_outb(hc, A_SL_CFG, 0x80 | 0x20 | (ch << 1) | 1);
2937 /* tx path */
2938 /* PCM -> S/T */
2939 HFC_outb(hc, R_FIFO, (ch << 1) | 1);
2940 HFC_wait(hc);
2941 HFC_outb(hc, A_CON_HDLC, 0xc0 | V_HDLC_TRP | V_IFF);
2942 HFC_outb(hc, R_SLOT, ((((ch / 4) * 8) +
2943 ((ch % 4) * 4)) << 1) | 1);
2944 HFC_outb(hc, A_SL_CFG, 0x80 | 0x40 | (ch << 1) | 1);
2946 /* FIFO -> PCM */
2947 HFC_outb(hc, R_FIFO, 0x20 | (ch << 1));
2948 HFC_wait(hc);
2949 HFC_outb(hc, A_CON_HDLC, 0x20 | V_HDLC_TRP | V_IFF);
2950 HFC_outb(hc, A_SUBCH_CFG, 0);
2951 HFC_outb(hc, A_IRQ_MSK, 0);
2952 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
2953 HFC_wait(hc);
2954 /* tx silence */
2955 HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, silence);
2956 HFC_outb(hc, R_SLOT, (((ch / 4) * 8) +
2957 ((ch % 4) * 4)) << 1);
2958 HFC_outb(hc, A_SL_CFG, 0x80 | 0x20 | (ch << 1));
2959 } else {
2960 /* enable TX fifo */
2961 HFC_outb(hc, R_FIFO, ch << 1);
2962 HFC_wait(hc);
2963 HFC_outb(hc, A_CON_HDLC, flow_tx | 0x00 |
2964 V_HDLC_TRP | V_IFF);
2965 HFC_outb(hc, A_SUBCH_CFG, 0);
2966 HFC_outb(hc, A_IRQ_MSK, 0);
2967 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
2968 HFC_wait(hc);
2969 /* tx silence */
2970 HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, silence);
2971 /* enable RX fifo */
2972 HFC_outb(hc, R_FIFO, (ch<<1)|1);
2973 HFC_wait(hc);
2974 HFC_outb(hc, A_CON_HDLC, flow_rx | 0x00 | V_HDLC_TRP);
2975 HFC_outb(hc, A_SUBCH_CFG, 0);
2976 HFC_outb(hc, A_IRQ_MSK, 0);
2977 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
2978 HFC_wait(hc);
2980 if (hc->type != 1) {
2981 hc->hw.a_st_ctrl0[hc->chan[ch].port] |=
2982 ((ch & 0x3) == 0) ? V_B1_EN : V_B2_EN;
2983 HFC_outb(hc, R_ST_SEL, hc->chan[ch].port);
2984 /* undocumented: delay after R_ST_SEL */
2985 udelay(1);
2986 HFC_outb(hc, A_ST_CTRL0,
2987 hc->hw.a_st_ctrl0[hc->chan[ch].port]);
2989 if (hc->chan[ch].bch)
2990 test_and_set_bit(FLG_TRANSPARENT,
2991 &hc->chan[ch].bch->Flags);
2992 break;
2993 case (ISDN_P_B_HDLC): /* B-channel */
2994 case (ISDN_P_TE_S0): /* D-channel */
2995 case (ISDN_P_NT_S0):
2996 case (ISDN_P_TE_E1):
2997 case (ISDN_P_NT_E1):
2998 /* enable TX fifo */
2999 HFC_outb(hc, R_FIFO, ch<<1);
3000 HFC_wait(hc);
3001 if (hc->type == 1 || hc->chan[ch].bch) {
3002 /* E1 or B-channel */
3003 HFC_outb(hc, A_CON_HDLC, flow_tx | 0x04);
3004 HFC_outb(hc, A_SUBCH_CFG, 0);
3005 } else {
3006 /* D-Channel without HDLC fill flags */
3007 HFC_outb(hc, A_CON_HDLC, flow_tx | 0x04 | V_IFF);
3008 HFC_outb(hc, A_SUBCH_CFG, 2);
3010 HFC_outb(hc, A_IRQ_MSK, V_IRQ);
3011 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3012 HFC_wait(hc);
3013 /* enable RX fifo */
3014 HFC_outb(hc, R_FIFO, (ch<<1)|1);
3015 HFC_wait(hc);
3016 HFC_outb(hc, A_CON_HDLC, flow_rx | 0x04);
3017 if (hc->type == 1 || hc->chan[ch].bch)
3018 HFC_outb(hc, A_SUBCH_CFG, 0); /* full 8 bits */
3019 else
3020 HFC_outb(hc, A_SUBCH_CFG, 2); /* 2 bits dchannel */
3021 HFC_outb(hc, A_IRQ_MSK, V_IRQ);
3022 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3023 HFC_wait(hc);
3024 if (hc->chan[ch].bch) {
3025 test_and_set_bit(FLG_HDLC, &hc->chan[ch].bch->Flags);
3026 if (hc->type != 1) {
3027 hc->hw.a_st_ctrl0[hc->chan[ch].port] |=
3028 ((ch&0x3) == 0) ? V_B1_EN : V_B2_EN;
3029 HFC_outb(hc, R_ST_SEL, hc->chan[ch].port);
3030 /* undocumented: delay after R_ST_SEL */
3031 udelay(1);
3032 HFC_outb(hc, A_ST_CTRL0,
3033 hc->hw.a_st_ctrl0[hc->chan[ch].port]);
3036 break;
3037 default:
3038 printk(KERN_DEBUG "%s: protocol not known %x\n",
3039 __func__, protocol);
3040 hc->chan[ch].protocol = ISDN_P_NONE;
3041 return -ENOPROTOOPT;
3043 hc->chan[ch].protocol = protocol;
3044 return 0;
3049 * connect/disconnect PCM
3052 static void
3053 hfcmulti_pcm(struct hfc_multi *hc, int ch, int slot_tx, int bank_tx,
3054 int slot_rx, int bank_rx)
3056 if (slot_rx < 0 || slot_rx < 0 || bank_tx < 0 || bank_rx < 0) {
3057 /* disable PCM */
3058 mode_hfcmulti(hc, ch, hc->chan[ch].protocol, -1, 0, -1, 0);
3059 return;
3062 /* enable pcm */
3063 mode_hfcmulti(hc, ch, hc->chan[ch].protocol, slot_tx, bank_tx,
3064 slot_rx, bank_rx);
3068 * set/disable conference
3071 static void
3072 hfcmulti_conf(struct hfc_multi *hc, int ch, int num)
3074 if (num >= 0 && num <= 7)
3075 hc->chan[ch].conf = num;
3076 else
3077 hc->chan[ch].conf = -1;
3078 mode_hfcmulti(hc, ch, hc->chan[ch].protocol, hc->chan[ch].slot_tx,
3079 hc->chan[ch].bank_tx, hc->chan[ch].slot_rx,
3080 hc->chan[ch].bank_rx);
3085 * set/disable sample loop
3088 /* NOTE: this function is experimental and therefore disabled */
3091 * Layer 1 callback function
3093 static int
3094 hfcm_l1callback(struct dchannel *dch, u_int cmd)
3096 struct hfc_multi *hc = dch->hw;
3097 u_long flags;
3099 switch (cmd) {
3100 case INFO3_P8:
3101 case INFO3_P10:
3102 break;
3103 case HW_RESET_REQ:
3104 /* start activation */
3105 spin_lock_irqsave(&hc->lock, flags);
3106 if (hc->type == 1) {
3107 if (debug & DEBUG_HFCMULTI_MSG)
3108 printk(KERN_DEBUG
3109 "%s: HW_RESET_REQ no BRI\n",
3110 __func__);
3111 } else {
3112 HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port);
3113 /* undocumented: delay after R_ST_SEL */
3114 udelay(1);
3115 HFC_outb(hc, A_ST_WR_STATE, V_ST_LD_STA | 3); /* F3 */
3116 udelay(6); /* wait at least 5,21us */
3117 HFC_outb(hc, A_ST_WR_STATE, 3);
3118 HFC_outb(hc, A_ST_WR_STATE, 3 | (V_ST_ACT*3));
3119 /* activate */
3121 spin_unlock_irqrestore(&hc->lock, flags);
3122 l1_event(dch->l1, HW_POWERUP_IND);
3123 break;
3124 case HW_DEACT_REQ:
3125 /* start deactivation */
3126 spin_lock_irqsave(&hc->lock, flags);
3127 if (hc->type == 1) {
3128 if (debug & DEBUG_HFCMULTI_MSG)
3129 printk(KERN_DEBUG
3130 "%s: HW_DEACT_REQ no BRI\n",
3131 __func__);
3132 } else {
3133 HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port);
3134 /* undocumented: delay after R_ST_SEL */
3135 udelay(1);
3136 HFC_outb(hc, A_ST_WR_STATE, V_ST_ACT*2);
3137 /* deactivate */
3138 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
3139 hc->syncronized &=
3140 ~(1 << hc->chan[dch->slot].port);
3141 plxsd_checksync(hc, 0);
3144 skb_queue_purge(&dch->squeue);
3145 if (dch->tx_skb) {
3146 dev_kfree_skb(dch->tx_skb);
3147 dch->tx_skb = NULL;
3149 dch->tx_idx = 0;
3150 if (dch->rx_skb) {
3151 dev_kfree_skb(dch->rx_skb);
3152 dch->rx_skb = NULL;
3154 test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
3155 if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
3156 del_timer(&dch->timer);
3157 spin_unlock_irqrestore(&hc->lock, flags);
3158 break;
3159 case HW_POWERUP_REQ:
3160 spin_lock_irqsave(&hc->lock, flags);
3161 if (hc->type == 1) {
3162 if (debug & DEBUG_HFCMULTI_MSG)
3163 printk(KERN_DEBUG
3164 "%s: HW_POWERUP_REQ no BRI\n",
3165 __func__);
3166 } else {
3167 HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port);
3168 /* undocumented: delay after R_ST_SEL */
3169 udelay(1);
3170 HFC_outb(hc, A_ST_WR_STATE, 3 | 0x10); /* activate */
3171 udelay(6); /* wait at least 5,21us */
3172 HFC_outb(hc, A_ST_WR_STATE, 3); /* activate */
3174 spin_unlock_irqrestore(&hc->lock, flags);
3175 break;
3176 case PH_ACTIVATE_IND:
3177 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
3178 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
3179 GFP_ATOMIC);
3180 break;
3181 case PH_DEACTIVATE_IND:
3182 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
3183 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
3184 GFP_ATOMIC);
3185 break;
3186 default:
3187 if (dch->debug & DEBUG_HW)
3188 printk(KERN_DEBUG "%s: unknown command %x\n",
3189 __func__, cmd);
3190 return -1;
3192 return 0;
3196 * Layer2 -> Layer 1 Transfer
3199 static int
3200 handle_dmsg(struct mISDNchannel *ch, struct sk_buff *skb)
3202 struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D);
3203 struct dchannel *dch = container_of(dev, struct dchannel, dev);
3204 struct hfc_multi *hc = dch->hw;
3205 struct mISDNhead *hh = mISDN_HEAD_P(skb);
3206 int ret = -EINVAL;
3207 unsigned int id;
3208 u_long flags;
3210 switch (hh->prim) {
3211 case PH_DATA_REQ:
3212 if (skb->len < 1)
3213 break;
3214 spin_lock_irqsave(&hc->lock, flags);
3215 ret = dchannel_senddata(dch, skb);
3216 if (ret > 0) { /* direct TX */
3217 id = hh->id; /* skb can be freed */
3218 hfcmulti_tx(hc, dch->slot);
3219 ret = 0;
3220 /* start fifo */
3221 HFC_outb(hc, R_FIFO, 0);
3222 HFC_wait(hc);
