pata: expose set_mode method so it can be wrapped
[linux-2.6/mini2440.git] / drivers / ata / libata-core.c
blob14b469f7b23e27852c9173c5a079baa6f36fcc45
1 /*
2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
40 #include <linux/mm.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <scsi/scsi.h>
53 #include <scsi/scsi_cmnd.h>
54 #include <scsi/scsi_host.h>
55 #include <linux/libata.h>
56 #include <asm/io.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
60 #include "libata.h"
62 #define DRV_VERSION "2.20" /* must be exactly four chars */
65 /* debounce timing parameters in msecs { interval, duration, timeout } */
66 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
67 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
68 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
70 static unsigned int ata_dev_init_params(struct ata_device *dev,
71 u16 heads, u16 sectors);
72 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
73 static void ata_dev_xfermask(struct ata_device *dev);
75 static unsigned int ata_print_id = 1;
76 static struct workqueue_struct *ata_wq;
78 struct workqueue_struct *ata_aux_wq;
80 int atapi_enabled = 1;
81 module_param(atapi_enabled, int, 0444);
82 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
84 int atapi_dmadir = 0;
85 module_param(atapi_dmadir, int, 0444);
86 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
88 int libata_fua = 0;
89 module_param_named(fua, libata_fua, int, 0444);
90 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
92 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
93 module_param(ata_probe_timeout, int, 0444);
94 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
96 int libata_noacpi = 1;
97 module_param_named(noacpi, libata_noacpi, int, 0444);
98 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set");
100 MODULE_AUTHOR("Jeff Garzik");
101 MODULE_DESCRIPTION("Library module for ATA devices");
102 MODULE_LICENSE("GPL");
103 MODULE_VERSION(DRV_VERSION);
107 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
108 * @tf: Taskfile to convert
109 * @fis: Buffer into which data will output
110 * @pmp: Port multiplier port
112 * Converts a standard ATA taskfile to a Serial ATA
113 * FIS structure (Register - Host to Device).
115 * LOCKING:
116 * Inherited from caller.
119 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
121 fis[0] = 0x27; /* Register - Host to Device FIS */
122 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
123 bit 7 indicates Command FIS */
124 fis[2] = tf->command;
125 fis[3] = tf->feature;
127 fis[4] = tf->lbal;
128 fis[5] = tf->lbam;
129 fis[6] = tf->lbah;
130 fis[7] = tf->device;
132 fis[8] = tf->hob_lbal;
133 fis[9] = tf->hob_lbam;
134 fis[10] = tf->hob_lbah;
135 fis[11] = tf->hob_feature;
137 fis[12] = tf->nsect;
138 fis[13] = tf->hob_nsect;
139 fis[14] = 0;
140 fis[15] = tf->ctl;
142 fis[16] = 0;
143 fis[17] = 0;
144 fis[18] = 0;
145 fis[19] = 0;
149 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
150 * @fis: Buffer from which data will be input
151 * @tf: Taskfile to output
153 * Converts a serial ATA FIS structure to a standard ATA taskfile.
155 * LOCKING:
156 * Inherited from caller.
159 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
161 tf->command = fis[2]; /* status */
162 tf->feature = fis[3]; /* error */
164 tf->lbal = fis[4];
165 tf->lbam = fis[5];
166 tf->lbah = fis[6];
167 tf->device = fis[7];
169 tf->hob_lbal = fis[8];
170 tf->hob_lbam = fis[9];
171 tf->hob_lbah = fis[10];
173 tf->nsect = fis[12];
174 tf->hob_nsect = fis[13];
177 static const u8 ata_rw_cmds[] = {
178 /* pio multi */
179 ATA_CMD_READ_MULTI,
180 ATA_CMD_WRITE_MULTI,
181 ATA_CMD_READ_MULTI_EXT,
182 ATA_CMD_WRITE_MULTI_EXT,
186 ATA_CMD_WRITE_MULTI_FUA_EXT,
187 /* pio */
188 ATA_CMD_PIO_READ,
189 ATA_CMD_PIO_WRITE,
190 ATA_CMD_PIO_READ_EXT,
191 ATA_CMD_PIO_WRITE_EXT,
196 /* dma */
197 ATA_CMD_READ,
198 ATA_CMD_WRITE,
199 ATA_CMD_READ_EXT,
200 ATA_CMD_WRITE_EXT,
204 ATA_CMD_WRITE_FUA_EXT
208 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
209 * @tf: command to examine and configure
210 * @dev: device tf belongs to
212 * Examine the device configuration and tf->flags to calculate
213 * the proper read/write commands and protocol to use.
215 * LOCKING:
216 * caller.
218 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
220 u8 cmd;
222 int index, fua, lba48, write;
224 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
225 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
226 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
228 if (dev->flags & ATA_DFLAG_PIO) {
229 tf->protocol = ATA_PROT_PIO;
230 index = dev->multi_count ? 0 : 8;
231 } else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) {
232 /* Unable to use DMA due to host limitation */
233 tf->protocol = ATA_PROT_PIO;
234 index = dev->multi_count ? 0 : 8;
235 } else {
236 tf->protocol = ATA_PROT_DMA;
237 index = 16;
240 cmd = ata_rw_cmds[index + fua + lba48 + write];
241 if (cmd) {
242 tf->command = cmd;
243 return 0;
245 return -1;
249 * ata_tf_read_block - Read block address from ATA taskfile
250 * @tf: ATA taskfile of interest
251 * @dev: ATA device @tf belongs to
253 * LOCKING:
254 * None.
256 * Read block address from @tf. This function can handle all
257 * three address formats - LBA, LBA48 and CHS. tf->protocol and
258 * flags select the address format to use.
260 * RETURNS:
261 * Block address read from @tf.
263 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
265 u64 block = 0;
267 if (tf->flags & ATA_TFLAG_LBA) {
268 if (tf->flags & ATA_TFLAG_LBA48) {
269 block |= (u64)tf->hob_lbah << 40;
270 block |= (u64)tf->hob_lbam << 32;
271 block |= tf->hob_lbal << 24;
272 } else
273 block |= (tf->device & 0xf) << 24;
275 block |= tf->lbah << 16;
276 block |= tf->lbam << 8;
277 block |= tf->lbal;
278 } else {
279 u32 cyl, head, sect;
281 cyl = tf->lbam | (tf->lbah << 8);
282 head = tf->device & 0xf;
283 sect = tf->lbal;
285 block = (cyl * dev->heads + head) * dev->sectors + sect;
288 return block;
292 * ata_build_rw_tf - Build ATA taskfile for given read/write request
293 * @tf: Target ATA taskfile
294 * @dev: ATA device @tf belongs to
295 * @block: Block address
296 * @n_block: Number of blocks
297 * @tf_flags: RW/FUA etc...
298 * @tag: tag
300 * LOCKING:
301 * None.
303 * Build ATA taskfile @tf for read/write request described by
304 * @block, @n_block, @tf_flags and @tag on @dev.
306 * RETURNS:
308 * 0 on success, -ERANGE if the request is too large for @dev,
309 * -EINVAL if the request is invalid.
311 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
312 u64 block, u32 n_block, unsigned int tf_flags,
313 unsigned int tag)
315 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
316 tf->flags |= tf_flags;
318 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
319 /* yay, NCQ */
320 if (!lba_48_ok(block, n_block))
321 return -ERANGE;
323 tf->protocol = ATA_PROT_NCQ;
324 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
326 if (tf->flags & ATA_TFLAG_WRITE)
327 tf->command = ATA_CMD_FPDMA_WRITE;
328 else
329 tf->command = ATA_CMD_FPDMA_READ;
331 tf->nsect = tag << 3;
332 tf->hob_feature = (n_block >> 8) & 0xff;
333 tf->feature = n_block & 0xff;
335 tf->hob_lbah = (block >> 40) & 0xff;
336 tf->hob_lbam = (block >> 32) & 0xff;
337 tf->hob_lbal = (block >> 24) & 0xff;
338 tf->lbah = (block >> 16) & 0xff;
339 tf->lbam = (block >> 8) & 0xff;
340 tf->lbal = block & 0xff;
342 tf->device = 1 << 6;
343 if (tf->flags & ATA_TFLAG_FUA)
344 tf->device |= 1 << 7;
345 } else if (dev->flags & ATA_DFLAG_LBA) {
346 tf->flags |= ATA_TFLAG_LBA;
348 if (lba_28_ok(block, n_block)) {
349 /* use LBA28 */
350 tf->device |= (block >> 24) & 0xf;
351 } else if (lba_48_ok(block, n_block)) {
352 if (!(dev->flags & ATA_DFLAG_LBA48))
353 return -ERANGE;
355 /* use LBA48 */
356 tf->flags |= ATA_TFLAG_LBA48;
358 tf->hob_nsect = (n_block >> 8) & 0xff;
360 tf->hob_lbah = (block >> 40) & 0xff;
361 tf->hob_lbam = (block >> 32) & 0xff;
362 tf->hob_lbal = (block >> 24) & 0xff;
363 } else
364 /* request too large even for LBA48 */
365 return -ERANGE;
367 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
368 return -EINVAL;
370 tf->nsect = n_block & 0xff;
372 tf->lbah = (block >> 16) & 0xff;
373 tf->lbam = (block >> 8) & 0xff;
374 tf->lbal = block & 0xff;
376 tf->device |= ATA_LBA;
377 } else {
378 /* CHS */
379 u32 sect, head, cyl, track;
381 /* The request -may- be too large for CHS addressing. */
382 if (!lba_28_ok(block, n_block))
383 return -ERANGE;
385 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
386 return -EINVAL;
388 /* Convert LBA to CHS */
389 track = (u32)block / dev->sectors;
390 cyl = track / dev->heads;
391 head = track % dev->heads;
392 sect = (u32)block % dev->sectors + 1;
394 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
395 (u32)block, track, cyl, head, sect);
397 /* Check whether the converted CHS can fit.
398 Cylinder: 0-65535
399 Head: 0-15
400 Sector: 1-255*/
401 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
402 return -ERANGE;
404 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
405 tf->lbal = sect;
406 tf->lbam = cyl;
407 tf->lbah = cyl >> 8;
408 tf->device |= head;
411 return 0;
415 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
416 * @pio_mask: pio_mask
417 * @mwdma_mask: mwdma_mask
418 * @udma_mask: udma_mask
420 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
421 * unsigned int xfer_mask.
423 * LOCKING:
424 * None.
426 * RETURNS:
427 * Packed xfer_mask.
429 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
430 unsigned int mwdma_mask,
431 unsigned int udma_mask)
433 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
434 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
435 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
439 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
440 * @xfer_mask: xfer_mask to unpack
441 * @pio_mask: resulting pio_mask
442 * @mwdma_mask: resulting mwdma_mask
443 * @udma_mask: resulting udma_mask
445 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
446 * Any NULL distination masks will be ignored.
448 static void ata_unpack_xfermask(unsigned int xfer_mask,
449 unsigned int *pio_mask,
450 unsigned int *mwdma_mask,
451 unsigned int *udma_mask)
453 if (pio_mask)
454 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
455 if (mwdma_mask)
456 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
457 if (udma_mask)
458 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
461 static const struct ata_xfer_ent {
462 int shift, bits;
463 u8 base;
464 } ata_xfer_tbl[] = {
465 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
466 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
467 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
468 { -1, },
472 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
473 * @xfer_mask: xfer_mask of interest
475 * Return matching XFER_* value for @xfer_mask. Only the highest
476 * bit of @xfer_mask is considered.
478 * LOCKING:
479 * None.
481 * RETURNS:
482 * Matching XFER_* value, 0 if no match found.
484 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
486 int highbit = fls(xfer_mask) - 1;
487 const struct ata_xfer_ent *ent;
489 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
490 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
491 return ent->base + highbit - ent->shift;
492 return 0;
496 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
497 * @xfer_mode: XFER_* of interest
499 * Return matching xfer_mask for @xfer_mode.
501 * LOCKING:
502 * None.
504 * RETURNS:
505 * Matching xfer_mask, 0 if no match found.
507 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
509 const struct ata_xfer_ent *ent;
511 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
512 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
513 return 1 << (ent->shift + xfer_mode - ent->base);
514 return 0;
518 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
519 * @xfer_mode: XFER_* of interest
521 * Return matching xfer_shift for @xfer_mode.
523 * LOCKING:
524 * None.
526 * RETURNS:
527 * Matching xfer_shift, -1 if no match found.
529 static int ata_xfer_mode2shift(unsigned int xfer_mode)
531 const struct ata_xfer_ent *ent;
533 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
534 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
535 return ent->shift;
536 return -1;
540 * ata_mode_string - convert xfer_mask to string
541 * @xfer_mask: mask of bits supported; only highest bit counts.
543 * Determine string which represents the highest speed
544 * (highest bit in @modemask).
546 * LOCKING:
547 * None.
549 * RETURNS:
550 * Constant C string representing highest speed listed in
551 * @mode_mask, or the constant C string "<n/a>".
553 static const char *ata_mode_string(unsigned int xfer_mask)
555 static const char * const xfer_mode_str[] = {
556 "PIO0",
557 "PIO1",
558 "PIO2",
559 "PIO3",
560 "PIO4",
561 "PIO5",
562 "PIO6",
563 "MWDMA0",
564 "MWDMA1",
565 "MWDMA2",
566 "MWDMA3",
567 "MWDMA4",
568 "UDMA/16",
569 "UDMA/25",
570 "UDMA/33",
571 "UDMA/44",
572 "UDMA/66",
573 "UDMA/100",
574 "UDMA/133",
575 "UDMA7",
577 int highbit;
579 highbit = fls(xfer_mask) - 1;
580 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
581 return xfer_mode_str[highbit];
582 return "<n/a>";
585 static const char *sata_spd_string(unsigned int spd)
587 static const char * const spd_str[] = {
588 "1.5 Gbps",
589 "3.0 Gbps",
592 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
593 return "<unknown>";
594 return spd_str[spd - 1];
597 void ata_dev_disable(struct ata_device *dev)
599 if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
600 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
601 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
602 ATA_DNXFER_QUIET);
603 dev->class++;
608 * ata_devchk - PATA device presence detection
609 * @ap: ATA channel to examine
610 * @device: Device to examine (starting at zero)
612 * This technique was originally described in
613 * Hale Landis's ATADRVR (www.ata-atapi.com), and
614 * later found its way into the ATA/ATAPI spec.
616 * Write a pattern to the ATA shadow registers,
617 * and if a device is present, it will respond by
618 * correctly storing and echoing back the
619 * ATA shadow register contents.
621 * LOCKING:
622 * caller.
625 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
627 struct ata_ioports *ioaddr = &ap->ioaddr;
628 u8 nsect, lbal;
630 ap->ops->dev_select(ap, device);
632 iowrite8(0x55, ioaddr->nsect_addr);
633 iowrite8(0xaa, ioaddr->lbal_addr);
635 iowrite8(0xaa, ioaddr->nsect_addr);
636 iowrite8(0x55, ioaddr->lbal_addr);
638 iowrite8(0x55, ioaddr->nsect_addr);
639 iowrite8(0xaa, ioaddr->lbal_addr);
641 nsect = ioread8(ioaddr->nsect_addr);
642 lbal = ioread8(ioaddr->lbal_addr);
644 if ((nsect == 0x55) && (lbal == 0xaa))
645 return 1; /* we found a device */
647 return 0; /* nothing found */
651 * ata_dev_classify - determine device type based on ATA-spec signature
652 * @tf: ATA taskfile register set for device to be identified
654 * Determine from taskfile register contents whether a device is
655 * ATA or ATAPI, as per "Signature and persistence" section
656 * of ATA/PI spec (volume 1, sect 5.14).
658 * LOCKING:
659 * None.
661 * RETURNS:
662 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
663 * the event of failure.
666 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
668 /* Apple's open source Darwin code hints that some devices only
669 * put a proper signature into the LBA mid/high registers,
670 * So, we only check those. It's sufficient for uniqueness.
