KVM: VMX: Clean up Flex Priority related
[linux-2.6/mini2440.git] / arch / x86 / kvm / vmx.c
blob1caa1fc6d5eceefc409824441c2bee883636756a
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
18 #include "irq.h"
19 #include "mmu.h"
21 #include <linux/kvm_host.h>
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/mm.h>
25 #include <linux/highmem.h>
26 #include <linux/sched.h>
27 #include <linux/moduleparam.h>
28 #include "kvm_cache_regs.h"
29 #include "x86.h"
31 #include <asm/io.h>
32 #include <asm/desc.h>
33 #include <asm/vmx.h>
34 #include <asm/virtext.h>
36 #define __ex(x) __kvm_handle_fault_on_reboot(x)
38 MODULE_AUTHOR("Qumranet");
39 MODULE_LICENSE("GPL");
41 static int __read_mostly bypass_guest_pf = 1;
42 module_param(bypass_guest_pf, bool, S_IRUGO);
44 static int __read_mostly enable_vpid = 1;
45 module_param_named(vpid, enable_vpid, bool, 0444);
47 static int __read_mostly flexpriority_enabled = 1;
48 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
50 static int __read_mostly enable_ept = 1;
51 module_param_named(ept, enable_ept, bool, S_IRUGO);
53 static int __read_mostly emulate_invalid_guest_state = 0;
54 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
56 struct vmcs {
57 u32 revision_id;
58 u32 abort;
59 char data[0];
62 struct vcpu_vmx {
63 struct kvm_vcpu vcpu;
64 struct list_head local_vcpus_link;
65 unsigned long host_rsp;
66 int launched;
67 u8 fail;
68 u32 idt_vectoring_info;
69 struct kvm_msr_entry *guest_msrs;
70 struct kvm_msr_entry *host_msrs;
71 int nmsrs;
72 int save_nmsrs;
73 int msr_offset_efer;
74 #ifdef CONFIG_X86_64
75 int msr_offset_kernel_gs_base;
76 #endif
77 struct vmcs *vmcs;
78 struct {
79 int loaded;
80 u16 fs_sel, gs_sel, ldt_sel;
81 int gs_ldt_reload_needed;
82 int fs_reload_needed;
83 int guest_efer_loaded;
84 } host_state;
85 struct {
86 struct {
87 bool pending;
88 u8 vector;
89 unsigned rip;
90 } irq;
91 } rmode;
92 int vpid;
93 bool emulation_required;
94 enum emulation_result invalid_state_emulation_result;
96 /* Support for vnmi-less CPUs */
97 int soft_vnmi_blocked;
98 ktime_t entry_time;
99 s64 vnmi_blocked_time;
102 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
104 return container_of(vcpu, struct vcpu_vmx, vcpu);
107 static int init_rmode(struct kvm *kvm);
108 static u64 construct_eptp(unsigned long root_hpa);
110 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
111 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
112 static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
114 static unsigned long *vmx_io_bitmap_a;
115 static unsigned long *vmx_io_bitmap_b;
116 static unsigned long *vmx_msr_bitmap_legacy;
117 static unsigned long *vmx_msr_bitmap_longmode;
119 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
120 static DEFINE_SPINLOCK(vmx_vpid_lock);
122 static struct vmcs_config {
123 int size;
124 int order;
125 u32 revision_id;
126 u32 pin_based_exec_ctrl;
127 u32 cpu_based_exec_ctrl;
128 u32 cpu_based_2nd_exec_ctrl;
129 u32 vmexit_ctrl;
130 u32 vmentry_ctrl;
131 } vmcs_config;
133 static struct vmx_capability {
134 u32 ept;
135 u32 vpid;
136 } vmx_capability;
138 #define VMX_SEGMENT_FIELD(seg) \
139 [VCPU_SREG_##seg] = { \
140 .selector = GUEST_##seg##_SELECTOR, \
141 .base = GUEST_##seg##_BASE, \
142 .limit = GUEST_##seg##_LIMIT, \
143 .ar_bytes = GUEST_##seg##_AR_BYTES, \
146 static struct kvm_vmx_segment_field {
147 unsigned selector;
148 unsigned base;
149 unsigned limit;
150 unsigned ar_bytes;
151 } kvm_vmx_segment_fields[] = {
152 VMX_SEGMENT_FIELD(CS),
153 VMX_SEGMENT_FIELD(DS),
154 VMX_SEGMENT_FIELD(ES),
155 VMX_SEGMENT_FIELD(FS),
156 VMX_SEGMENT_FIELD(GS),
157 VMX_SEGMENT_FIELD(SS),
158 VMX_SEGMENT_FIELD(TR),
159 VMX_SEGMENT_FIELD(LDTR),
163 * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
164 * away by decrementing the array size.
166 static const u32 vmx_msr_index[] = {
167 #ifdef CONFIG_X86_64
168 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
169 #endif
170 MSR_EFER, MSR_K6_STAR,
172 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
174 static void load_msrs(struct kvm_msr_entry *e, int n)
176 int i;
178 for (i = 0; i < n; ++i)
179 wrmsrl(e[i].index, e[i].data);
182 static void save_msrs(struct kvm_msr_entry *e, int n)
184 int i;
186 for (i = 0; i < n; ++i)
187 rdmsrl(e[i].index, e[i].data);
190 static inline int is_page_fault(u32 intr_info)
192 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
193 INTR_INFO_VALID_MASK)) ==
194 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
197 static inline int is_no_device(u32 intr_info)
199 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
200 INTR_INFO_VALID_MASK)) ==
201 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
204 static inline int is_invalid_opcode(u32 intr_info)
206 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
207 INTR_INFO_VALID_MASK)) ==
208 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
211 static inline int is_external_interrupt(u32 intr_info)
213 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
214 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
217 static inline int cpu_has_vmx_msr_bitmap(void)
219 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
222 static inline int cpu_has_vmx_tpr_shadow(void)
224 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
227 static inline int vm_need_tpr_shadow(struct kvm *kvm)
229 return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
232 static inline int cpu_has_secondary_exec_ctrls(void)
234 return vmcs_config.cpu_based_exec_ctrl &
235 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
238 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
240 return vmcs_config.cpu_based_2nd_exec_ctrl &
241 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
244 static inline bool cpu_has_vmx_flexpriority(void)
246 return cpu_has_vmx_tpr_shadow() &&
247 cpu_has_vmx_virtualize_apic_accesses();
250 static inline int cpu_has_vmx_invept_individual_addr(void)
252 return !!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT);
255 static inline int cpu_has_vmx_invept_context(void)
257 return !!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT);
260 static inline int cpu_has_vmx_invept_global(void)
262 return !!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT);
265 static inline int cpu_has_vmx_ept(void)
267 return vmcs_config.cpu_based_2nd_exec_ctrl &
268 SECONDARY_EXEC_ENABLE_EPT;
271 static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
273 return flexpriority_enabled &&
274 (cpu_has_vmx_virtualize_apic_accesses()) &&
275 (irqchip_in_kernel(kvm));
278 static inline int cpu_has_vmx_vpid(void)
280 return vmcs_config.cpu_based_2nd_exec_ctrl &
281 SECONDARY_EXEC_ENABLE_VPID;
284 static inline int cpu_has_virtual_nmis(void)
286 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
289 static inline bool report_flexpriority(void)
291 return flexpriority_enabled;
294 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
296 int i;
298 for (i = 0; i < vmx->nmsrs; ++i)
299 if (vmx->guest_msrs[i].index == msr)
300 return i;
301 return -1;
304 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
306 struct {
307 u64 vpid : 16;
308 u64 rsvd : 48;
309 u64 gva;
310 } operand = { vpid, 0, gva };
312 asm volatile (__ex(ASM_VMX_INVVPID)
313 /* CF==1 or ZF==1 --> rc = -1 */
314 "; ja 1f ; ud2 ; 1:"
315 : : "a"(&operand), "c"(ext) : "cc", "memory");
318 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
320 struct {
321 u64 eptp, gpa;
322 } operand = {eptp, gpa};
324 asm volatile (__ex(ASM_VMX_INVEPT)
325 /* CF==1 or ZF==1 --> rc = -1 */
326 "; ja 1f ; ud2 ; 1:\n"
327 : : "a" (&operand), "c" (ext) : "cc", "memory");
330 static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
332 int i;
334 i = __find_msr_index(vmx, msr);
335 if (i >= 0)
336 return &vmx->guest_msrs[i];
337 return NULL;
340 static void vmcs_clear(struct vmcs *vmcs)
342 u64 phys_addr = __pa(vmcs);
343 u8 error;
345 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
346 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
347 : "cc", "memory");
348 if (error)
349 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
350 vmcs, phys_addr);
353 static void __vcpu_clear(void *arg)
355 struct vcpu_vmx *vmx = arg;
356 int cpu = raw_smp_processor_id();
358 if (vmx->vcpu.cpu == cpu)
359 vmcs_clear(vmx->vmcs);
360 if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
361 per_cpu(current_vmcs, cpu) = NULL;
362 rdtscll(vmx->vcpu.arch.host_tsc);
363 list_del(&vmx->local_vcpus_link);
364 vmx->vcpu.cpu = -1;
365 vmx->launched = 0;
368 static void vcpu_clear(struct vcpu_vmx *vmx)
370 if (vmx->vcpu.cpu == -1)
371 return;
372 smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
375 static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
377 if (vmx->vpid == 0)
378 return;
380 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
383 static inline void ept_sync_global(void)
385 if (cpu_has_vmx_invept_global())
386 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
389 static inline void ept_sync_context(u64 eptp)
391 if (enable_ept) {
392 if (cpu_has_vmx_invept_context())
393 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
394 else
395 ept_sync_global();
399 static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
401 if (enable_ept) {
402 if (cpu_has_vmx_invept_individual_addr())
403 __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
404 eptp, gpa);
405 else
406 ept_sync_context(eptp);
410 static unsigned long vmcs_readl(unsigned long field)
412 unsigned long value;
414 asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
415 : "=a"(value) : "d"(field) : "cc");
416 return value;
419 static u16 vmcs_read16(unsigned long field)
421 return vmcs_readl(field);
424 static u32 vmcs_read32(unsigned long field)
426 return vmcs_readl(field);
429 static u64 vmcs_read64(unsigned long field)
431 #ifdef CONFIG_X86_64
432 return vmcs_readl(field);
433 #else
434 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
435 #endif
438 static noinline void vmwrite_error(unsigned long field, unsigned long value)
440 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
441 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
442 dump_stack();
445 static void vmcs_writel(unsigned long field, unsigned long value)
447 u8 error;
449 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
450 : "=q"(error) : "a"(value), "d"(field) : "cc");
451 if (unlikely(error))
452 vmwrite_error(field, value);
455 static void vmcs_write16(unsigned long field, u16 value)
457 vmcs_writel(field, value);
460 static void vmcs_write32(unsigned long field, u32 value)
462 vmcs_writel(field, value);
465 static void vmcs_write64(unsigned long field, u64 value)
467 vmcs_writel(field, value);
468 #ifndef CONFIG_X86_64
469 asm volatile ("");
470 vmcs_writel(field+1, value >> 32);
471 #endif
474 static void vmcs_clear_bits(unsigned long field, u32 mask)
476 vmcs_writel(field, vmcs_readl(field) & ~mask);
479 static void vmcs_set_bits(unsigned long field, u32 mask)
481 vmcs_writel(field, vmcs_readl(field) | mask);
484 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
486 u32 eb;
488 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR);
489 if (!vcpu->fpu_active)
490 eb |= 1u << NM_VECTOR;
491 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
492 if (vcpu->guest_debug &
493 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
494 eb |= 1u << DB_VECTOR;
495 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
496 eb |= 1u << BP_VECTOR;
498 if (vcpu->arch.rmode.active)
499 eb = ~0;
500 if (enable_ept)
501 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
502 vmcs_write32(EXCEPTION_BITMAP, eb);
505 static void reload_tss(void)
508 * VT restores TR but not its size. Useless.
510 struct descriptor_table gdt;
511 struct desc_struct *descs;
513 kvm_get_gdt(&gdt);
514 descs = (void *)gdt.base;
515 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
516 load_TR_desc();
519 static void load_transition_efer(struct vcpu_vmx *vmx)
521 int efer_offset = vmx->msr_offset_efer;
522 u64 host_efer = vmx->host_msrs[efer_offset].data;
523 u64 guest_efer = vmx->guest_msrs[efer_offset].data;
524 u64 ignore_bits;
526 if (efer_offset < 0)
527 return;
529 * NX is emulated; LMA and LME handled by hardware; SCE meaninless
530 * outside long mode
532 ignore_bits = EFER_NX | EFER_SCE;
533 #ifdef CONFIG_X86_64
534 ignore_bits |= EFER_LMA | EFER_LME;
535 /* SCE is meaningful only in long mode on Intel */
536 if (guest_efer & EFER_LMA)
537 ignore_bits &= ~(u64)EFER_SCE;
538 #endif
539 if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
540 return;
542 vmx->host_state.guest_efer_loaded = 1;
543 guest_efer &= ~ignore_bits;
544 guest_efer |= host_efer & ignore_bits;
545 wrmsrl(MSR_EFER, guest_efer);
546 vmx->vcpu.stat.efer_reload++;
549 static void reload_host_efer(struct vcpu_vmx *vmx)
551 if (vmx->host_state.guest_efer_loaded) {
552 vmx->host_state.guest_efer_loaded = 0;
553 load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
557 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
559 struct vcpu_vmx *vmx = to_vmx(vcpu);
561 if (vmx->host_state.loaded)
562 return;
564 vmx->host_state.loaded = 1;
566 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
567 * allow segment selectors with cpl > 0 or ti == 1.