3223 spin_unlock_irqrestore(&hc->lock, flags);
3224 queue_ch_frame(ch, PH_DATA_CNF, id, NULL);
3225 } else
3226 spin_unlock_irqrestore(&hc->lock, flags);
3227 return ret;
3228 case PH_ACTIVATE_REQ:
3229 if (dch->dev.D.protocol != ISDN_P_TE_S0) {
3230 spin_lock_irqsave(&hc->lock, flags);
3231 ret = 0;
3232 if (debug & DEBUG_HFCMULTI_MSG)
3233 printk(KERN_DEBUG
3234 "%s: PH_ACTIVATE port %d (0..%d)\n",
3235 __func__, hc->chan[dch->slot].port,
3236 hc->ports-1);
3237 /* start activation */
3238 if (hc->type == 1) {
3239 ph_state_change(dch);
3240 if (debug & DEBUG_HFCMULTI_STATE)
3241 printk(KERN_DEBUG
3242 "%s: E1 report state %x \n",
3243 __func__, dch->state);
3244 } else {
3245 HFC_outb(hc, R_ST_SEL,
3246 hc->chan[dch->slot].port);
3247 /* undocumented: delay after R_ST_SEL */
3248 udelay(1);
3249 HFC_outb(hc, A_ST_WR_STATE, V_ST_LD_STA | 1);
3250 /* G1 */
3251 udelay(6); /* wait at least 5,21us */
3252 HFC_outb(hc, A_ST_WR_STATE, 1);
3253 HFC_outb(hc, A_ST_WR_STATE, 1 |
3254 (V_ST_ACT*3)); /* activate */
3255 dch->state = 1;
3257 spin_unlock_irqrestore(&hc->lock, flags);
3258 } else
3259 ret = l1_event(dch->l1, hh->prim);
3260 break;
3261 case PH_DEACTIVATE_REQ:
3262 test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
3263 if (dch->dev.D.protocol != ISDN_P_TE_S0) {
3264 spin_lock_irqsave(&hc->lock, flags);
3265 if (debug & DEBUG_HFCMULTI_MSG)
3266 printk(KERN_DEBUG
3267 "%s: PH_DEACTIVATE port %d (0..%d)\n",
3268 __func__, hc->chan[dch->slot].port,
3269 hc->ports-1);
3270 /* start deactivation */
3271 if (hc->type == 1) {
3272 if (debug & DEBUG_HFCMULTI_MSG)
3273 printk(KERN_DEBUG
3274 "%s: PH_DEACTIVATE no BRI\n",
3275 __func__);
3276 } else {
3277 HFC_outb(hc, R_ST_SEL,
3278 hc->chan[dch->slot].port);
3279 /* undocumented: delay after R_ST_SEL */
3280 udelay(1);
3281 HFC_outb(hc, A_ST_WR_STATE, V_ST_ACT * 2);
3282 /* deactivate */
3283 dch->state = 1;
3285 skb_queue_purge(&dch->squeue);
3286 if (dch->tx_skb) {
3287 dev_kfree_skb(dch->tx_skb);
3288 dch->tx_skb = NULL;
3290 dch->tx_idx = 0;
3291 if (dch->rx_skb) {
3292 dev_kfree_skb(dch->rx_skb);
3293 dch->rx_skb = NULL;
3295 test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
3296 if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
3297 del_timer(&dch->timer);
3298 #ifdef FIXME
3299 if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
3300 dchannel_sched_event(&hc->dch, D_CLEARBUSY);
3301 #endif
3302 ret = 0;
3303 spin_unlock_irqrestore(&hc->lock, flags);
3304 } else
3305 ret = l1_event(dch->l1, hh->prim);
3306 break;
3308 if (!ret)
3309 dev_kfree_skb(skb);
3310 return ret;
3313 static void
3314 deactivate_bchannel(struct bchannel *bch)
3316 struct hfc_multi *hc = bch->hw;
3317 u_long flags;
3319 spin_lock_irqsave(&hc->lock, flags);
3320 if (test_and_clear_bit(FLG_TX_NEXT, &bch->Flags)) {
3321 dev_kfree_skb(bch->next_skb);
3322 bch->next_skb = NULL;
3324 if (bch->tx_skb) {
3325 dev_kfree_skb(bch->tx_skb);
3326 bch->tx_skb = NULL;
3328 bch->tx_idx = 0;
3329 if (bch->rx_skb) {
3330 dev_kfree_skb(bch->rx_skb);
3331 bch->rx_skb = NULL;
3333 hc->chan[bch->slot].coeff_count = 0;
3334 test_and_clear_bit(FLG_ACTIVE, &bch->Flags);
3335 test_and_clear_bit(FLG_TX_BUSY, &bch->Flags);
3336 hc->chan[bch->slot].rx_off = 0;
3337 hc->chan[bch->slot].conf = -1;
3338 mode_hfcmulti(hc, bch->slot, ISDN_P_NONE, -1, 0, -1, 0);
3339 spin_unlock_irqrestore(&hc->lock, flags);
3342 static int
3343 handle_bmsg(struct mISDNchannel *ch, struct sk_buff *skb)
3345 struct bchannel *bch = container_of(ch, struct bchannel, ch);
3346 struct hfc_multi *hc = bch->hw;
3347 int ret = -EINVAL;
3348 struct mISDNhead *hh = mISDN_HEAD_P(skb);
3349 unsigned int id;
3350 u_long flags;
3352 switch (hh->prim) {
3353 case PH_DATA_REQ:
3354 if (!skb->len)
3355 break;
3356 spin_lock_irqsave(&hc->lock, flags);
3357 ret = bchannel_senddata(bch, skb);
3358 if (ret > 0) { /* direct TX */
3359 id = hh->id; /* skb can be freed */
3360 hfcmulti_tx(hc, bch->slot);
3361 ret = 0;
3362 /* start fifo */
3363 HFC_outb_nodebug(hc, R_FIFO, 0);
3364 HFC_wait_nodebug(hc);
3365 if (!test_bit(FLG_TRANSPARENT, &bch->Flags)) {
3366 spin_unlock_irqrestore(&hc->lock, flags);
3367 queue_ch_frame(ch, PH_DATA_CNF, id, NULL);
3368 } else
3369 spin_unlock_irqrestore(&hc->lock, flags);
3370 } else
3371 spin_unlock_irqrestore(&hc->lock, flags);
3372 return ret;
3373 case PH_ACTIVATE_REQ:
3374 if (debug & DEBUG_HFCMULTI_MSG)
3375 printk(KERN_DEBUG "%s: PH_ACTIVATE ch %d (0..32)\n",
3376 __func__, bch->slot);
3377 spin_lock_irqsave(&hc->lock, flags);
3378 /* activate B-channel if not already activated */
3379 if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) {
3380 hc->chan[bch->slot].txpending = 0;
3381 ret = mode_hfcmulti(hc, bch->slot,
3382 ch->protocol,
3383 hc->chan[bch->slot].slot_tx,
3384 hc->chan[bch->slot].bank_tx,
3385 hc->chan[bch->slot].slot_rx,
3386 hc->chan[bch->slot].bank_rx);
3387 if (!ret) {
3388 if (ch->protocol == ISDN_P_B_RAW && !hc->dtmf
3389 && test_bit(HFC_CHIP_DTMF, &hc->chip)) {
3390 /* start decoder */
3391 hc->dtmf = 1;
3392 if (debug & DEBUG_HFCMULTI_DTMF)
3393 printk(KERN_DEBUG
3394 "%s: start dtmf decoder\n",
3395 __func__);
3396 HFC_outb(hc, R_DTMF, hc->hw.r_dtmf |
3397 V_RST_DTMF);
3400 } else
3401 ret = 0;
3402 spin_unlock_irqrestore(&hc->lock, flags);
3403 if (!ret)
3404 _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY, 0, NULL,
3405 GFP_KERNEL);
3406 break;
3407 case PH_CONTROL_REQ:
3408 spin_lock_irqsave(&hc->lock, flags);
3409 switch (hh->id) {
3410 case HFC_SPL_LOOP_ON: /* set sample loop */
3411 if (debug & DEBUG_HFCMULTI_MSG)
3412 printk(KERN_DEBUG
3413 "%s: HFC_SPL_LOOP_ON (len = %d)\n",
3414 __func__, skb->len);
3415 ret = 0;
3416 break;
3417 case HFC_SPL_LOOP_OFF: /* set silence */
3418 if (debug & DEBUG_HFCMULTI_MSG)
3419 printk(KERN_DEBUG "%s: HFC_SPL_LOOP_OFF\n",
3420 __func__);
3421 ret = 0;
3422 break;
3423 default:
3424 printk(KERN_ERR
3425 "%s: unknown PH_CONTROL_REQ info %x\n",
3426 __func__, hh->id);
3427 ret = -EINVAL;
3429 spin_unlock_irqrestore(&hc->lock, flags);
3430 break;
3431 case PH_DEACTIVATE_REQ:
3432 deactivate_bchannel(bch); /* locked there */
3433 _queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY, 0, NULL,
3434 GFP_KERNEL);
3435 ret = 0;
3436 break;
3438 if (!ret)
3439 dev_kfree_skb(skb);
3440 return ret;
3444 * bchannel control function
3446 static int
3447 channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
3449 int ret = 0;
3450 struct dsp_features *features =
3451 (struct dsp_features *)(*((u_long *)&cq->p1));
3452 struct hfc_multi *hc = bch->hw;
3453 int slot_tx;
3454 int bank_tx;
3455 int slot_rx;
3456 int bank_rx;
3457 int num;
3459 switch (cq->op) {
3460 case MISDN_CTRL_GETOP:
3461 cq->op = MISDN_CTRL_HFC_OP | MISDN_CTRL_HW_FEATURES_OP
3462 | MISDN_CTRL_RX_OFF;
3463 break;
3464 case MISDN_CTRL_RX_OFF: /* turn off / on rx stream */
3465 hc->chan[bch->slot].rx_off = !!cq->p1;
3466 if (!hc->chan[bch->slot].rx_off) {
3467 /* reset fifo on rx on */
3468 HFC_outb_nodebug(hc, R_FIFO, (bch->slot << 1) | 1);
3469 HFC_wait_nodebug(hc);
3470 HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F);
3471 HFC_wait_nodebug(hc);
3473 if (debug & DEBUG_HFCMULTI_MSG)
3474 printk(KERN_DEBUG "%s: RX_OFF request (nr=%d off=%d)\n",
3475 __func__, bch->nr, hc->chan[bch->slot].rx_off);
3476 break;
3477 case MISDN_CTRL_HW_FEATURES: /* fill features structure */
3478 if (debug & DEBUG_HFCMULTI_MSG)
3479 printk(KERN_DEBUG "%s: HW_FEATURE request\n",
3480 __func__);
3481 /* create confirm */
3482 features->hfc_id = hc->id;
3483 if (test_bit(HFC_CHIP_DTMF, &hc->chip))
3484 features->hfc_dtmf = 1;
3485 features->hfc_loops = 0;
3486 if (test_bit(HFC_CHIP_B410P, &hc->chip)) {
3487 features->hfc_echocanhw = 1;
3488 } else {
3489 features->pcm_id = hc->pcm;
3490 features->pcm_slots = hc->slots;
3491 features->pcm_banks = 2;
3493 break;
3494 case MISDN_CTRL_HFC_PCM_CONN: /* connect to pcm timeslot (0..N) */
3495 slot_tx = cq->p1 & 0xff;
3496 bank_tx = cq->p1 >> 8;
3497 slot_rx = cq->p2 & 0xff;
3498 bank_rx = cq->p2 >> 8;
3499 if (debug & DEBUG_HFCMULTI_MSG)
3500 printk(KERN_DEBUG
3501 "%s: HFC_PCM_CONN slot %d bank %d (TX) "
3502 "slot %d bank %d (RX)\n",
3503 __func__, slot_tx, bank_tx,
3504 slot_rx, bank_rx);
3505 if (slot_tx < hc->slots && bank_tx <= 2 &&