673 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
674 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
675 DPRINTK("found ATA device by sig\n");
676 return ATA_DEV_ATA;
679 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
680 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
681 DPRINTK("found ATAPI device by sig\n");
682 return ATA_DEV_ATAPI;
685 DPRINTK("unknown device\n");
686 return ATA_DEV_UNKNOWN;
690 * ata_dev_try_classify - Parse returned ATA device signature
691 * @ap: ATA channel to examine
692 * @device: Device to examine (starting at zero)
693 * @r_err: Value of error register on completion
695 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
696 * an ATA/ATAPI-defined set of values is placed in the ATA
697 * shadow registers, indicating the results of device detection
698 * and diagnostics.
700 * Select the ATA device, and read the values from the ATA shadow
701 * registers. Then parse according to the Error register value,
702 * and the spec-defined values examined by ata_dev_classify().
704 * LOCKING:
705 * caller.
707 * RETURNS:
708 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
711 unsigned int
712 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
714 struct ata_taskfile tf;
715 unsigned int class;
716 u8 err;
718 ap->ops->dev_select(ap, device);
720 memset(&tf, 0, sizeof(tf));
722 ap->ops->tf_read(ap, &tf);
723 err = tf.feature;
724 if (r_err)
725 *r_err = err;
727 /* see if device passed diags: if master then continue and warn later */
728 if (err == 0 && device == 0)
729 /* diagnostic fail : do nothing _YET_ */
730 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
731 else if (err == 1)
732 /* do nothing */ ;
733 else if ((device == 0) && (err == 0x81))
734 /* do nothing */ ;
735 else
736 return ATA_DEV_NONE;
738 /* determine if device is ATA or ATAPI */
739 class = ata_dev_classify(&tf);
741 if (class == ATA_DEV_UNKNOWN)
742 return ATA_DEV_NONE;
743 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
744 return ATA_DEV_NONE;
745 return class;
749 * ata_id_string - Convert IDENTIFY DEVICE page into string
750 * @id: IDENTIFY DEVICE results we will examine
751 * @s: string into which data is output
752 * @ofs: offset into identify device page
753 * @len: length of string to return. must be an even number.
755 * The strings in the IDENTIFY DEVICE page are broken up into
756 * 16-bit chunks. Run through the string, and output each
757 * 8-bit chunk linearly, regardless of platform.
759 * LOCKING:
760 * caller.
763 void ata_id_string(const u16 *id, unsigned char *s,
764 unsigned int ofs, unsigned int len)
766 unsigned int c;
768 while (len > 0) {
769 c = id[ofs] >> 8;
770 *s = c;
771 s++;
773 c = id[ofs] & 0xff;
774 *s = c;
775 s++;
777 ofs++;
778 len -= 2;
783 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
784 * @id: IDENTIFY DEVICE results we will examine
785 * @s: string into which data is output
786 * @ofs: offset into identify device page
787 * @len: length of string to return. must be an odd number.
789 * This function is identical to ata_id_string except that it
790 * trims trailing spaces and terminates the resulting string with
791 * null. @len must be actual maximum length (even number) + 1.
793 * LOCKING:
794 * caller.
796 void ata_id_c_string(const u16 *id, unsigned char *s,
797 unsigned int ofs, unsigned int len)
799 unsigned char *p;
801 WARN_ON(!(len & 1));
803 ata_id_string(id, s, ofs, len - 1);
805 p = s + strnlen(s, len - 1);
806 while (p > s && p[-1] == ' ')
807 p--;
808 *p = '\0';
811 static u64 ata_id_n_sectors(const u16 *id)
813 if (ata_id_has_lba(id)) {
814 if (ata_id_has_lba48(id))
815 return ata_id_u64(id, 100);
816 else
817 return ata_id_u32(id, 60);
818 } else {
819 if (ata_id_current_chs_valid(id))
820 return ata_id_u32(id, 57);
821 else
822 return id[1] * id[3] * id[6];
827 * ata_id_to_dma_mode - Identify DMA mode from id block
828 * @dev: device to identify
829 * @unknown: mode to assume if we cannot tell
831 * Set up the timing values for the device based upon the identify
832 * reported values for the DMA mode. This function is used by drivers
833 * which rely upon firmware configured modes, but wish to report the
834 * mode correctly when possible.
836 * In addition we emit similarly formatted messages to the default
837 * ata_dev_set_mode handler, in order to provide consistency of
838 * presentation.
841 void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
843 unsigned int mask;
844 u8 mode;
846 /* Pack the DMA modes */
847 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
848 if (dev->id[53] & 0x04)
849 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
851 /* Select the mode in use */
852 mode = ata_xfer_mask2mode(mask);
854 if (mode != 0) {
855 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
856 ata_mode_string(mask));
857 } else {
858 /* SWDMA perhaps ? */
859 mode = unknown;
860 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
863 /* Configure the device reporting */
864 dev->xfer_mode = mode;
865 dev->xfer_shift = ata_xfer_mode2shift(mode);
869 * ata_noop_dev_select - Select device 0/1 on ATA bus
870 * @ap: ATA channel to manipulate
871 * @device: ATA device (numbered from zero) to select
873 * This function performs no actual function.
875 * May be used as the dev_select() entry in ata_port_operations.
877 * LOCKING:
878 * caller.
880 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
886 * ata_std_dev_select - Select device 0/1 on ATA bus
887 * @ap: ATA channel to manipulate
888 * @device: ATA device (numbered from zero) to select
890 * Use the method defined in the ATA specification to
891 * make either device 0, or device 1, active on the
892 * ATA channel. Works with both PIO and MMIO.
894 * May be used as the dev_select() entry in ata_port_operations.
896 * LOCKING:
897 * caller.
900 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
902 u8 tmp;
904 if (device == 0)
905 tmp = ATA_DEVICE_OBS;
906 else
907 tmp = ATA_DEVICE_OBS | ATA_DEV1;
909 iowrite8(tmp, ap->ioaddr.device_addr);
910 ata_pause(ap); /* needed; also flushes, for mmio */
914 * ata_dev_select - Select device 0/1 on ATA bus
915 * @ap: ATA channel to manipulate
916 * @device: ATA device (numbered from zero) to select
917 * @wait: non-zero to wait for Status register BSY bit to clear
918 * @can_sleep: non-zero if context allows sleeping
920 * Use the method defined in the ATA specification to
921 * make either device 0, or device 1, active on the
922 * ATA channel.
924 * This is a high-level version of ata_std_dev_select(),
925 * which additionally provides the services of inserting
926 * the proper pauses and status polling, where needed.
928 * LOCKING:
929 * caller.
932 void ata_dev_select(struct ata_port *ap, unsigned int device,
933 unsigned int wait, unsigned int can_sleep)
935 if (ata_msg_probe(ap))
936 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
937 "device %u, wait %u\n", device, wait);
939 if (wait)
940 ata_wait_idle(ap);
942 ap->ops->dev_select(ap, device);
944 if (wait) {
945 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
946 msleep(150);
947 ata_wait_idle(ap);
952 * ata_dump_id - IDENTIFY DEVICE info debugging output
953 * @id: IDENTIFY DEVICE page to dump
955 * Dump selected 16-bit words from the given IDENTIFY DEVICE
956 * page.
958 * LOCKING:
959 * caller.
962 static inline void ata_dump_id(const u16 *id)
964 DPRINTK("49==0x%04x "
965 "53==0x%04x "
966 "63==0x%04x "
967 "64==0x%04x "
968 "75==0x%04x \n",
969 id[49],
970 id[53],
971 id[63],
972 id[64],
973 id[75]);
974 DPRINTK("80==0x%04x "
975 "81==0x%04x "
976 "82==0x%04x "
977 "83==0x%04x "
978 "84==0x%04x \n",
979 id[80],
980 id[81],
981 id[82],
982 id[83],
983 id[84]);
984 DPRINTK("88==0x%04x "
985 "93==0x%04x\n",
986 id[88],
987 id[93]);
991 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
992 * @id: IDENTIFY data to compute xfer mask from
994 * Compute the xfermask for this device. This is not as trivial
995 * as it seems if we must consider early devices correctly.
997 * FIXME: pre IDE drive timing (do we care ?).
999 * LOCKING:
1000 * None.
1002 * RETURNS:
1003 * Computed xfermask
1005 static unsigned int ata_id_xfermask(const u16 *id)
1007 unsigned int pio_mask, mwdma_mask, udma_mask;
1009 /* Usual case. Word 53 indicates word 64 is valid */
1010 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1011 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1012 pio_mask <<= 3;
1013 pio_mask |= 0x7;
1014 } else {
1015 /* If word 64 isn't valid then Word 51 high byte holds
1016 * the PIO timing number for the maximum. Turn it into
1017 * a mask.
1019 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1020 if (mode < 5) /* Valid PIO range */
1021 pio_mask = (2 << mode) - 1;
1022 else
1023 pio_mask = 1;
1025 /* But wait.. there's more. Design your standards by
1026 * committee and you too can get a free iordy field to
1027 * process. However its the speeds not the modes that
1028 * are supported... Note drivers using the timing API
1029 * will get this right anyway
1033 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1035 if (ata_id_is_cfa(id)) {
1037 * Process compact flash extended modes
1039 int pio = id[163] & 0x7;
1040 int dma = (id[163] >> 3) & 7;
1042 if (pio)
1043 pio_mask |= (1 << 5);
1044 if (pio > 1)
1045 pio_mask |= (1 << 6);
1046 if (dma)
1047 mwdma_mask |= (1 << 3);
1048 if (dma > 1)
1049 mwdma_mask |= (1 << 4);
1052 udma_mask = 0;
1053 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1054 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1056 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1060 * ata_port_queue_task - Queue port_task
1061 * @ap: The ata_port to queue port_task for
1062 * @fn: workqueue function to be scheduled
1063 * @data: data for @fn to use
1064 * @delay: delay time for workqueue function
1066 * Schedule @fn(@data) for execution after @delay jiffies using
1067 * port_task. There is one port_task per port and it's the
1068 * user(low level driver)'s responsibility to make sure that only
1069 * one task is active at any given time.
1071 * libata core layer takes care of synchronization between
1072 * port_task and EH. ata_port_queue_task() may be ignored for EH
1073 * synchronization.
1075 * LOCKING:
1076 * Inherited from caller.
1078 void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
1079 unsigned long delay)
1081 int rc;
1083 if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
1084 return;
1086 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1087 ap->port_task_data = data;
1089 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
1091 /* rc == 0 means that another user is using port task */
1092 WARN_ON(rc == 0);
1096 * ata_port_flush_task - Flush port_task
1097 * @ap: The ata_port to flush port_task for
1099 * After this function completes, port_task is guranteed not to
1100 * be running or scheduled.
1102 * LOCKING:
1103 * Kernel thread context (may sleep)
1105 void ata_port_flush_task(struct ata_port *ap)
1107 unsigned long flags;
1109 DPRINTK("ENTER\n");
1111 spin_lock_irqsave(ap->lock, flags);
1112 ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
1113 spin_unlock_irqrestore(ap->lock, flags);
1115 DPRINTK("flush #1\n");
1116 flush_workqueue(ata_wq);
1119 * At this point, if a task is running, it's guaranteed to see
1120 * the FLUSH flag; thus, it will never queue pio tasks again.
1121 * Cancel and flush.
1123 if (!cancel_delayed_work(&ap->port_task)) {
1124 if (ata_msg_ctl(ap))
1125 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
1126 __FUNCTION__);
1127 flush_workqueue(ata_wq);
1130 spin_lock_irqsave(ap->lock, flags);
1131 ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
1132 spin_unlock_irqrestore(ap->lock, flags);
1134 if (ata_msg_ctl(ap))
1135 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
1138 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1140 struct completion *waiting = qc->private_data;
1142 complete(waiting);
1146 * ata_exec_internal_sg - execute libata internal command
1147 * @dev: Device to which the command is sent
1148 * @tf: Taskfile registers for the command and the result
1149 * @cdb: CDB for packet command
1150 * @dma_dir: Data tranfer direction of the command
1151 * @sg: sg list for the data buffer of the command
1152 * @n_elem: Number of sg entries
1154 * Executes libata internal command with timeout. @tf contains
1155 * command on entry and result on return. Timeout and error
1156 * conditions are reported via return value. No recovery action
1157 * is taken after a command times out. It's caller's duty to
1158 * clean up after timeout.
1160 * LOCKING:
1161 * None. Should be called with kernel context, might sleep.
1163 * RETURNS:
1164 * Zero on success, AC_ERR_* mask on failure
1166 unsigned ata_exec_internal_sg(struct ata_device *dev,
1167 struct ata_taskfile *tf, const u8 *cdb,
1168 int dma_dir, struct scatterlist *sg,
1169 unsigned int n_elem)
1171 struct ata_port *ap = dev->ap;
1172 u8 command = tf->command;
1173 struct ata_queued_cmd *qc;
1174 unsigned int tag, preempted_tag;
1175 u32 preempted_sactive, preempted_qc_active;
1176 DECLARE_COMPLETION_ONSTACK(wait);
1177 unsigned long flags;
1178 unsigned int err_mask;
1179 int rc;
1181 spin_lock_irqsave(ap->lock, flags);
1183 /* no internal command while frozen */
1184 if (ap->pflags & ATA_PFLAG_FROZEN) {
1185 spin_unlock_irqrestore(ap->lock, flags);
1186 return AC_ERR_SYSTEM;
1189 /* initialize internal qc */
1191 /* XXX: Tag 0 is used for drivers with legacy EH as some
1192 * drivers choke if any other tag is given. This breaks
1193 * ata_tag_internal() test for those drivers. Don't use new
1194 * EH stuff without converting to it.
1196 if (ap->ops->error_handler)
1197 tag = ATA_TAG_INTERNAL;
1198 else
1199 tag = 0;
1201 if (test_and_set_bit(tag, &ap->qc_allocated))
1202 BUG();
1203 qc = __ata_qc_from_tag(ap, tag);
1205 qc->tag = tag;
1206 qc->scsicmd = NULL;
1207 qc->ap = ap;
1208 qc->dev = dev;
1209 ata_qc_reinit(qc);
1211 preempted_tag = ap->active_tag;
1212 preempted_sactive = ap->sactive;
1213 preempted_qc_active = ap->qc_active;
1214 ap->active_tag = ATA_TAG_POISON;
1215 ap->sactive = 0;
1216 ap->qc_active = 0;
1218 /* prepare & issue qc */
1219 qc->tf = *tf;
1220 if (cdb)
1221 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1222 qc->flags |= ATA_QCFLAG_RESULT_TF;
1223 qc->dma_dir = dma_dir;
1224 if (dma_dir != DMA_NONE) {
1225 unsigned int i, buflen = 0;
1227 for (i = 0; i < n_elem; i++)
1228 buflen += sg[i].length;
1230 ata_sg_init(qc, sg, n_elem);
1231 qc->nbytes = buflen;
1234 qc->private_data = &wait;
1235 qc->complete_fn = ata_qc_complete_internal;
1237 ata_qc_issue(qc);
1239 spin_unlock_irqrestore(ap->lock, flags);
1241 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
1243 ata_port_flush_task(ap);
1245 if (!rc) {
1246 spin_lock_irqsave(ap->lock, flags);
1248 /* We're racing with irq here. If we lose, the
1249 * following test prevents us from completing the qc
1250 * twice. If we win, the port is frozen and will be
1251 * cleaned up by ->post_internal_cmd().
1253 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1254 qc->err_mask |= AC_ERR_TIMEOUT;
1256 if (ap->ops->error_handler)
1257 ata_port_freeze(ap);
1258 else
1259 ata_qc_complete(qc);
1261 if (ata_msg_warn(ap))
1262 ata_dev_printk(dev, KERN_WARNING,
1263 "qc timeout (cmd 0x%x)\n", command);
1266 spin_unlock_irqrestore(ap->lock, flags);
1269 /* do post_internal_cmd */
1270 if (ap->ops->post_internal_cmd)
1271 ap->ops->post_internal_cmd(qc);
1273 if ((qc->flags & ATA_QCFLAG_FAILED) && !qc->err_mask) {
1274 if (ata_msg_warn(ap))
1275 ata_dev_printk(dev, KERN_WARNING,
1276 "zero err_mask for failed "
1277 "internal command, assuming AC_ERR_OTHER\n");
1278 qc->err_mask |= AC_ERR_OTHER;
1281 /* finish up */
1282 spin_lock_irqsave(ap->lock, flags);
1284 *tf = qc->result_tf;
1285 err_mask = qc->err_mask;
1287 ata_qc_free(qc);
1288 ap->active_tag = preempted_tag;
1289 ap->sactive = preempted_sactive;
1290 ap->qc_active = preempted_qc_active;
1292 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1293 * Until those drivers are fixed, we detect the condition
1294 * here, fail the command with AC_ERR_SYSTEM and reenable the
1295 * port.