569 vmx->host_state.ldt_sel = kvm_read_ldt();
570 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
571 vmx->host_state.fs_sel = kvm_read_fs();
572 if (!(vmx->host_state.fs_sel & 7)) {
573 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
574 vmx->host_state.fs_reload_needed = 0;
575 } else {
576 vmcs_write16(HOST_FS_SELECTOR, 0);
577 vmx->host_state.fs_reload_needed = 1;
579 vmx->host_state.gs_sel = kvm_read_gs();
580 if (!(vmx->host_state.gs_sel & 7))
581 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
582 else {
583 vmcs_write16(HOST_GS_SELECTOR, 0);
584 vmx->host_state.gs_ldt_reload_needed = 1;
587 #ifdef CONFIG_X86_64
588 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
589 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
590 #else
591 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
592 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
593 #endif
595 #ifdef CONFIG_X86_64
596 if (is_long_mode(&vmx->vcpu))
597 save_msrs(vmx->host_msrs +
598 vmx->msr_offset_kernel_gs_base, 1);
600 #endif
601 load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
602 load_transition_efer(vmx);
605 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
607 unsigned long flags;
609 if (!vmx->host_state.loaded)
610 return;
612 ++vmx->vcpu.stat.host_state_reload;
613 vmx->host_state.loaded = 0;
614 if (vmx->host_state.fs_reload_needed)
615 kvm_load_fs(vmx->host_state.fs_sel);
616 if (vmx->host_state.gs_ldt_reload_needed) {
617 kvm_load_ldt(vmx->host_state.ldt_sel);
619 * If we have to reload gs, we must take care to
620 * preserve our gs base.
622 local_irq_save(flags);
623 kvm_load_gs(vmx->host_state.gs_sel);
624 #ifdef CONFIG_X86_64
625 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
626 #endif
627 local_irq_restore(flags);
629 reload_tss();
630 save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
631 load_msrs(vmx->host_msrs, vmx->save_nmsrs);
632 reload_host_efer(vmx);
635 static void vmx_load_host_state(struct vcpu_vmx *vmx)
637 preempt_disable();
638 __vmx_load_host_state(vmx);
639 preempt_enable();
643 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
644 * vcpu mutex is already taken.
646 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
648 struct vcpu_vmx *vmx = to_vmx(vcpu);
649 u64 phys_addr = __pa(vmx->vmcs);
650 u64 tsc_this, delta, new_offset;
652 if (vcpu->cpu != cpu) {
653 vcpu_clear(vmx);
654 kvm_migrate_timers(vcpu);
655 vpid_sync_vcpu_all(vmx);
656 local_irq_disable();
657 list_add(&vmx->local_vcpus_link,
658 &per_cpu(vcpus_on_cpu, cpu));
659 local_irq_enable();
662 if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
663 u8 error;
665 per_cpu(current_vmcs, cpu) = vmx->vmcs;
666 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
667 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
668 : "cc");
669 if (error)
670 printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
671 vmx->vmcs, phys_addr);
674 if (vcpu->cpu != cpu) {
675 struct descriptor_table dt;
676 unsigned long sysenter_esp;
678 vcpu->cpu = cpu;
680 * Linux uses per-cpu TSS and GDT, so set these when switching
681 * processors.
683 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
684 kvm_get_gdt(&dt);
685 vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
687 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
688 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
691 * Make sure the time stamp counter is monotonous.
693 rdtscll(tsc_this);
694 if (tsc_this < vcpu->arch.host_tsc) {
695 delta = vcpu->arch.host_tsc - tsc_this;
696 new_offset = vmcs_read64(TSC_OFFSET) + delta;
697 vmcs_write64(TSC_OFFSET, new_offset);
702 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
704 __vmx_load_host_state(to_vmx(vcpu));
707 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
709 if (vcpu->fpu_active)
710 return;
711 vcpu->fpu_active = 1;
712 vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
713 if (vcpu->arch.cr0 & X86_CR0_TS)
714 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
715 update_exception_bitmap(vcpu);
718 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
720 if (!vcpu->fpu_active)
721 return;
722 vcpu->fpu_active = 0;
723 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
724 update_exception_bitmap(vcpu);
727 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
729 return vmcs_readl(GUEST_RFLAGS);
732 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
734 if (vcpu->arch.rmode.active)
735 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
736 vmcs_writel(GUEST_RFLAGS, rflags);
739 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
741 unsigned long rip;
742 u32 interruptibility;
744 rip = kvm_rip_read(vcpu);
745 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
746 kvm_rip_write(vcpu, rip);
749 * We emulated an instruction, so temporary interrupt blocking
750 * should be removed, if set.
752 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
753 if (interruptibility & 3)
754 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
755 interruptibility & ~3);
756 vcpu->arch.interrupt_window_open = 1;
759 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
760 bool has_error_code, u32 error_code)
762 struct vcpu_vmx *vmx = to_vmx(vcpu);
763 u32 intr_info = nr | INTR_INFO_VALID_MASK;
765 if (has_error_code) {
766 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
767 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
770 if (vcpu->arch.rmode.active) {
771 vmx->rmode.irq.pending = true;
772 vmx->rmode.irq.vector = nr;
773 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
774 if (nr == BP_VECTOR || nr == OF_VECTOR)
775 vmx->rmode.irq.rip++;
776 intr_info |= INTR_TYPE_SOFT_INTR;
777 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
778 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
779 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
780 return;
783 if (nr == BP_VECTOR || nr == OF_VECTOR) {
784 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
785 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
786 } else
787 intr_info |= INTR_TYPE_HARD_EXCEPTION;
789 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
792 static bool vmx_exception_injected(struct kvm_vcpu *vcpu)
794 return false;
798 * Swap MSR entry in host/guest MSR entry array.
800 #ifdef CONFIG_X86_64
801 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
803 struct kvm_msr_entry tmp;
805 tmp = vmx->guest_msrs[to];
806 vmx->guest_msrs[to] = vmx->guest_msrs[from];
807 vmx->guest_msrs[from] = tmp;
808 tmp = vmx->host_msrs[to];
809 vmx->host_msrs[to] = vmx->host_msrs[from];
810 vmx->host_msrs[from] = tmp;
812 #endif
815 * Set up the vmcs to automatically save and restore system
816 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
817 * mode, as fiddling with msrs is very expensive.
819 static void setup_msrs(struct vcpu_vmx *vmx)
821 int save_nmsrs;
822 unsigned long *msr_bitmap;
824 vmx_load_host_state(vmx);
825 save_nmsrs = 0;
826 #ifdef CONFIG_X86_64
827 if (is_long_mode(&vmx->vcpu)) {
828 int index;
830 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
831 if (index >= 0)
832 move_msr_up(vmx, index, save_nmsrs++);
833 index = __find_msr_index(vmx, MSR_LSTAR);
834 if (index >= 0)
835 move_msr_up(vmx, index, save_nmsrs++);
836 index = __find_msr_index(vmx, MSR_CSTAR);
837 if (index >= 0)
838 move_msr_up(vmx, index, save_nmsrs++);
839 index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
840 if (index >= 0)
841 move_msr_up(vmx, index, save_nmsrs++);
843 * MSR_K6_STAR is only needed on long mode guests, and only
844 * if efer.sce is enabled.
846 index = __find_msr_index(vmx, MSR_K6_STAR);
847 if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
848 move_msr_up(vmx, index, save_nmsrs++);
850 #endif
851 vmx->save_nmsrs = save_nmsrs;
853 #ifdef CONFIG_X86_64
854 vmx->msr_offset_kernel_gs_base =
855 __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
856 #endif
857 vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
859 if (cpu_has_vmx_msr_bitmap()) {
860 if (is_long_mode(&vmx->vcpu))
861 msr_bitmap = vmx_msr_bitmap_longmode;
862 else
863 msr_bitmap = vmx_msr_bitmap_legacy;
865 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
870 * reads and returns guest's timestamp counter "register"
871 * guest_tsc = host_tsc + tsc_offset -- 21.3
873 static u64 guest_read_tsc(void)
875 u64 host_tsc, tsc_offset;
877 rdtscll(host_tsc);
878 tsc_offset = vmcs_read64(TSC_OFFSET);
879 return host_tsc + tsc_offset;
883 * writes 'guest_tsc' into guest's timestamp counter "register"
884 * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
886 static void guest_write_tsc(u64 guest_tsc, u64 host_tsc)
888 vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
892 * Reads an msr value (of 'msr_index') into 'pdata'.
893 * Returns 0 on success, non-0 otherwise.
894 * Assumes vcpu_load() was already called.
896 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
898 u64 data;
899 struct kvm_msr_entry *msr;
901 if (!pdata) {
902 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
903 return -EINVAL;
906 switch (msr_index) {
907 #ifdef CONFIG_X86_64
908 case MSR_FS_BASE:
909 data = vmcs_readl(GUEST_FS_BASE);
910 break;
911 case MSR_GS_BASE:
912 data = vmcs_readl(GUEST_GS_BASE);
913 break;
914 case MSR_EFER:
915 return kvm_get_msr_common(vcpu, msr_index, pdata);
916 #endif
917 case MSR_IA32_TIME_STAMP_COUNTER:
918 data = guest_read_tsc();
919 break;
920 case MSR_IA32_SYSENTER_CS:
921 data = vmcs_read32(GUEST_SYSENTER_CS);
922 break;
923 case MSR_IA32_SYSENTER_EIP:
924 data = vmcs_readl(GUEST_SYSENTER_EIP);
925 break;
926 case MSR_IA32_SYSENTER_ESP:
927 data = vmcs_readl(GUEST_SYSENTER_ESP);
928 break;
929 default:
930 vmx_load_host_state(to_vmx(vcpu));
931 msr = find_msr_entry(to_vmx(vcpu), msr_index);
932 if (msr) {
933 data = msr->data;
934 break;
936 return kvm_get_msr_common(vcpu, msr_index, pdata);
939 *pdata = data;
940 return 0;
944 * Writes msr value into into the appropriate "register".
945 * Returns 0 on success, non-0 otherwise.
946 * Assumes vcpu_load() was already called.
948 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
950 struct vcpu_vmx *vmx = to_vmx(vcpu);
951 struct kvm_msr_entry *msr;
952 u64 host_tsc;
953 int ret = 0;
955 switch (msr_index) {
956 case MSR_EFER:
957 vmx_load_host_state(vmx);
958 ret = kvm_set_msr_common(vcpu, msr_index, data);
959 break;
960 #ifdef CONFIG_X86_64
961 case MSR_FS_BASE:
962 vmcs_writel(GUEST_FS_BASE, data);
963 break;
964 case MSR_GS_BASE:
965 vmcs_writel(GUEST_GS_BASE, data);
966 break;
967 #endif
968 case MSR_IA32_SYSENTER_CS:
969 vmcs_write32(GUEST_SYSENTER_CS, data);
970 break;
971 case MSR_IA32_SYSENTER_EIP:
972 vmcs_writel(GUEST_SYSENTER_EIP, data);
973 break;
974 case MSR_IA32_SYSENTER_ESP:
975 vmcs_writel(GUEST_SYSENTER_ESP, data);
976 break;
977 case MSR_IA32_TIME_STAMP_COUNTER:
978 rdtscll(host_tsc);
979 guest_write_tsc(data, host_tsc);
980 break;
981 case MSR_P6_PERFCTR0:
982 case MSR_P6_PERFCTR1:
983 case MSR_P6_EVNTSEL0:
984 case MSR_P6_EVNTSEL1:
986 * Just discard all writes to the performance counters; this
987 * should keep both older linux and windows 64-bit guests
988 * happy
990 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: 0x%x data 0x%llx\n", msr_index, data);
992 break;
993 case MSR_IA32_CR_PAT:
994 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
995 vmcs_write64(GUEST_IA32_PAT, data);
996 vcpu->arch.pat = data;
997 break;
999 /* Otherwise falls through to kvm_set_msr_common */
1000 default:
1001 vmx_load_host_state(vmx);
1002 msr = find_msr_entry(vmx, msr_index);
1003 if (msr) {
1004 msr->data = data;
1005 break;
1007 ret = kvm_set_msr_common(vcpu, msr_index, data);
1010 return ret;
1013 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1015 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
1016 switch (reg) {
1017 case VCPU_REGS_RSP:
1018 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
1019 break;
1020 case VCPU_REGS_RIP:
1021 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
1022 break;
1023 default:
1024 break;
1028 static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1030 int old_debug = vcpu->guest_debug;
1031 unsigned long flags;
1033 vcpu->guest_debug = dbg->control;
1034 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
1035 vcpu->guest_debug = 0;
1037 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1038 vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
1039 else
1040 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
1042 flags = vmcs_readl(GUEST_RFLAGS);
1043 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
1044 flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
1045 else if (old_debug & KVM_GUESTDBG_SINGLESTEP)
1046 flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1047 vmcs_writel(GUEST_RFLAGS, flags);
1049 update_exception_bitmap(vcpu);
1051 return 0;
1054 static int vmx_get_irq(struct kvm_vcpu *vcpu)
1056 if (!vcpu->arch.interrupt.pending)
1057 return -1;
1058 return vcpu->arch.interrupt.nr;
1061 static __init int cpu_has_kvm_support(void)
1063 return cpu_has_vmx();
1066 static __init int vmx_disabled_by_bios(void)
1068 u64 msr;
1070 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
1071 return (msr & (FEATURE_CONTROL_LOCKED |
1072 FEATURE_CONTROL_VMXON_ENABLED))
1073 == FEATURE_CONTROL_LOCKED;
1074 /* locked but not enabled */
1077 static void hardware_enable(void *garbage)
1079 int cpu = raw_smp_processor_id();
1080 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1081 u64 old;
1083 INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
1084 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
1085 if ((old & (FEATURE_CONTROL_LOCKED |
1086 FEATURE_CONTROL_VMXON_ENABLED))
1087 != (FEATURE_CONTROL_LOCKED |
1088 FEATURE_CONTROL_VMXON_ENABLED))
1089 /* enable and lock */
1090 wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
1091 FEATURE_CONTROL_LOCKED |
1092 FEATURE_CONTROL_VMXON_ENABLED);
1093 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
1094 asm volatile (ASM_VMX_VMXON_RAX
1095 : : "a"(&phys_addr), "m"(phys_addr)
1096 : "memory", "cc");
1099 static void vmclear_local_vcpus(void)
1101 int cpu = raw_smp_processor_id();
1102 struct vcpu_vmx *vmx, *n;
1104 list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
1105 local_vcpus_link)
1106 __vcpu_clear(vmx);
1110 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
1111 * tricks.