3506 slot_rx < hc->slots && bank_rx <= 2)
3507 hfcmulti_pcm(hc, bch->slot,
3508 slot_tx, bank_tx, slot_rx, bank_rx);
3509 else {
3510 printk(KERN_WARNING
3511 "%s: HFC_PCM_CONN slot %d bank %d (TX) "
3512 "slot %d bank %d (RX) out of range\n",
3513 __func__, slot_tx, bank_tx,
3514 slot_rx, bank_rx);
3515 ret = -EINVAL;
3517 break;
3518 case MISDN_CTRL_HFC_PCM_DISC: /* release interface from pcm timeslot */
3519 if (debug & DEBUG_HFCMULTI_MSG)
3520 printk(KERN_DEBUG "%s: HFC_PCM_DISC\n",
3521 __func__);
3522 hfcmulti_pcm(hc, bch->slot, -1, 0, -1, 0);
3523 break;
3524 case MISDN_CTRL_HFC_CONF_JOIN: /* join conference (0..7) */
3525 num = cq->p1 & 0xff;
3526 if (debug & DEBUG_HFCMULTI_MSG)
3527 printk(KERN_DEBUG "%s: HFC_CONF_JOIN conf %d\n",
3528 __func__, num);
3529 if (num <= 7)
3530 hfcmulti_conf(hc, bch->slot, num);
3531 else {
3532 printk(KERN_WARNING
3533 "%s: HW_CONF_JOIN conf %d out of range\n",
3534 __func__, num);
3535 ret = -EINVAL;
3537 break;
3538 case MISDN_CTRL_HFC_CONF_SPLIT: /* split conference */
3539 if (debug & DEBUG_HFCMULTI_MSG)
3540 printk(KERN_DEBUG "%s: HFC_CONF_SPLIT\n", __func__);
3541 hfcmulti_conf(hc, bch->slot, -1);
3542 break;
3543 case MISDN_CTRL_HFC_ECHOCAN_ON:
3544 if (debug & DEBUG_HFCMULTI_MSG)
3545 printk(KERN_DEBUG "%s: HFC_ECHOCAN_ON\n", __func__);
3546 if (test_bit(HFC_CHIP_B410P, &hc->chip))
3547 vpm_echocan_on(hc, bch->slot, cq->p1);
3548 else
3549 ret = -EINVAL;
3550 break;
3552 case MISDN_CTRL_HFC_ECHOCAN_OFF:
3553 if (debug & DEBUG_HFCMULTI_MSG)
3554 printk(KERN_DEBUG "%s: HFC_ECHOCAN_OFF\n",
3555 __func__);
3556 if (test_bit(HFC_CHIP_B410P, &hc->chip))
3557 vpm_echocan_off(hc, bch->slot);
3558 else
3559 ret = -EINVAL;
3560 break;
3561 default:
3562 printk(KERN_WARNING "%s: unknown Op %x\n",
3563 __func__, cq->op);
3564 ret = -EINVAL;
3565 break;
3567 return ret;
3570 static int
3571 hfcm_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
3573 struct bchannel *bch = container_of(ch, struct bchannel, ch);
3574 struct hfc_multi *hc = bch->hw;
3575 int err = -EINVAL;
3576 u_long flags;
3578 if (bch->debug & DEBUG_HW)
3579 printk(KERN_DEBUG "%s: cmd:%x %p\n",
3580 __func__, cmd, arg);
3581 switch (cmd) {
3582 case CLOSE_CHANNEL:
3583 test_and_clear_bit(FLG_OPEN, &bch->Flags);
3584 if (test_bit(FLG_ACTIVE, &bch->Flags))
3585 deactivate_bchannel(bch); /* locked there */
3586 ch->protocol = ISDN_P_NONE;
3587 ch->peer = NULL;
3588 module_put(THIS_MODULE);
3589 err = 0;
3590 break;
3591 case CONTROL_CHANNEL:
3592 spin_lock_irqsave(&hc->lock, flags);
3593 err = channel_bctrl(bch, arg);
3594 spin_unlock_irqrestore(&hc->lock, flags);
3595 break;
3596 default:
3597 printk(KERN_WARNING "%s: unknown prim(%x)\n",
3598 __func__, cmd);
3600 return err;
3604 * handle D-channel events
3606 * handle state change event
3608 static void
3609 ph_state_change(struct dchannel *dch)
3611 struct hfc_multi *hc = dch->hw;
3612 int ch, i;
3614 if (!dch) {
3615 printk(KERN_WARNING "%s: ERROR given dch is NULL\n",
3616 __func__);
3617 return;
3619 ch = dch->slot;
3621 if (hc->type == 1) {
3622 if (dch->dev.D.protocol == ISDN_P_TE_E1) {
3623 if (debug & DEBUG_HFCMULTI_STATE)
3624 printk(KERN_DEBUG
3625 "%s: E1 TE (id=%d) newstate %x\n",
3626 __func__, hc->id, dch->state);
3627 } else {
3628 if (debug & DEBUG_HFCMULTI_STATE)
3629 printk(KERN_DEBUG
3630 "%s: E1 NT (id=%d) newstate %x\n",
3631 __func__, hc->id, dch->state);
3633 switch (dch->state) {
3634 case (1):
3635 if (hc->e1_state != 1) {
3636 for (i = 1; i <= 31; i++) {
3637 /* reset fifos on e1 activation */
3638 HFC_outb_nodebug(hc, R_FIFO, (i << 1) | 1);
3639 HFC_wait_nodebug(hc);
3640 HFC_outb_nodebug(hc,
3641 R_INC_RES_FIFO, V_RES_F);
3642 HFC_wait_nodebug(hc);
3645 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
3646 _queue_data(&dch->dev.D, PH_ACTIVATE_IND,
3647 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3648 break;
3650 default:
3651 if (hc->e1_state != 1)
3652 return;
3653 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
3654 _queue_data(&dch->dev.D, PH_DEACTIVATE_IND,
3655 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3657 hc->e1_state = dch->state;
3658 } else {
3659 if (dch->dev.D.protocol == ISDN_P_TE_S0) {
3660 if (debug & DEBUG_HFCMULTI_STATE)
3661 printk(KERN_DEBUG
3662 "%s: S/T TE newstate %x\n",
3663 __func__, dch->state);
3664 switch (dch->state) {
3665 case (0):
3666 l1_event(dch->l1, HW_RESET_IND);
3667 break;
3668 case (3):
3669 l1_event(dch->l1, HW_DEACT_IND);
3670 break;
3671 case (5):
3672 case (8):
3673 l1_event(dch->l1, ANYSIGNAL);
3674 break;
3675 case (6):
3676 l1_event(dch->l1, INFO2);
3677 break;
3678 case (7):
3679 l1_event(dch->l1, INFO4_P8);
3680 break;
3682 } else {
3683 if (debug & DEBUG_HFCMULTI_STATE)
3684 printk(KERN_DEBUG "%s: S/T NT newstate %x\n",
3685 __func__, dch->state);
3686 switch (dch->state) {
3687 case (2):
3688 if (hc->chan[ch].nt_timer == 0) {
3689 hc->chan[ch].nt_timer = -1;
3690 HFC_outb(hc, R_ST_SEL,
3691 hc->chan[ch].port);
3692 /* undocumented: delay after R_ST_SEL */
3693 udelay(1);
3694 HFC_outb(hc, A_ST_WR_STATE, 4 |
3695 V_ST_LD_STA); /* G4 */
3696 udelay(6); /* wait at least 5,21us */
3697 HFC_outb(hc, A_ST_WR_STATE, 4);
3698 dch->state = 4;
3699 } else {
3700 /* one extra count for the next event */
3701 hc->chan[ch].nt_timer =
3702 nt_t1_count[poll_timer] + 1;
3703 HFC_outb(hc, R_ST_SEL,
3704 hc->chan[ch].port);
3705 /* undocumented: delay after R_ST_SEL */
3706 udelay(1);
3707 /* allow G2 -> G3 transition */
3708 HFC_outb(hc, A_ST_WR_STATE, 2 |
3709 V_SET_G2_G3);
3711 break;
3712 case (1):
3713 hc->chan[ch].nt_timer = -1;
3714 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
3715 _queue_data(&dch->dev.D, PH_DEACTIVATE_IND,
3716 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3717 break;
3718 case (4):
3719 hc->chan[ch].nt_timer = -1;
3720 break;
3721 case (3):
3722 hc->chan[ch].nt_timer = -1;
3723 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
3724 _queue_data(&dch->dev.D, PH_ACTIVATE_IND,
3725 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3726 break;
3733 * called for card mode init message
3736 static void
3737 hfcmulti_initmode(struct dchannel *dch)
3739 struct hfc_multi *hc = dch->hw;
3740 u_char a_st_wr_state, r_e1_wr_sta;
3741 int i, pt;
3743 if (debug & DEBUG_HFCMULTI_INIT)
3744 printk(KERN_DEBUG "%s: entered\n", __func__);
3746 if (hc->type == 1) {
3747 hc->chan[hc->dslot].slot_tx = -1;
3748 hc->chan[hc->dslot].slot_rx = -1;
3749 hc->chan[hc->dslot].conf = -1;
3750 if (hc->dslot) {
3751 mode_hfcmulti(hc, hc->dslot, dch->dev.D.protocol,
3752 -1, 0, -1, 0);
3753 dch->timer.function = (void *) hfcmulti_dbusy_timer;
3754 dch->timer.data = (long) dch;
3755 init_timer(&dch->timer);
3757 for (i = 1; i <= 31; i++) {
3758 if (i == hc->dslot)
3759 continue;
3760 hc->chan[i].slot_tx = -1;
3761 hc->chan[i].slot_rx = -1;
3762 hc->chan[i].conf = -1;
3763 mode_hfcmulti(hc, i, ISDN_P_NONE, -1, 0, -1, 0);
3765 /* E1 */
3766 if (test_bit(HFC_CFG_REPORT_LOS, &hc->chan[hc->dslot].cfg)) {
3767 HFC_outb(hc, R_LOS0, 255); /* 2 ms */
3768 HFC_outb(hc, R_LOS1, 255); /* 512 ms */
3770 if (test_bit(HFC_CFG_OPTICAL, &hc->chan[hc->dslot].cfg)) {
3771 HFC_outb(hc, R_RX0, 0);
3772 hc->hw.r_tx0 = 0 | V_OUT_EN;
3773 } else {
3774 HFC_outb(hc, R_RX0, 1);
3775 hc->hw.r_tx0 = 1 | V_OUT_EN;
3777 hc->hw.r_tx1 = V_ATX | V_NTRI;
3778 HFC_outb(hc, R_TX0, hc->hw.r_tx0);
3779 HFC_outb(hc, R_TX1, hc->hw.r_tx1);
3780 HFC_outb(hc, R_TX_FR0, 0x00);
3781 HFC_outb(hc, R_TX_FR1, 0xf8);
3783 if (test_bit(HFC_CFG_CRC4, &hc->chan[hc->dslot].cfg))
3784 HFC_outb(hc, R_TX_FR2, V_TX_MF | V_TX_E | V_NEG_E);
3786 HFC_outb(hc, R_RX_FR0, V_AUTO_RESYNC | V_AUTO_RECO | 0);
3788 if (test_bit(HFC_CFG_CRC4, &hc->chan[hc->dslot].cfg))
3789 HFC_outb(hc, R_RX_FR1, V_RX_MF | V_RX_MF_SYNC);
3791 if (dch->dev.D.protocol == ISDN_P_NT_E1) {
3792 if (debug & DEBUG_HFCMULTI_INIT)
3793 printk(KERN_DEBUG "%s: E1 port is NT-mode\n",
3794 __func__);
3795 r_e1_wr_sta = 0; /* G0 */
3796 hc->e1_getclock = 0;
3797 } else {
3798 if (debug & DEBUG_HFCMULTI_INIT)
3799 printk(KERN_DEBUG "%s: E1 port is TE-mode\n",
3800 __func__);
3801 r_e1_wr_sta = 0; /* F0 */
3802 hc->e1_getclock = 1;
3804 if (test_bit(HFC_CHIP_RX_SYNC, &hc->chip))
3805 HFC_outb(hc, R_SYNC_OUT, V_SYNC_E1_RX);
3806 else
3807 HFC_outb(hc, R_SYNC_OUT, 0);
3808 if (test_bit(HFC_CHIP_E1CLOCK_GET, &hc->chip))