1297 * Note that this doesn't change any behavior as internal
1298 * command failure results in disabling the device in the
1299 * higher layer for LLDDs without new reset/EH callbacks.
1301 * Kill the following code as soon as those drivers are fixed.
1303 if (ap->flags & ATA_FLAG_DISABLED) {
1304 err_mask |= AC_ERR_SYSTEM;
1305 ata_port_probe(ap);
1308 spin_unlock_irqrestore(ap->lock, flags);
1310 return err_mask;
1314 * ata_exec_internal - execute libata internal command
1315 * @dev: Device to which the command is sent
1316 * @tf: Taskfile registers for the command and the result
1317 * @cdb: CDB for packet command
1318 * @dma_dir: Data tranfer direction of the command
1319 * @buf: Data buffer of the command
1320 * @buflen: Length of data buffer
1322 * Wrapper around ata_exec_internal_sg() which takes simple
1323 * buffer instead of sg list.
1325 * LOCKING:
1326 * None. Should be called with kernel context, might sleep.
1328 * RETURNS:
1329 * Zero on success, AC_ERR_* mask on failure
1331 unsigned ata_exec_internal(struct ata_device *dev,
1332 struct ata_taskfile *tf, const u8 *cdb,
1333 int dma_dir, void *buf, unsigned int buflen)
1335 struct scatterlist *psg = NULL, sg;
1336 unsigned int n_elem = 0;
1338 if (dma_dir != DMA_NONE) {
1339 WARN_ON(!buf);
1340 sg_init_one(&sg, buf, buflen);
1341 psg = &sg;
1342 n_elem++;
1345 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
1349 * ata_do_simple_cmd - execute simple internal command
1350 * @dev: Device to which the command is sent
1351 * @cmd: Opcode to execute
1353 * Execute a 'simple' command, that only consists of the opcode
1354 * 'cmd' itself, without filling any other registers
1356 * LOCKING:
1357 * Kernel thread context (may sleep).
1359 * RETURNS:
1360 * Zero on success, AC_ERR_* mask on failure
1362 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1364 struct ata_taskfile tf;
1366 ata_tf_init(dev, &tf);
1368 tf.command = cmd;
1369 tf.flags |= ATA_TFLAG_DEVICE;
1370 tf.protocol = ATA_PROT_NODATA;
1372 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1376 * ata_pio_need_iordy - check if iordy needed
1377 * @adev: ATA device
1379 * Check if the current speed of the device requires IORDY. Used
1380 * by various controllers for chip configuration.
1383 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1385 int pio;
1386 int speed = adev->pio_mode - XFER_PIO_0;
1388 if (speed < 2)
1389 return 0;
1390 if (speed > 2)
1391 return 1;
1393 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1395 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1396 pio = adev->id[ATA_ID_EIDE_PIO];
1397 /* Is the speed faster than the drive allows non IORDY ? */
1398 if (pio) {
1399 /* This is cycle times not frequency - watch the logic! */
1400 if (pio > 240) /* PIO2 is 240nS per cycle */
1401 return 1;
1402 return 0;
1405 return 0;
1409 * ata_dev_read_id - Read ID data from the specified device
1410 * @dev: target device
1411 * @p_class: pointer to class of the target device (may be changed)
1412 * @flags: ATA_READID_* flags
1413 * @id: buffer to read IDENTIFY data into
1415 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1416 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1417 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1418 * for pre-ATA4 drives.
1420 * LOCKING:
1421 * Kernel thread context (may sleep)
1423 * RETURNS:
1424 * 0 on success, -errno otherwise.
1426 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1427 unsigned int flags, u16 *id)
1429 struct ata_port *ap = dev->ap;
1430 unsigned int class = *p_class;
1431 struct ata_taskfile tf;
1432 unsigned int err_mask = 0;
1433 const char *reason;
1434 int rc;
1436 if (ata_msg_ctl(ap))
1437 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1439 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1441 retry:
1442 ata_tf_init(dev, &tf);
1444 switch (class) {
1445 case ATA_DEV_ATA:
1446 tf.command = ATA_CMD_ID_ATA;
1447 break;
1448 case ATA_DEV_ATAPI:
1449 tf.command = ATA_CMD_ID_ATAPI;
1450 break;
1451 default:
1452 rc = -ENODEV;
1453 reason = "unsupported class";
1454 goto err_out;
1457 tf.protocol = ATA_PROT_PIO;
1459 /* Some devices choke if TF registers contain garbage. Make
1460 * sure those are properly initialized.
1462 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1464 /* Device presence detection is unreliable on some
1465 * controllers. Always poll IDENTIFY if available.
1467 tf.flags |= ATA_TFLAG_POLLING;
1469 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1470 id, sizeof(id[0]) * ATA_ID_WORDS);
1471 if (err_mask) {
1472 if (err_mask & AC_ERR_NODEV_HINT) {
1473 DPRINTK("ata%u.%d: NODEV after polling detection\n",
1474 ap->print_id, dev->devno);
1475 return -ENOENT;
1478 rc = -EIO;
1479 reason = "I/O error";
1480 goto err_out;
1483 swap_buf_le16(id, ATA_ID_WORDS);
1485 /* sanity check */
1486 rc = -EINVAL;
1487 reason = "device reports illegal type";
1489 if (class == ATA_DEV_ATA) {
1490 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1491 goto err_out;
1492 } else {
1493 if (ata_id_is_ata(id))
1494 goto err_out;
1497 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
1499 * The exact sequence expected by certain pre-ATA4 drives is:
1500 * SRST RESET
1501 * IDENTIFY
1502 * INITIALIZE DEVICE PARAMETERS
1503 * anything else..
1504 * Some drives were very specific about that exact sequence.
1506 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1507 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1508 if (err_mask) {
1509 rc = -EIO;
1510 reason = "INIT_DEV_PARAMS failed";
1511 goto err_out;
1514 /* current CHS translation info (id[53-58]) might be
1515 * changed. reread the identify device info.
1517 flags &= ~ATA_READID_POSTRESET;
1518 goto retry;
1522 *p_class = class;
1524 return 0;
1526 err_out:
1527 if (ata_msg_warn(ap))
1528 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1529 "(%s, err_mask=0x%x)\n", reason, err_mask);
1530 return rc;
1533 static inline u8 ata_dev_knobble(struct ata_device *dev)
1535 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1538 static void ata_dev_config_ncq(struct ata_device *dev,
1539 char *desc, size_t desc_sz)
1541 struct ata_port *ap = dev->ap;
1542 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1544 if (!ata_id_has_ncq(dev->id)) {
1545 desc[0] = '\0';
1546 return;
1548 if (ata_device_blacklisted(dev) & ATA_HORKAGE_NONCQ) {
1549 snprintf(desc, desc_sz, "NCQ (not used)");
1550 return;
1552 if (ap->flags & ATA_FLAG_NCQ) {
1553 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
1554 dev->flags |= ATA_DFLAG_NCQ;
1557 if (hdepth >= ddepth)
1558 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1559 else
1560 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1564 * ata_dev_configure - Configure the specified ATA/ATAPI device
1565 * @dev: Target device to configure
1567 * Configure @dev according to @dev->id. Generic and low-level
1568 * driver specific fixups are also applied.
1570 * LOCKING:
1571 * Kernel thread context (may sleep)
1573 * RETURNS:
1574 * 0 on success, -errno otherwise
1576 int ata_dev_configure(struct ata_device *dev)
1578 struct ata_port *ap = dev->ap;
1579 int print_info = ap->eh_context.i.flags & ATA_EHI_PRINTINFO;
1580 const u16 *id = dev->id;
1581 unsigned int xfer_mask;
1582 char revbuf[7]; /* XYZ-99\0 */
1583 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1584 char modelbuf[ATA_ID_PROD_LEN+1];
1585 int rc;
1587 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
1588 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
1589 __FUNCTION__);
1590 return 0;
1593 if (ata_msg_probe(ap))
1594 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1596 /* set _SDD */
1597 rc = ata_acpi_push_id(ap, dev->devno);
1598 if (rc) {
1599 ata_dev_printk(dev, KERN_WARNING, "failed to set _SDD(%d)\n",
1600 rc);
1603 /* retrieve and execute the ATA task file of _GTF */
1604 ata_acpi_exec_tfs(ap);
1606 /* print device capabilities */
1607 if (ata_msg_probe(ap))
1608 ata_dev_printk(dev, KERN_DEBUG,
1609 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1610 "85:%04x 86:%04x 87:%04x 88:%04x\n",
1611 __FUNCTION__,
1612 id[49], id[82], id[83], id[84],
1613 id[85], id[86], id[87], id[88]);
1615 /* initialize to-be-configured parameters */
1616 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1617 dev->max_sectors = 0;
1618 dev->cdb_len = 0;
1619 dev->n_sectors = 0;
1620 dev->cylinders = 0;
1621 dev->heads = 0;
1622 dev->sectors = 0;
1625 * common ATA, ATAPI feature tests
1628 /* find max transfer mode; for printk only */
1629 xfer_mask = ata_id_xfermask(id);
1631 if (ata_msg_probe(ap))
1632 ata_dump_id(id);
1634 /* ATA-specific feature tests */
1635 if (dev->class == ATA_DEV_ATA) {
1636 if (ata_id_is_cfa(id)) {
1637 if (id[162] & 1) /* CPRM may make this media unusable */
1638 ata_dev_printk(dev, KERN_WARNING,
1639 "supports DRM functions and may "
1640 "not be fully accessable.\n");
1641 snprintf(revbuf, 7, "CFA");
1643 else
1644 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1646 dev->n_sectors = ata_id_n_sectors(id);
1648 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1649 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
1650 sizeof(fwrevbuf));
1652 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
1653 sizeof(modelbuf));
1655 if (dev->id[59] & 0x100)
1656 dev->multi_count = dev->id[59] & 0xff;
1658 if (ata_id_has_lba(id)) {
1659 const char *lba_desc;
1660 char ncq_desc[20];
1662 lba_desc = "LBA";
1663 dev->flags |= ATA_DFLAG_LBA;
1664 if (ata_id_has_lba48(id)) {
1665 dev->flags |= ATA_DFLAG_LBA48;
1666 lba_desc = "LBA48";
1668 if (dev->n_sectors >= (1UL << 28) &&
1669 ata_id_has_flush_ext(id))
1670 dev->flags |= ATA_DFLAG_FLUSH_EXT;
1673 /* config NCQ */
1674 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1676 /* print device info to dmesg */
1677 if (ata_msg_drv(ap) && print_info) {
1678 ata_dev_printk(dev, KERN_INFO,
1679 "%s: %s, %s, max %s\n",
1680 revbuf, modelbuf, fwrevbuf,
1681 ata_mode_string(xfer_mask));
1682 ata_dev_printk(dev, KERN_INFO,
1683 "%Lu sectors, multi %u: %s %s\n",
1684 (unsigned long long)dev->n_sectors,
1685 dev->multi_count, lba_desc, ncq_desc);
1687 } else {
1688 /* CHS */
1690 /* Default translation */
1691 dev->cylinders = id[1];
1692 dev->heads = id[3];
1693 dev->sectors = id[6];
1695 if (ata_id_current_chs_valid(id)) {
1696 /* Current CHS translation is valid. */
1697 dev->cylinders = id[54];
1698 dev->heads = id[55];
1699 dev->sectors = id[56];
1702 /* print device info to dmesg */
1703 if (ata_msg_drv(ap) && print_info) {
1704 ata_dev_printk(dev, KERN_INFO,
1705 "%s: %s, %s, max %s\n",
1706 revbuf, modelbuf, fwrevbuf,
1707 ata_mode_string(xfer_mask));
1708 ata_dev_printk(dev, KERN_INFO,
1709 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
1710 (unsigned long long)dev->n_sectors,
1711 dev->multi_count, dev->cylinders,
1712 dev->heads, dev->sectors);
1716 dev->cdb_len = 16;
1719 /* ATAPI-specific feature tests */
1720 else if (dev->class == ATA_DEV_ATAPI) {
1721 char *cdb_intr_string = "";
1723 rc = atapi_cdb_len(id);
1724 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1725 if (ata_msg_warn(ap))
1726 ata_dev_printk(dev, KERN_WARNING,
1727 "unsupported CDB len\n");
1728 rc = -EINVAL;
1729 goto err_out_nosup;
1731 dev->cdb_len = (unsigned int) rc;
1733 if (ata_id_cdb_intr(dev->id)) {
1734 dev->flags |= ATA_DFLAG_CDB_INTR;
1735 cdb_intr_string = ", CDB intr";
1738 /* print device info to dmesg */
1739 if (ata_msg_drv(ap) && print_info)
1740 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1741 ata_mode_string(xfer_mask),
1742 cdb_intr_string);
1745 /* determine max_sectors */
1746 dev->max_sectors = ATA_MAX_SECTORS;
1747 if (dev->flags & ATA_DFLAG_LBA48)
1748 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
1750 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
1751 /* Let the user know. We don't want to disallow opens for
1752 rescue purposes, or in case the vendor is just a blithering
1753 idiot */
1754 if (print_info) {
1755 ata_dev_printk(dev, KERN_WARNING,
1756 "Drive reports diagnostics failure. This may indicate a drive\n");
1757 ata_dev_printk(dev, KERN_WARNING,
1758 "fault or invalid emulation. Contact drive vendor for information.\n");
1762 /* limit bridge transfers to udma5, 200 sectors */
1763 if (ata_dev_knobble(dev)) {
1764 if (ata_msg_drv(ap) && print_info)
1765 ata_dev_printk(dev, KERN_INFO,
1766 "applying bridge limits\n");
1767 dev->udma_mask &= ATA_UDMA5;
1768 dev->max_sectors = ATA_MAX_SECTORS;
1771 if (ata_device_blacklisted(dev) & ATA_HORKAGE_MAX_SEC_128)
1772 dev->max_sectors = min(ATA_MAX_SECTORS_128, dev->max_sectors);
1774 /* limit ATAPI DMA to R/W commands only */
1775 if (ata_device_blacklisted(dev) & ATA_HORKAGE_DMA_RW_ONLY)
1776 dev->horkage |= ATA_HORKAGE_DMA_RW_ONLY;
1778 if (ap->ops->dev_config)
1779 ap->ops->dev_config(dev);
1781 if (ata_msg_probe(ap))
1782 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
1783 __FUNCTION__, ata_chk_status(ap));
1784 return 0;
1786 err_out_nosup:
1787 if (ata_msg_probe(ap))
1788 ata_dev_printk(dev, KERN_DEBUG,
1789 "%s: EXIT, err\n", __FUNCTION__);
1790 return rc;
1794 * ata_cable_40wire - return 40 wire cable type
1795 * @ap: port
1797 * Helper method for drivers which want to hardwire 40 wire cable
1798 * detection.
1801 int ata_cable_40wire(struct ata_port *ap)
1803 return ATA_CBL_PATA40;
1807 * ata_cable_80wire - return 80 wire cable type
1808 * @ap: port
1810 * Helper method for drivers which want to hardwire 80 wire cable
1811 * detection.
1814 int ata_cable_80wire(struct ata_port *ap)
1816 return ATA_CBL_PATA80;
1820 * ata_cable_unknown - return unknown PATA cable.
1821 * @ap: port
1823 * Helper method for drivers which have no PATA cable detection.
1826 int ata_cable_unknown(struct ata_port *ap)
1828 return ATA_CBL_PATA_UNK;
1832 * ata_cable_sata - return SATA cable type
1833 * @ap: port
1835 * Helper method for drivers which have SATA cables
1838 int ata_cable_sata(struct ata_port *ap)
1840 return ATA_CBL_SATA;
1844 * ata_bus_probe - Reset and probe ATA bus
1845 * @ap: Bus to probe
1847 * Master ATA bus probing function. Initiates a hardware-dependent
1848 * bus reset, then attempts to identify any devices found on
1849 * the bus.
1851 * LOCKING:
1852 * PCI/etc. bus probe sem.
1854 * RETURNS:
1855 * Zero on success, negative errno otherwise.