1113 static void kvm_cpu_vmxoff(void)
1115 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
1116 write_cr4(read_cr4() & ~X86_CR4_VMXE);
1119 static void hardware_disable(void *garbage)
1121 vmclear_local_vcpus();
1122 kvm_cpu_vmxoff();
1125 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
1126 u32 msr, u32 *result)
1128 u32 vmx_msr_low, vmx_msr_high;
1129 u32 ctl = ctl_min | ctl_opt;
1131 rdmsr(msr, vmx_msr_low, vmx_msr_high);
1133 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
1134 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
1136 /* Ensure minimum (required) set of control bits are supported. */
1137 if (ctl_min & ~ctl)
1138 return -EIO;
1140 *result = ctl;
1141 return 0;
1144 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
1146 u32 vmx_msr_low, vmx_msr_high;
1147 u32 min, opt, min2, opt2;
1148 u32 _pin_based_exec_control = 0;
1149 u32 _cpu_based_exec_control = 0;
1150 u32 _cpu_based_2nd_exec_control = 0;
1151 u32 _vmexit_control = 0;
1152 u32 _vmentry_control = 0;
1154 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
1155 opt = PIN_BASED_VIRTUAL_NMIS;
1156 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
1157 &_pin_based_exec_control) < 0)
1158 return -EIO;
1160 min = CPU_BASED_HLT_EXITING |
1161 #ifdef CONFIG_X86_64
1162 CPU_BASED_CR8_LOAD_EXITING |
1163 CPU_BASED_CR8_STORE_EXITING |
1164 #endif
1165 CPU_BASED_CR3_LOAD_EXITING |
1166 CPU_BASED_CR3_STORE_EXITING |
1167 CPU_BASED_USE_IO_BITMAPS |
1168 CPU_BASED_MOV_DR_EXITING |
1169 CPU_BASED_USE_TSC_OFFSETING |
1170 CPU_BASED_INVLPG_EXITING;
1171 opt = CPU_BASED_TPR_SHADOW |
1172 CPU_BASED_USE_MSR_BITMAPS |
1173 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1174 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1175 &_cpu_based_exec_control) < 0)
1176 return -EIO;
1177 #ifdef CONFIG_X86_64
1178 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
1179 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
1180 ~CPU_BASED_CR8_STORE_EXITING;
1181 #endif
1182 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
1183 min2 = 0;
1184 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
1185 SECONDARY_EXEC_WBINVD_EXITING |
1186 SECONDARY_EXEC_ENABLE_VPID |
1187 SECONDARY_EXEC_ENABLE_EPT;
1188 if (adjust_vmx_controls(min2, opt2,
1189 MSR_IA32_VMX_PROCBASED_CTLS2,
1190 &_cpu_based_2nd_exec_control) < 0)
1191 return -EIO;
1193 #ifndef CONFIG_X86_64
1194 if (!(_cpu_based_2nd_exec_control &
1195 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
1196 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
1197 #endif
1198 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
1199 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
1200 enabled */
1201 min &= ~(CPU_BASED_CR3_LOAD_EXITING |
1202 CPU_BASED_CR3_STORE_EXITING |
1203 CPU_BASED_INVLPG_EXITING);
1204 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1205 &_cpu_based_exec_control) < 0)
1206 return -EIO;
1207 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
1208 vmx_capability.ept, vmx_capability.vpid);
1211 if (!cpu_has_vmx_vpid())
1212 enable_vpid = 0;
1214 if (!cpu_has_vmx_ept())
1215 enable_ept = 0;
1217 if (!cpu_has_vmx_flexpriority())
1218 flexpriority_enabled = 0;
1220 min = 0;
1221 #ifdef CONFIG_X86_64
1222 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
1223 #endif
1224 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
1225 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
1226 &_vmexit_control) < 0)
1227 return -EIO;
1229 min = 0;
1230 opt = VM_ENTRY_LOAD_IA32_PAT;
1231 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
1232 &_vmentry_control) < 0)
1233 return -EIO;
1235 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1237 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
1238 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
1239 return -EIO;
1241 #ifdef CONFIG_X86_64
1242 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
1243 if (vmx_msr_high & (1u<<16))
1244 return -EIO;
1245 #endif
1247 /* Require Write-Back (WB) memory type for VMCS accesses. */
1248 if (((vmx_msr_high >> 18) & 15) != 6)
1249 return -EIO;
1251 vmcs_conf->size = vmx_msr_high & 0x1fff;
1252 vmcs_conf->order = get_order(vmcs_config.size);
1253 vmcs_conf->revision_id = vmx_msr_low;
1255 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
1256 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
1257 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
1258 vmcs_conf->vmexit_ctrl = _vmexit_control;
1259 vmcs_conf->vmentry_ctrl = _vmentry_control;
1261 return 0;
1264 static struct vmcs *alloc_vmcs_cpu(int cpu)
1266 int node = cpu_to_node(cpu);
1267 struct page *pages;
1268 struct vmcs *vmcs;
1270 pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
1271 if (!pages)
1272 return NULL;
1273 vmcs = page_address(pages);
1274 memset(vmcs, 0, vmcs_config.size);
1275 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
1276 return vmcs;
1279 static struct vmcs *alloc_vmcs(void)
1281 return alloc_vmcs_cpu(raw_smp_processor_id());
1284 static void free_vmcs(struct vmcs *vmcs)
1286 free_pages((unsigned long)vmcs, vmcs_config.order);
1289 static void free_kvm_area(void)
1291 int cpu;
1293 for_each_online_cpu(cpu)
1294 free_vmcs(per_cpu(vmxarea, cpu));
1297 static __init int alloc_kvm_area(void)
1299 int cpu;
1301 for_each_online_cpu(cpu) {
1302 struct vmcs *vmcs;
1304 vmcs = alloc_vmcs_cpu(cpu);
1305 if (!vmcs) {
1306 free_kvm_area();
1307 return -ENOMEM;
1310 per_cpu(vmxarea, cpu) = vmcs;
1312 return 0;
1315 static __init int hardware_setup(void)
1317 if (setup_vmcs_config(&vmcs_config) < 0)
1318 return -EIO;
1320 if (boot_cpu_has(X86_FEATURE_NX))
1321 kvm_enable_efer_bits(EFER_NX);
1323 return alloc_kvm_area();
1326 static __exit void hardware_unsetup(void)
1328 free_kvm_area();
1331 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
1333 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1335 if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
1336 vmcs_write16(sf->selector, save->selector);
1337 vmcs_writel(sf->base, save->base);
1338 vmcs_write32(sf->limit, save->limit);
1339 vmcs_write32(sf->ar_bytes, save->ar);
1340 } else {
1341 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
1342 << AR_DPL_SHIFT;
1343 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
1347 static void enter_pmode(struct kvm_vcpu *vcpu)
1349 unsigned long flags;
1350 struct vcpu_vmx *vmx = to_vmx(vcpu);
1352 vmx->emulation_required = 1;
1353 vcpu->arch.rmode.active = 0;
1355 vmcs_writel(GUEST_TR_BASE, vcpu->arch.rmode.tr.base);
1356 vmcs_write32(GUEST_TR_LIMIT, vcpu->arch.rmode.tr.limit);
1357 vmcs_write32(GUEST_TR_AR_BYTES, vcpu->arch.rmode.tr.ar);
1359 flags = vmcs_readl(GUEST_RFLAGS);
1360 flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
1361 flags |= (vcpu->arch.rmode.save_iopl << IOPL_SHIFT);
1362 vmcs_writel(GUEST_RFLAGS, flags);
1364 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
1365 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
1367 update_exception_bitmap(vcpu);
1369 if (emulate_invalid_guest_state)
1370 return;
1372 fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
1373 fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
1374 fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
1375 fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
1377 vmcs_write16(GUEST_SS_SELECTOR, 0);
1378 vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
1380 vmcs_write16(GUEST_CS_SELECTOR,
1381 vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
1382 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1385 static gva_t rmode_tss_base(struct kvm *kvm)
1387 if (!kvm->arch.tss_addr) {
1388 gfn_t base_gfn = kvm->memslots[0].base_gfn +
1389 kvm->memslots[0].npages - 3;
1390 return base_gfn << PAGE_SHIFT;
1392 return kvm->arch.tss_addr;
1395 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
1397 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1399 save->selector = vmcs_read16(sf->selector);
1400 save->base = vmcs_readl(sf->base);
1401 save->limit = vmcs_read32(sf->limit);
1402 save->ar = vmcs_read32(sf->ar_bytes);
1403 vmcs_write16(sf->selector, save->base >> 4);
1404 vmcs_write32(sf->base, save->base & 0xfffff);
1405 vmcs_write32(sf->limit, 0xffff);
1406 vmcs_write32(sf->ar_bytes, 0xf3);
1409 static void enter_rmode(struct kvm_vcpu *vcpu)
1411 unsigned long flags;
1412 struct vcpu_vmx *vmx = to_vmx(vcpu);
1414 vmx->emulation_required = 1;
1415 vcpu->arch.rmode.active = 1;
1417 vcpu->arch.rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
1418 vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
1420 vcpu->arch.rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
1421 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
1423 vcpu->arch.rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
1424 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1426 flags = vmcs_readl(GUEST_RFLAGS);
1427 vcpu->arch.rmode.save_iopl
1428 = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
1430 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1432 vmcs_writel(GUEST_RFLAGS, flags);
1433 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
1434 update_exception_bitmap(vcpu);
1436 if (emulate_invalid_guest_state)
1437 goto continue_rmode;
1439 vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
1440 vmcs_write32(GUEST_SS_LIMIT, 0xffff);
1441 vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
1443 vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
1444 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1445 if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
1446 vmcs_writel(GUEST_CS_BASE, 0xf0000);
1447 vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
1449 fix_rmode_seg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
1450 fix_rmode_seg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
1451 fix_rmode_seg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
1452 fix_rmode_seg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
1454 continue_rmode:
1455 kvm_mmu_reset_context(vcpu);
1456 init_rmode(vcpu->kvm);
1459 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1461 struct vcpu_vmx *vmx = to_vmx(vcpu);
1462 struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
1464 vcpu->arch.shadow_efer = efer;
1465 if (!msr)
1466 return;
1467 if (efer & EFER_LMA) {
1468 vmcs_write32(VM_ENTRY_CONTROLS,
1469 vmcs_read32(VM_ENTRY_CONTROLS) |
1470 VM_ENTRY_IA32E_MODE);
1471 msr->data = efer;
1472 } else {
1473 vmcs_write32(VM_ENTRY_CONTROLS,
1474 vmcs_read32(VM_ENTRY_CONTROLS) &
1475 ~VM_ENTRY_IA32E_MODE);
1477 msr->data = efer & ~EFER_LME;
1479 setup_msrs(vmx);
1482 #ifdef CONFIG_X86_64
1484 static void enter_lmode(struct kvm_vcpu *vcpu)
1486 u32 guest_tr_ar;
1488 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
1489 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
1490 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
1491 __func__);
1492 vmcs_write32(GUEST_TR_AR_BYTES,
1493 (guest_tr_ar & ~AR_TYPE_MASK)