3809 hc->e1_getclock = 1;
3810 if (test_bit(HFC_CHIP_E1CLOCK_PUT, &hc->chip))
3811 hc->e1_getclock = 0;
3812 if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
3813 /* SLAVE (clock master) */
3814 if (debug & DEBUG_HFCMULTI_INIT)
3815 printk(KERN_DEBUG
3816 "%s: E1 port is clock master "
3817 "(clock from PCM)\n", __func__);
3818 HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC | V_PCM_SYNC);
3819 } else {
3820 if (hc->e1_getclock) {
3821 /* MASTER (clock slave) */
3822 if (debug & DEBUG_HFCMULTI_INIT)
3823 printk(KERN_DEBUG
3824 "%s: E1 port is clock slave "
3825 "(clock to PCM)\n", __func__);
3826 HFC_outb(hc, R_SYNC_CTRL, V_SYNC_OFFS);
3827 } else {
3828 /* MASTER (clock master) */
3829 if (debug & DEBUG_HFCMULTI_INIT)
3830 printk(KERN_DEBUG "%s: E1 port is "
3831 "clock master "
3832 "(clock from QUARTZ)\n",
3833 __func__);
3834 HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC |
3835 V_PCM_SYNC | V_JATT_OFF);
3836 HFC_outb(hc, R_SYNC_OUT, 0);
3839 HFC_outb(hc, R_JATT_ATT, 0x9c); /* undoc register */
3840 HFC_outb(hc, R_PWM_MD, V_PWM0_MD);
3841 HFC_outb(hc, R_PWM0, 0x50);
3842 HFC_outb(hc, R_PWM1, 0xff);
3843 /* state machine setup */
3844 HFC_outb(hc, R_E1_WR_STA, r_e1_wr_sta | V_E1_LD_STA);
3845 udelay(6); /* wait at least 5,21us */
3846 HFC_outb(hc, R_E1_WR_STA, r_e1_wr_sta);
3847 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
3848 hc->syncronized = 0;
3849 plxsd_checksync(hc, 0);
3851 } else {
3852 i = dch->slot;
3853 hc->chan[i].slot_tx = -1;
3854 hc->chan[i].slot_rx = -1;
3855 hc->chan[i].conf = -1;
3856 mode_hfcmulti(hc, i, dch->dev.D.protocol, -1, 0, -1, 0);
3857 dch->timer.function = (void *)hfcmulti_dbusy_timer;
3858 dch->timer.data = (long) dch;
3859 init_timer(&dch->timer);
3860 hc->chan[i - 2].slot_tx = -1;
3861 hc->chan[i - 2].slot_rx = -1;
3862 hc->chan[i - 2].conf = -1;
3863 mode_hfcmulti(hc, i - 2, ISDN_P_NONE, -1, 0, -1, 0);
3864 hc->chan[i - 1].slot_tx = -1;
3865 hc->chan[i - 1].slot_rx = -1;
3866 hc->chan[i - 1].conf = -1;
3867 mode_hfcmulti(hc, i - 1, ISDN_P_NONE, -1, 0, -1, 0);
3868 /* ST */
3869 pt = hc->chan[i].port;
3870 /* select interface */
3871 HFC_outb(hc, R_ST_SEL, pt);
3872 /* undocumented: delay after R_ST_SEL */
3873 udelay(1);
3874 if (dch->dev.D.protocol == ISDN_P_NT_S0) {
3875 if (debug & DEBUG_HFCMULTI_INIT)
3876 printk(KERN_DEBUG
3877 "%s: ST port %d is NT-mode\n",
3878 __func__, pt);
3879 /* clock delay */
3880 HFC_outb(hc, A_ST_CLK_DLY, clockdelay_nt);
3881 a_st_wr_state = 1; /* G1 */
3882 hc->hw.a_st_ctrl0[pt] = V_ST_MD;
3883 } else {
3884 if (debug & DEBUG_HFCMULTI_INIT)
3885 printk(KERN_DEBUG
3886 "%s: ST port %d is TE-mode\n",
3887 __func__, pt);
3888 /* clock delay */
3889 HFC_outb(hc, A_ST_CLK_DLY, clockdelay_te);
3890 a_st_wr_state = 2; /* F2 */
3891 hc->hw.a_st_ctrl0[pt] = 0;
3893 if (!test_bit(HFC_CFG_NONCAP_TX, &hc->chan[i].cfg))
3894 hc->hw.a_st_ctrl0[pt] |= V_TX_LI;
3895 /* line setup */
3896 HFC_outb(hc, A_ST_CTRL0, hc->hw.a_st_ctrl0[pt]);
3897 /* disable E-channel */
3898 if ((dch->dev.D.protocol == ISDN_P_NT_S0) ||
3899 test_bit(HFC_CFG_DIS_ECHANNEL, &hc->chan[i].cfg))
3900 HFC_outb(hc, A_ST_CTRL1, V_E_IGNO);
3901 else
3902 HFC_outb(hc, A_ST_CTRL1, 0);
3903 /* enable B-channel receive */
3904 HFC_outb(hc, A_ST_CTRL2, V_B1_RX_EN | V_B2_RX_EN);
3905 /* state machine setup */
3906 HFC_outb(hc, A_ST_WR_STATE, a_st_wr_state | V_ST_LD_STA);
3907 udelay(6); /* wait at least 5,21us */
3908 HFC_outb(hc, A_ST_WR_STATE, a_st_wr_state);
3909 hc->hw.r_sci_msk |= 1 << pt;
3910 /* state machine interrupts */
3911 HFC_outb(hc, R_SCI_MSK, hc->hw.r_sci_msk);
3912 /* unset sync on port */
3913 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
3914 hc->syncronized &=
3915 ~(1 << hc->chan[dch->slot].port);
3916 plxsd_checksync(hc, 0);
3919 if (debug & DEBUG_HFCMULTI_INIT)
3920 printk("%s: done\n", __func__);
3924 static int
3925 open_dchannel(struct hfc_multi *hc, struct dchannel *dch,
3926 struct channel_req *rq)
3928 int err = 0;
3929 u_long flags;
3931 if (debug & DEBUG_HW_OPEN)
3932 printk(KERN_DEBUG "%s: dev(%d) open from %p\n", __func__,
3933 dch->dev.id, __builtin_return_address(0));
3934 if (rq->protocol == ISDN_P_NONE)
3935 return -EINVAL;
3936 if ((dch->dev.D.protocol != ISDN_P_NONE) &&
3937 (dch->dev.D.protocol != rq->protocol)) {
3938 if (debug & DEBUG_HFCMULTI_MODE)
3939 printk(KERN_WARNING "%s: change protocol %x to %x\n",
3940 __func__, dch->dev.D.protocol, rq->protocol);
3942 if ((dch->dev.D.protocol == ISDN_P_TE_S0)
3943 && (rq->protocol != ISDN_P_TE_S0))
3944 l1_event(dch->l1, CLOSE_CHANNEL);
3945 if (dch->dev.D.protocol != rq->protocol) {
3946 if (rq->protocol == ISDN_P_TE_S0) {
3947 err = create_l1(dch, hfcm_l1callback);
3948 if (err)
3949 return err;
3951 dch->dev.D.protocol = rq->protocol;
3952 spin_lock_irqsave(&hc->lock, flags);
3953 hfcmulti_initmode(dch);
3954 spin_unlock_irqrestore(&hc->lock, flags);
3957 if (((rq->protocol == ISDN_P_NT_S0) && (dch->state == 3)) ||
3958 ((rq->protocol == ISDN_P_TE_S0) && (dch->state == 7)) ||
3959 ((rq->protocol == ISDN_P_NT_E1) && (dch->state == 1)) ||
3960 ((rq->protocol == ISDN_P_TE_E1) && (dch->state == 1))) {
3961 _queue_data(&dch->dev.D, PH_ACTIVATE_IND, MISDN_ID_ANY,
3962 0, NULL, GFP_KERNEL);
3964 rq->ch = &dch->dev.D;
3965 if (!try_module_get(THIS_MODULE))
3966 printk(KERN_WARNING "%s:cannot get module\n", __func__);
3967 return 0;
3970 static int
3971 open_bchannel(struct hfc_multi *hc, struct dchannel *dch,
3972 struct channel_req *rq)
3974 struct bchannel *bch;
3975 int ch;
3977 if (!test_channelmap(rq->adr.channel, dch->dev.channelmap))
3978 return -EINVAL;
3979 if (rq->protocol == ISDN_P_NONE)
3980 return -EINVAL;
3981 if (hc->type == 1)
3982 ch = rq->adr.channel;
3983 else
3984 ch = (rq->adr.channel - 1) + (dch->slot - 2);
3985 bch = hc->chan[ch].bch;
3986 if (!bch) {
3987 printk(KERN_ERR "%s:internal error ch %d has no bch\n",
3988 __func__, ch);
3989 return -EINVAL;
3991 if (test_and_set_bit(FLG_OPEN, &bch->Flags))
3992 return -EBUSY; /* b-channel can be only open once */
3993 bch->ch.protocol = rq->protocol;
3994 hc->chan[ch].rx_off = 0;
3995 rq->ch = &bch->ch;
3996 if (!try_module_get(THIS_MODULE))
3997 printk(KERN_WARNING "%s:cannot get module\n", __func__);
3998 return 0;
4002 * device control function
4004 static int
4005 channel_dctrl(struct dchannel *dch, struct mISDN_ctrl_req *cq)
4007 int ret = 0;
4009 switch (cq->op) {
4010 case MISDN_CTRL_GETOP:
4011 cq->op = 0;
4012 break;
4013 default:
4014 printk(KERN_WARNING "%s: unknown Op %x\n",
4015 __func__, cq->op);
4016 ret = -EINVAL;
4017 break;
4019 return ret;
4022 static int
4023 hfcm_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
4025 struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D);
4026 struct dchannel *dch = container_of(dev, struct dchannel, dev);
4027 struct hfc_multi *hc = dch->hw;
4028 struct channel_req *rq;
4029 int err = 0;
4030 u_long flags;
4032 if (dch->debug & DEBUG_HW)
4033 printk(KERN_DEBUG "%s: cmd:%x %p\n",
4034 __func__, cmd, arg);
4035 switch (cmd) {
4036 case OPEN_CHANNEL:
4037 rq = arg;
4038 switch (rq->protocol) {
4039 case ISDN_P_TE_S0:
4040 case ISDN_P_NT_S0:
4041 if (hc->type == 1) {
4042 err = -EINVAL;
4043 break;
4045 err = open_dchannel(hc, dch, rq); /* locked there */
4046 break;
4047 case ISDN_P_TE_E1:
4048 case ISDN_P_NT_E1:
4049 if (hc->type != 1) {
4050 err = -EINVAL;
4051 break;
4053 err = open_dchannel(hc, dch, rq); /* locked there */
4054 break;
4055 default:
4056 spin_lock_irqsave(&hc->lock, flags);
4057 err = open_bchannel(hc, dch, rq);
4058 spin_unlock_irqrestore(&hc->lock, flags);
4060 break;
4061 case CLOSE_CHANNEL:
4062 if (debug & DEBUG_HW_OPEN)
4063 printk(KERN_DEBUG "%s: dev(%d) close from %p\n",
4064 __func__, dch->dev.id,
4065 __builtin_return_address(0));
4066 module_put(THIS_MODULE);
4067 break;
4068 case CONTROL_CHANNEL:
4069 spin_lock_irqsave(&hc->lock, flags);
4070 err = channel_dctrl(dch, arg);
4071 spin_unlock_irqrestore(&hc->lock, flags);
4072 break;
4073 default:
4074 if (dch->debug & DEBUG_HW)
4075 printk(KERN_DEBUG "%s: unknown command %x\n",
4076 __func__, cmd);
4077 err = -EINVAL;
4079 return err;
4083 * initialize the card
4087 * start timer irq, wait some time and check if we have interrupts.
4088 * if not, reset chip and try again.