1858 int ata_bus_probe(struct ata_port *ap)
1860 unsigned int classes[ATA_MAX_DEVICES];
1861 int tries[ATA_MAX_DEVICES];
1862 int i, rc;
1863 struct ata_device *dev;
1865 ata_port_probe(ap);
1867 for (i = 0; i < ATA_MAX_DEVICES; i++)
1868 tries[i] = ATA_PROBE_MAX_TRIES;
1870 retry:
1871 /* reset and determine device classes */
1872 ap->ops->phy_reset(ap);
1874 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1875 dev = &ap->device[i];
1877 if (!(ap->flags & ATA_FLAG_DISABLED) &&
1878 dev->class != ATA_DEV_UNKNOWN)
1879 classes[dev->devno] = dev->class;
1880 else
1881 classes[dev->devno] = ATA_DEV_NONE;
1883 dev->class = ATA_DEV_UNKNOWN;
1886 ata_port_probe(ap);
1888 /* after the reset the device state is PIO 0 and the controller
1889 state is undefined. Record the mode */
1891 for (i = 0; i < ATA_MAX_DEVICES; i++)
1892 ap->device[i].pio_mode = XFER_PIO_0;
1894 /* read IDENTIFY page and configure devices. We have to do the identify
1895 specific sequence bass-ackwards so that PDIAG- is released by
1896 the slave device */
1898 for (i = ATA_MAX_DEVICES - 1; i >= 0; i--) {
1899 dev = &ap->device[i];
1901 if (tries[i])
1902 dev->class = classes[i];
1904 if (!ata_dev_enabled(dev))
1905 continue;
1907 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
1908 dev->id);
1909 if (rc)
1910 goto fail;
1913 /* Now ask for the cable type as PDIAG- should have been released */
1914 if (ap->ops->cable_detect)
1915 ap->cbl = ap->ops->cable_detect(ap);
1917 /* After the identify sequence we can now set up the devices. We do
1918 this in the normal order so that the user doesn't get confused */
1920 for(i = 0; i < ATA_MAX_DEVICES; i++) {
1921 dev = &ap->device[i];
1922 if (!ata_dev_enabled(dev))
1923 continue;
1925 ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
1926 rc = ata_dev_configure(dev);
1927 ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
1928 if (rc)
1929 goto fail;
1932 /* configure transfer mode */
1933 rc = ata_set_mode(ap, &dev);
1934 if (rc)
1935 goto fail;
1937 for (i = 0; i < ATA_MAX_DEVICES; i++)
1938 if (ata_dev_enabled(&ap->device[i]))
1939 return 0;
1941 /* no device present, disable port */
1942 ata_port_disable(ap);
1943 ap->ops->port_disable(ap);
1944 return -ENODEV;
1946 fail:
1947 tries[dev->devno]--;
1949 switch (rc) {
1950 case -EINVAL:
1951 /* eeek, something went very wrong, give up */
1952 tries[dev->devno] = 0;
1953 break;
1955 case -ENODEV:
1956 /* give it just one more chance */
1957 tries[dev->devno] = min(tries[dev->devno], 1);
1958 case -EIO:
1959 if (tries[dev->devno] == 1) {
1960 /* This is the last chance, better to slow
1961 * down than lose it.
1963 sata_down_spd_limit(ap);
1964 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
1968 if (!tries[dev->devno])
1969 ata_dev_disable(dev);
1971 goto retry;
1975 * ata_port_probe - Mark port as enabled
1976 * @ap: Port for which we indicate enablement
1978 * Modify @ap data structure such that the system
1979 * thinks that the entire port is enabled.
1981 * LOCKING: host lock, or some other form of
1982 * serialization.
1985 void ata_port_probe(struct ata_port *ap)
1987 ap->flags &= ~ATA_FLAG_DISABLED;
1991 * sata_print_link_status - Print SATA link status
1992 * @ap: SATA port to printk link status about
1994 * This function prints link speed and status of a SATA link.
1996 * LOCKING:
1997 * None.
1999 void sata_print_link_status(struct ata_port *ap)
2001 u32 sstatus, scontrol, tmp;
2003 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
2004 return;
2005 sata_scr_read(ap, SCR_CONTROL, &scontrol);
2007 if (ata_port_online(ap)) {
2008 tmp = (sstatus >> 4) & 0xf;
2009 ata_port_printk(ap, KERN_INFO,
2010 "SATA link up %s (SStatus %X SControl %X)\n",
2011 sata_spd_string(tmp), sstatus, scontrol);
2012 } else {
2013 ata_port_printk(ap, KERN_INFO,
2014 "SATA link down (SStatus %X SControl %X)\n",
2015 sstatus, scontrol);
2020 * __sata_phy_reset - Wake/reset a low-level SATA PHY
2021 * @ap: SATA port associated with target SATA PHY.
2023 * This function issues commands to standard SATA Sxxx
2024 * PHY registers, to wake up the phy (and device), and
2025 * clear any reset condition.
2027 * LOCKING:
2028 * PCI/etc. bus probe sem.
2031 void __sata_phy_reset(struct ata_port *ap)
2033 u32 sstatus;
2034 unsigned long timeout = jiffies + (HZ * 5);
2036 if (ap->flags & ATA_FLAG_SATA_RESET) {
2037 /* issue phy wake/reset */
2038 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
2039 /* Couldn't find anything in SATA I/II specs, but
2040 * AHCI-1.1 10.4.2 says at least 1 ms. */
2041 mdelay(1);
2043 /* phy wake/clear reset */
2044 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
2046 /* wait for phy to become ready, if necessary */
2047 do {
2048 msleep(200);
2049 sata_scr_read(ap, SCR_STATUS, &sstatus);
2050 if ((sstatus & 0xf) != 1)
2051 break;
2052 } while (time_before(jiffies, timeout));
2054 /* print link status */
2055 sata_print_link_status(ap);
2057 /* TODO: phy layer with polling, timeouts, etc. */
2058 if (!ata_port_offline(ap))
2059 ata_port_probe(ap);
2060 else
2061 ata_port_disable(ap);
2063 if (ap->flags & ATA_FLAG_DISABLED)
2064 return;
2066 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2067 ata_port_disable(ap);
2068 return;
2071 ap->cbl = ATA_CBL_SATA;
2075 * sata_phy_reset - Reset SATA bus.
2076 * @ap: SATA port associated with target SATA PHY.
2078 * This function resets the SATA bus, and then probes
2079 * the bus for devices.
2081 * LOCKING:
2082 * PCI/etc. bus probe sem.
2085 void sata_phy_reset(struct ata_port *ap)
2087 __sata_phy_reset(ap);
2088 if (ap->flags & ATA_FLAG_DISABLED)
2089 return;
2090 ata_bus_reset(ap);
2094 * ata_dev_pair - return other device on cable
2095 * @adev: device
2097 * Obtain the other device on the same cable, or if none is
2098 * present NULL is returned
2101 struct ata_device *ata_dev_pair(struct ata_device *adev)
2103 struct ata_port *ap = adev->ap;
2104 struct ata_device *pair = &ap->device[1 - adev->devno];
2105 if (!ata_dev_enabled(pair))
2106 return NULL;
2107 return pair;
2111 * ata_port_disable - Disable port.
2112 * @ap: Port to be disabled.
2114 * Modify @ap data structure such that the system
2115 * thinks that the entire port is disabled, and should
2116 * never attempt to probe or communicate with devices
2117 * on this port.
2119 * LOCKING: host lock, or some other form of
2120 * serialization.
2123 void ata_port_disable(struct ata_port *ap)
2125 ap->device[0].class = ATA_DEV_NONE;
2126 ap->device[1].class = ATA_DEV_NONE;
2127 ap->flags |= ATA_FLAG_DISABLED;
2131 * sata_down_spd_limit - adjust SATA spd limit downward
2132 * @ap: Port to adjust SATA spd limit for
2134 * Adjust SATA spd limit of @ap downward. Note that this
2135 * function only adjusts the limit. The change must be applied
2136 * using sata_set_spd().
2138 * LOCKING:
2139 * Inherited from caller.
2141 * RETURNS:
2142 * 0 on success, negative errno on failure
2144 int sata_down_spd_limit(struct ata_port *ap)
2146 u32 sstatus, spd, mask;
2147 int rc, highbit;
2149 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
2150 if (rc)
2151 return rc;
2153 mask = ap->sata_spd_limit;
2154 if (mask <= 1)
2155 return -EINVAL;
2156 highbit = fls(mask) - 1;
2157 mask &= ~(1 << highbit);
2159 spd = (sstatus >> 4) & 0xf;
2160 if (spd <= 1)
2161 return -EINVAL;
2162 spd--;
2163 mask &= (1 << spd) - 1;
2164 if (!mask)
2165 return -EINVAL;
2167 ap->sata_spd_limit = mask;
2169 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
2170 sata_spd_string(fls(mask)));
2172 return 0;
2175 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
2177 u32 spd, limit;
2179 if (ap->sata_spd_limit == UINT_MAX)
2180 limit = 0;
2181 else
2182 limit = fls(ap->sata_spd_limit);
2184 spd = (*scontrol >> 4) & 0xf;
2185 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2187 return spd != limit;
2191 * sata_set_spd_needed - is SATA spd configuration needed
2192 * @ap: Port in question
2194 * Test whether the spd limit in SControl matches
2195 * @ap->sata_spd_limit. This function is used to determine
2196 * whether hardreset is necessary to apply SATA spd
2197 * configuration.
2199 * LOCKING:
2200 * Inherited from caller.
2202 * RETURNS:
2203 * 1 if SATA spd configuration is needed, 0 otherwise.
2205 int sata_set_spd_needed(struct ata_port *ap)
2207 u32 scontrol;
2209 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
2210 return 0;
2212 return __sata_set_spd_needed(ap, &scontrol);
2216 * sata_set_spd - set SATA spd according to spd limit
2217 * @ap: Port to set SATA spd for
2219 * Set SATA spd of @ap according to sata_spd_limit.
2221 * LOCKING:
2222 * Inherited from caller.
2224 * RETURNS:
2225 * 0 if spd doesn't need to be changed, 1 if spd has been
2226 * changed. Negative errno if SCR registers are inaccessible.
2228 int sata_set_spd(struct ata_port *ap)
2230 u32 scontrol;
2231 int rc;
2233 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2234 return rc;
2236 if (!__sata_set_spd_needed(ap, &scontrol))
2237 return 0;
2239 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2240 return rc;
2242 return 1;
2246 * This mode timing computation functionality is ported over from
2247 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2250 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2251 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2252 * for UDMA6, which is currently supported only by Maxtor drives.
2254 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2257 static const struct ata_timing ata_timing[] = {
2259 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2260 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2261 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2262 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2264 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2265 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
2266 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2267 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2268 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2270 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2272 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2273 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2274 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2276 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2277 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2278 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2280 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2281 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2282 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2283 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2285 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2286 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2287 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2289 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2291 { 0xFF }
2294 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2295 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2297 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2299 q->setup = EZ(t->setup * 1000, T);
2300 q->act8b = EZ(t->act8b * 1000, T);
2301 q->rec8b = EZ(t->rec8b * 1000, T);
2302 q->cyc8b = EZ(t->cyc8b * 1000, T);
2303 q->active = EZ(t->active * 1000, T);
2304 q->recover = EZ(t->recover * 1000, T);
2305 q->cycle = EZ(t->cycle * 1000, T);
2306 q->udma = EZ(t->udma * 1000, UT);
2309 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2310 struct ata_timing *m, unsigned int what)
2312 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2313 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2314 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2315 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2316 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2317 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2318 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2319 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2322 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2324 const struct ata_timing *t;
2326 for (t = ata_timing; t->mode != speed; t++)
2327 if (t->mode == 0xFF)
2328 return NULL;
2329 return t;
2332 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2333 struct ata_timing *t, int T, int UT)
2335 const struct ata_timing *s;
2336 struct ata_timing p;
2339 * Find the mode.
2342 if (!(s = ata_timing_find_mode(speed)))
2343 return -EINVAL;
2345 memcpy(t, s, sizeof(*s));
2348 * If the drive is an EIDE drive, it can tell us it needs extended
2349 * PIO/MW_DMA cycle timing.
2352 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2353 memset(&p, 0, sizeof(p));
2354 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2355 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2356 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2357 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2358 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2360 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2364 * Convert the timing to bus clock counts.
2367 ata_timing_quantize(t, t, T, UT);
2370 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2371 * S.M.A.R.T * and some other commands. We have to ensure that the
2372 * DMA cycle timing is slower/equal than the fastest PIO timing.
2375 if (speed > XFER_PIO_6) {
2376 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2377 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2381 * Lengthen active & recovery time so that cycle time is correct.
2384 if (t->act8b + t->rec8b < t->cyc8b) {
2385 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2386 t->rec8b = t->cyc8b - t->act8b;
2389 if (t->active + t->recover < t->cycle) {
2390 t->active += (t->cycle - (t->active + t->recover)) / 2;
2391 t->recover = t->cycle - t->active;
2394 return 0;
2398 * ata_down_xfermask_limit - adjust dev xfer masks downward
2399 * @dev: Device to adjust xfer masks
2400 * @sel: ATA_DNXFER_* selector
2402 * Adjust xfer masks of @dev downward. Note that this function
2403 * does not apply the change. Invoking ata_set_mode() afterwards
2404 * will apply the limit.
2406 * LOCKING:
2407 * Inherited from caller.
2409 * RETURNS:
2410 * 0 on success, negative errno on failure
2412 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
2414 char buf[32];
2415 unsigned int orig_mask, xfer_mask;
2416 unsigned int pio_mask, mwdma_mask, udma_mask;
2417 int quiet, highbit;
2419 quiet = !!(sel & ATA_DNXFER_QUIET);
2420 sel &= ~ATA_DNXFER_QUIET;
2422 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2423 dev->mwdma_mask,
2424 dev->udma_mask);
2425 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
2427 switch (sel) {
2428 case ATA_DNXFER_PIO:
2429 highbit = fls(pio_mask) - 1;
2430 pio_mask &= ~(1 << highbit);
2431 break;
2433 case ATA_DNXFER_DMA:
2434 if (udma_mask) {
2435 highbit = fls(udma_mask) - 1;
2436 udma_mask &= ~(1 << highbit);
2437 if (!udma_mask)
2438 return -ENOENT;
2439 } else if (mwdma_mask) {
2440 highbit = fls(mwdma_mask) - 1;
2441 mwdma_mask &= ~(1 << highbit);
2442 if (!mwdma_mask)
2443 return -ENOENT;
2445 break;
2447 case ATA_DNXFER_40C:
2448 udma_mask &= ATA_UDMA_MASK_40C;
2449 break;
2451 case ATA_DNXFER_FORCE_PIO0:
2452 pio_mask &= 1;
2453 case ATA_DNXFER_FORCE_PIO:
2454 mwdma_mask = 0;
2455 udma_mask = 0;
2456 break;
2458 default:
2459 BUG();
2462 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2464 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2465 return -ENOENT;
2467 if (!quiet) {
2468 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2469 snprintf(buf, sizeof(buf), "%s:%s",
2470 ata_mode_string(xfer_mask),
2471 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2472 else
2473 snprintf(buf, sizeof(buf), "%s",
2474 ata_mode_string(xfer_mask));
2476 ata_dev_printk(dev, KERN_WARNING,
2477 "limiting speed to %s\n", buf);
2480 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2481 &dev->udma_mask);
2483 return 0;
2486 static int ata_dev_set_mode(struct ata_device *dev)
2488 struct ata_eh_context *ehc = &dev->ap->eh_context;
2489 unsigned int err_mask;
2490 int rc;
2492 dev->flags &= ~ATA_DFLAG_PIO;
2493 if (dev->xfer_shift == ATA_SHIFT_PIO)
2494 dev->flags |= ATA_DFLAG_PIO;
2496 err_mask = ata_dev_set_xfermode(dev);
2497 /* Old CFA may refuse this command, which is just fine */
2498 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2499 err_mask &= ~AC_ERR_DEV;
2501 if (err_mask) {
2502 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2503 "(err_mask=0x%x)\n", err_mask);
2504 return -EIO;
2507 ehc->i.flags |= ATA_EHI_POST_SETMODE;
2508 rc = ata_dev_revalidate(dev, 0);
2509 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
2510 if (rc)
2511 return rc;
2513 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2514 dev->xfer_shift, (int)dev->xfer_mode);
2516 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2517 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2518 return 0;
2522 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
2523 * @ap: port on which timings will be programmed
2524 * @r_failed_dev: out paramter for failed device
2526 * Standard implementation of the function used to tune and set
2527 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2528 * ata_dev_set_mode() fails, pointer to the failing device is
2529 * returned in @r_failed_dev.