1494 | AR_TYPE_BUSY_64_TSS);
1496 vcpu->arch.shadow_efer |= EFER_LMA;
1497 vmx_set_efer(vcpu, vcpu->arch.shadow_efer);
1500 static void exit_lmode(struct kvm_vcpu *vcpu)
1502 vcpu->arch.shadow_efer &= ~EFER_LMA;
1504 vmcs_write32(VM_ENTRY_CONTROLS,
1505 vmcs_read32(VM_ENTRY_CONTROLS)
1506 & ~VM_ENTRY_IA32E_MODE);
1509 #endif
1511 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
1513 vpid_sync_vcpu_all(to_vmx(vcpu));
1514 if (enable_ept)
1515 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
1518 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1520 vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
1521 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
1524 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
1526 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1527 if (!load_pdptrs(vcpu, vcpu->arch.cr3)) {
1528 printk(KERN_ERR "EPT: Fail to load pdptrs!\n");
1529 return;
1531 vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
1532 vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
1533 vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
1534 vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
1538 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1540 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
1541 unsigned long cr0,
1542 struct kvm_vcpu *vcpu)
1544 if (!(cr0 & X86_CR0_PG)) {
1545 /* From paging/starting to nonpaging */
1546 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1547 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1548 (CPU_BASED_CR3_LOAD_EXITING |
1549 CPU_BASED_CR3_STORE_EXITING));
1550 vcpu->arch.cr0 = cr0;
1551 vmx_set_cr4(vcpu, vcpu->arch.cr4);
1552 *hw_cr0 |= X86_CR0_PE | X86_CR0_PG;
1553 *hw_cr0 &= ~X86_CR0_WP;
1554 } else if (!is_paging(vcpu)) {
1555 /* From nonpaging to paging */
1556 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1557 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1558 ~(CPU_BASED_CR3_LOAD_EXITING |
1559 CPU_BASED_CR3_STORE_EXITING));
1560 vcpu->arch.cr0 = cr0;
1561 vmx_set_cr4(vcpu, vcpu->arch.cr4);
1562 if (!(vcpu->arch.cr0 & X86_CR0_WP))
1563 *hw_cr0 &= ~X86_CR0_WP;
1567 static void ept_update_paging_mode_cr4(unsigned long *hw_cr4,
1568 struct kvm_vcpu *vcpu)
1570 if (!is_paging(vcpu)) {
1571 *hw_cr4 &= ~X86_CR4_PAE;
1572 *hw_cr4 |= X86_CR4_PSE;
1573 } else if (!(vcpu->arch.cr4 & X86_CR4_PAE))
1574 *hw_cr4 &= ~X86_CR4_PAE;
1577 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1579 unsigned long hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) |
1580 KVM_VM_CR0_ALWAYS_ON;
1582 vmx_fpu_deactivate(vcpu);
1584 if (vcpu->arch.rmode.active && (cr0 & X86_CR0_PE))
1585 enter_pmode(vcpu);
1587 if (!vcpu->arch.rmode.active && !(cr0 & X86_CR0_PE))
1588 enter_rmode(vcpu);
1590 #ifdef CONFIG_X86_64
1591 if (vcpu->arch.shadow_efer & EFER_LME) {
1592 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
1593 enter_lmode(vcpu);
1594 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
1595 exit_lmode(vcpu);
1597 #endif
1599 if (enable_ept)
1600 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
1602 vmcs_writel(CR0_READ_SHADOW, cr0);
1603 vmcs_writel(GUEST_CR0, hw_cr0);
1604 vcpu->arch.cr0 = cr0;
1606 if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
1607 vmx_fpu_activate(vcpu);
1610 static u64 construct_eptp(unsigned long root_hpa)
1612 u64 eptp;
1614 /* TODO write the value reading from MSR */
1615 eptp = VMX_EPT_DEFAULT_MT |
1616 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
1617 eptp |= (root_hpa & PAGE_MASK);
1619 return eptp;
1622 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1624 unsigned long guest_cr3;
1625 u64 eptp;
1627 guest_cr3 = cr3;
1628 if (enable_ept) {
1629 eptp = construct_eptp(cr3);
1630 vmcs_write64(EPT_POINTER, eptp);
1631 ept_sync_context(eptp);
1632 ept_load_pdptrs(vcpu);
1633 guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
1634 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
1637 vmx_flush_tlb(vcpu);
1638 vmcs_writel(GUEST_CR3, guest_cr3);
1639 if (vcpu->arch.cr0 & X86_CR0_PE)
1640 vmx_fpu_deactivate(vcpu);
1643 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1645 unsigned long hw_cr4 = cr4 | (vcpu->arch.rmode.active ?
1646 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
1648 vcpu->arch.cr4 = cr4;
1649 if (enable_ept)
1650 ept_update_paging_mode_cr4(&hw_cr4, vcpu);
1652 vmcs_writel(CR4_READ_SHADOW, cr4);
1653 vmcs_writel(GUEST_CR4, hw_cr4);
1656 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1658 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1660 return vmcs_readl(sf->base);
1663 static void vmx_get_segment(struct kvm_vcpu *vcpu,
1664 struct kvm_segment *var, int seg)
1666 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1667 u32 ar;
1669 var->base = vmcs_readl(sf->base);
1670 var->limit = vmcs_read32(sf->limit);
1671 var->selector = vmcs_read16(sf->selector);
1672 ar = vmcs_read32(sf->ar_bytes);
1673 if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
1674 ar = 0;
1675 var->type = ar & 15;
1676 var->s = (ar >> 4) & 1;
1677 var->dpl = (ar >> 5) & 3;
1678 var->present = (ar >> 7) & 1;
1679 var->avl = (ar >> 12) & 1;
1680 var->l = (ar >> 13) & 1;
1681 var->db = (ar >> 14) & 1;
1682 var->g = (ar >> 15) & 1;
1683 var->unusable = (ar >> 16) & 1;
1686 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
1688 struct kvm_segment kvm_seg;
1690 if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */
1691 return 0;
1693 if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
1694 return 3;
1696 vmx_get_segment(vcpu, &kvm_seg, VCPU_SREG_CS);
1697 return kvm_seg.selector & 3;
1700 static u32 vmx_segment_access_rights(struct kvm_segment *var)
1702 u32 ar;
1704 if (var->unusable)
1705 ar = 1 << 16;
1706 else {
1707 ar = var->type & 15;
1708 ar |= (var->s & 1) << 4;
1709 ar |= (var->dpl & 3) << 5;
1710 ar |= (var->present & 1) << 7;
1711 ar |= (var->avl & 1) << 12;
1712 ar |= (var->l & 1) << 13;
1713 ar |= (var->db & 1) << 14;
1714 ar |= (var->g & 1) << 15;
1716 if (ar == 0) /* a 0 value means unusable */
1717 ar = AR_UNUSABLE_MASK;
1719 return ar;
1722 static void vmx_set_segment(struct kvm_vcpu *vcpu,
1723 struct kvm_segment *var, int seg)
1725 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1726 u32 ar;
1728 if (vcpu->arch.rmode.active && seg == VCPU_SREG_TR) {
1729 vcpu->arch.rmode.tr.selector = var->selector;
1730 vcpu->arch.rmode.tr.base = var->base;
1731 vcpu->arch.rmode.tr.limit = var->limit;
1732 vcpu->arch.rmode.tr.ar = vmx_segment_access_rights(var);
1733 return;
1735 vmcs_writel(sf->base, var->base);
1736 vmcs_write32(sf->limit, var->limit);
1737 vmcs_write16(sf->selector, var->selector);
1738 if (vcpu->arch.rmode.active && var->s) {
1740 * Hack real-mode segments into vm86 compatibility.
1742 if (var->base == 0xffff0000 && var->selector == 0xf000)
1743 vmcs_writel(sf->base, 0xf0000);
1744 ar = 0xf3;
1745 } else
1746 ar = vmx_segment_access_rights(var);
1747 vmcs_write32(sf->ar_bytes, ar);
1750 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1752 u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
1754 *db = (ar >> 14) & 1;
1755 *l = (ar >> 13) & 1;
1758 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1760 dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
1761 dt->base = vmcs_readl(GUEST_IDTR_BASE);
1764 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1766 vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
1767 vmcs_writel(GUEST_IDTR_BASE, dt->base);
1770 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1772 dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
1773 dt->base = vmcs_readl(GUEST_GDTR_BASE);
1776 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1778 vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
1779 vmcs_writel(GUEST_GDTR_BASE, dt->base);
1782 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
1784 struct kvm_segment var;
1785 u32 ar;
1787 vmx_get_segment(vcpu, &var, seg);
1788 ar = vmx_segment_access_rights(&var);
1790 if (var.base != (var.selector << 4))
1791 return false;
1792 if (var.limit != 0xffff)
1793 return false;
1794 if (ar != 0xf3)
1795 return false;
1797 return true;
1800 static bool code_segment_valid(struct kvm_vcpu *vcpu)
1802 struct kvm_segment cs;
1803 unsigned int cs_rpl;
1805 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
1806 cs_rpl = cs.selector & SELECTOR_RPL_MASK;
1808 if (cs.unusable)
1809 return false;
1810 if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
1811 return false;
1812 if (!cs.s)
1813 return false;
1814 if (cs.type & AR_TYPE_WRITEABLE_MASK) {
1815 if (cs.dpl > cs_rpl)
1816 return false;
1817 } else {
1818 if (cs.dpl != cs_rpl)
1819 return false;
1821 if (!cs.present)
1822 return false;
1824 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
1825 return true;
1828 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
1830 struct kvm_segment ss;
1831 unsigned int ss_rpl;
1833 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
1834 ss_rpl = ss.selector & SELECTOR_RPL_MASK;
1836 if (ss.unusable)
1837 return true;
1838 if (ss.type != 3 && ss.type != 7)
1839 return false;
1840 if (!ss.s)
1841 return false;
1842 if (ss.dpl != ss_rpl) /* DPL != RPL */
1843 return false;
1844 if (!ss.present)
1845 return false;
1847 return true;
1850 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
1852 struct kvm_segment var;
1853 unsigned int rpl;
1855 vmx_get_segment(vcpu, &var, seg);
1856 rpl = var.selector & SELECTOR_RPL_MASK;
1858 if (var.unusable)
1859 return true;
1860 if (!var.s)
1861 return false;
1862 if (!var.present)
1863 return false;
1864 if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
1865 if (var.dpl < rpl) /* DPL < RPL */
1866 return false;
1869 /* TODO: Add other members to kvm_segment_field to allow checking for other access
1870 * rights flags
1872 return true;
1875 static bool tr_valid(struct kvm_vcpu *vcpu)
1877 struct kvm_segment tr;
1879 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
1881 if (tr.unusable)
1882 return false;
1883 if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
1884 return false;
1885 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
1886 return false;
1887 if (!tr.present)
1888 return false;
1890 return true;
1893 static bool ldtr_valid(struct kvm_vcpu *vcpu)
1895 struct kvm_segment ldtr;
1897 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
1899 if (ldtr.unusable)
1900 return true;
1901 if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
1902 return false;
1903 if (ldtr.type != 2)
1904 return false;
1905 if (!ldtr.present)
1906 return false;
1908 return true;
1911 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
1913 struct kvm_segment cs, ss;
1915 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
1916 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
1918 return ((cs.selector & SELECTOR_RPL_MASK) ==
1919 (ss.selector & SELECTOR_RPL_MASK));
1923 * Check if guest state is valid. Returns true if valid, false if
1924 * not.