4090 static int
4091 init_card(struct hfc_multi *hc)
4093 int err = -EIO;
4094 u_long flags;
4095 u_short *plx_acc;
4096 u_long plx_flags;
4098 if (debug & DEBUG_HFCMULTI_INIT)
4099 printk(KERN_DEBUG "%s: entered\n", __func__);
4101 spin_lock_irqsave(&hc->lock, flags);
4102 /* set interrupts but leave global interrupt disabled */
4103 hc->hw.r_irq_ctrl = V_FIFO_IRQ;
4104 disable_hwirq(hc);
4105 spin_unlock_irqrestore(&hc->lock, flags);
4107 if (request_irq(hc->pci_dev->irq, hfcmulti_interrupt, IRQF_SHARED,
4108 "HFC-multi", hc)) {
4109 printk(KERN_WARNING "mISDN: Could not get interrupt %d.\n",
4110 hc->pci_dev->irq);
4111 return -EIO;
4113 hc->irq = hc->pci_dev->irq;
4115 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4116 spin_lock_irqsave(&plx_lock, plx_flags);
4117 plx_acc = (u_short *)(hc->plx_membase+PLX_INTCSR);
4118 writew((PLX_INTCSR_PCIINT_ENABLE | PLX_INTCSR_LINTI1_ENABLE),
4119 plx_acc); /* enable PCI & LINT1 irq */
4120 spin_unlock_irqrestore(&plx_lock, plx_flags);
4123 if (debug & DEBUG_HFCMULTI_INIT)
4124 printk(KERN_DEBUG "%s: IRQ %d count %d\n",
4125 __func__, hc->irq, hc->irqcnt);
4126 err = init_chip(hc);
4127 if (err)
4128 goto error;
4130 * Finally enable IRQ output
4131 * this is only allowed, if an IRQ routine is allready
4132 * established for this HFC, so don't do that earlier
4134 spin_lock_irqsave(&hc->lock, flags);
4135 enable_hwirq(hc);
4136 spin_unlock_irqrestore(&hc->lock, flags);
4137 /* printk(KERN_DEBUG "no master irq set!!!\n"); */
4138 set_current_state(TASK_UNINTERRUPTIBLE);
4139 schedule_timeout((100*HZ)/1000); /* Timeout 100ms */
4140 /* turn IRQ off until chip is completely initialized */
4141 spin_lock_irqsave(&hc->lock, flags);
4142 disable_hwirq(hc);
4143 spin_unlock_irqrestore(&hc->lock, flags);
4144 if (debug & DEBUG_HFCMULTI_INIT)
4145 printk(KERN_DEBUG "%s: IRQ %d count %d\n",
4146 __func__, hc->irq, hc->irqcnt);
4147 if (hc->irqcnt) {
4148 if (debug & DEBUG_HFCMULTI_INIT)
4149 printk(KERN_DEBUG "%s: done\n", __func__);
4151 return 0;
4153 if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
4154 printk(KERN_INFO "ignoring missing interrupts\n");
4155 return 0;
4158 printk(KERN_ERR "HFC PCI: IRQ(%d) getting no interrupts during init.\n",
4159 hc->irq);
4161 err = -EIO;
4163 error:
4164 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4165 spin_lock_irqsave(&plx_lock, plx_flags);
4166 plx_acc = (u_short *)(hc->plx_membase+PLX_INTCSR);
4167 writew(0x00, plx_acc); /*disable IRQs*/
4168 spin_unlock_irqrestore(&plx_lock, plx_flags);
4171 if (debug & DEBUG_HFCMULTI_INIT)
4172 printk(KERN_WARNING "%s: free irq %d\n", __func__, hc->irq);
4173 if (hc->irq) {
4174 free_irq(hc->irq, hc);
4175 hc->irq = 0;
4178 if (debug & DEBUG_HFCMULTI_INIT)
4179 printk(KERN_DEBUG "%s: done (err=%d)\n", __func__, err);
4180 return err;
4184 * find pci device and set it up
4187 static int
4188 setup_pci(struct hfc_multi *hc, struct pci_dev *pdev,
4189 const struct pci_device_id *ent)
4191 struct hm_map *m = (struct hm_map *)ent->driver_data;
4193 printk(KERN_INFO
4194 "HFC-multi: card manufacturer: '%s' card name: '%s' clock: %s\n",
4195 m->vendor_name, m->card_name, m->clock2 ? "double" : "normal");
4197 hc->pci_dev = pdev;
4198 if (m->clock2)
4199 test_and_set_bit(HFC_CHIP_CLOCK2, &hc->chip);
4201 if (ent->device == 0xB410) {
4202 test_and_set_bit(HFC_CHIP_B410P, &hc->chip);
4203 test_and_set_bit(HFC_CHIP_PCM_MASTER, &hc->chip);
4204 test_and_clear_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
4205 hc->slots = 32;
4208 if (hc->pci_dev->irq <= 0) {
4209 printk(KERN_WARNING "HFC-multi: No IRQ for PCI card found.\n");
4210 return -EIO;
4212 if (pci_enable_device(hc->pci_dev)) {
4213 printk(KERN_WARNING "HFC-multi: Error enabling PCI card.\n");
4214 return -EIO;
4216 hc->leds = m->leds;
4217 hc->ledstate = 0xAFFEAFFE;
4218 hc->opticalsupport = m->opticalsupport;
4220 /* set memory access methods */
4221 if (m->io_mode) /* use mode from card config */
4222 hc->io_mode = m->io_mode;
4223 switch (hc->io_mode) {
4224 case HFC_IO_MODE_PLXSD:
4225 test_and_set_bit(HFC_CHIP_PLXSD, &hc->chip);
4226 hc->slots = 128; /* required */
4227 /* fall through */
4228 case HFC_IO_MODE_PCIMEM:
4229 hc->HFC_outb = HFC_outb_pcimem;
4230 hc->HFC_inb = HFC_inb_pcimem;
4231 hc->HFC_inw = HFC_inw_pcimem;
4232 hc->HFC_wait = HFC_wait_pcimem;
4233 hc->read_fifo = read_fifo_pcimem;
4234 hc->write_fifo = write_fifo_pcimem;
4235 break;
4236 case HFC_IO_MODE_REGIO:
4237 hc->HFC_outb = HFC_outb_regio;
4238 hc->HFC_inb = HFC_inb_regio;
4239 hc->HFC_inw = HFC_inw_regio;
4240 hc->HFC_wait = HFC_wait_regio;
4241 hc->read_fifo = read_fifo_regio;
4242 hc->write_fifo = write_fifo_regio;
4243 break;
4244 default:
4245 printk(KERN_WARNING "HFC-multi: Invalid IO mode.\n");
4246 pci_disable_device(hc->pci_dev);
4247 return -EIO;
4249 hc->HFC_outb_nodebug = hc->HFC_outb;
4250 hc->HFC_inb_nodebug = hc->HFC_inb;
4251 hc->HFC_inw_nodebug = hc->HFC_inw;
4252 hc->HFC_wait_nodebug = hc->HFC_wait;
4253 #ifdef HFC_REGISTER_DEBUG
4254 hc->HFC_outb = HFC_outb_debug;
4255 hc->HFC_inb = HFC_inb_debug;
4256 hc->HFC_inw = HFC_inw_debug;
4257 hc->HFC_wait = HFC_wait_debug;
4258 #endif
4259 hc->pci_iobase = 0;
4260 hc->pci_membase = NULL;
4261 hc->plx_membase = NULL;
4263 switch (hc->io_mode) {
4264 case HFC_IO_MODE_PLXSD:
4265 hc->plx_origmembase = hc->pci_dev->resource[0].start;
4266 /* MEMBASE 1 is PLX PCI Bridge */
4268 if (!hc->plx_origmembase) {
4269 printk(KERN_WARNING
4270 "HFC-multi: No IO-Memory for PCI PLX bridge found\n");
4271 pci_disable_device(hc->pci_dev);
4272 return -EIO;
4275 hc->plx_membase = ioremap(hc->plx_origmembase, 0x80);
4276 if (!hc->plx_membase) {
4277 printk(KERN_WARNING
4278 "HFC-multi: failed to remap plx address space. "
4279 "(internal error)\n");
4280 pci_disable_device(hc->pci_dev);
4281 return -EIO;
4283 printk(KERN_INFO
4284 "HFC-multi: plx_membase:%#lx plx_origmembase:%#lx\n",
4285 (u_long)hc->plx_membase, hc->plx_origmembase);
4287 hc->pci_origmembase = hc->pci_dev->resource[2].start;
4288 /* MEMBASE 1 is PLX PCI Bridge */
4289 if (!hc->pci_origmembase) {
4290 printk(KERN_WARNING
4291 "HFC-multi: No IO-Memory for PCI card found\n");
4292 pci_disable_device(hc->pci_dev);
4293 return -EIO;
4296 hc->pci_membase = ioremap(hc->pci_origmembase, 0x400);
4297 if (!hc->pci_membase) {
4298 printk(KERN_WARNING "HFC-multi: failed to remap io "
4299 "address space. (internal error)\n");
4300 pci_disable_device(hc->pci_dev);
4301 return -EIO;
4304 printk(KERN_INFO
4305 "card %d: defined at MEMBASE %#lx (%#lx) IRQ %d HZ %d "
4306 "leds-type %d\n",
4307 hc->id, (u_long)hc->pci_membase, hc->pci_origmembase,
4308 hc->pci_dev->irq, HZ, hc->leds);
4309 pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_MEMIO);
4310 break;
4311 case HFC_IO_MODE_PCIMEM:
4312 hc->pci_origmembase = hc->pci_dev->resource[1].start;
4313 if (!hc->pci_origmembase) {
4314 printk(KERN_WARNING
4315 "HFC-multi: No IO-Memory for PCI card found\n");
4316 pci_disable_device(hc->pci_dev);
4317 return -EIO;
4320 hc->pci_membase = ioremap(hc->pci_origmembase, 256);
4321 if (!hc->pci_membase) {
4322 printk(KERN_WARNING
4323 "HFC-multi: failed to remap io address space. "
4324 "(internal error)\n");
4325 pci_disable_device(hc->pci_dev);
4326 return -EIO;
4328 printk(KERN_INFO "card %d: defined at MEMBASE %#lx (%#lx) IRQ %d "
4329 "HZ %d leds-type %d\n", hc->id, (u_long)hc->pci_membase,
4330 hc->pci_origmembase, hc->pci_dev->irq, HZ, hc->leds);
4331 pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_MEMIO);
4332 break;
4333 case HFC_IO_MODE_REGIO:
4334 hc->pci_iobase = (u_int) hc->pci_dev->resource[0].start;
4335 if (!hc->pci_iobase) {
4336 printk(KERN_WARNING
4337 "HFC-multi: No IO for PCI card found\n");
4338 pci_disable_device(hc->pci_dev);
4339 return -EIO;
4342 if (!request_region(hc->pci_iobase, 8, "hfcmulti")) {
4343 printk(KERN_WARNING "HFC-multi: failed to request "
4344 "address space at 0x%08lx (internal error)\n",
4345 hc->pci_iobase);
4346 pci_disable_device(hc->pci_dev);
4347 return -EIO;
4350 printk(KERN_INFO
4351 "%s %s: defined at IOBASE %#x IRQ %d HZ %d leds-type %d\n",
4352 m->vendor_name, m->card_name, (u_int) hc->pci_iobase,
4353 hc->pci_dev->irq, HZ, hc->leds);
4354 pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_REGIO);
4355 break;
4356 default:
4357 printk(KERN_WARNING "HFC-multi: Invalid IO mode.\n");
4358 pci_disable_device(hc->pci_dev);
4359 return -EIO;
4362 pci_set_drvdata(hc->pci_dev, hc);
4364 /* At this point the needed PCI config is done */
4365 /* fifos are still not enabled */
4366 return 0;
4371 * remove port
4374 static void
4375 release_port(struct hfc_multi *hc, struct dchannel *dch)
4377 int pt, ci, i = 0;
4378 u_long flags;
4379 struct bchannel *pb;
4381 ci = dch->slot;
4382 pt = hc->chan[ci].port;
4384 if (debug & DEBUG_HFCMULTI_INIT)
4385 printk(KERN_DEBUG "%s: entered for port %d\n",
4386 __func__, pt + 1);
4388 if (pt >= hc->ports) {
4389 printk(KERN_WARNING "%s: ERROR port out of range (%d).\n",
4390 __func__, pt + 1);
4391 return;
4394 if (debug & DEBUG_HFCMULTI_INIT)
4395 printk(KERN_DEBUG "%s: releasing port=%d\n",
4396 __func__, pt + 1);
4398 if (dch->dev.D.protocol == ISDN_P_TE_S0)
4399 l1_event(dch->l1, CLOSE_CHANNEL);
4401 hc->chan[ci].dch = NULL;
4403 if (hc->created[pt]) {
4404 hc->created[pt] = 0;