2531 * LOCKING:
2532 * PCI/etc. bus probe sem.
2534 * RETURNS:
2535 * 0 on success, negative errno otherwise
2538 int ata_do_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2540 struct ata_device *dev;
2541 int i, rc = 0, used_dma = 0, found = 0;
2544 /* step 1: calculate xfer_mask */
2545 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2546 unsigned int pio_mask, dma_mask;
2548 dev = &ap->device[i];
2550 if (!ata_dev_enabled(dev))
2551 continue;
2553 ata_dev_xfermask(dev);
2555 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2556 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2557 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2558 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2560 found = 1;
2561 if (dev->dma_mode)
2562 used_dma = 1;
2564 if (!found)
2565 goto out;
2567 /* step 2: always set host PIO timings */
2568 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2569 dev = &ap->device[i];
2570 if (!ata_dev_enabled(dev))
2571 continue;
2573 if (!dev->pio_mode) {
2574 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2575 rc = -EINVAL;
2576 goto out;
2579 dev->xfer_mode = dev->pio_mode;
2580 dev->xfer_shift = ATA_SHIFT_PIO;
2581 if (ap->ops->set_piomode)
2582 ap->ops->set_piomode(ap, dev);
2585 /* step 3: set host DMA timings */
2586 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2587 dev = &ap->device[i];
2589 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2590 continue;
2592 dev->xfer_mode = dev->dma_mode;
2593 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2594 if (ap->ops->set_dmamode)
2595 ap->ops->set_dmamode(ap, dev);
2598 /* step 4: update devices' xfer mode */
2599 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2600 dev = &ap->device[i];
2602 /* don't update suspended devices' xfer mode */
2603 if (!ata_dev_ready(dev))
2604 continue;
2606 rc = ata_dev_set_mode(dev);
2607 if (rc)
2608 goto out;
2611 /* Record simplex status. If we selected DMA then the other
2612 * host channels are not permitted to do so.
2614 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
2615 ap->host->simplex_claimed = ap;
2617 /* step5: chip specific finalisation */
2618 if (ap->ops->post_set_mode)
2619 ap->ops->post_set_mode(ap);
2620 out:
2621 if (rc)
2622 *r_failed_dev = dev;
2623 return rc;
2627 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2628 * @ap: port on which timings will be programmed
2629 * @r_failed_dev: out paramter for failed device
2631 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2632 * ata_set_mode() fails, pointer to the failing device is
2633 * returned in @r_failed_dev.
2635 * LOCKING:
2636 * PCI/etc. bus probe sem.
2638 * RETURNS:
2639 * 0 on success, negative errno otherwise
2641 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2643 /* has private set_mode? */
2644 if (ap->ops->set_mode)
2645 return ap->ops->set_mode(ap, r_failed_dev);
2646 return ata_do_set_mode(ap, r_failed_dev);
2650 * ata_tf_to_host - issue ATA taskfile to host controller
2651 * @ap: port to which command is being issued
2652 * @tf: ATA taskfile register set
2654 * Issues ATA taskfile register set to ATA host controller,
2655 * with proper synchronization with interrupt handler and
2656 * other threads.
2658 * LOCKING:
2659 * spin_lock_irqsave(host lock)
2662 static inline void ata_tf_to_host(struct ata_port *ap,
2663 const struct ata_taskfile *tf)
2665 ap->ops->tf_load(ap, tf);
2666 ap->ops->exec_command(ap, tf);
2670 * ata_busy_sleep - sleep until BSY clears, or timeout
2671 * @ap: port containing status register to be polled
2672 * @tmout_pat: impatience timeout
2673 * @tmout: overall timeout
2675 * Sleep until ATA Status register bit BSY clears,
2676 * or a timeout occurs.
2678 * LOCKING:
2679 * Kernel thread context (may sleep).
2681 * RETURNS:
2682 * 0 on success, -errno otherwise.
2684 int ata_busy_sleep(struct ata_port *ap,
2685 unsigned long tmout_pat, unsigned long tmout)
2687 unsigned long timer_start, timeout;
2688 u8 status;
2690 status = ata_busy_wait(ap, ATA_BUSY, 300);
2691 timer_start = jiffies;
2692 timeout = timer_start + tmout_pat;
2693 while (status != 0xff && (status & ATA_BUSY) &&
2694 time_before(jiffies, timeout)) {
2695 msleep(50);
2696 status = ata_busy_wait(ap, ATA_BUSY, 3);
2699 if (status != 0xff && (status & ATA_BUSY))
2700 ata_port_printk(ap, KERN_WARNING,
2701 "port is slow to respond, please be patient "
2702 "(Status 0x%x)\n", status);
2704 timeout = timer_start + tmout;
2705 while (status != 0xff && (status & ATA_BUSY) &&
2706 time_before(jiffies, timeout)) {
2707 msleep(50);
2708 status = ata_chk_status(ap);
2711 if (status == 0xff)
2712 return -ENODEV;
2714 if (status & ATA_BUSY) {
2715 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2716 "(%lu secs, Status 0x%x)\n",
2717 tmout / HZ, status);
2718 return -EBUSY;
2721 return 0;
2724 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2726 struct ata_ioports *ioaddr = &ap->ioaddr;
2727 unsigned int dev0 = devmask & (1 << 0);
2728 unsigned int dev1 = devmask & (1 << 1);
2729 unsigned long timeout;
2731 /* if device 0 was found in ata_devchk, wait for its
2732 * BSY bit to clear
2734 if (dev0)
2735 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2737 /* if device 1 was found in ata_devchk, wait for
2738 * register access, then wait for BSY to clear
2740 timeout = jiffies + ATA_TMOUT_BOOT;
2741 while (dev1) {
2742 u8 nsect, lbal;
2744 ap->ops->dev_select(ap, 1);
2745 nsect = ioread8(ioaddr->nsect_addr);
2746 lbal = ioread8(ioaddr->lbal_addr);
2747 if ((nsect == 1) && (lbal == 1))
2748 break;
2749 if (time_after(jiffies, timeout)) {
2750 dev1 = 0;
2751 break;
2753 msleep(50); /* give drive a breather */
2755 if (dev1)
2756 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2758 /* is all this really necessary? */
2759 ap->ops->dev_select(ap, 0);
2760 if (dev1)
2761 ap->ops->dev_select(ap, 1);
2762 if (dev0)
2763 ap->ops->dev_select(ap, 0);
2766 static unsigned int ata_bus_softreset(struct ata_port *ap,
2767 unsigned int devmask)
2769 struct ata_ioports *ioaddr = &ap->ioaddr;
2771 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
2773 /* software reset. causes dev0 to be selected */
2774 iowrite8(ap->ctl, ioaddr->ctl_addr);
2775 udelay(20); /* FIXME: flush */
2776 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2777 udelay(20); /* FIXME: flush */
2778 iowrite8(ap->ctl, ioaddr->ctl_addr);
2780 /* spec mandates ">= 2ms" before checking status.
2781 * We wait 150ms, because that was the magic delay used for
2782 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2783 * between when the ATA command register is written, and then
2784 * status is checked. Because waiting for "a while" before
2785 * checking status is fine, post SRST, we perform this magic
2786 * delay here as well.
2788 * Old drivers/ide uses the 2mS rule and then waits for ready
2790 msleep(150);
2792 /* Before we perform post reset processing we want to see if
2793 * the bus shows 0xFF because the odd clown forgets the D7
2794 * pulldown resistor.
2796 if (ata_check_status(ap) == 0xFF)
2797 return 0;
2799 ata_bus_post_reset(ap, devmask);
2801 return 0;
2805 * ata_bus_reset - reset host port and associated ATA channel
2806 * @ap: port to reset
2808 * This is typically the first time we actually start issuing
2809 * commands to the ATA channel. We wait for BSY to clear, then
2810 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2811 * result. Determine what devices, if any, are on the channel
2812 * by looking at the device 0/1 error register. Look at the signature
2813 * stored in each device's taskfile registers, to determine if
2814 * the device is ATA or ATAPI.
2816 * LOCKING:
2817 * PCI/etc. bus probe sem.
2818 * Obtains host lock.
2820 * SIDE EFFECTS:
2821 * Sets ATA_FLAG_DISABLED if bus reset fails.
2824 void ata_bus_reset(struct ata_port *ap)
2826 struct ata_ioports *ioaddr = &ap->ioaddr;
2827 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2828 u8 err;
2829 unsigned int dev0, dev1 = 0, devmask = 0;
2831 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
2833 /* determine if device 0/1 are present */
2834 if (ap->flags & ATA_FLAG_SATA_RESET)
2835 dev0 = 1;
2836 else {
2837 dev0 = ata_devchk(ap, 0);
2838 if (slave_possible)
2839 dev1 = ata_devchk(ap, 1);
2842 if (dev0)
2843 devmask |= (1 << 0);
2844 if (dev1)
2845 devmask |= (1 << 1);
2847 /* select device 0 again */
2848 ap->ops->dev_select(ap, 0);
2850 /* issue bus reset */
2851 if (ap->flags & ATA_FLAG_SRST)
2852 if (ata_bus_softreset(ap, devmask))
2853 goto err_out;
2856 * determine by signature whether we have ATA or ATAPI devices
2858 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
2859 if ((slave_possible) && (err != 0x81))
2860 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
2862 /* re-enable interrupts */
2863 ap->ops->irq_on(ap);
2865 /* is double-select really necessary? */
2866 if (ap->device[1].class != ATA_DEV_NONE)
2867 ap->ops->dev_select(ap, 1);
2868 if (ap->device[0].class != ATA_DEV_NONE)
2869 ap->ops->dev_select(ap, 0);
2871 /* if no devices were detected, disable this port */
2872 if ((ap->device[0].class == ATA_DEV_NONE) &&
2873 (ap->device[1].class == ATA_DEV_NONE))
2874 goto err_out;
2876 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2877 /* set up device control for ATA_FLAG_SATA_RESET */
2878 iowrite8(ap->ctl, ioaddr->ctl_addr);
2881 DPRINTK("EXIT\n");
2882 return;
2884 err_out:
2885 ata_port_printk(ap, KERN_ERR, "disabling port\n");
2886 ap->ops->port_disable(ap);
2888 DPRINTK("EXIT\n");
2892 * sata_phy_debounce - debounce SATA phy status
2893 * @ap: ATA port to debounce SATA phy status for
2894 * @params: timing parameters { interval, duratinon, timeout } in msec
2896 * Make sure SStatus of @ap reaches stable state, determined by
2897 * holding the same value where DET is not 1 for @duration polled
2898 * every @interval, before @timeout. Timeout constraints the
2899 * beginning of the stable state. Because, after hot unplugging,
2900 * DET gets stuck at 1 on some controllers, this functions waits
2901 * until timeout then returns 0 if DET is stable at 1.
2903 * LOCKING:
2904 * Kernel thread context (may sleep)
2906 * RETURNS:
2907 * 0 on success, -errno on failure.
2909 int sata_phy_debounce(struct ata_port *ap, const unsigned long *params)
2911 unsigned long interval_msec = params[0];
2912 unsigned long duration = params[1] * HZ / 1000;
2913 unsigned long timeout = jiffies + params[2] * HZ / 1000;
2914 unsigned long last_jiffies;
2915 u32 last, cur;
2916 int rc;
2918 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2919 return rc;
2920 cur &= 0xf;
2922 last = cur;
2923 last_jiffies = jiffies;
2925 while (1) {
2926 msleep(interval_msec);
2927 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2928 return rc;
2929 cur &= 0xf;
2931 /* DET stable? */
2932 if (cur == last) {
2933 if (cur == 1 && time_before(jiffies, timeout))
2934 continue;
2935 if (time_after(jiffies, last_jiffies + duration))
2936 return 0;
2937 continue;
2940 /* unstable, start over */
2941 last = cur;
2942 last_jiffies = jiffies;
2944 /* check timeout */
2945 if (time_after(jiffies, timeout))
2946 return -EBUSY;
2951 * sata_phy_resume - resume SATA phy
2952 * @ap: ATA port to resume SATA phy for
2953 * @params: timing parameters { interval, duratinon, timeout } in msec
2955 * Resume SATA phy of @ap and debounce it.
2957 * LOCKING:
2958 * Kernel thread context (may sleep)
2960 * RETURNS:
2961 * 0 on success, -errno on failure.
2963 int sata_phy_resume(struct ata_port *ap, const unsigned long *params)
2965 u32 scontrol;
2966 int rc;
2968 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2969 return rc;
2971 scontrol = (scontrol & 0x0f0) | 0x300;
2973 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2974 return rc;
2976 /* Some PHYs react badly if SStatus is pounded immediately
2977 * after resuming. Delay 200ms before debouncing.
2979 msleep(200);
2981 return sata_phy_debounce(ap, params);
2984 static void ata_wait_spinup(struct ata_port *ap)
2986 struct ata_eh_context *ehc = &ap->eh_context;
2987 unsigned long end, secs;
2988 int rc;
2990 /* first, debounce phy if SATA */
2991 if (ap->cbl == ATA_CBL_SATA) {
2992 rc = sata_phy_debounce(ap, sata_deb_timing_hotplug);
2994 /* if debounced successfully and offline, no need to wait */
2995 if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap))
2996 return;
2999 /* okay, let's give the drive time to spin up */
3000 end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000;
3001 secs = ((end - jiffies) + HZ - 1) / HZ;
3003 if (time_after(jiffies, end))
3004 return;
3006 if (secs > 5)
3007 ata_port_printk(ap, KERN_INFO, "waiting for device to spin up "
3008 "(%lu secs)\n", secs);
3010 schedule_timeout_uninterruptible(end - jiffies);
3014 * ata_std_prereset - prepare for reset
3015 * @ap: ATA port to be reset
3017 * @ap is about to be reset. Initialize it.
3019 * LOCKING:
3020 * Kernel thread context (may sleep)
3022 * RETURNS:
3023 * 0 on success, -errno otherwise.
3025 int ata_std_prereset(struct ata_port *ap)
3027 struct ata_eh_context *ehc = &ap->eh_context;
3028 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3029 int rc;
3031 /* handle link resume & hotplug spinup */
3032 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
3033 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
3034 ehc->i.action |= ATA_EH_HARDRESET;
3036 if ((ehc->i.flags & ATA_EHI_HOTPLUGGED) &&
3037 (ap->flags & ATA_FLAG_SKIP_D2H_BSY))
3038 ata_wait_spinup(ap);
3040 /* if we're about to do hardreset, nothing more to do */
3041 if (ehc->i.action & ATA_EH_HARDRESET)
3042 return 0;
3044 /* if SATA, resume phy */
3045 if (ap->cbl == ATA_CBL_SATA) {
3046 rc = sata_phy_resume(ap, timing);
3047 if (rc && rc != -EOPNOTSUPP) {
3048 /* phy resume failed */
3049 ata_port_printk(ap, KERN_WARNING, "failed to resume "
3050 "link for reset (errno=%d)\n", rc);
3051 return rc;
3055 /* Wait for !BSY if the controller can wait for the first D2H
3056 * Reg FIS and we don't know that no device is attached.
3058 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap))
3059 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
3061 return 0;
3065 * ata_std_softreset - reset host port via ATA SRST
3066 * @ap: port to reset
3067 * @classes: resulting classes of attached devices
3069 * Reset host port using ATA SRST.
3071 * LOCKING:
3072 * Kernel thread context (may sleep)
3074 * RETURNS:
3075 * 0 on success, -errno otherwise.