1925 * We assume that registers are always usable
1927 static bool guest_state_valid(struct kvm_vcpu *vcpu)
1929 /* real mode guest state checks */
1930 if (!(vcpu->arch.cr0 & X86_CR0_PE)) {
1931 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
1932 return false;
1933 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
1934 return false;
1935 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
1936 return false;
1937 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
1938 return false;
1939 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
1940 return false;
1941 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
1942 return false;
1943 } else {
1944 /* protected mode guest state checks */
1945 if (!cs_ss_rpl_check(vcpu))
1946 return false;
1947 if (!code_segment_valid(vcpu))
1948 return false;
1949 if (!stack_segment_valid(vcpu))
1950 return false;
1951 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
1952 return false;
1953 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
1954 return false;
1955 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
1956 return false;
1957 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
1958 return false;
1959 if (!tr_valid(vcpu))
1960 return false;
1961 if (!ldtr_valid(vcpu))
1962 return false;
1964 /* TODO:
1965 * - Add checks on RIP
1966 * - Add checks on RFLAGS
1969 return true;
1972 static int init_rmode_tss(struct kvm *kvm)
1974 gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
1975 u16 data = 0;
1976 int ret = 0;
1977 int r;
1979 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
1980 if (r < 0)
1981 goto out;
1982 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
1983 r = kvm_write_guest_page(kvm, fn++, &data,
1984 TSS_IOPB_BASE_OFFSET, sizeof(u16));
1985 if (r < 0)
1986 goto out;
1987 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
1988 if (r < 0)
1989 goto out;
1990 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
1991 if (r < 0)
1992 goto out;
1993 data = ~0;
1994 r = kvm_write_guest_page(kvm, fn, &data,
1995 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
1996 sizeof(u8));
1997 if (r < 0)
1998 goto out;
2000 ret = 1;
2001 out:
2002 return ret;
2005 static int init_rmode_identity_map(struct kvm *kvm)
2007 int i, r, ret;
2008 pfn_t identity_map_pfn;
2009 u32 tmp;
2011 if (!enable_ept)
2012 return 1;
2013 if (unlikely(!kvm->arch.ept_identity_pagetable)) {
2014 printk(KERN_ERR "EPT: identity-mapping pagetable "
2015 "haven't been allocated!\n");
2016 return 0;
2018 if (likely(kvm->arch.ept_identity_pagetable_done))
2019 return 1;
2020 ret = 0;
2021 identity_map_pfn = VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT;
2022 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
2023 if (r < 0)
2024 goto out;
2025 /* Set up identity-mapping pagetable for EPT in real mode */
2026 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
2027 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
2028 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
2029 r = kvm_write_guest_page(kvm, identity_map_pfn,
2030 &tmp, i * sizeof(tmp), sizeof(tmp));
2031 if (r < 0)
2032 goto out;
2034 kvm->arch.ept_identity_pagetable_done = true;
2035 ret = 1;
2036 out:
2037 return ret;
2040 static void seg_setup(int seg)
2042 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2044 vmcs_write16(sf->selector, 0);
2045 vmcs_writel(sf->base, 0);
2046 vmcs_write32(sf->limit, 0xffff);
2047 vmcs_write32(sf->ar_bytes, 0xf3);
2050 static int alloc_apic_access_page(struct kvm *kvm)
2052 struct kvm_userspace_memory_region kvm_userspace_mem;
2053 int r = 0;
2055 down_write(&kvm->slots_lock);
2056 if (kvm->arch.apic_access_page)
2057 goto out;
2058 kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
2059 kvm_userspace_mem.flags = 0;
2060 kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
2061 kvm_userspace_mem.memory_size = PAGE_SIZE;
2062 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2063 if (r)
2064 goto out;
2066 kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
2067 out:
2068 up_write(&kvm->slots_lock);
2069 return r;
2072 static int alloc_identity_pagetable(struct kvm *kvm)
2074 struct kvm_userspace_memory_region kvm_userspace_mem;
2075 int r = 0;
2077 down_write(&kvm->slots_lock);
2078 if (kvm->arch.ept_identity_pagetable)
2079 goto out;
2080 kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
2081 kvm_userspace_mem.flags = 0;
2082 kvm_userspace_mem.guest_phys_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
2083 kvm_userspace_mem.memory_size = PAGE_SIZE;
2084 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2085 if (r)
2086 goto out;
2088 kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
2089 VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT);
2090 out:
2091 up_write(&kvm->slots_lock);
2092 return r;
2095 static void allocate_vpid(struct vcpu_vmx *vmx)
2097 int vpid;
2099 vmx->vpid = 0;
2100 if (!enable_vpid)
2101 return;
2102 spin_lock(&vmx_vpid_lock);
2103 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
2104 if (vpid < VMX_NR_VPIDS) {
2105 vmx->vpid = vpid;
2106 __set_bit(vpid, vmx_vpid_bitmap);
2108 spin_unlock(&vmx_vpid_lock);
2111 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
2113 int f = sizeof(unsigned long);
2115 if (!cpu_has_vmx_msr_bitmap())
2116 return;
2119 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
2120 * have the write-low and read-high bitmap offsets the wrong way round.
2121 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
2123 if (msr <= 0x1fff) {
2124 __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
2125 __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
2126 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
2127 msr &= 0x1fff;
2128 __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
2129 __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
2133 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
2135 if (!longmode_only)
2136 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
2137 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
2141 * Sets up the vmcs for emulated real mode.
2143 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
2145 u32 host_sysenter_cs, msr_low, msr_high;
2146 u32 junk;
2147 u64 host_pat, tsc_this, tsc_base;
2148 unsigned long a;
2149 struct descriptor_table dt;
2150 int i;
2151 unsigned long kvm_vmx_return;
2152 u32 exec_control;
2154 /* I/O */
2155 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
2156 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
2158 if (cpu_has_vmx_msr_bitmap())
2159 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
2161 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
2163 /* Control */
2164 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
2165 vmcs_config.pin_based_exec_ctrl);
2167 exec_control = vmcs_config.cpu_based_exec_ctrl;
2168 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
2169 exec_control &= ~CPU_BASED_TPR_SHADOW;
2170 #ifdef CONFIG_X86_64
2171 exec_control |= CPU_BASED_CR8_STORE_EXITING |
2172 CPU_BASED_CR8_LOAD_EXITING;
2173 #endif
2175 if (!enable_ept)
2176 exec_control |= CPU_BASED_CR3_STORE_EXITING |
2177 CPU_BASED_CR3_LOAD_EXITING |
2178 CPU_BASED_INVLPG_EXITING;
2179 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
2181 if (cpu_has_secondary_exec_ctrls()) {
2182 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
2183 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2184 exec_control &=
2185 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
2186 if (vmx->vpid == 0)
2187 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
2188 if (!enable_ept)
2189 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
2190 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
2193 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
2194 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
2195 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
2197 vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
2198 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
2199 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
2201 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
2202 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
2203 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
2204 vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs()); /* 22.2.4 */
2205 vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs()); /* 22.2.4 */
2206 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
2207 #ifdef CONFIG_X86_64
2208 rdmsrl(MSR_FS_BASE, a);
2209 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
2210 rdmsrl(MSR_GS_BASE, a);
2211 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
2212 #else
2213 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
2214 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
2215 #endif
2217 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
2219 kvm_get_idt(&dt);
2220 vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
2222 asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
2223 vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
2224 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
2225 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
2226 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
2228 rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
2229 vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
2230 rdmsrl(MSR_IA32_SYSENTER_ESP, a);
2231 vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
2232 rdmsrl(MSR_IA32_SYSENTER_EIP, a);
2233 vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
2235 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
2236 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2237 host_pat = msr_low | ((u64) msr_high << 32);
2238 vmcs_write64(HOST_IA32_PAT, host_pat);
2240 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2241 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2242 host_pat = msr_low | ((u64) msr_high << 32);
2243 /* Write the default value follow host pat */
2244 vmcs_write64(GUEST_IA32_PAT, host_pat);
2245 /* Keep arch.pat sync with GUEST_IA32_PAT */
2246 vmx->vcpu.arch.pat = host_pat;
2249 for (i = 0; i < NR_VMX_MSR; ++i) {
2250 u32 index = vmx_msr_index[i];
2251 u32 data_low, data_high;
2252 u64 data;
2253 int j = vmx->nmsrs;
2255 if (rdmsr_safe(index, &data_low, &data_high) < 0)
2256 continue;
2257 if (wrmsr_safe(index, data_low, data_high) < 0)
2258 continue;
2259 data = data_low | ((u64)data_high << 32);
2260 vmx->host_msrs[j].index = index;
2261 vmx->host_msrs[j].reserved = 0;
2262 vmx->host_msrs[j].data = data;
2263 vmx->guest_msrs[j] = vmx->host_msrs[j];
2264 ++vmx->nmsrs;
2267 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
2269 /* 22.2.1, 20.8.1 */
2270 vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
2272 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
2273 vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
2275 tsc_base = vmx->vcpu.kvm->arch.vm_init_tsc;
2276 rdtscll(tsc_this);
2277 if (tsc_this < vmx->vcpu.kvm->arch.vm_init_tsc)
2278 tsc_base = tsc_this;
2280 guest_write_tsc(0, tsc_base);
2282 return 0;
2285 static int init_rmode(struct kvm *kvm)
2287 if (!init_rmode_tss(kvm))
2288 return 0;
2289 if (!init_rmode_identity_map(kvm))
2290 return 0;
2291 return 1;
2294 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
2296 struct vcpu_vmx *vmx = to_vmx(vcpu);
2297 u64 msr;
2298 int ret;
2300 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
2301 down_read(&vcpu->kvm->slots_lock);
2302 if (!init_rmode(vmx->vcpu.kvm)) {
2303 ret = -ENOMEM;
2304 goto out;
2307 vmx->vcpu.arch.rmode.active = 0;
2309 vmx->soft_vnmi_blocked = 0;
2311 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
2312 kvm_set_cr8(&vmx->vcpu, 0);
2313 msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
2314 if (vmx->vcpu.vcpu_id == 0)
2315 msr |= MSR_IA32_APICBASE_BSP;
2316 kvm_set_apic_base(&vmx->vcpu, msr);
2318 fx_init(&vmx->vcpu);
2320 seg_setup(VCPU_SREG_CS);
2322 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
2323 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
2325 if (vmx->vcpu.vcpu_id == 0) {
2326 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
2327 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
2328 } else {
2329 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
2330 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
2333 seg_setup(VCPU_SREG_DS);
2334 seg_setup(VCPU_SREG_ES);
2335 seg_setup(VCPU_SREG_FS);
2336 seg_setup(VCPU_SREG_GS);
2337 seg_setup(VCPU_SREG_SS);
2339 vmcs_write16(GUEST_TR_SELECTOR, 0);
2340 vmcs_writel(GUEST_TR_BASE, 0);
2341 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
2342 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2344 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
2345 vmcs_writel(GUEST_LDTR_BASE, 0);
2346 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
2347 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
2349 vmcs_write32(GUEST_SYSENTER_CS, 0);
2350 vmcs_writel(GUEST_SYSENTER_ESP, 0);
2351 vmcs_writel(GUEST_SYSENTER_EIP, 0);
2353 vmcs_writel(GUEST_RFLAGS, 0x02);
2354 if (vmx->vcpu.vcpu_id == 0)
2355 kvm_rip_write(vcpu, 0xfff0);
2356 else
2357 kvm_rip_write(vcpu, 0);
2358 kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
2360 vmcs_writel(GUEST_DR7, 0x400);
2362 vmcs_writel(GUEST_GDTR_BASE, 0);
2363 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
2365 vmcs_writel(GUEST_IDTR_BASE, 0);
2366 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
2368 vmcs_write32(GUEST_ACTIVITY_STATE, 0);
2369 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
2370 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
2372 /* Special registers */
2373 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
2375 setup_msrs(vmx);
2377 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
2379 if (cpu_has_vmx_tpr_shadow()) {
2380 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
2381 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
2382 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
2383 page_to_phys(vmx->vcpu.arch.apic->regs_page));
2384 vmcs_write32(TPR_THRESHOLD, 0);
2387 if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2388 vmcs_write64(APIC_ACCESS_ADDR,
2389 page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
2391 if (vmx->vpid != 0)
2392 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2394 vmx->vcpu.arch.cr0 = 0x60000010;
2395 vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
2396 vmx_set_cr4(&vmx->vcpu, 0);
2397 vmx_set_efer(&vmx->vcpu, 0);
2398 vmx_fpu_activate(&vmx->vcpu);
2399 update_exception_bitmap(&vmx->vcpu);
2401 vpid_sync_vcpu_all(vmx);
2403 ret = 0;
2405 /* HACK: Don't enable emulation on guest boot/reset */
2406 vmx->emulation_required = 0;
2408 out:
2409 up_read(&vcpu->kvm->slots_lock);
2410 return ret;
2413 static void enable_irq_window(struct kvm_vcpu *vcpu)
2415 u32 cpu_based_vm_exec_control;
2417 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2418 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2419 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2422 static void enable_nmi_window(struct kvm_vcpu *vcpu)
2424 u32 cpu_based_vm_exec_control;
2426 if (!cpu_has_virtual_nmis()) {
2427 enable_irq_window(vcpu);
2428 return;
2431 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2432 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
2433 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2436 static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
2438 struct vcpu_vmx *vmx = to_vmx(vcpu);
2440 KVMTRACE_1D(INJ_VIRQ, vcpu, (u32)irq, handler);
2442 ++vcpu->stat.irq_injections;
2443 if (vcpu->arch.rmode.active) {
2444 vmx->rmode.irq.pending = true;
2445 vmx->rmode.irq.vector = irq;
2446 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
2447 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2448 irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
2449 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
2450 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
2451 return;
2453 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2454 irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
2457 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
2459 struct vcpu_vmx *vmx = to_vmx(vcpu);
2461 if (!cpu_has_virtual_nmis()) {
2463 * Tracking the NMI-blocked state in software is built upon
2464 * finding the next open IRQ window. This, in turn, depends on
2465 * well-behaving guests: They have to keep IRQs disabled at
2466 * least as long as the NMI handler runs. Otherwise we may
2467 * cause NMI nesting, maybe breaking the guest. But as this is
2468 * highly unlikely, we can live with the residual risk.