4405 mISDN_unregister_device(&dch->dev);
4408 spin_lock_irqsave(&hc->lock, flags);
4410 if (dch->timer.function) {
4411 del_timer(&dch->timer);
4412 dch->timer.function = NULL;
4415 if (hc->type == 1) { /* E1 */
4416 /* remove sync */
4417 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4418 hc->syncronized = 0;
4419 plxsd_checksync(hc, 1);
4421 /* free channels */
4422 for (i = 0; i <= 31; i++) {
4423 if (hc->chan[i].bch) {
4424 if (debug & DEBUG_HFCMULTI_INIT)
4425 printk(KERN_DEBUG
4426 "%s: free port %d channel %d\n",
4427 __func__, hc->chan[i].port+1, i);
4428 pb = hc->chan[i].bch;
4429 hc->chan[i].bch = NULL;
4430 spin_unlock_irqrestore(&hc->lock, flags);
4431 mISDN_freebchannel(pb);
4432 kfree(pb);
4433 kfree(hc->chan[i].coeff);
4434 spin_lock_irqsave(&hc->lock, flags);
4437 } else {
4438 /* remove sync */
4439 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4440 hc->syncronized &=
4441 ~(1 << hc->chan[ci].port);
4442 plxsd_checksync(hc, 1);
4444 /* free channels */
4445 if (hc->chan[ci - 2].bch) {
4446 if (debug & DEBUG_HFCMULTI_INIT)
4447 printk(KERN_DEBUG
4448 "%s: free port %d channel %d\n",
4449 __func__, hc->chan[ci - 2].port+1,
4450 ci - 2);
4451 pb = hc->chan[ci - 2].bch;
4452 hc->chan[ci - 2].bch = NULL;
4453 spin_unlock_irqrestore(&hc->lock, flags);
4454 mISDN_freebchannel(pb);
4455 kfree(pb);
4456 kfree(hc->chan[ci - 2].coeff);
4457 spin_lock_irqsave(&hc->lock, flags);
4459 if (hc->chan[ci - 1].bch) {
4460 if (debug & DEBUG_HFCMULTI_INIT)
4461 printk(KERN_DEBUG
4462 "%s: free port %d channel %d\n",
4463 __func__, hc->chan[ci - 1].port+1,
4464 ci - 1);
4465 pb = hc->chan[ci - 1].bch;
4466 hc->chan[ci - 1].bch = NULL;
4467 spin_unlock_irqrestore(&hc->lock, flags);
4468 mISDN_freebchannel(pb);
4469 kfree(pb);
4470 kfree(hc->chan[ci - 1].coeff);
4471 spin_lock_irqsave(&hc->lock, flags);
4475 spin_unlock_irqrestore(&hc->lock, flags);
4477 if (debug & DEBUG_HFCMULTI_INIT)
4478 printk(KERN_DEBUG "%s: free port %d channel D\n", __func__, pt);
4479 mISDN_freedchannel(dch);
4480 kfree(dch);
4482 if (debug & DEBUG_HFCMULTI_INIT)
4483 printk(KERN_DEBUG "%s: done!\n", __func__);
4486 static void
4487 release_card(struct hfc_multi *hc)
4489 u_long flags;
4490 int ch;
4492 if (debug & DEBUG_HFCMULTI_INIT)
4493 printk(KERN_WARNING "%s: release card (%d) entered\n",
4494 __func__, hc->id);
4496 spin_lock_irqsave(&hc->lock, flags);
4497 disable_hwirq(hc);
4498 spin_unlock_irqrestore(&hc->lock, flags);
4500 udelay(1000);
4502 /* dimm leds */
4503 if (hc->leds)
4504 hfcmulti_leds(hc);
4506 /* disable D-channels & B-channels */
4507 if (debug & DEBUG_HFCMULTI_INIT)
4508 printk(KERN_DEBUG "%s: disable all channels (d and b)\n",
4509 __func__);
4510 for (ch = 0; ch <= 31; ch++) {
4511 if (hc->chan[ch].dch)
4512 release_port(hc, hc->chan[ch].dch);
4515 /* release hardware & irq */
4516 if (hc->irq) {
4517 if (debug & DEBUG_HFCMULTI_INIT)
4518 printk(KERN_WARNING "%s: free irq %d\n",
4519 __func__, hc->irq);
4520 free_irq(hc->irq, hc);
4521 hc->irq = 0;
4524 release_io_hfcmulti(hc);
4526 if (debug & DEBUG_HFCMULTI_INIT)
4527 printk(KERN_WARNING "%s: remove instance from list\n",
4528 __func__);
4529 list_del(&hc->list);
4531 if (debug & DEBUG_HFCMULTI_INIT)
4532 printk(KERN_WARNING "%s: delete instance\n", __func__);
4533 if (hc == syncmaster)
4534 syncmaster = NULL;
4535 kfree(hc);
4536 if (debug & DEBUG_HFCMULTI_INIT)
4537 printk(KERN_WARNING "%s: card successfully removed\n",
4538 __func__);
4541 static int
4542 init_e1_port(struct hfc_multi *hc, struct hm_map *m)
4544 struct dchannel *dch;
4545 struct bchannel *bch;
4546 int ch, ret = 0;
4547 char name[MISDN_MAX_IDLEN];
4549 dch = kzalloc(sizeof(struct dchannel), GFP_KERNEL);
4550 if (!dch)
4551 return -ENOMEM;
4552 dch->debug = debug;
4553 mISDN_initdchannel(dch, MAX_DFRAME_LEN_L1, ph_state_change);
4554 dch->hw = hc;
4555 dch->dev.Dprotocols = (1 << ISDN_P_TE_E1) | (1 << ISDN_P_NT_E1);
4556 dch->dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
4557 (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
4558 dch->dev.D.send = handle_dmsg;
4559 dch->dev.D.ctrl = hfcm_dctrl;
4560 dch->dev.nrbchan = (hc->dslot)?30:31;
4561 dch->slot = hc->dslot;
4562 hc->chan[hc->dslot].dch = dch;
4563 hc->chan[hc->dslot].port = 0;
4564 hc->chan[hc->dslot].nt_timer = -1;
4565 for (ch = 1; ch <= 31; ch++) {
4566 if (ch == hc->dslot) /* skip dchannel */
4567 continue;
4568 bch = kzalloc(sizeof(struct bchannel), GFP_KERNEL);
4569 if (!bch) {
4570 printk(KERN_ERR "%s: no memory for bchannel\n",
4571 __func__);
4572 ret = -ENOMEM;
4573 goto free_chan;
4575 hc->chan[ch].coeff = kzalloc(512, GFP_KERNEL);
4576 if (!hc->chan[ch].coeff) {
4577 printk(KERN_ERR "%s: no memory for coeffs\n",
4578 __func__);
4579 ret = -ENOMEM;
4580 goto free_chan;
4582 bch->nr = ch;
4583 bch->slot = ch;
4584 bch->debug = debug;
4585 mISDN_initbchannel(bch, MAX_DATA_MEM);
4586 bch->hw = hc;
4587 bch->ch.send = handle_bmsg;
4588 bch->ch.ctrl = hfcm_bctrl;
4589 bch->ch.nr = ch;
4590 list_add(&bch->ch.list, &dch->dev.bchannels);
4591 hc->chan[ch].bch = bch;
4592 hc->chan[ch].port = 0;
4593 set_channelmap(bch->nr, dch->dev.channelmap);
4595 /* set optical line type */
4596 if (port[Port_cnt] & 0x001) {
4597 if (!m->opticalsupport) {
4598 printk(KERN_INFO
4599 "This board has no optical "
4600 "support\n");
4601 } else {
4602 if (debug & DEBUG_HFCMULTI_INIT)
4603 printk(KERN_DEBUG
4604 "%s: PORT set optical "
4605 "interfacs: card(%d) "
4606 "port(%d)\n",
4607 __func__,
4608 HFC_cnt + 1, 1);
4609 test_and_set_bit(HFC_CFG_OPTICAL,
4610 &hc->chan[hc->dslot].cfg);
4613 /* set LOS report */
4614 if (port[Port_cnt] & 0x004) {
4615 if (debug & DEBUG_HFCMULTI_INIT)
4616 printk(KERN_DEBUG "%s: PORT set "
4617 "LOS report: card(%d) port(%d)\n",
4618 __func__, HFC_cnt + 1, 1);
4619 test_and_set_bit(HFC_CFG_REPORT_LOS,
4620 &hc->chan[hc->dslot].cfg);
4622 /* set AIS report */
4623 if (port[Port_cnt] & 0x008) {
4624 if (debug & DEBUG_HFCMULTI_INIT)
4625 printk(KERN_DEBUG "%s: PORT set "
4626 "AIS report: card(%d) port(%d)\n",
4627 __func__, HFC_cnt + 1, 1);
4628 test_and_set_bit(HFC_CFG_REPORT_AIS,
4629 &hc->chan[hc->dslot].cfg);
4631 /* set SLIP report */
4632 if (port[Port_cnt] & 0x010) {
4633 if (debug & DEBUG_HFCMULTI_INIT)
4634 printk(KERN_DEBUG
4635 "%s: PORT set SLIP report: "
4636 "card(%d) port(%d)\n",
4637 __func__, HFC_cnt + 1, 1);
4638 test_and_set_bit(HFC_CFG_REPORT_SLIP,
4639 &hc->chan[hc->dslot].cfg);
4641 /* set RDI report */
4642 if (port[Port_cnt] & 0x020) {
4643 if (debug & DEBUG_HFCMULTI_INIT)
4644 printk(KERN_DEBUG
4645 "%s: PORT set RDI report: "
4646 "card(%d) port(%d)\n",
4647 __func__, HFC_cnt + 1, 1);
4648 test_and_set_bit(HFC_CFG_REPORT_RDI,
4649 &hc->chan[hc->dslot].cfg);
4651 /* set CRC-4 Mode */
4652 if (!(port[Port_cnt] & 0x100)) {
4653 if (debug & DEBUG_HFCMULTI_INIT)
4654 printk(KERN_DEBUG "%s: PORT turn on CRC4 report:"
4655 " card(%d) port(%d)\n",
4656 __func__, HFC_cnt + 1, 1);
4657 test_and_set_bit(HFC_CFG_CRC4,
4658 &hc->chan[hc->dslot].cfg);
4659 } else {
4660 if (debug & DEBUG_HFCMULTI_INIT)
4661 printk(KERN_DEBUG "%s: PORT turn off CRC4"
4662 " report: card(%d) port(%d)\n",
4663 __func__, HFC_cnt + 1, 1);
4665 /* set forced clock */
4666 if (port[Port_cnt] & 0x0200) {
4667 if (debug & DEBUG_HFCMULTI_INIT)
4668 printk(KERN_DEBUG "%s: PORT force getting clock from "
4669 "E1: card(%d) port(%d)\n",
4670 __func__, HFC_cnt + 1, 1);
4671 test_and_set_bit(HFC_CHIP_E1CLOCK_GET, &hc->chip);
4672 } else
4673 if (port[Port_cnt] & 0x0400) {
4674 if (debug & DEBUG_HFCMULTI_INIT)
4675 printk(KERN_DEBUG "%s: PORT force putting clock to "
4676 "E1: card(%d) port(%d)\n",
4677 __func__, HFC_cnt + 1, 1);
4678 test_and_set_bit(HFC_CHIP_E1CLOCK_PUT, &hc->chip);
4680 /* set JATT PLL */
4681 if (port[Port_cnt] & 0x0800) {
4682 if (debug & DEBUG_HFCMULTI_INIT)
4683 printk(KERN_DEBUG "%s: PORT disable JATT PLL on "
4684 "E1: card(%d) port(%d)\n",
4685 __func__, HFC_cnt + 1, 1);
4686 test_and_set_bit(HFC_CHIP_RX_SYNC, &hc->chip);
4688 /* set elastic jitter buffer */
4689 if (port[Port_cnt] & 0x3000) {
4690 hc->chan[hc->dslot].jitter = (port[Port_cnt]>>12) & 0x3;
4691 if (debug & DEBUG_HFCMULTI_INIT)
4692 printk(KERN_DEBUG
4693 "%s: PORT set elastic "
4694 "buffer to %d: card(%d) port(%d)\n",
4695 __func__, hc->chan[hc->dslot].jitter,
4696 HFC_cnt + 1, 1);
4697 } else
4698 hc->chan[hc->dslot].jitter = 2; /* default */
4699 snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-e1.%d", HFC_cnt + 1);
4700 ret = mISDN_register_device(&dch->dev, name);
4701 if (ret)
4702 goto free_chan;
4703 hc->created[0] = 1;
4704 return ret;
4705 free_chan:
4706 release_port(hc, dch);
4707 return ret;
4710 static int
4711 init_multi_port(struct hfc_multi *hc, int pt)
4713 struct dchannel *dch;
4714 struct bchannel *bch;
4715 int ch, i, ret = 0;
4716 char name[MISDN_MAX_IDLEN];
4718 dch = kzalloc(sizeof(struct dchannel), GFP_KERNEL);
4719 if (!dch)
4720 return -ENOMEM;
4721 dch->debug = debug;
4722 mISDN_initdchannel(dch, MAX_DFRAME_LEN_L1, ph_state_change);
4723 dch->hw = hc;
4724 dch->dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
4725 dch->dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
4726 (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
4727 dch->dev.D.send = handle_dmsg;
4728 dch->dev.D.ctrl = hfcm_dctrl;
4729 dch->dev.nrbchan = 2;