3077 int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
3079 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3080 unsigned int devmask = 0, err_mask;
3081 u8 err;
3083 DPRINTK("ENTER\n");
3085 if (ata_port_offline(ap)) {
3086 classes[0] = ATA_DEV_NONE;
3087 goto out;
3090 /* determine if device 0/1 are present */
3091 if (ata_devchk(ap, 0))
3092 devmask |= (1 << 0);
3093 if (slave_possible && ata_devchk(ap, 1))
3094 devmask |= (1 << 1);
3096 /* select device 0 again */
3097 ap->ops->dev_select(ap, 0);
3099 /* issue bus reset */
3100 DPRINTK("about to softreset, devmask=%x\n", devmask);
3101 err_mask = ata_bus_softreset(ap, devmask);
3102 if (err_mask) {
3103 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
3104 err_mask);
3105 return -EIO;
3108 /* determine by signature whether we have ATA or ATAPI devices */
3109 classes[0] = ata_dev_try_classify(ap, 0, &err);
3110 if (slave_possible && err != 0x81)
3111 classes[1] = ata_dev_try_classify(ap, 1, &err);
3113 out:
3114 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3115 return 0;
3119 * sata_port_hardreset - reset port via SATA phy reset
3120 * @ap: port to reset
3121 * @timing: timing parameters { interval, duratinon, timeout } in msec
3123 * SATA phy-reset host port using DET bits of SControl register.
3125 * LOCKING:
3126 * Kernel thread context (may sleep)
3128 * RETURNS:
3129 * 0 on success, -errno otherwise.
3131 int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing)
3133 u32 scontrol;
3134 int rc;
3136 DPRINTK("ENTER\n");
3138 if (sata_set_spd_needed(ap)) {
3139 /* SATA spec says nothing about how to reconfigure
3140 * spd. To be on the safe side, turn off phy during
3141 * reconfiguration. This works for at least ICH7 AHCI
3142 * and Sil3124.
3144 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3145 goto out;
3147 scontrol = (scontrol & 0x0f0) | 0x304;
3149 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3150 goto out;
3152 sata_set_spd(ap);
3155 /* issue phy wake/reset */
3156 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3157 goto out;
3159 scontrol = (scontrol & 0x0f0) | 0x301;
3161 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
3162 goto out;
3164 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3165 * 10.4.2 says at least 1 ms.
3167 msleep(1);
3169 /* bring phy back */
3170 rc = sata_phy_resume(ap, timing);
3171 out:
3172 DPRINTK("EXIT, rc=%d\n", rc);
3173 return rc;
3177 * sata_std_hardreset - reset host port via SATA phy reset
3178 * @ap: port to reset
3179 * @class: resulting class of attached device
3181 * SATA phy-reset host port using DET bits of SControl register,
3182 * wait for !BSY and classify the attached device.
3184 * LOCKING:
3185 * Kernel thread context (may sleep)
3187 * RETURNS:
3188 * 0 on success, -errno otherwise.
3190 int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
3192 const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
3193 int rc;
3195 DPRINTK("ENTER\n");
3197 /* do hardreset */
3198 rc = sata_port_hardreset(ap, timing);
3199 if (rc) {
3200 ata_port_printk(ap, KERN_ERR,
3201 "COMRESET failed (errno=%d)\n", rc);
3202 return rc;
3205 /* TODO: phy layer with polling, timeouts, etc. */
3206 if (ata_port_offline(ap)) {
3207 *class = ATA_DEV_NONE;
3208 DPRINTK("EXIT, link offline\n");
3209 return 0;
3212 /* wait a while before checking status, see SRST for more info */
3213 msleep(150);
3215 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
3216 ata_port_printk(ap, KERN_ERR,
3217 "COMRESET failed (device not ready)\n");
3218 return -EIO;
3221 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3223 *class = ata_dev_try_classify(ap, 0, NULL);
3225 DPRINTK("EXIT, class=%u\n", *class);
3226 return 0;
3230 * ata_std_postreset - standard postreset callback
3231 * @ap: the target ata_port
3232 * @classes: classes of attached devices
3234 * This function is invoked after a successful reset. Note that
3235 * the device might have been reset more than once using
3236 * different reset methods before postreset is invoked.
3238 * LOCKING:
3239 * Kernel thread context (may sleep)
3241 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
3243 u32 serror;
3245 DPRINTK("ENTER\n");
3247 /* print link status */
3248 sata_print_link_status(ap);
3250 /* clear SError */
3251 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
3252 sata_scr_write(ap, SCR_ERROR, serror);
3254 /* re-enable interrupts */
3255 if (!ap->ops->error_handler)
3256 ap->ops->irq_on(ap);
3258 /* is double-select really necessary? */
3259 if (classes[0] != ATA_DEV_NONE)
3260 ap->ops->dev_select(ap, 1);
3261 if (classes[1] != ATA_DEV_NONE)
3262 ap->ops->dev_select(ap, 0);
3264 /* bail out if no device is present */
3265 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3266 DPRINTK("EXIT, no device\n");
3267 return;
3270 /* set up device control */
3271 if (ap->ioaddr.ctl_addr)
3272 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
3274 DPRINTK("EXIT\n");
3278 * ata_dev_same_device - Determine whether new ID matches configured device
3279 * @dev: device to compare against
3280 * @new_class: class of the new device
3281 * @new_id: IDENTIFY page of the new device
3283 * Compare @new_class and @new_id against @dev and determine
3284 * whether @dev is the device indicated by @new_class and
3285 * @new_id.
3287 * LOCKING:
3288 * None.
3290 * RETURNS:
3291 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3293 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3294 const u16 *new_id)
3296 const u16 *old_id = dev->id;
3297 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3298 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3299 u64 new_n_sectors;
3301 if (dev->class != new_class) {
3302 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3303 dev->class, new_class);
3304 return 0;
3307 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3308 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3309 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3310 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3311 new_n_sectors = ata_id_n_sectors(new_id);
3313 if (strcmp(model[0], model[1])) {
3314 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3315 "'%s' != '%s'\n", model[0], model[1]);
3316 return 0;
3319 if (strcmp(serial[0], serial[1])) {
3320 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3321 "'%s' != '%s'\n", serial[0], serial[1]);
3322 return 0;
3325 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
3326 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3327 "%llu != %llu\n",
3328 (unsigned long long)dev->n_sectors,
3329 (unsigned long long)new_n_sectors);
3330 return 0;
3333 return 1;
3337 * ata_dev_revalidate - Revalidate ATA device
3338 * @dev: device to revalidate
3339 * @readid_flags: read ID flags
3341 * Re-read IDENTIFY page and make sure @dev is still attached to
3342 * the port.
3344 * LOCKING:
3345 * Kernel thread context (may sleep)
3347 * RETURNS:
3348 * 0 on success, negative errno otherwise
3350 int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
3352 unsigned int class = dev->class;
3353 u16 *id = (void *)dev->ap->sector_buf;
3354 int rc;
3356 if (!ata_dev_enabled(dev)) {
3357 rc = -ENODEV;
3358 goto fail;
3361 /* read ID data */
3362 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3363 if (rc)
3364 goto fail;
3366 /* is the device still there? */
3367 if (!ata_dev_same_device(dev, class, id)) {
3368 rc = -ENODEV;
3369 goto fail;
3372 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3374 /* configure device according to the new ID */
3375 rc = ata_dev_configure(dev);
3376 if (rc == 0)
3377 return 0;
3379 fail:
3380 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
3381 return rc;
3384 struct ata_blacklist_entry {
3385 const char *model_num;
3386 const char *model_rev;
3387 unsigned long horkage;
3390 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3391 /* Devices with DMA related problems under Linux */
3392 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3393 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3394 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3395 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3396 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3397 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3398 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3399 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3400 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3401 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3402 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3403 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3404 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3405 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3406 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3407 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3408 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3409 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3410 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3411 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3412 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3413 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3414 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3415 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3416 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3417 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
3418 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3419 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3420 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
3422 /* Weird ATAPI devices */
3423 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 |
3424 ATA_HORKAGE_DMA_RW_ONLY },
3426 /* Devices we expect to fail diagnostics */
3428 /* Devices where NCQ should be avoided */
3429 /* NCQ is slow */
3430 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
3431 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3432 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
3433 /* NCQ is broken */
3434 { "Maxtor 6L250S0", "BANC1G10", ATA_HORKAGE_NONCQ },
3435 /* NCQ hard hangs device under heavier load, needs hard power cycle */
3436 { "Maxtor 6B250S0", "BANC1B70", ATA_HORKAGE_NONCQ },
3437 /* Blacklist entries taken from Silicon Image 3124/3132
3438 Windows driver .inf file - also several Linux problem reports */
3439 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
3440 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
3441 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
3443 /* Devices with NCQ limits */
3445 /* End Marker */
3449 unsigned long ata_device_blacklisted(const struct ata_device *dev)
3451 unsigned char model_num[ATA_ID_PROD_LEN + 1];
3452 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
3453 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3455 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3456 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
3458 while (ad->model_num) {
3459 if (!strcmp(ad->model_num, model_num)) {
3460 if (ad->model_rev == NULL)
3461 return ad->horkage;
3462 if (!strcmp(ad->model_rev, model_rev))
3463 return ad->horkage;
3465 ad++;
3467 return 0;
3470 static int ata_dma_blacklisted(const struct ata_device *dev)
3472 /* We don't support polling DMA.
3473 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3474 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3476 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3477 (dev->flags & ATA_DFLAG_CDB_INTR))
3478 return 1;
3479 return (ata_device_blacklisted(dev) & ATA_HORKAGE_NODMA) ? 1 : 0;
3483 * ata_dev_xfermask - Compute supported xfermask of the given device
3484 * @dev: Device to compute xfermask for
3486 * Compute supported xfermask of @dev and store it in
3487 * dev->*_mask. This function is responsible for applying all
3488 * known limits including host controller limits, device
3489 * blacklist, etc...
3491 * LOCKING:
3492 * None.
3494 static void ata_dev_xfermask(struct ata_device *dev)
3496 struct ata_port *ap = dev->ap;
3497 struct ata_host *host = ap->host;
3498 unsigned long xfer_mask;
3500 /* controller modes available */
3501 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3502 ap->mwdma_mask, ap->udma_mask);
3504 /* drive modes available */
3505 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3506 dev->mwdma_mask, dev->udma_mask);
3507 xfer_mask &= ata_id_xfermask(dev->id);
3510 * CFA Advanced TrueIDE timings are not allowed on a shared
3511 * cable
3513 if (ata_dev_pair(dev)) {
3514 /* No PIO5 or PIO6 */
3515 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3516 /* No MWDMA3 or MWDMA 4 */
3517 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3520 if (ata_dma_blacklisted(dev)) {
3521 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3522 ata_dev_printk(dev, KERN_WARNING,
3523 "device is on DMA blacklist, disabling DMA\n");
3526 if ((host->flags & ATA_HOST_SIMPLEX) &&
3527 host->simplex_claimed && host->simplex_claimed != ap) {
3528 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3529 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3530 "other device, disabling DMA\n");
3533 if (ap->ops->mode_filter)
3534 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
3536 /* Apply cable rule here. Don't apply it early because when
3537 * we handle hot plug the cable type can itself change.
3538 * Check this last so that we know if the transfer rate was
3539 * solely limited by the cable.
3540 * Unknown or 80 wire cables reported host side are checked
3541 * drive side as well. Cases where we know a 40wire cable
3542 * is used safely for 80 are not checked here.
3544 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
3545 /* UDMA/44 or higher would be available */
3546 if((ap->cbl == ATA_CBL_PATA40) ||
3547 (ata_drive_40wire(dev->id) &&
3548 (ap->cbl == ATA_CBL_PATA_UNK ||
3549 ap->cbl == ATA_CBL_PATA80))) {
3550 ata_dev_printk(dev, KERN_WARNING,
3551 "limited to UDMA/33 due to 40-wire cable\n");
3552 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3555 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3556 &dev->mwdma_mask, &dev->udma_mask);
3560 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3561 * @dev: Device to which command will be sent
3563 * Issue SET FEATURES - XFER MODE command to device @dev
3564 * on port @ap.
3566 * LOCKING:
3567 * PCI/etc. bus probe sem.
3569 * RETURNS:
3570 * 0 on success, AC_ERR_* mask otherwise.
3573 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
3575 struct ata_taskfile tf;
3576 unsigned int err_mask;
3578 /* set up set-features taskfile */
3579 DPRINTK("set features - xfer mode\n");
3581 ata_tf_init(dev, &tf);
3582 tf.command = ATA_CMD_SET_FEATURES;
3583 tf.feature = SETFEATURES_XFER;
3584 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3585 tf.protocol = ATA_PROT_NODATA;
3586 tf.nsect = dev->xfer_mode;
3588 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3590 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3591 return err_mask;
3595 * ata_dev_init_params - Issue INIT DEV PARAMS command
3596 * @dev: Device to which command will be sent
3597 * @heads: Number of heads (taskfile parameter)
3598 * @sectors: Number of sectors (taskfile parameter)
3600 * LOCKING:
3601 * Kernel thread context (may sleep)
3603 * RETURNS:
3604 * 0 on success, AC_ERR_* mask otherwise.
3606 static unsigned int ata_dev_init_params(struct ata_device *dev,
3607 u16 heads, u16 sectors)
3609 struct ata_taskfile tf;
3610 unsigned int err_mask;
3612 /* Number of sectors per track 1-255. Number of heads 1-16 */
3613 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3614 return AC_ERR_INVALID;
3616 /* set up init dev params taskfile */
3617 DPRINTK("init dev params \n");
3619 ata_tf_init(dev, &tf);
3620 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3621 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3622 tf.protocol = ATA_PROT_NODATA;
3623 tf.nsect = sectors;
3624 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3626 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3628 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3629 return err_mask;
3633 * ata_sg_clean - Unmap DMA memory associated with command
3634 * @qc: Command containing DMA memory to be released
3636 * Unmap all mapped DMA memory associated with this command.
3638 * LOCKING:
3639 * spin_lock_irqsave(host lock)
3641 void ata_sg_clean(struct ata_queued_cmd *qc)
3643 struct ata_port *ap = qc->ap;
3644 struct scatterlist *sg = qc->__sg;
3645 int dir = qc->dma_dir;
3646 void *pad_buf = NULL;
3648 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3649 WARN_ON(sg == NULL);
3651 if (qc->flags & ATA_QCFLAG_SINGLE)
3652 WARN_ON(qc->n_elem > 1);
3654 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
3656 /* if we padded the buffer out to 32-bit bound, and data
3657 * xfer direction is from-device, we must copy from the
3658 * pad buffer back into the supplied buffer
3660 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3661 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3663 if (qc->flags & ATA_QCFLAG_SG) {
3664 if (qc->n_elem)
3665 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
3666 /* restore last sg */
3667 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3668 if (pad_buf) {
3669 struct scatterlist *psg = &qc->pad_sgent;
3670 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3671 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
3672 kunmap_atomic(addr, KM_IRQ0);
3674 } else {
3675 if (qc->n_elem)
3676 dma_unmap_single(ap->dev,
3677 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3678 dir);
3679 /* restore sg */
3680 sg->length += qc->pad_len;
3681 if (pad_buf)
3682 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3683 pad_buf, qc->pad_len);
3686 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3687 qc->__sg = NULL;
3691 * ata_fill_sg - Fill PCI IDE PRD table
3692 * @qc: Metadata associated with taskfile to be transferred
3694 * Fill PCI IDE PRD (scatter-gather) table with segments
3695 * associated with the current disk command.
3697 * LOCKING:
3698 * spin_lock_irqsave(host lock)
3701 static void ata_fill_sg(struct ata_queued_cmd *qc)
3703 struct ata_port *ap = qc->ap;
3704 struct scatterlist *sg;
3705 unsigned int idx;
3707 WARN_ON(qc->__sg == NULL);
3708 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
3710 idx = 0;
3711 ata_for_each_sg(sg, qc) {
3712 u32 addr, offset;
3713 u32 sg_len, len;
3715 /* determine if physical DMA addr spans 64K boundary.
3716 * Note h/w doesn't support 64-bit, so we unconditionally
3717 * truncate dma_addr_t to u32.
3719 addr = (u32) sg_dma_address(sg);
3720 sg_len = sg_dma_len(sg);
3722 while (sg_len) {
3723 offset = addr & 0xffff;
3724 len = sg_len;
3725 if ((offset + sg_len) > 0x10000)
3726 len = 0x10000 - offset;
3728 ap->prd[idx].addr = cpu_to_le32(addr);
3729 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3730 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3732 idx++;
3733 sg_len -= len;
3734 addr += len;
3738 if (idx)
3739 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3742 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3743 * @qc: Metadata associated with taskfile to check
3745 * Allow low-level driver to filter ATA PACKET commands, returning
3746 * a status indicating whether or not it is OK to use DMA for the
3747 * supplied PACKET command.