2470 vmx->soft_vnmi_blocked = 1;
2471 vmx->vnmi_blocked_time = 0;
2474 ++vcpu->stat.nmi_injections;
2475 if (vcpu->arch.rmode.active) {
2476 vmx->rmode.irq.pending = true;
2477 vmx->rmode.irq.vector = NMI_VECTOR;
2478 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
2479 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2480 NMI_VECTOR | INTR_TYPE_SOFT_INTR |
2481 INTR_INFO_VALID_MASK);
2482 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
2483 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
2484 return;
2486 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2487 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
2490 static void vmx_update_window_states(struct kvm_vcpu *vcpu)
2492 u32 guest_intr = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2494 vcpu->arch.nmi_window_open =
2495 !(guest_intr & (GUEST_INTR_STATE_STI |
2496 GUEST_INTR_STATE_MOV_SS |
2497 GUEST_INTR_STATE_NMI));
2498 if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
2499 vcpu->arch.nmi_window_open = 0;
2501 vcpu->arch.interrupt_window_open =
2502 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
2503 !(guest_intr & (GUEST_INTR_STATE_STI |
2504 GUEST_INTR_STATE_MOV_SS)));
2507 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
2509 vmx_update_window_states(vcpu);
2510 return vcpu->arch.interrupt_window_open;
2513 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
2514 struct kvm_run *kvm_run)
2516 vmx_update_window_states(vcpu);
2518 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
2519 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
2520 GUEST_INTR_STATE_STI |
2521 GUEST_INTR_STATE_MOV_SS);
2523 if (vcpu->arch.nmi_pending && !vcpu->arch.nmi_injected) {
2524 if (vcpu->arch.interrupt.pending) {
2525 enable_nmi_window(vcpu);
2526 } else if (vcpu->arch.nmi_window_open) {
2527 vcpu->arch.nmi_pending = false;
2528 vcpu->arch.nmi_injected = true;
2529 } else {
2530 enable_nmi_window(vcpu);
2531 return;
2534 if (vcpu->arch.nmi_injected) {
2535 vmx_inject_nmi(vcpu);
2536 if (vcpu->arch.nmi_pending)
2537 enable_nmi_window(vcpu);
2538 else if (vcpu->arch.irq_summary
2539 || kvm_run->request_interrupt_window)
2540 enable_irq_window(vcpu);
2541 return;
2544 if (vcpu->arch.interrupt_window_open) {
2545 if (vcpu->arch.irq_summary && !vcpu->arch.interrupt.pending)
2546 kvm_queue_interrupt(vcpu, kvm_pop_irq(vcpu));
2548 if (vcpu->arch.interrupt.pending)
2549 vmx_inject_irq(vcpu, vcpu->arch.interrupt.nr);
2551 if (!vcpu->arch.interrupt_window_open &&
2552 (vcpu->arch.irq_summary || kvm_run->request_interrupt_window))
2553 enable_irq_window(vcpu);
2556 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
2558 int ret;
2559 struct kvm_userspace_memory_region tss_mem = {
2560 .slot = TSS_PRIVATE_MEMSLOT,
2561 .guest_phys_addr = addr,
2562 .memory_size = PAGE_SIZE * 3,
2563 .flags = 0,
2566 ret = kvm_set_memory_region(kvm, &tss_mem, 0);
2567 if (ret)
2568 return ret;
2569 kvm->arch.tss_addr = addr;
2570 return 0;
2573 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
2574 int vec, u32 err_code)
2577 * Instruction with address size override prefix opcode 0x67
2578 * Cause the #SS fault with 0 error code in VM86 mode.
2580 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
2581 if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
2582 return 1;
2584 * Forward all other exceptions that are valid in real mode.
2585 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
2586 * the required debugging infrastructure rework.
2588 switch (vec) {
2589 case DB_VECTOR:
2590 if (vcpu->guest_debug &
2591 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
2592 return 0;
2593 kvm_queue_exception(vcpu, vec);
2594 return 1;
2595 case BP_VECTOR:
2596 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2597 return 0;
2598 /* fall through */
2599 case DE_VECTOR:
2600 case OF_VECTOR:
2601 case BR_VECTOR:
2602 case UD_VECTOR:
2603 case DF_VECTOR:
2604 case SS_VECTOR:
2605 case GP_VECTOR:
2606 case MF_VECTOR:
2607 kvm_queue_exception(vcpu, vec);
2608 return 1;
2610 return 0;
2613 static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2615 struct vcpu_vmx *vmx = to_vmx(vcpu);
2616 u32 intr_info, ex_no, error_code;
2617 unsigned long cr2, rip, dr6;
2618 u32 vect_info;
2619 enum emulation_result er;
2621 vect_info = vmx->idt_vectoring_info;
2622 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
2624 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
2625 !is_page_fault(intr_info))
2626 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
2627 "intr info 0x%x\n", __func__, vect_info, intr_info);
2629 if (!irqchip_in_kernel(vcpu->kvm) && is_external_interrupt(vect_info)) {
2630 int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
2631 kvm_push_irq(vcpu, irq);
2634 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
2635 return 1; /* already handled by vmx_vcpu_run() */
2637 if (is_no_device(intr_info)) {
2638 vmx_fpu_activate(vcpu);
2639 return 1;
2642 if (is_invalid_opcode(intr_info)) {
2643 er = emulate_instruction(vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
2644 if (er != EMULATE_DONE)
2645 kvm_queue_exception(vcpu, UD_VECTOR);
2646 return 1;
2649 error_code = 0;
2650 rip = kvm_rip_read(vcpu);
2651 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
2652 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
2653 if (is_page_fault(intr_info)) {
2654 /* EPT won't cause page fault directly */
2655 if (enable_ept)
2656 BUG();
2657 cr2 = vmcs_readl(EXIT_QUALIFICATION);
2658 KVMTRACE_3D(PAGE_FAULT, vcpu, error_code, (u32)cr2,
2659 (u32)((u64)cr2 >> 32), handler);
2660 if (vcpu->arch.interrupt.pending || vcpu->arch.exception.pending)
2661 kvm_mmu_unprotect_page_virt(vcpu, cr2);
2662 return kvm_mmu_page_fault(vcpu, cr2, error_code);
2665 if (vcpu->arch.rmode.active &&
2666 handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
2667 error_code)) {
2668 if (vcpu->arch.halt_request) {
2669 vcpu->arch.halt_request = 0;
2670 return kvm_emulate_halt(vcpu);
2672 return 1;
2675 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
2676 switch (ex_no) {
2677 case DB_VECTOR:
2678 dr6 = vmcs_readl(EXIT_QUALIFICATION);
2679 if (!(vcpu->guest_debug &
2680 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
2681 vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
2682 kvm_queue_exception(vcpu, DB_VECTOR);
2683 return 1;
2685 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
2686 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
2687 /* fall through */
2688 case BP_VECTOR:
2689 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2690 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
2691 kvm_run->debug.arch.exception = ex_no;
2692 break;
2693 default:
2694 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
2695 kvm_run->ex.exception = ex_no;
2696 kvm_run->ex.error_code = error_code;
2697 break;
2699 return 0;
2702 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
2703 struct kvm_run *kvm_run)
2705 ++vcpu->stat.irq_exits;
2706 KVMTRACE_1D(INTR, vcpu, vmcs_read32(VM_EXIT_INTR_INFO), handler);
2707 return 1;
2710 static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2712 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2713 return 0;
2716 static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2718 unsigned long exit_qualification;
2719 int size, in, string;
2720 unsigned port;
2722 ++vcpu->stat.io_exits;
2723 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2724 string = (exit_qualification & 16) != 0;
2726 if (string) {
2727 if (emulate_instruction(vcpu,
2728 kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
2729 return 0;
2730 return 1;
2733 size = (exit_qualification & 7) + 1;
2734 in = (exit_qualification & 8) != 0;
2735 port = exit_qualification >> 16;
2737 skip_emulated_instruction(vcpu);
2738 return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
2741 static void
2742 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
2745 * Patch in the VMCALL instruction:
2747 hypercall[0] = 0x0f;
2748 hypercall[1] = 0x01;
2749 hypercall[2] = 0xc1;
2752 static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2754 unsigned long exit_qualification;
2755 int cr;
2756 int reg;
2758 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2759 cr = exit_qualification & 15;
2760 reg = (exit_qualification >> 8) & 15;
2761 switch ((exit_qualification >> 4) & 3) {
2762 case 0: /* mov to cr */
2763 KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr,
2764 (u32)kvm_register_read(vcpu, reg),
2765 (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
2766 handler);
2767 switch (cr) {
2768 case 0:
2769 kvm_set_cr0(vcpu, kvm_register_read(vcpu, reg));
2770 skip_emulated_instruction(vcpu);
2771 return 1;
2772 case 3:
2773 kvm_set_cr3(vcpu, kvm_register_read(vcpu, reg));
2774 skip_emulated_instruction(vcpu);
2775 return 1;
2776 case 4:
2777 kvm_set_cr4(vcpu, kvm_register_read(vcpu, reg));
2778 skip_emulated_instruction(vcpu);
2779 return 1;
2780 case 8:
2781 kvm_set_cr8(vcpu, kvm_register_read(vcpu, reg));
2782 skip_emulated_instruction(vcpu);
2783 if (irqchip_in_kernel(vcpu->kvm))
2784 return 1;
2785 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2786 return 0;
2788 break;
2789 case 2: /* clts */
2790 vmx_fpu_deactivate(vcpu);
2791 vcpu->arch.cr0 &= ~X86_CR0_TS;
2792 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
2793 vmx_fpu_activate(vcpu);
2794 KVMTRACE_0D(CLTS, vcpu, handler);
2795 skip_emulated_instruction(vcpu);
2796 return 1;
2797 case 1: /*mov from cr*/
2798 switch (cr) {
2799 case 3:
2800 kvm_register_write(vcpu, reg, vcpu->arch.cr3);
2801 KVMTRACE_3D(CR_READ, vcpu, (u32)cr,
2802 (u32)kvm_register_read(vcpu, reg),
2803 (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
2804 handler);
2805 skip_emulated_instruction(vcpu);
2806 return 1;
2807 case 8:
2808 kvm_register_write(vcpu, reg, kvm_get_cr8(vcpu));
2809 KVMTRACE_2D(CR_READ, vcpu, (u32)cr,
2810 (u32)kvm_register_read(vcpu, reg), handler);
2811 skip_emulated_instruction(vcpu);
2812 return 1;
2814 break;
2815 case 3: /* lmsw */
2816 kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
2818 skip_emulated_instruction(vcpu);
2819 return 1;
2820 default:
2821 break;
2823 kvm_run->exit_reason = 0;
2824 pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
2825 (int)(exit_qualification >> 4) & 3, cr);
2826 return 0;
2829 static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2831 unsigned long exit_qualification;
2832 unsigned long val;
2833 int dr, reg;
2835 dr = vmcs_readl(GUEST_DR7);
2836 if (dr & DR7_GD) {
2838 * As the vm-exit takes precedence over the debug trap, we
2839 * need to emulate the latter, either for the host or the
2840 * guest debugging itself.
2842 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
2843 kvm_run->debug.arch.dr6 = vcpu->arch.dr6;
2844 kvm_run->debug.arch.dr7 = dr;
2845 kvm_run->debug.arch.pc =
2846 vmcs_readl(GUEST_CS_BASE) +
2847 vmcs_readl(GUEST_RIP);
2848 kvm_run->debug.arch.exception = DB_VECTOR;
2849 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2850 return 0;
2851 } else {
2852 vcpu->arch.dr7 &= ~DR7_GD;
2853 vcpu->arch.dr6 |= DR6_BD;
2854 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
2855 kvm_queue_exception(vcpu, DB_VECTOR);
2856 return 1;
2860 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2861 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
2862 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
2863 if (exit_qualification & TYPE_MOV_FROM_DR) {
2864 switch (dr) {
2865 case 0 ... 3:
2866 val = vcpu->arch.db[dr];
2867 break;
2868 case 6:
2869 val = vcpu->arch.dr6;
2870 break;
2871 case 7:
2872 val = vcpu->arch.dr7;
2873 break;
2874 default:
2875 val = 0;
2877 kvm_register_write(vcpu, reg, val);
2878 KVMTRACE_2D(DR_READ, vcpu, (u32)dr, (u32)val, handler);
2879 } else {
2880 val = vcpu->arch.regs[reg];
2881 switch (dr) {
2882 case 0 ... 3:
2883 vcpu->arch.db[dr] = val;
2884 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
2885 vcpu->arch.eff_db[dr] = val;
2886 break;
2887 case 4 ... 5:
2888 if (vcpu->arch.cr4 & X86_CR4_DE)
2889 kvm_queue_exception(vcpu, UD_VECTOR);
2890 break;
2891 case 6:
2892 if (val & 0xffffffff00000000ULL) {
2893 kvm_queue_exception(vcpu, GP_VECTOR);
2894 break;
2896 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
2897 break;
2898 case 7:
2899 if (val & 0xffffffff00000000ULL) {
2900 kvm_queue_exception(vcpu, GP_VECTOR);
2901 break;
2903 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
2904 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
2905 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
2906 vcpu->arch.switch_db_regs =
2907 (val & DR7_BP_EN_MASK);
2909 break;
2911 KVMTRACE_2D(DR_WRITE, vcpu, (u32)dr, (u32)val, handler);
2913 skip_emulated_instruction(vcpu);
2914 return 1;
2917 static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2919 kvm_emulate_cpuid(vcpu);
2920 return 1;
2923 static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2925 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
2926 u64 data;
2928 if (vmx_get_msr(vcpu, ecx, &data)) {
2929 kvm_inject_gp(vcpu, 0);
2930 return 1;
2933 KVMTRACE_3D(MSR_READ, vcpu, ecx, (u32)data, (u32)(data >> 32),
2934 handler);
2936 /* FIXME: handling of bits 32:63 of rax, rdx */
2937 vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
2938 vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
2939 skip_emulated_instruction(vcpu);
2940 return 1;
2943 static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2945 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
2946 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
2947 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
2949 KVMTRACE_3D(MSR_WRITE, vcpu, ecx, (u32)data, (u32)(data >> 32),
2950 handler);
2952 if (vmx_set_msr(vcpu, ecx, data) != 0) {
2953 kvm_inject_gp(vcpu, 0);
2954 return 1;
2957 skip_emulated_instruction(vcpu);
2958 return 1;
2961 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
2962 struct kvm_run *kvm_run)
2964 return 1;
2967 static int handle_interrupt_window(struct kvm_vcpu *vcpu,
2968 struct kvm_run *kvm_run)
2970 u32 cpu_based_vm_exec_control;
2972 /* clear pending irq */
2973 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2974 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
2975 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2977 KVMTRACE_0D(PEND_INTR, vcpu, handler);
2978 ++vcpu->stat.irq_window_exits;
2981 * If the user space waits to inject interrupts, exit as soon as
2982 * possible
2984 if (kvm_run->request_interrupt_window &&
2985 !vcpu->arch.irq_summary) {
2986 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
2987 return 0;
2989 return 1;
2992 static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2994 skip_emulated_instruction(vcpu);
2995 return kvm_emulate_halt(vcpu);
2998 static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3000 skip_emulated_instruction(vcpu);
3001 kvm_emulate_hypercall(vcpu);
3002 return 1;
3005 static int handle_invlpg(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3007 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3009 kvm_mmu_invlpg(vcpu, exit_qualification);
3010 skip_emulated_instruction(vcpu);
3011 return 1;
3014 static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3016 skip_emulated_instruction(vcpu);
3017 /* TODO: Add support for VT-d/pass-through device */
3018 return 1;
3021 static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3023 unsigned long exit_qualification;
3024 enum emulation_result er;
3025 unsigned long offset;
3027 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3028 offset = exit_qualification & 0xffful;
3030 er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
3032 if (er != EMULATE_DONE) {
3033 printk(KERN_ERR
3034 "Fail to handle apic access vmexit! Offset is 0x%lx\n",
3035 offset);
3036 return -ENOTSUPP;
3038 return 1;
3041 static int handle_task_switch(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3043 struct vcpu_vmx *vmx = to_vmx(vcpu);
3044 unsigned long exit_qualification;
3045 u16 tss_selector;
3046 int reason;
3048 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3050 reason = (u32)exit_qualification >> 30;
3051 if (reason == TASK_SWITCH_GATE && vmx->vcpu.arch.nmi_injected &&
3052 (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
3053 (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK)
3054 == INTR_TYPE_NMI_INTR) {
3055 vcpu->arch.nmi_injected = false;
3056 if (cpu_has_virtual_nmis())
3057 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3058 GUEST_INTR_STATE_NMI);
3060 tss_selector = exit_qualification;
3062 if (!kvm_task_switch(vcpu, tss_selector, reason))
3063 return 0;
3065 /* clear all local breakpoint enable flags */
3066 vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
3069 * TODO: What about debug traps on tss switch?