4730 i = pt << 2;
4731 dch->slot = i + 2;
4732 hc->chan[i + 2].dch = dch;
4733 hc->chan[i + 2].port = pt;
4734 hc->chan[i + 2].nt_timer = -1;
4735 for (ch = 0; ch < dch->dev.nrbchan; ch++) {
4736 bch = kzalloc(sizeof(struct bchannel), GFP_KERNEL);
4737 if (!bch) {
4738 printk(KERN_ERR "%s: no memory for bchannel\n",
4739 __func__);
4740 ret = -ENOMEM;
4741 goto free_chan;
4743 hc->chan[i + ch].coeff = kzalloc(512, GFP_KERNEL);
4744 if (!hc->chan[i + ch].coeff) {
4745 printk(KERN_ERR "%s: no memory for coeffs\n",
4746 __func__);
4747 ret = -ENOMEM;
4748 goto free_chan;
4750 bch->nr = ch + 1;
4751 bch->slot = i + ch;
4752 bch->debug = debug;
4753 mISDN_initbchannel(bch, MAX_DATA_MEM);
4754 bch->hw = hc;
4755 bch->ch.send = handle_bmsg;
4756 bch->ch.ctrl = hfcm_bctrl;
4757 bch->ch.nr = ch + 1;
4758 list_add(&bch->ch.list, &dch->dev.bchannels);
4759 hc->chan[i + ch].bch = bch;
4760 hc->chan[i + ch].port = pt;
4761 set_channelmap(bch->nr, dch->dev.channelmap);
4763 /* set master clock */
4764 if (port[Port_cnt] & 0x001) {
4765 if (debug & DEBUG_HFCMULTI_INIT)
4766 printk(KERN_DEBUG
4767 "%s: PROTOCOL set master clock: "
4768 "card(%d) port(%d)\n",
4769 __func__, HFC_cnt + 1, pt + 1);
4770 if (dch->dev.D.protocol != ISDN_P_TE_S0) {
4771 printk(KERN_ERR "Error: Master clock "
4772 "for port(%d) of card(%d) is only"
4773 " possible with TE-mode\n",
4774 pt + 1, HFC_cnt + 1);
4775 ret = -EINVAL;
4776 goto free_chan;
4778 if (hc->masterclk >= 0) {
4779 printk(KERN_ERR "Error: Master clock "
4780 "for port(%d) of card(%d) already "
4781 "defined for port(%d)\n",
4782 pt + 1, HFC_cnt + 1, hc->masterclk+1);
4783 ret = -EINVAL;
4784 goto free_chan;
4786 hc->masterclk = pt;
4788 /* set transmitter line to non capacitive */
4789 if (port[Port_cnt] & 0x002) {
4790 if (debug & DEBUG_HFCMULTI_INIT)
4791 printk(KERN_DEBUG
4792 "%s: PROTOCOL set non capacitive "
4793 "transmitter: card(%d) port(%d)\n",
4794 __func__, HFC_cnt + 1, pt + 1);
4795 test_and_set_bit(HFC_CFG_NONCAP_TX,
4796 &hc->chan[i + 2].cfg);
4798 /* disable E-channel */
4799 if (port[Port_cnt] & 0x004) {
4800 if (debug & DEBUG_HFCMULTI_INIT)
4801 printk(KERN_DEBUG
4802 "%s: PROTOCOL disable E-channel: "
4803 "card(%d) port(%d)\n",
4804 __func__, HFC_cnt + 1, pt + 1);
4805 test_and_set_bit(HFC_CFG_DIS_ECHANNEL,
4806 &hc->chan[i + 2].cfg);
4808 snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-%ds.%d/%d",
4809 hc->type, HFC_cnt + 1, pt + 1);
4810 ret = mISDN_register_device(&dch->dev, name);
4811 if (ret)
4812 goto free_chan;
4813 hc->created[pt] = 1;
4814 return ret;
4815 free_chan:
4816 release_port(hc, dch);
4817 return ret;
4820 static int
4821 hfcmulti_init(struct pci_dev *pdev, const struct pci_device_id *ent)
4823 struct hm_map *m = (struct hm_map *)ent->driver_data;
4824 int ret_err = 0;
4825 int pt;
4826 struct hfc_multi *hc;
4827 u_long flags;
4828 u_char dips = 0, pmj = 0; /* dip settings, port mode Jumpers */
4830 if (HFC_cnt >= MAX_CARDS) {
4831 printk(KERN_ERR "too many cards (max=%d).\n",
4832 MAX_CARDS);
4833 return -EINVAL;
4835 if ((type[HFC_cnt] & 0xff) && (type[HFC_cnt] & 0xff) != m->type) {
4836 printk(KERN_WARNING "HFC-MULTI: Card '%s:%s' type %d found but "
4837 "type[%d] %d was supplied as module parameter\n",
4838 m->vendor_name, m->card_name, m->type, HFC_cnt,
4839 type[HFC_cnt] & 0xff);
4840 printk(KERN_WARNING "HFC-MULTI: Load module without parameters "
4841 "first, to see cards and their types.");
4842 return -EINVAL;
4844 if (debug & DEBUG_HFCMULTI_INIT)
4845 printk(KERN_DEBUG "%s: Registering %s:%s chip type %d (0x%x)\n",
4846 __func__, m->vendor_name, m->card_name, m->type,
4847 type[HFC_cnt]);
4849 /* allocate card+fifo structure */
4850 hc = kzalloc(sizeof(struct hfc_multi), GFP_KERNEL);
4851 if (!hc) {
4852 printk(KERN_ERR "No kmem for HFC-Multi card\n");
4853 return -ENOMEM;
4855 spin_lock_init(&hc->lock);
4856 hc->mtyp = m;
4857 hc->type = m->type;
4858 hc->ports = m->ports;
4859 hc->id = HFC_cnt;
4860 hc->pcm = pcm[HFC_cnt];
4861 hc->io_mode = iomode[HFC_cnt];
4862 if (dslot[HFC_cnt] < 0) {
4863 hc->dslot = 0;
4864 printk(KERN_INFO "HFC-E1 card has disabled D-channel, but "
4865 "31 B-channels\n");
4866 } if (dslot[HFC_cnt] > 0 && dslot[HFC_cnt] < 32) {
4867 hc->dslot = dslot[HFC_cnt];
4868 printk(KERN_INFO "HFC-E1 card has alternating D-channel on "
4869 "time slot %d\n", dslot[HFC_cnt]);
4870 } else
4871 hc->dslot = 16;
4873 /* set chip specific features */
4874 hc->masterclk = -1;
4875 if (type[HFC_cnt] & 0x100) {
4876 test_and_set_bit(HFC_CHIP_ULAW, &hc->chip);
4877 silence = 0xff; /* ulaw silence */
4878 } else
4879 silence = 0x2a; /* alaw silence */
4880 if (!(type[HFC_cnt] & 0x200))
4881 test_and_set_bit(HFC_CHIP_DTMF, &hc->chip);
4883 if (type[HFC_cnt] & 0x800)
4884 test_and_set_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
4885 if (type[HFC_cnt] & 0x1000) {
4886 test_and_set_bit(HFC_CHIP_PCM_MASTER, &hc->chip);
4887 test_and_clear_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
4889 if (type[HFC_cnt] & 0x4000)
4890 test_and_set_bit(HFC_CHIP_EXRAM_128, &hc->chip);
4891 if (type[HFC_cnt] & 0x8000)
4892 test_and_set_bit(HFC_CHIP_EXRAM_512, &hc->chip);
4893 hc->slots = 32;
4894 if (type[HFC_cnt] & 0x10000)
4895 hc->slots = 64;
4896 if (type[HFC_cnt] & 0x20000)
4897 hc->slots = 128;
4898 if (type[HFC_cnt] & 0x80000) {
4899 test_and_set_bit(HFC_CHIP_WATCHDOG, &hc->chip);
4900 hc->wdcount = 0;
4901 hc->wdbyte = V_GPIO_OUT2;
4902 printk(KERN_NOTICE "Watchdog enabled\n");
4905 /* setup pci, hc->slots may change due to PLXSD */
4906 ret_err = setup_pci(hc, pdev, ent);
4907 if (ret_err) {
4908 if (hc == syncmaster)
4909 syncmaster = NULL;
4910 kfree(hc);
4911 return ret_err;
4914 /* crate channels */
4915 for (pt = 0; pt < hc->ports; pt++) {
4916 if (Port_cnt >= MAX_PORTS) {
4917 printk(KERN_ERR "too many ports (max=%d).\n",
4918 MAX_PORTS);
4919 ret_err = -EINVAL;
4920 goto free_card;
4922 if (hc->type == 1)
4923 ret_err = init_e1_port(hc, m);
4924 else
4925 ret_err = init_multi_port(hc, pt);
4926 if (debug & DEBUG_HFCMULTI_INIT)
4927 printk(KERN_DEBUG
4928 "%s: Registering D-channel, card(%d) port(%d)"
4929 "result %d\n",
4930 __func__, HFC_cnt + 1, pt, ret_err);
4932 if (ret_err) {
4933 while (pt) { /* release already registered ports */
4934 pt--;
4935 release_port(hc, hc->chan[(pt << 2) + 2].dch);
4937 goto free_card;
4939 Port_cnt++;
4942 /* disp switches */
4943 switch (m->dip_type) {
4944 case DIP_4S:
4946 * get DIP Setting for beroNet 1S/2S/4S cards
4947 * check if Port Jumper config matches
4948 * module param 'protocol'
4949 * DIP Setting: (collect GPIO 13/14/15 (R_GPIO_IN1) +
4950 * GPI 19/23 (R_GPI_IN2))
4952 dips = ((~HFC_inb(hc, R_GPIO_IN1) & 0xE0) >> 5) |
4953 ((~HFC_inb(hc, R_GPI_IN2) & 0x80) >> 3) |
4954 (~HFC_inb(hc, R_GPI_IN2) & 0x08);
4956 /* Port mode (TE/NT) jumpers */
4957 pmj = ((HFC_inb(hc, R_GPI_IN3) >> 4) & 0xf);
4959 if (test_bit(HFC_CHIP_B410P, &hc->chip))
4960 pmj = ~pmj & 0xf;
4962 printk(KERN_INFO "%s: %s DIPs(0x%x) jumpers(0x%x)\n",
4963 m->vendor_name, m->card_name, dips, pmj);
4964 break;
4965 case DIP_8S:
4967 * get DIP Setting for beroNet 8S0+ cards
4969 * enable PCI auxbridge function
4971 HFC_outb(hc, R_BRG_PCM_CFG, 1 | V_PCM_CLK);
4972 /* prepare access to auxport */
4973 outw(0x4000, hc->pci_iobase + 4);
4975 * some dummy reads are required to
4976 * read valid DIP switch data
4978 dips = inb(hc->pci_iobase);
4979 dips = inb(hc->pci_iobase);
4980 dips = inb(hc->pci_iobase);
4981 dips = ~inb(hc->pci_iobase) & 0x3F;
4982 outw(0x0, hc->pci_iobase + 4);
4983 /* disable PCI auxbridge function */
4984 HFC_outb(hc, R_BRG_PCM_CFG, V_PCM_CLK);
4985 printk(KERN_INFO "%s: %s DIPs(0x%x)\n",
4986 m->vendor_name, m->card_name, dips);
4987 break;
4988 case DIP_E1:
4990 * get DIP Setting for beroNet E1 cards
4991 * DIP Setting: collect GPI 4/5/6/7 (R_GPI_IN0)
4993 dips = (~HFC_inb(hc, R_GPI_IN0) & 0xF0)>>4;
4994 printk(KERN_INFO "%s: %s DIPs(0x%x)\n",
4995 m->vendor_name, m->card_name, dips);
4996 break;
4999 /* add to list */
5000 spin_lock_irqsave(&HFClock, flags);
5001 list_add_tail(&hc->list, &HFClist);
5002 spin_unlock_irqrestore(&HFClock, flags);
5004 /* initialize hardware */
5005 ret_err = init_card(hc);
5006 if (ret_err) {
5007 printk(KERN_ERR "init card returns %d\n", ret_err);
5008 release_card(hc);
5009 return ret_err;
5012 /* start IRQ and return */
5013 spin_lock_irqsave(&hc->lock, flags);
5014 enable_hwirq(hc);
5015 spin_unlock_irqrestore(&hc->lock, flags);
5016 return 0;
5018 free_card:
5019 release_io_hfcmulti(hc);
5020 if (hc == syncmaster)
5021 syncmaster = NULL;
5022 kfree(hc);
5023 return ret_err;
5026 static void __devexit hfc_remove_pci(struct pci_dev *pdev)
5028 struct hfc_multi *card = pci_get_drvdata(pdev);
5029 u_long flags;
5031 if (debug)
5032 printk(KERN_INFO "removing hfc_multi card vendor:%x "
5033 "device:%x subvendor:%x subdevice:%x\n",
5034 pdev->vendor, pdev->device,
5035 pdev->subsystem_vendor, pdev->subsystem_device);
5037 if (card) {
5038 spin_lock_irqsave(&HFClock, flags);
5039 release_card(card);
5040 spin_unlock_irqrestore(&HFClock, flags);
5041 } else {
5042 if (debug)
5043 printk(KERN_WARNING "%s: drvdata allready removed\n",
5044 __func__);
5048 #define VENDOR_CCD "Cologne Chip AG"
5049 #define VENDOR_BN "beroNet GmbH"
5050 #define VENDOR_DIG "Digium Inc."