3749 * LOCKING:
3750 * spin_lock_irqsave(host lock)
3752 * RETURNS: 0 when ATAPI DMA can be used
3753 * nonzero otherwise
3755 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3757 struct ata_port *ap = qc->ap;
3758 int rc = 0; /* Assume ATAPI DMA is OK by default */
3760 /* some drives can only do ATAPI DMA on read/write */
3761 if (unlikely(qc->dev->horkage & ATA_HORKAGE_DMA_RW_ONLY)) {
3762 struct scsi_cmnd *cmd = qc->scsicmd;
3763 u8 *scsicmd = cmd->cmnd;
3765 switch (scsicmd[0]) {
3766 case READ_10:
3767 case WRITE_10:
3768 case READ_12:
3769 case WRITE_12:
3770 case READ_6:
3771 case WRITE_6:
3772 /* atapi dma maybe ok */
3773 break;
3774 default:
3775 /* turn off atapi dma */
3776 return 1;
3780 if (ap->ops->check_atapi_dma)
3781 rc = ap->ops->check_atapi_dma(qc);
3783 return rc;
3786 * ata_qc_prep - Prepare taskfile for submission
3787 * @qc: Metadata associated with taskfile to be prepared
3789 * Prepare ATA taskfile for submission.
3791 * LOCKING:
3792 * spin_lock_irqsave(host lock)
3794 void ata_qc_prep(struct ata_queued_cmd *qc)
3796 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3797 return;
3799 ata_fill_sg(qc);
3802 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3805 * ata_sg_init_one - Associate command with memory buffer
3806 * @qc: Command to be associated
3807 * @buf: Memory buffer
3808 * @buflen: Length of memory buffer, in bytes.
3810 * Initialize the data-related elements of queued_cmd @qc
3811 * to point to a single memory buffer, @buf of byte length @buflen.
3813 * LOCKING:
3814 * spin_lock_irqsave(host lock)
3817 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3819 qc->flags |= ATA_QCFLAG_SINGLE;
3821 qc->__sg = &qc->sgent;
3822 qc->n_elem = 1;
3823 qc->orig_n_elem = 1;
3824 qc->buf_virt = buf;
3825 qc->nbytes = buflen;
3827 sg_init_one(&qc->sgent, buf, buflen);
3831 * ata_sg_init - Associate command with scatter-gather table.
3832 * @qc: Command to be associated
3833 * @sg: Scatter-gather table.
3834 * @n_elem: Number of elements in s/g table.
3836 * Initialize the data-related elements of queued_cmd @qc
3837 * to point to a scatter-gather table @sg, containing @n_elem
3838 * elements.
3840 * LOCKING:
3841 * spin_lock_irqsave(host lock)
3844 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3845 unsigned int n_elem)
3847 qc->flags |= ATA_QCFLAG_SG;
3848 qc->__sg = sg;
3849 qc->n_elem = n_elem;
3850 qc->orig_n_elem = n_elem;
3854 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3855 * @qc: Command with memory buffer to be mapped.
3857 * DMA-map the memory buffer associated with queued_cmd @qc.
3859 * LOCKING:
3860 * spin_lock_irqsave(host lock)
3862 * RETURNS:
3863 * Zero on success, negative on error.
3866 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3868 struct ata_port *ap = qc->ap;
3869 int dir = qc->dma_dir;
3870 struct scatterlist *sg = qc->__sg;
3871 dma_addr_t dma_address;
3872 int trim_sg = 0;
3874 /* we must lengthen transfers to end on a 32-bit boundary */
3875 qc->pad_len = sg->length & 3;
3876 if (qc->pad_len) {
3877 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3878 struct scatterlist *psg = &qc->pad_sgent;
3880 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3882 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3884 if (qc->tf.flags & ATA_TFLAG_WRITE)
3885 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3886 qc->pad_len);
3888 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3889 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3890 /* trim sg */
3891 sg->length -= qc->pad_len;
3892 if (sg->length == 0)
3893 trim_sg = 1;
3895 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3896 sg->length, qc->pad_len);
3899 if (trim_sg) {
3900 qc->n_elem--;
3901 goto skip_map;
3904 dma_address = dma_map_single(ap->dev, qc->buf_virt,
3905 sg->length, dir);
3906 if (dma_mapping_error(dma_address)) {
3907 /* restore sg */
3908 sg->length += qc->pad_len;
3909 return -1;
3912 sg_dma_address(sg) = dma_address;
3913 sg_dma_len(sg) = sg->length;
3915 skip_map:
3916 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3917 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3919 return 0;
3923 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3924 * @qc: Command with scatter-gather table to be mapped.
3926 * DMA-map the scatter-gather table associated with queued_cmd @qc.
3928 * LOCKING:
3929 * spin_lock_irqsave(host lock)
3931 * RETURNS:
3932 * Zero on success, negative on error.
3936 static int ata_sg_setup(struct ata_queued_cmd *qc)
3938 struct ata_port *ap = qc->ap;
3939 struct scatterlist *sg = qc->__sg;
3940 struct scatterlist *lsg = &sg[qc->n_elem - 1];
3941 int n_elem, pre_n_elem, dir, trim_sg = 0;
3943 VPRINTK("ENTER, ata%u\n", ap->print_id);
3944 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
3946 /* we must lengthen transfers to end on a 32-bit boundary */
3947 qc->pad_len = lsg->length & 3;
3948 if (qc->pad_len) {
3949 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3950 struct scatterlist *psg = &qc->pad_sgent;
3951 unsigned int offset;
3953 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3955 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3958 * psg->page/offset are used to copy to-be-written
3959 * data in this function or read data in ata_sg_clean.
3961 offset = lsg->offset + lsg->length - qc->pad_len;
3962 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3963 psg->offset = offset_in_page(offset);
3965 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3966 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3967 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
3968 kunmap_atomic(addr, KM_IRQ0);
3971 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3972 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3973 /* trim last sg */
3974 lsg->length -= qc->pad_len;
3975 if (lsg->length == 0)
3976 trim_sg = 1;
3978 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3979 qc->n_elem - 1, lsg->length, qc->pad_len);
3982 pre_n_elem = qc->n_elem;
3983 if (trim_sg && pre_n_elem)
3984 pre_n_elem--;
3986 if (!pre_n_elem) {
3987 n_elem = 0;
3988 goto skip_map;
3991 dir = qc->dma_dir;
3992 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
3993 if (n_elem < 1) {
3994 /* restore last sg */
3995 lsg->length += qc->pad_len;
3996 return -1;
3999 DPRINTK("%d sg elements mapped\n", n_elem);
4001 skip_map:
4002 qc->n_elem = n_elem;
4004 return 0;
4008 * swap_buf_le16 - swap halves of 16-bit words in place
4009 * @buf: Buffer to swap
4010 * @buf_words: Number of 16-bit words in buffer.
4012 * Swap halves of 16-bit words if needed to convert from
4013 * little-endian byte order to native cpu byte order, or
4014 * vice-versa.
4016 * LOCKING:
4017 * Inherited from caller.
4019 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4021 #ifdef __BIG_ENDIAN
4022 unsigned int i;
4024 for (i = 0; i < buf_words; i++)
4025 buf[i] = le16_to_cpu(buf[i]);
4026 #endif /* __BIG_ENDIAN */
4030 * ata_data_xfer - Transfer data by PIO
4031 * @adev: device to target
4032 * @buf: data buffer
4033 * @buflen: buffer length
4034 * @write_data: read/write
4036 * Transfer data from/to the device data register by PIO.
4038 * LOCKING:
4039 * Inherited from caller.
4041 void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4042 unsigned int buflen, int write_data)
4044 struct ata_port *ap = adev->ap;
4045 unsigned int words = buflen >> 1;
4047 /* Transfer multiple of 2 bytes */
4048 if (write_data)
4049 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
4050 else
4051 ioread16_rep(ap->ioaddr.data_addr, buf, words);
4053 /* Transfer trailing 1 byte, if any. */
4054 if (unlikely(buflen & 0x01)) {
4055 u16 align_buf[1] = { 0 };
4056 unsigned char *trailing_buf = buf + buflen - 1;
4058 if (write_data) {
4059 memcpy(align_buf, trailing_buf, 1);
4060 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
4061 } else {
4062 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
4063 memcpy(trailing_buf, align_buf, 1);
4069 * ata_data_xfer_noirq - Transfer data by PIO
4070 * @adev: device to target
4071 * @buf: data buffer
4072 * @buflen: buffer length
4073 * @write_data: read/write
4075 * Transfer data from/to the device data register by PIO. Do the
4076 * transfer with interrupts disabled.
4078 * LOCKING:
4079 * Inherited from caller.
4081 void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
4082 unsigned int buflen, int write_data)
4084 unsigned long flags;
4085 local_irq_save(flags);
4086 ata_data_xfer(adev, buf, buflen, write_data);
4087 local_irq_restore(flags);
4092 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
4093 * @qc: Command on going
4095 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
4097 * LOCKING:
4098 * Inherited from caller.
4101 static void ata_pio_sector(struct ata_queued_cmd *qc)
4103 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4104 struct scatterlist *sg = qc->__sg;
4105 struct ata_port *ap = qc->ap;
4106 struct page *page;
4107 unsigned int offset;
4108 unsigned char *buf;
4110 if (qc->curbytes == qc->nbytes - ATA_SECT_SIZE)
4111 ap->hsm_task_state = HSM_ST_LAST;
4113 page = sg[qc->cursg].page;
4114 offset = sg[qc->cursg].offset + qc->cursg_ofs;
4116 /* get the current page and offset */
4117 page = nth_page(page, (offset >> PAGE_SHIFT));
4118 offset %= PAGE_SIZE;
4120 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4122 if (PageHighMem(page)) {
4123 unsigned long flags;
4125 /* FIXME: use a bounce buffer */
4126 local_irq_save(flags);
4127 buf = kmap_atomic(page, KM_IRQ0);
4129 /* do the actual data transfer */
4130 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
4132 kunmap_atomic(buf, KM_IRQ0);
4133 local_irq_restore(flags);
4134 } else {
4135 buf = page_address(page);
4136 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
4139 qc->curbytes += ATA_SECT_SIZE;
4140 qc->cursg_ofs += ATA_SECT_SIZE;
4142 if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
4143 qc->cursg++;
4144 qc->cursg_ofs = 0;
4149 * ata_pio_sectors - Transfer one or many 512-byte sectors.
4150 * @qc: Command on going
4152 * Transfer one or many ATA_SECT_SIZE of data from/to the
4153 * ATA device for the DRQ request.
4155 * LOCKING:
4156 * Inherited from caller.
4159 static void ata_pio_sectors(struct ata_queued_cmd *qc)
4161 if (is_multi_taskfile(&qc->tf)) {
4162 /* READ/WRITE MULTIPLE */
4163 unsigned int nsect;
4165 WARN_ON(qc->dev->multi_count == 0);
4167 nsect = min((qc->nbytes - qc->curbytes) / ATA_SECT_SIZE,
4168 qc->dev->multi_count);
4169 while (nsect--)
4170 ata_pio_sector(qc);
4171 } else
4172 ata_pio_sector(qc);
4176 * atapi_send_cdb - Write CDB bytes to hardware
4177 * @ap: Port to which ATAPI device is attached.
4178 * @qc: Taskfile currently active
4180 * When device has indicated its readiness to accept
4181 * a CDB, this function is called. Send the CDB.
4183 * LOCKING:
4184 * caller.
4187 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4189 /* send SCSI cdb */
4190 DPRINTK("send cdb\n");
4191 WARN_ON(qc->dev->cdb_len < 12);
4193 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
4194 ata_altstatus(ap); /* flush */
4196 switch (qc->tf.protocol) {
4197 case ATA_PROT_ATAPI:
4198 ap->hsm_task_state = HSM_ST;
4199 break;
4200 case ATA_PROT_ATAPI_NODATA:
4201 ap->hsm_task_state = HSM_ST_LAST;
4202 break;
4203 case ATA_PROT_ATAPI_DMA:
4204 ap->hsm_task_state = HSM_ST_LAST;
4205 /* initiate bmdma */
4206 ap->ops->bmdma_start(qc);
4207 break;
4212 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4213 * @qc: Command on going
4214 * @bytes: number of bytes
4216 * Transfer Transfer data from/to the ATAPI device.
4218 * LOCKING:
4219 * Inherited from caller.
4223 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4225 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4226 struct scatterlist *sg = qc->__sg;
4227 struct ata_port *ap = qc->ap;
4228 struct page *page;
4229 unsigned char *buf;
4230 unsigned int offset, count;
4232 if (qc->curbytes + bytes >= qc->nbytes)
4233 ap->hsm_task_state = HSM_ST_LAST;
4235 next_sg:
4236 if (unlikely(qc->cursg >= qc->n_elem)) {
4238 * The end of qc->sg is reached and the device expects
4239 * more data to transfer. In order not to overrun qc->sg
4240 * and fulfill length specified in the byte count register,
4241 * - for read case, discard trailing data from the device
4242 * - for write case, padding zero data to the device
4244 u16 pad_buf[1] = { 0 };
4245 unsigned int words = bytes >> 1;
4246 unsigned int i;
4248 if (words) /* warning if bytes > 1 */
4249 ata_dev_printk(qc->dev, KERN_WARNING,
4250 "%u bytes trailing data\n", bytes);
4252 for (i = 0; i < words; i++)
4253 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
4255 ap->hsm_task_state = HSM_ST_LAST;
4256 return;
4259 sg = &qc->__sg[qc->cursg];
4261 page = sg->page;
4262 offset = sg->offset + qc->cursg_ofs;
4264 /* get the current page and offset */
4265 page = nth_page(page, (offset >> PAGE_SHIFT));
4266 offset %= PAGE_SIZE;
4268 /* don't overrun current sg */
4269 count = min(sg->length - qc->cursg_ofs, bytes);
4271 /* don't cross page boundaries */
4272 count = min(count, (unsigned int)PAGE_SIZE - offset);
4274 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4276 if (PageHighMem(page)) {
4277 unsigned long flags;
4279 /* FIXME: use bounce buffer */
4280 local_irq_save(flags);
4281 buf = kmap_atomic(page, KM_IRQ0);
4283 /* do the actual data transfer */
4284 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4286 kunmap_atomic(buf, KM_IRQ0);
4287 local_irq_restore(flags);
4288 } else {
4289 buf = page_address(page);
4290 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4293 bytes -= count;
4294 qc->curbytes += count;
4295 qc->cursg_ofs += count;
4297 if (qc->cursg_ofs == sg->length) {
4298 qc->cursg++;
4299 qc->cursg_ofs = 0;
4302 if (bytes)
4303 goto next_sg;
4307 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4308 * @qc: Command on going
4310 * Transfer Transfer data from/to the ATAPI device.
4312 * LOCKING:
4313 * Inherited from caller.
4316 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4318 struct ata_port *ap = qc->ap;
4319 struct ata_device *dev = qc->dev;
4320 unsigned int ireason, bc_lo, bc_hi, bytes;
4321 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4323 /* Abuse qc->result_tf for temp storage of intermediate TF
4324 * here to save some kernel stack usage.
4325 * For normal completion, qc->result_tf is not relevant. For
4326 * error, qc->result_tf is later overwritten by ata_qc_complete().
4327 * So, the correctness of qc->result_tf is not affected.
4329 ap->ops->tf_read(ap, &qc->result_tf);
4330 ireason = qc->result_tf.nsect;
4331 bc_lo = qc->result_tf.lbam;
4332 bc_hi = qc->result_tf.lbah;
4333 bytes = (bc_hi << 8) | bc_lo;
4335 /* shall be cleared to zero, indicating xfer of data */
4336 if (ireason & (1 << 0))
4337 goto err_out;
4339 /* make sure transfer direction matches expected */
4340 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4341 if (do_write != i_write)
4342 goto err_out;
4344 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
4346 __atapi_pio_bytes(qc, bytes);
4348 return;
4350 err_out:
4351 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
4352 qc->err_mask |= AC_ERR_HSM;
4353 ap->hsm_task_state = HSM_ST_ERR;
4357 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4358 * @ap: the target ata_port
4359 * @qc: qc on going
4361 * RETURNS:
4362 * 1 if ok in workqueue, 0 otherwise.