3070 * Are we supposed to inject them and update dr6?
3073 return 1;
3076 static int handle_ept_violation(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3078 unsigned long exit_qualification;
3079 gpa_t gpa;
3080 int gla_validity;
3082 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3084 if (exit_qualification & (1 << 6)) {
3085 printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
3086 return -ENOTSUPP;
3089 gla_validity = (exit_qualification >> 7) & 0x3;
3090 if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
3091 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
3092 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
3093 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
3094 vmcs_readl(GUEST_LINEAR_ADDRESS));
3095 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
3096 (long unsigned int)exit_qualification);
3097 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
3098 kvm_run->hw.hardware_exit_reason = 0;
3099 return -ENOTSUPP;
3102 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
3103 return kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
3106 static int handle_nmi_window(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3108 u32 cpu_based_vm_exec_control;
3110 /* clear pending NMI */
3111 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3112 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
3113 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3114 ++vcpu->stat.nmi_window_exits;
3116 return 1;
3119 static void handle_invalid_guest_state(struct kvm_vcpu *vcpu,
3120 struct kvm_run *kvm_run)
3122 struct vcpu_vmx *vmx = to_vmx(vcpu);
3123 enum emulation_result err = EMULATE_DONE;
3125 preempt_enable();
3126 local_irq_enable();
3128 while (!guest_state_valid(vcpu)) {
3129 err = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
3131 if (err == EMULATE_DO_MMIO)
3132 break;
3134 if (err != EMULATE_DONE) {
3135 kvm_report_emulation_failure(vcpu, "emulation failure");
3136 return;
3139 if (signal_pending(current))
3140 break;
3141 if (need_resched())
3142 schedule();
3145 local_irq_disable();
3146 preempt_disable();
3148 vmx->invalid_state_emulation_result = err;
3152 * The exit handlers return 1 if the exit was handled fully and guest execution
3153 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
3154 * to be done to userspace and return 0.
3156 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
3157 struct kvm_run *kvm_run) = {
3158 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
3159 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
3160 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
3161 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
3162 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
3163 [EXIT_REASON_CR_ACCESS] = handle_cr,
3164 [EXIT_REASON_DR_ACCESS] = handle_dr,
3165 [EXIT_REASON_CPUID] = handle_cpuid,
3166 [EXIT_REASON_MSR_READ] = handle_rdmsr,
3167 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
3168 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
3169 [EXIT_REASON_HLT] = handle_halt,
3170 [EXIT_REASON_INVLPG] = handle_invlpg,
3171 [EXIT_REASON_VMCALL] = handle_vmcall,
3172 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
3173 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
3174 [EXIT_REASON_WBINVD] = handle_wbinvd,
3175 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
3176 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
3179 static const int kvm_vmx_max_exit_handlers =
3180 ARRAY_SIZE(kvm_vmx_exit_handlers);
3183 * The guest has exited. See if we can fix it or if we need userspace
3184 * assistance.
3186 static int vmx_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
3188 u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
3189 struct vcpu_vmx *vmx = to_vmx(vcpu);
3190 u32 vectoring_info = vmx->idt_vectoring_info;
3192 KVMTRACE_3D(VMEXIT, vcpu, exit_reason, (u32)kvm_rip_read(vcpu),
3193 (u32)((u64)kvm_rip_read(vcpu) >> 32), entryexit);
3195 /* If we need to emulate an MMIO from handle_invalid_guest_state
3196 * we just return 0 */
3197 if (vmx->emulation_required && emulate_invalid_guest_state) {
3198 if (guest_state_valid(vcpu))
3199 vmx->emulation_required = 0;
3200 return vmx->invalid_state_emulation_result != EMULATE_DO_MMIO;
3203 /* Access CR3 don't cause VMExit in paging mode, so we need
3204 * to sync with guest real CR3. */
3205 if (enable_ept && is_paging(vcpu)) {
3206 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3207 ept_load_pdptrs(vcpu);
3210 if (unlikely(vmx->fail)) {
3211 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3212 kvm_run->fail_entry.hardware_entry_failure_reason
3213 = vmcs_read32(VM_INSTRUCTION_ERROR);
3214 return 0;
3217 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
3218 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
3219 exit_reason != EXIT_REASON_EPT_VIOLATION &&
3220 exit_reason != EXIT_REASON_TASK_SWITCH))
3221 printk(KERN_WARNING "%s: unexpected, valid vectoring info "
3222 "(0x%x) and exit reason is 0x%x\n",
3223 __func__, vectoring_info, exit_reason);
3225 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
3226 if (vcpu->arch.interrupt_window_open) {
3227 vmx->soft_vnmi_blocked = 0;
3228 vcpu->arch.nmi_window_open = 1;
3229 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
3230 vcpu->arch.nmi_pending) {
3232 * This CPU don't support us in finding the end of an
3233 * NMI-blocked window if the guest runs with IRQs
3234 * disabled. So we pull the trigger after 1 s of
3235 * futile waiting, but inform the user about this.
3237 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
3238 "state on VCPU %d after 1 s timeout\n",
3239 __func__, vcpu->vcpu_id);
3240 vmx->soft_vnmi_blocked = 0;
3241 vmx->vcpu.arch.nmi_window_open = 1;
3245 if (exit_reason < kvm_vmx_max_exit_handlers
3246 && kvm_vmx_exit_handlers[exit_reason])
3247 return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
3248 else {
3249 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
3250 kvm_run->hw.hardware_exit_reason = exit_reason;
3252 return 0;
3255 static void update_tpr_threshold(struct kvm_vcpu *vcpu)
3257 int max_irr, tpr;
3259 if (!vm_need_tpr_shadow(vcpu->kvm))
3260 return;
3262 if (!kvm_lapic_enabled(vcpu) ||
3263 ((max_irr = kvm_lapic_find_highest_irr(vcpu)) == -1)) {
3264 vmcs_write32(TPR_THRESHOLD, 0);
3265 return;
3268 tpr = (kvm_lapic_get_cr8(vcpu) & 0x0f) << 4;
3269 vmcs_write32(TPR_THRESHOLD, (max_irr > tpr) ? tpr >> 4 : max_irr >> 4);
3272 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
3274 u32 exit_intr_info;
3275 u32 idt_vectoring_info;
3276 bool unblock_nmi;
3277 u8 vector;
3278 int type;
3279 bool idtv_info_valid;
3280 u32 error;
3282 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
3283 if (cpu_has_virtual_nmis()) {
3284 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
3285 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
3287 * SDM 3: 25.7.1.2
3288 * Re-set bit "block by NMI" before VM entry if vmexit caused by
3289 * a guest IRET fault.
3291 if (unblock_nmi && vector != DF_VECTOR)
3292 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3293 GUEST_INTR_STATE_NMI);
3294 } else if (unlikely(vmx->soft_vnmi_blocked))
3295 vmx->vnmi_blocked_time +=
3296 ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
3298 idt_vectoring_info = vmx->idt_vectoring_info;
3299 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
3300 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
3301 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
3302 if (vmx->vcpu.arch.nmi_injected) {
3304 * SDM 3: 25.7.1.2
3305 * Clear bit "block by NMI" before VM entry if a NMI delivery
3306 * faulted.
3308 if (idtv_info_valid && type == INTR_TYPE_NMI_INTR)
3309 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
3310 GUEST_INTR_STATE_NMI);
3311 else
3312 vmx->vcpu.arch.nmi_injected = false;
3314 kvm_clear_exception_queue(&vmx->vcpu);
3315 if (idtv_info_valid && (type == INTR_TYPE_HARD_EXCEPTION ||
3316 type == INTR_TYPE_SOFT_EXCEPTION)) {
3317 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
3318 error = vmcs_read32(IDT_VECTORING_ERROR_CODE);
3319 kvm_queue_exception_e(&vmx->vcpu, vector, error);
3320 } else
3321 kvm_queue_exception(&vmx->vcpu, vector);
3322 vmx->idt_vectoring_info = 0;
3324 kvm_clear_interrupt_queue(&vmx->vcpu);
3325 if (idtv_info_valid && type == INTR_TYPE_EXT_INTR) {
3326 kvm_queue_interrupt(&vmx->vcpu, vector);
3327 vmx->idt_vectoring_info = 0;
3331 static void vmx_intr_assist(struct kvm_vcpu *vcpu)
3333 update_tpr_threshold(vcpu);
3335 vmx_update_window_states(vcpu);
3337 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
3338 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
3339 GUEST_INTR_STATE_STI |
3340 GUEST_INTR_STATE_MOV_SS);
3342 if (vcpu->arch.nmi_pending && !vcpu->arch.nmi_injected) {
3343 if (vcpu->arch.interrupt.pending) {
3344 enable_nmi_window(vcpu);
3345 } else if (vcpu->arch.nmi_window_open) {
3346 vcpu->arch.nmi_pending = false;
3347 vcpu->arch.nmi_injected = true;
3348 } else {
3349 enable_nmi_window(vcpu);
3350 return;
3353 if (vcpu->arch.nmi_injected) {
3354 vmx_inject_nmi(vcpu);
3355 if (vcpu->arch.nmi_pending)
3356 enable_nmi_window(vcpu);
3357 else if (kvm_cpu_has_interrupt(vcpu))
3358 enable_irq_window(vcpu);
3359 return;
3361 if (!vcpu->arch.interrupt.pending && kvm_cpu_has_interrupt(vcpu)) {
3362 if (vcpu->arch.interrupt_window_open)
3363 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu));
3364 else
3365 enable_irq_window(vcpu);
3367 if (vcpu->arch.interrupt.pending) {
3368 vmx_inject_irq(vcpu, vcpu->arch.interrupt.nr);
3369 if (kvm_cpu_has_interrupt(vcpu))
3370 enable_irq_window(vcpu);
3375 * Failure to inject an interrupt should give us the information
3376 * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
3377 * when fetching the interrupt redirection bitmap in the real-mode
3378 * tss, this doesn't happen. So we do it ourselves.