5051 #define VENDOR_JH "Junghanns.NET GmbH"
5052 #define VENDOR_PRIM "PrimuX"
5054 static const struct hm_map hfcm_map[] = {
5055 /*0*/ {VENDOR_BN, "HFC-1S Card (mini PCI)", 4, 1, 1, 3, 0, DIP_4S, 0},
5056 /*1*/ {VENDOR_BN, "HFC-2S Card", 4, 2, 1, 3, 0, DIP_4S, 0},
5057 /*2*/ {VENDOR_BN, "HFC-2S Card (mini PCI)", 4, 2, 1, 3, 0, DIP_4S, 0},
5058 /*3*/ {VENDOR_BN, "HFC-4S Card", 4, 4, 1, 2, 0, DIP_4S, 0},
5059 /*4*/ {VENDOR_BN, "HFC-4S Card (mini PCI)", 4, 4, 1, 2, 0, 0, 0},
5060 /*5*/ {VENDOR_CCD, "HFC-4S Eval (old)", 4, 4, 0, 0, 0, 0, 0},
5061 /*6*/ {VENDOR_CCD, "HFC-4S IOB4ST", 4, 4, 1, 2, 0, DIP_4S, 0},
5062 /*7*/ {VENDOR_CCD, "HFC-4S", 4, 4, 1, 2, 0, 0, 0},
5063 /*8*/ {VENDOR_DIG, "HFC-4S Card", 4, 4, 0, 2, 0, 0, HFC_IO_MODE_REGIO},
5064 /*9*/ {VENDOR_CCD, "HFC-4S Swyx 4xS0 SX2 QuadBri", 4, 4, 1, 2, 0, 0, 0},
5065 /*10*/ {VENDOR_JH, "HFC-4S (junghanns 2.0)", 4, 4, 1, 2, 0, 0, 0},
5066 /*11*/ {VENDOR_PRIM, "HFC-2S Primux Card", 4, 2, 0, 0, 0, 0, 0},
5068 /*12*/ {VENDOR_BN, "HFC-8S Card", 8, 8, 1, 0, 0, 0, 0},
5069 /*13*/ {VENDOR_BN, "HFC-8S Card (+)", 8, 8, 1, 8, 0, DIP_8S,
5070 HFC_IO_MODE_REGIO},
5071 /*14*/ {VENDOR_CCD, "HFC-8S Eval (old)", 8, 8, 0, 0, 0, 0, 0},
5072 /*15*/ {VENDOR_CCD, "HFC-8S IOB4ST Recording", 8, 8, 1, 0, 0, 0, 0},
5074 /*16*/ {VENDOR_CCD, "HFC-8S IOB8ST", 8, 8, 1, 0, 0, 0, 0},
5075 /*17*/ {VENDOR_CCD, "HFC-8S", 8, 8, 1, 0, 0, 0, 0},
5076 /*18*/ {VENDOR_CCD, "HFC-8S", 8, 8, 1, 0, 0, 0, 0},
5078 /*19*/ {VENDOR_BN, "HFC-E1 Card", 1, 1, 0, 1, 0, DIP_E1, 0},
5079 /*20*/ {VENDOR_BN, "HFC-E1 Card (mini PCI)", 1, 1, 0, 1, 0, 0, 0},
5080 /*21*/ {VENDOR_BN, "HFC-E1+ Card (Dual)", 1, 1, 0, 1, 0, DIP_E1, 0},
5081 /*22*/ {VENDOR_BN, "HFC-E1 Card (Dual)", 1, 1, 0, 1, 0, DIP_E1, 0},
5083 /*23*/ {VENDOR_CCD, "HFC-E1 Eval (old)", 1, 1, 0, 0, 0, 0, 0},
5084 /*24*/ {VENDOR_CCD, "HFC-E1 IOB1E1", 1, 1, 0, 1, 0, 0, 0},
5085 /*25*/ {VENDOR_CCD, "HFC-E1", 1, 1, 0, 1, 0, 0, 0},
5087 /*26*/ {VENDOR_CCD, "HFC-4S Speech Design", 4, 4, 0, 0, 0, 0,
5088 HFC_IO_MODE_PLXSD},
5089 /*27*/ {VENDOR_CCD, "HFC-E1 Speech Design", 1, 1, 0, 0, 0, 0,
5090 HFC_IO_MODE_PLXSD},
5091 /*28*/ {VENDOR_CCD, "HFC-4S OpenVox", 4, 4, 1, 0, 0, 0, 0},
5092 /*29*/ {VENDOR_CCD, "HFC-2S OpenVox", 4, 2, 1, 0, 0, 0, 0},
5093 /*30*/ {VENDOR_CCD, "HFC-8S OpenVox", 8, 8, 1, 0, 0, 0, 0},
5096 #undef H
5097 #define H(x) ((unsigned long)&hfcm_map[x])
5098 static struct pci_device_id hfmultipci_ids[] __devinitdata = {
5100 /* Cards with HFC-4S Chip */
5101 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5102 PCI_SUBDEVICE_ID_CCD_BN1SM, 0, 0, H(0)}, /* BN1S mini PCI */
5103 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5104 PCI_SUBDEVICE_ID_CCD_BN2S, 0, 0, H(1)}, /* BN2S */
5105 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5106 PCI_SUBDEVICE_ID_CCD_BN2SM, 0, 0, H(2)}, /* BN2S mini PCI */
5107 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5108 PCI_SUBDEVICE_ID_CCD_BN4S, 0, 0, H(3)}, /* BN4S */
5109 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5110 PCI_SUBDEVICE_ID_CCD_BN4SM, 0, 0, H(4)}, /* BN4S mini PCI */
5111 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5112 PCI_DEVICE_ID_CCD_HFC4S, 0, 0, H(5)}, /* Old Eval */
5113 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5114 PCI_SUBDEVICE_ID_CCD_IOB4ST, 0, 0, H(6)}, /* IOB4ST */
5115 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5116 PCI_SUBDEVICE_ID_CCD_HFC4S, 0, 0, H(7)}, /* 4S */
5117 { PCI_VENDOR_ID_DIGIUM, PCI_DEVICE_ID_DIGIUM_HFC4S,
5118 PCI_VENDOR_ID_DIGIUM, PCI_DEVICE_ID_DIGIUM_HFC4S, 0, 0, H(8)},
5119 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5120 PCI_SUBDEVICE_ID_CCD_SWYX4S, 0, 0, H(9)}, /* 4S Swyx */
5121 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5122 PCI_SUBDEVICE_ID_CCD_JH4S20, 0, 0, H(10)},
5123 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5124 PCI_SUBDEVICE_ID_CCD_PMX2S, 0, 0, H(11)}, /* Primux */
5125 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5126 PCI_SUBDEVICE_ID_CCD_OV4S, 0, 0, H(28)}, /* OpenVox 4 */
5127 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5128 PCI_SUBDEVICE_ID_CCD_OV2S, 0, 0, H(29)}, /* OpenVox 2 */
5130 /* Cards with HFC-8S Chip */
5131 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5132 PCI_SUBDEVICE_ID_CCD_BN8S, 0, 0, H(12)}, /* BN8S */
5133 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5134 PCI_SUBDEVICE_ID_CCD_BN8SP, 0, 0, H(13)}, /* BN8S+ */
5135 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5136 PCI_DEVICE_ID_CCD_HFC8S, 0, 0, H(14)}, /* old Eval */
5137 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5138 PCI_SUBDEVICE_ID_CCD_IOB8STR, 0, 0, H(15)},
5139 /* IOB8ST Recording */
5140 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5141 PCI_SUBDEVICE_ID_CCD_IOB8ST, 0, 0, H(16)}, /* IOB8ST */
5142 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5143 PCI_SUBDEVICE_ID_CCD_IOB8ST_1, 0, 0, H(17)}, /* IOB8ST */
5144 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5145 PCI_SUBDEVICE_ID_CCD_HFC8S, 0, 0, H(18)}, /* 8S */
5146 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5147 PCI_SUBDEVICE_ID_CCD_OV8S, 0, 0, H(30)}, /* OpenVox 8 */
5150 /* Cards with HFC-E1 Chip */
5151 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5152 PCI_SUBDEVICE_ID_CCD_BNE1, 0, 0, H(19)}, /* BNE1 */
5153 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5154 PCI_SUBDEVICE_ID_CCD_BNE1M, 0, 0, H(20)}, /* BNE1 mini PCI */
5155 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5156 PCI_SUBDEVICE_ID_CCD_BNE1DP, 0, 0, H(21)}, /* BNE1 + (Dual) */
5157 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5158 PCI_SUBDEVICE_ID_CCD_BNE1D, 0, 0, H(22)}, /* BNE1 (Dual) */
5160 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5161 PCI_DEVICE_ID_CCD_HFCE1, 0, 0, H(23)}, /* Old Eval */
5162 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5163 PCI_SUBDEVICE_ID_CCD_IOB1E1, 0, 0, H(24)}, /* IOB1E1 */
5164 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5165 PCI_SUBDEVICE_ID_CCD_HFCE1, 0, 0, H(25)}, /* E1 */
5167 { PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9030, PCI_VENDOR_ID_CCD,
5168 PCI_SUBDEVICE_ID_CCD_SPD4S, 0, 0, H(26)}, /* PLX PCI Bridge */
5169 { PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9030, PCI_VENDOR_ID_CCD,
5170 PCI_SUBDEVICE_ID_CCD_SPDE1, 0, 0, H(27)}, /* PLX PCI Bridge */
5171 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_ANY_ID, PCI_ANY_ID,
5172 0, 0, 0},
5173 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_ANY_ID, PCI_ANY_ID,
5174 0, 0, 0},
5175 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_ANY_ID, PCI_ANY_ID,
5176 0, 0, 0},
5177 {0, }
5179 #undef H
5181 MODULE_DEVICE_TABLE(pci, hfmultipci_ids);
5183 static int
5184 hfcmulti_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
5186 struct hm_map *m = (struct hm_map *)ent->driver_data;
5187 int ret;
5189 if (m == NULL) {
5190 if (ent->vendor == PCI_VENDOR_ID_CCD)
5191 if (ent->device == PCI_DEVICE_ID_CCD_HFC4S ||
5192 ent->device == PCI_DEVICE_ID_CCD_HFC8S ||
5193 ent->device == PCI_DEVICE_ID_CCD_HFCE1)
5194 printk(KERN_ERR
5195 "unknown HFC multiport controller "
5196 "(vendor:%x device:%x subvendor:%x "
5197 "subdevice:%x) Please contact the "
5198 "driver maintainer for support.\n",
5199 ent->vendor, ent->device,
5200 ent->subvendor, ent->subdevice);
5201 return -ENODEV;
5203 ret = hfcmulti_init(pdev, ent);
5204 if (ret)
5205 return ret;
5206 HFC_cnt++;
5207 printk(KERN_INFO "%d devices registered\n", HFC_cnt);
5208 return 0;
5211 static struct pci_driver hfcmultipci_driver = {
5212 .name = "hfc_multi",
5213 .probe = hfcmulti_probe,
5214 .remove = __devexit_p(hfc_remove_pci),
5215 .id_table = hfmultipci_ids,
5218 static void __exit
5219 HFCmulti_cleanup(void)
5221 struct hfc_multi *card, *next;
5223 /* unload interrupt function symbol */
5224 if (hfc_interrupt)
5225 symbol_put(ztdummy_extern_interrupt);
5226 if (register_interrupt)
5227 symbol_put(ztdummy_register_interrupt);
5228 if (unregister_interrupt) {
5229 if (interrupt_registered) {
5230 interrupt_registered = 0;
5231 unregister_interrupt();
5233 symbol_put(ztdummy_unregister_interrupt);
5236 list_for_each_entry_safe(card, next, &HFClist, list)
5237 release_card(card);
5238 /* get rid of all devices of this driver */
5239 pci_unregister_driver(&hfcmultipci_driver);
5242 static int __init
5243 HFCmulti_init(void)
5245 int err;
5247 #ifdef IRQ_DEBUG
5248 printk(KERN_ERR "%s: IRQ_DEBUG IS ENABLED!\n", __func__);
5249 #endif
5251 spin_lock_init(&HFClock);
5252 spin_lock_init(&plx_lock);
5254 if (debug & DEBUG_HFCMULTI_INIT)
5255 printk(KERN_DEBUG "%s: init entered\n", __func__);
5257 hfc_interrupt = symbol_get(ztdummy_extern_interrupt);
5258 register_interrupt = symbol_get(ztdummy_register_interrupt);
5259 unregister_interrupt = symbol_get(ztdummy_unregister_interrupt);
5260 printk(KERN_INFO "mISDN: HFC-multi driver %s\n",
5261 hfcmulti_revision);
5263 switch (poll) {
5264 case 0:
5265 poll_timer = 6;
5266 poll = 128;
5267 break;
5269 * wenn dieses break nochmal verschwindet,
5270 * gibt es heisse ohren :-)
5271 * "without the break you will get hot ears ???"
5273 case 8:
5274 poll_timer = 2;
5275 break;
5276 case 16:
5277 poll_timer = 3;
5278 break;
5279 case 32:
5280 poll_timer = 4;
5281 break;
5282 case 64:
5283 poll_timer = 5;
5284 break;
5285 case 128:
5286 poll_timer = 6;
5287 break;
5288 case 256:
5289 poll_timer = 7;
5290 break;
5291 default:
5292 printk(KERN_ERR
5293 "%s: Wrong poll value (%d).\n", __func__, poll);
5294 err = -EINVAL;
5295 return err;
5299 err = pci_register_driver(&hfcmultipci_driver);
5300 if (err < 0) {
5301 printk(KERN_ERR "error registering pci driver: %x\n", err);
5302 if (hfc_interrupt)
5303 symbol_put(ztdummy_extern_interrupt);
5304 if (register_interrupt)
5305 symbol_put(ztdummy_register_interrupt);
5306 if (unregister_interrupt) {
5307 if (interrupt_registered) {
5308 interrupt_registered = 0;
5309 unregister_interrupt();
5311 symbol_put(ztdummy_unregister_interrupt);
5313 return err;
5315 return 0;
5319 module_init(HFCmulti_init);
5320 module_exit(HFCmulti_cleanup);