3380 static void fixup_rmode_irq(struct vcpu_vmx *vmx)
3382 vmx->rmode.irq.pending = 0;
3383 if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
3384 return;
3385 kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
3386 if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
3387 vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
3388 vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
3389 return;
3391 vmx->idt_vectoring_info =
3392 VECTORING_INFO_VALID_MASK
3393 | INTR_TYPE_EXT_INTR
3394 | vmx->rmode.irq.vector;
3397 #ifdef CONFIG_X86_64
3398 #define R "r"
3399 #define Q "q"
3400 #else
3401 #define R "e"
3402 #define Q "l"
3403 #endif
3405 static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3407 struct vcpu_vmx *vmx = to_vmx(vcpu);
3408 u32 intr_info;
3410 /* Record the guest's net vcpu time for enforced NMI injections. */
3411 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
3412 vmx->entry_time = ktime_get();
3414 /* Handle invalid guest state instead of entering VMX */
3415 if (vmx->emulation_required && emulate_invalid_guest_state) {
3416 handle_invalid_guest_state(vcpu, kvm_run);
3417 return;
3420 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
3421 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
3422 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
3423 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
3426 * Loading guest fpu may have cleared host cr0.ts
3428 vmcs_writel(HOST_CR0, read_cr0());
3430 set_debugreg(vcpu->arch.dr6, 6);
3432 asm(
3433 /* Store host registers */
3434 "push %%"R"dx; push %%"R"bp;"
3435 "push %%"R"cx \n\t"
3436 "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
3437 "je 1f \n\t"
3438 "mov %%"R"sp, %c[host_rsp](%0) \n\t"
3439 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
3440 "1: \n\t"
3441 /* Check if vmlaunch of vmresume is needed */
3442 "cmpl $0, %c[launched](%0) \n\t"
3443 /* Load guest registers. Don't clobber flags. */
3444 "mov %c[cr2](%0), %%"R"ax \n\t"
3445 "mov %%"R"ax, %%cr2 \n\t"
3446 "mov %c[rax](%0), %%"R"ax \n\t"
3447 "mov %c[rbx](%0), %%"R"bx \n\t"
3448 "mov %c[rdx](%0), %%"R"dx \n\t"
3449 "mov %c[rsi](%0), %%"R"si \n\t"
3450 "mov %c[rdi](%0), %%"R"di \n\t"
3451 "mov %c[rbp](%0), %%"R"bp \n\t"
3452 #ifdef CONFIG_X86_64
3453 "mov %c[r8](%0), %%r8 \n\t"
3454 "mov %c[r9](%0), %%r9 \n\t"
3455 "mov %c[r10](%0), %%r10 \n\t"
3456 "mov %c[r11](%0), %%r11 \n\t"
3457 "mov %c[r12](%0), %%r12 \n\t"
3458 "mov %c[r13](%0), %%r13 \n\t"
3459 "mov %c[r14](%0), %%r14 \n\t"
3460 "mov %c[r15](%0), %%r15 \n\t"
3461 #endif
3462 "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
3464 /* Enter guest mode */
3465 "jne .Llaunched \n\t"
3466 __ex(ASM_VMX_VMLAUNCH) "\n\t"
3467 "jmp .Lkvm_vmx_return \n\t"
3468 ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
3469 ".Lkvm_vmx_return: "
3470 /* Save guest registers, load host registers, keep flags */
3471 "xchg %0, (%%"R"sp) \n\t"
3472 "mov %%"R"ax, %c[rax](%0) \n\t"
3473 "mov %%"R"bx, %c[rbx](%0) \n\t"
3474 "push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
3475 "mov %%"R"dx, %c[rdx](%0) \n\t"
3476 "mov %%"R"si, %c[rsi](%0) \n\t"
3477 "mov %%"R"di, %c[rdi](%0) \n\t"
3478 "mov %%"R"bp, %c[rbp](%0) \n\t"
3479 #ifdef CONFIG_X86_64
3480 "mov %%r8, %c[r8](%0) \n\t"
3481 "mov %%r9, %c[r9](%0) \n\t"
3482 "mov %%r10, %c[r10](%0) \n\t"
3483 "mov %%r11, %c[r11](%0) \n\t"
3484 "mov %%r12, %c[r12](%0) \n\t"
3485 "mov %%r13, %c[r13](%0) \n\t"
3486 "mov %%r14, %c[r14](%0) \n\t"
3487 "mov %%r15, %c[r15](%0) \n\t"
3488 #endif
3489 "mov %%cr2, %%"R"ax \n\t"
3490 "mov %%"R"ax, %c[cr2](%0) \n\t"
3492 "pop %%"R"bp; pop %%"R"bp; pop %%"R"dx \n\t"
3493 "setbe %c[fail](%0) \n\t"
3494 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
3495 [launched]"i"(offsetof(struct vcpu_vmx, launched)),
3496 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
3497 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
3498 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
3499 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
3500 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
3501 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
3502 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
3503 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
3504 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
3505 #ifdef CONFIG_X86_64
3506 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
3507 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
3508 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
3509 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
3510 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
3511 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
3512 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
3513 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
3514 #endif
3515 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
3516 : "cc", "memory"
3517 , R"bx", R"di", R"si"
3518 #ifdef CONFIG_X86_64
3519 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
3520 #endif
3523 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
3524 vcpu->arch.regs_dirty = 0;
3526 get_debugreg(vcpu->arch.dr6, 6);
3528 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
3529 if (vmx->rmode.irq.pending)
3530 fixup_rmode_irq(vmx);
3532 vmx_update_window_states(vcpu);
3534 asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
3535 vmx->launched = 1;
3537 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
3539 /* We need to handle NMIs before interrupts are enabled */
3540 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
3541 (intr_info & INTR_INFO_VALID_MASK)) {
3542 KVMTRACE_0D(NMI, vcpu, handler);
3543 asm("int $2");
3546 vmx_complete_interrupts(vmx);
3549 #undef R
3550 #undef Q
3552 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
3554 struct vcpu_vmx *vmx = to_vmx(vcpu);
3556 if (vmx->vmcs) {
3557 vcpu_clear(vmx);
3558 free_vmcs(vmx->vmcs);
3559 vmx->vmcs = NULL;
3563 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
3565 struct vcpu_vmx *vmx = to_vmx(vcpu);
3567 spin_lock(&vmx_vpid_lock);
3568 if (vmx->vpid != 0)
3569 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
3570 spin_unlock(&vmx_vpid_lock);
3571 vmx_free_vmcs(vcpu);
3572 kfree(vmx->host_msrs);
3573 kfree(vmx->guest_msrs);
3574 kvm_vcpu_uninit(vcpu);
3575 kmem_cache_free(kvm_vcpu_cache, vmx);
3578 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
3580 int err;
3581 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
3582 int cpu;
3584 if (!vmx)
3585 return ERR_PTR(-ENOMEM);
3587 allocate_vpid(vmx);
3589 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
3590 if (err)
3591 goto free_vcpu;
3593 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
3594 if (!vmx->guest_msrs) {
3595 err = -ENOMEM;
3596 goto uninit_vcpu;
3599 vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
3600 if (!vmx->host_msrs)
3601 goto free_guest_msrs;
3603 vmx->vmcs = alloc_vmcs();
3604 if (!vmx->vmcs)
3605 goto free_msrs;
3607 vmcs_clear(vmx->vmcs);
3609 cpu = get_cpu();
3610 vmx_vcpu_load(&vmx->vcpu, cpu);
3611 err = vmx_vcpu_setup(vmx);
3612 vmx_vcpu_put(&vmx->vcpu);
3613 put_cpu();
3614 if (err)
3615 goto free_vmcs;
3616 if (vm_need_virtualize_apic_accesses(kvm))
3617 if (alloc_apic_access_page(kvm) != 0)
3618 goto free_vmcs;
3620 if (enable_ept)
3621 if (alloc_identity_pagetable(kvm) != 0)
3622 goto free_vmcs;
3624 return &vmx->vcpu;
3626 free_vmcs:
3627 free_vmcs(vmx->vmcs);
3628 free_msrs:
3629 kfree(vmx->host_msrs);
3630 free_guest_msrs:
3631 kfree(vmx->guest_msrs);
3632 uninit_vcpu:
3633 kvm_vcpu_uninit(&vmx->vcpu);
3634 free_vcpu:
3635 kmem_cache_free(kvm_vcpu_cache, vmx);
3636 return ERR_PTR(err);
3639 static void __init vmx_check_processor_compat(void *rtn)
3641 struct vmcs_config vmcs_conf;
3643 *(int *)rtn = 0;
3644 if (setup_vmcs_config(&vmcs_conf) < 0)
3645 *(int *)rtn = -EIO;
3646 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
3647 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
3648 smp_processor_id());
3649 *(int *)rtn = -EIO;
3653 static int get_ept_level(void)
3655 return VMX_EPT_DEFAULT_GAW + 1;
3658 static int vmx_get_mt_mask_shift(void)
3660 return VMX_EPT_MT_EPTE_SHIFT;
3663 static struct kvm_x86_ops vmx_x86_ops = {
3664 .cpu_has_kvm_support = cpu_has_kvm_support,
3665 .disabled_by_bios = vmx_disabled_by_bios,
3666 .hardware_setup = hardware_setup,
3667 .hardware_unsetup = hardware_unsetup,
3668 .check_processor_compatibility = vmx_check_processor_compat,
3669 .hardware_enable = hardware_enable,
3670 .hardware_disable = hardware_disable,
3671 .cpu_has_accelerated_tpr = report_flexpriority,
3673 .vcpu_create = vmx_create_vcpu,
3674 .vcpu_free = vmx_free_vcpu,
3675 .vcpu_reset = vmx_vcpu_reset,
3677 .prepare_guest_switch = vmx_save_host_state,
3678 .vcpu_load = vmx_vcpu_load,
3679 .vcpu_put = vmx_vcpu_put,
3681 .set_guest_debug = set_guest_debug,
3682 .get_msr = vmx_get_msr,
3683 .set_msr = vmx_set_msr,
3684 .get_segment_base = vmx_get_segment_base,
3685 .get_segment = vmx_get_segment,
3686 .set_segment = vmx_set_segment,
3687 .get_cpl = vmx_get_cpl,
3688 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
3689 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
3690 .set_cr0 = vmx_set_cr0,
3691 .set_cr3 = vmx_set_cr3,
3692 .set_cr4 = vmx_set_cr4,
3693 .set_efer = vmx_set_efer,
3694 .get_idt = vmx_get_idt,
3695 .set_idt = vmx_set_idt,
3696 .get_gdt = vmx_get_gdt,
3697 .set_gdt = vmx_set_gdt,
3698 .cache_reg = vmx_cache_reg,
3699 .get_rflags = vmx_get_rflags,
3700 .set_rflags = vmx_set_rflags,
3702 .tlb_flush = vmx_flush_tlb,
3704 .run = vmx_vcpu_run,
3705 .handle_exit = vmx_handle_exit,
3706 .skip_emulated_instruction = skip_emulated_instruction,
3707 .patch_hypercall = vmx_patch_hypercall,
3708 .get_irq = vmx_get_irq,
3709 .set_irq = vmx_inject_irq,
3710 .queue_exception = vmx_queue_exception,
3711 .exception_injected = vmx_exception_injected,
3712 .inject_pending_irq = vmx_intr_assist,
3713 .inject_pending_vectors = do_interrupt_requests,
3714 .interrupt_allowed = vmx_interrupt_allowed,
3715 .set_tss_addr = vmx_set_tss_addr,
3716 .get_tdp_level = get_ept_level,
3717 .get_mt_mask_shift = vmx_get_mt_mask_shift,
3720 static int __init vmx_init(void)
3722 int r;
3724 vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
3725 if (!vmx_io_bitmap_a)
3726 return -ENOMEM;
3728 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
3729 if (!vmx_io_bitmap_b) {
3730 r = -ENOMEM;
3731 goto out;
3734 vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
3735 if (!vmx_msr_bitmap_legacy) {
3736 r = -ENOMEM;
3737 goto out1;
3740 vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
3741 if (!vmx_msr_bitmap_longmode) {
3742 r = -ENOMEM;
3743 goto out2;
3747 * Allow direct access to the PC debug port (it is often used for I/O
3748 * delays, but the vmexits simply slow things down).
3750 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
3751 clear_bit(0x80, vmx_io_bitmap_a);
3753 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
3755 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
3756 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
3758 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
3760 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
3761 if (r)
3762 goto out3;
3764 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
3765 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
3766 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
3767 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
3768 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
3769 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
3771 if (enable_ept) {
3772 bypass_guest_pf = 0;
3773 kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
3774 VMX_EPT_WRITABLE_MASK);
3775 kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
3776 VMX_EPT_EXECUTABLE_MASK,
3777 VMX_EPT_DEFAULT_MT << VMX_EPT_MT_EPTE_SHIFT);
3778 kvm_enable_tdp();
3779 } else
3780 kvm_disable_tdp();
3782 if (bypass_guest_pf)
3783 kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
3785 ept_sync_global();
3787 return 0;
3789 out3:
3790 free_page((unsigned long)vmx_msr_bitmap_longmode);
3791 out2:
3792 free_page((unsigned long)vmx_msr_bitmap_legacy);
3793 out1:
3794 free_page((unsigned long)vmx_io_bitmap_b);
3795 out:
3796 free_page((unsigned long)vmx_io_bitmap_a);
3797 return r;
3800 static void __exit vmx_exit(void)
3802 free_page((unsigned long)vmx_msr_bitmap_legacy);
3803 free_page((unsigned long)vmx_msr_bitmap_longmode);
3804 free_page((unsigned long)vmx_io_bitmap_b);
3805 free_page((unsigned long)vmx_io_bitmap_a);
3807 kvm_exit();
3810 module_init(vmx_init)
3811 module_exit(vmx_exit)