4365 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
4367 if (qc->tf.flags & ATA_TFLAG_POLLING)
4368 return 1;
4370 if (ap->hsm_task_state == HSM_ST_FIRST) {
4371 if (qc->tf.protocol == ATA_PROT_PIO &&
4372 (qc->tf.flags & ATA_TFLAG_WRITE))
4373 return 1;
4375 if (is_atapi_taskfile(&qc->tf) &&
4376 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4377 return 1;
4380 return 0;
4384 * ata_hsm_qc_complete - finish a qc running on standard HSM
4385 * @qc: Command to complete
4386 * @in_wq: 1 if called from workqueue, 0 otherwise
4388 * Finish @qc which is running on standard HSM.
4390 * LOCKING:
4391 * If @in_wq is zero, spin_lock_irqsave(host lock).
4392 * Otherwise, none on entry and grabs host lock.
4394 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4396 struct ata_port *ap = qc->ap;
4397 unsigned long flags;
4399 if (ap->ops->error_handler) {
4400 if (in_wq) {
4401 spin_lock_irqsave(ap->lock, flags);
4403 /* EH might have kicked in while host lock is
4404 * released.
4406 qc = ata_qc_from_tag(ap, qc->tag);
4407 if (qc) {
4408 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
4409 ap->ops->irq_on(ap);
4410 ata_qc_complete(qc);
4411 } else
4412 ata_port_freeze(ap);
4415 spin_unlock_irqrestore(ap->lock, flags);
4416 } else {
4417 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4418 ata_qc_complete(qc);
4419 else
4420 ata_port_freeze(ap);
4422 } else {
4423 if (in_wq) {
4424 spin_lock_irqsave(ap->lock, flags);
4425 ap->ops->irq_on(ap);
4426 ata_qc_complete(qc);
4427 spin_unlock_irqrestore(ap->lock, flags);
4428 } else
4429 ata_qc_complete(qc);
4432 ata_altstatus(ap); /* flush */
4436 * ata_hsm_move - move the HSM to the next state.
4437 * @ap: the target ata_port
4438 * @qc: qc on going
4439 * @status: current device status
4440 * @in_wq: 1 if called from workqueue, 0 otherwise
4442 * RETURNS:
4443 * 1 when poll next status needed, 0 otherwise.
4445 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4446 u8 status, int in_wq)
4448 unsigned long flags = 0;
4449 int poll_next;
4451 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4453 /* Make sure ata_qc_issue_prot() does not throw things
4454 * like DMA polling into the workqueue. Notice that
4455 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4457 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
4459 fsm_start:
4460 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4461 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
4463 switch (ap->hsm_task_state) {
4464 case HSM_ST_FIRST:
4465 /* Send first data block or PACKET CDB */
4467 /* If polling, we will stay in the work queue after
4468 * sending the data. Otherwise, interrupt handler
4469 * takes over after sending the data.
4471 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4473 /* check device status */
4474 if (unlikely((status & ATA_DRQ) == 0)) {
4475 /* handle BSY=0, DRQ=0 as error */
4476 if (likely(status & (ATA_ERR | ATA_DF)))
4477 /* device stops HSM for abort/error */
4478 qc->err_mask |= AC_ERR_DEV;
4479 else
4480 /* HSM violation. Let EH handle this */
4481 qc->err_mask |= AC_ERR_HSM;
4483 ap->hsm_task_state = HSM_ST_ERR;
4484 goto fsm_start;
4487 /* Device should not ask for data transfer (DRQ=1)
4488 * when it finds something wrong.
4489 * We ignore DRQ here and stop the HSM by
4490 * changing hsm_task_state to HSM_ST_ERR and
4491 * let the EH abort the command or reset the device.
4493 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4494 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
4495 "error, dev_stat 0x%X\n", status);
4496 qc->err_mask |= AC_ERR_HSM;
4497 ap->hsm_task_state = HSM_ST_ERR;
4498 goto fsm_start;
4501 /* Send the CDB (atapi) or the first data block (ata pio out).
4502 * During the state transition, interrupt handler shouldn't
4503 * be invoked before the data transfer is complete and
4504 * hsm_task_state is changed. Hence, the following locking.
4506 if (in_wq)
4507 spin_lock_irqsave(ap->lock, flags);
4509 if (qc->tf.protocol == ATA_PROT_PIO) {
4510 /* PIO data out protocol.
4511 * send first data block.
4514 /* ata_pio_sectors() might change the state
4515 * to HSM_ST_LAST. so, the state is changed here
4516 * before ata_pio_sectors().
4518 ap->hsm_task_state = HSM_ST;
4519 ata_pio_sectors(qc);
4520 ata_altstatus(ap); /* flush */
4521 } else
4522 /* send CDB */
4523 atapi_send_cdb(ap, qc);
4525 if (in_wq)
4526 spin_unlock_irqrestore(ap->lock, flags);
4528 /* if polling, ata_pio_task() handles the rest.
4529 * otherwise, interrupt handler takes over from here.
4531 break;
4533 case HSM_ST:
4534 /* complete command or read/write the data register */
4535 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4536 /* ATAPI PIO protocol */
4537 if ((status & ATA_DRQ) == 0) {
4538 /* No more data to transfer or device error.
4539 * Device error will be tagged in HSM_ST_LAST.
4541 ap->hsm_task_state = HSM_ST_LAST;
4542 goto fsm_start;
4545 /* Device should not ask for data transfer (DRQ=1)
4546 * when it finds something wrong.
4547 * We ignore DRQ here and stop the HSM by
4548 * changing hsm_task_state to HSM_ST_ERR and
4549 * let the EH abort the command or reset the device.
4551 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4552 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
4553 "device error, dev_stat 0x%X\n",
4554 status);
4555 qc->err_mask |= AC_ERR_HSM;
4556 ap->hsm_task_state = HSM_ST_ERR;
4557 goto fsm_start;
4560 atapi_pio_bytes(qc);
4562 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4563 /* bad ireason reported by device */
4564 goto fsm_start;
4566 } else {
4567 /* ATA PIO protocol */
4568 if (unlikely((status & ATA_DRQ) == 0)) {
4569 /* handle BSY=0, DRQ=0 as error */
4570 if (likely(status & (ATA_ERR | ATA_DF)))
4571 /* device stops HSM for abort/error */
4572 qc->err_mask |= AC_ERR_DEV;
4573 else
4574 /* HSM violation. Let EH handle this.
4575 * Phantom devices also trigger this
4576 * condition. Mark hint.
4578 qc->err_mask |= AC_ERR_HSM |
4579 AC_ERR_NODEV_HINT;
4581 ap->hsm_task_state = HSM_ST_ERR;
4582 goto fsm_start;
4585 /* For PIO reads, some devices may ask for
4586 * data transfer (DRQ=1) alone with ERR=1.
4587 * We respect DRQ here and transfer one
4588 * block of junk data before changing the
4589 * hsm_task_state to HSM_ST_ERR.
4591 * For PIO writes, ERR=1 DRQ=1 doesn't make
4592 * sense since the data block has been
4593 * transferred to the device.
4595 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4596 /* data might be corrputed */
4597 qc->err_mask |= AC_ERR_DEV;
4599 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4600 ata_pio_sectors(qc);
4601 ata_altstatus(ap);
4602 status = ata_wait_idle(ap);
4605 if (status & (ATA_BUSY | ATA_DRQ))
4606 qc->err_mask |= AC_ERR_HSM;
4608 /* ata_pio_sectors() might change the
4609 * state to HSM_ST_LAST. so, the state
4610 * is changed after ata_pio_sectors().
4612 ap->hsm_task_state = HSM_ST_ERR;
4613 goto fsm_start;
4616 ata_pio_sectors(qc);
4618 if (ap->hsm_task_state == HSM_ST_LAST &&
4619 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4620 /* all data read */
4621 ata_altstatus(ap);
4622 status = ata_wait_idle(ap);
4623 goto fsm_start;
4627 ata_altstatus(ap); /* flush */
4628 poll_next = 1;
4629 break;
4631 case HSM_ST_LAST:
4632 if (unlikely(!ata_ok(status))) {
4633 qc->err_mask |= __ac_err_mask(status);
4634 ap->hsm_task_state = HSM_ST_ERR;
4635 goto fsm_start;
4638 /* no more data to transfer */
4639 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4640 ap->print_id, qc->dev->devno, status);
4642 WARN_ON(qc->err_mask);
4644 ap->hsm_task_state = HSM_ST_IDLE;
4646 /* complete taskfile transaction */
4647 ata_hsm_qc_complete(qc, in_wq);
4649 poll_next = 0;
4650 break;
4652 case HSM_ST_ERR:
4653 /* make sure qc->err_mask is available to
4654 * know what's wrong and recover
4656 WARN_ON(qc->err_mask == 0);
4658 ap->hsm_task_state = HSM_ST_IDLE;
4660 /* complete taskfile transaction */
4661 ata_hsm_qc_complete(qc, in_wq);
4663 poll_next = 0;
4664 break;
4665 default:
4666 poll_next = 0;
4667 BUG();
4670 return poll_next;
4673 static void ata_pio_task(struct work_struct *work)
4675 struct ata_port *ap =
4676 container_of(work, struct ata_port, port_task.work);
4677 struct ata_queued_cmd *qc = ap->port_task_data;
4678 u8 status;
4679 int poll_next;
4681 fsm_start:
4682 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
4685 * This is purely heuristic. This is a fast path.
4686 * Sometimes when we enter, BSY will be cleared in
4687 * a chk-status or two. If not, the drive is probably seeking
4688 * or something. Snooze for a couple msecs, then
4689 * chk-status again. If still busy, queue delayed work.
4691 status = ata_busy_wait(ap, ATA_BUSY, 5);
4692 if (status & ATA_BUSY) {
4693 msleep(2);
4694 status = ata_busy_wait(ap, ATA_BUSY, 10);
4695 if (status & ATA_BUSY) {
4696 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
4697 return;
4701 /* move the HSM */
4702 poll_next = ata_hsm_move(ap, qc, status, 1);
4704 /* another command or interrupt handler
4705 * may be running at this point.
4707 if (poll_next)
4708 goto fsm_start;
4712 * ata_qc_new - Request an available ATA command, for queueing
4713 * @ap: Port associated with device @dev
4714 * @dev: Device from whom we request an available command structure
4716 * LOCKING:
4717 * None.
4720 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4722 struct ata_queued_cmd *qc = NULL;
4723 unsigned int i;
4725 /* no command while frozen */
4726 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4727 return NULL;
4729 /* the last tag is reserved for internal command. */
4730 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4731 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4732 qc = __ata_qc_from_tag(ap, i);
4733 break;
4736 if (qc)
4737 qc->tag = i;
4739 return qc;
4743 * ata_qc_new_init - Request an available ATA command, and initialize it
4744 * @dev: Device from whom we request an available command structure
4746 * LOCKING:
4747 * None.
4750 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4752 struct ata_port *ap = dev->ap;
4753 struct ata_queued_cmd *qc;
4755 qc = ata_qc_new(ap);
4756 if (qc) {
4757 qc->scsicmd = NULL;
4758 qc->ap = ap;
4759 qc->dev = dev;
4761 ata_qc_reinit(qc);
4764 return qc;
4768 * ata_qc_free - free unused ata_queued_cmd
4769 * @qc: Command to complete
4771 * Designed to free unused ata_queued_cmd object
4772 * in case something prevents using it.
4774 * LOCKING:
4775 * spin_lock_irqsave(host lock)
4777 void ata_qc_free(struct ata_queued_cmd *qc)
4779 struct ata_port *ap = qc->ap;
4780 unsigned int tag;
4782 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4784 qc->flags = 0;
4785 tag = qc->tag;
4786 if (likely(ata_tag_valid(tag))) {
4787 qc->tag = ATA_TAG_POISON;
4788 clear_bit(tag, &ap->qc_allocated);
4792 void __ata_qc_complete(struct ata_queued_cmd *qc)
4794 struct ata_port *ap = qc->ap;
4796 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4797 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
4799 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4800 ata_sg_clean(qc);
4802 /* command should be marked inactive atomically with qc completion */
4803 if (qc->tf.protocol == ATA_PROT_NCQ)
4804 ap->sactive &= ~(1 << qc->tag);
4805 else
4806 ap->active_tag = ATA_TAG_POISON;
4808 /* atapi: mark qc as inactive to prevent the interrupt handler
4809 * from completing the command twice later, before the error handler
4810 * is called. (when rc != 0 and atapi request sense is needed)
4812 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4813 ap->qc_active &= ~(1 << qc->tag);
4815 /* call completion callback */
4816 qc->complete_fn(qc);
4819 static void fill_result_tf(struct ata_queued_cmd *qc)
4821 struct ata_port *ap = qc->ap;
4823 qc->result_tf.flags = qc->tf.flags;
4824 ap->ops->tf_read(ap, &qc->result_tf);
4828 * ata_qc_complete - Complete an active ATA command
4829 * @qc: Command to complete
4830 * @err_mask: ATA Status register contents
4832 * Indicate to the mid and upper layers that an ATA
4833 * command has completed, with either an ok or not-ok status.
4835 * LOCKING:
4836 * spin_lock_irqsave(host lock)
4838 void ata_qc_complete(struct ata_queued_cmd *qc)
4840 struct ata_port *ap = qc->ap;
4842 /* XXX: New EH and old EH use different mechanisms to
4843 * synchronize EH with regular execution path.
4845 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4846 * Normal execution path is responsible for not accessing a
4847 * failed qc. libata core enforces the rule by returning NULL
4848 * from ata_qc_from_tag() for failed qcs.
4850 * Old EH depends on ata_qc_complete() nullifying completion
4851 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4852 * not synchronize with interrupt handler. Only PIO task is
4853 * taken care of.
4855 if (ap->ops->error_handler) {
4856 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
4858 if (unlikely(qc->err_mask))
4859 qc->flags |= ATA_QCFLAG_FAILED;
4861 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4862 if (!ata_tag_internal(qc->tag)) {
4863 /* always fill result TF for failed qc */
4864 fill_result_tf(qc);
4865 ata_qc_schedule_eh(qc);
4866 return;
4870 /* read result TF if requested */
4871 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4872 fill_result_tf(qc);
4874 __ata_qc_complete(qc);
4875 } else {
4876 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4877 return;
4879 /* read result TF if failed or requested */
4880 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4881 fill_result_tf(qc);
4883 __ata_qc_complete(qc);
4888 * ata_qc_complete_multiple - Complete multiple qcs successfully
4889 * @ap: port in question
4890 * @qc_active: new qc_active mask
4891 * @finish_qc: LLDD callback invoked before completing a qc
4893 * Complete in-flight commands. This functions is meant to be
4894 * called from low-level driver's interrupt routine to complete
4895 * requests normally. ap->qc_active and @qc_active is compared
4896 * and commands are completed accordingly.
4898 * LOCKING:
4899 * spin_lock_irqsave(host lock)
4901 * RETURNS:
4902 * Number of completed commands on success, -errno otherwise.
4904 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
4905 void (*finish_qc)(struct ata_queued_cmd *))
4907 int nr_done = 0;
4908 u32 done_mask;
4909 int i;
4911 done_mask = ap->qc_active ^ qc_active;
4913 if (unlikely(done_mask & qc_active)) {
4914 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4915 "(%08x->%08x)\n", ap->qc_active, qc_active);
4916 return -EINVAL;
4919 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4920 struct ata_queued_cmd *qc;
4922 if (!(done_mask & (1 << i)))
4923 continue;
4925 if ((qc = ata_qc_from_tag(ap, i))) {
4926 if (finish_qc)
4927 finish_qc(qc);
4928 ata_qc_complete(qc);
4929 nr_done++;
4933 return nr_done;
4936 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4938 struct ata_port *ap = qc->ap;
4940 switch (qc->tf.protocol) {
4941 case ATA_PROT_NCQ:
4942 case ATA_PROT_DMA:
4943 case ATA_PROT_ATAPI_DMA:
4944 return 1;
4946 case ATA_PROT_ATAPI:
4947 case ATA_PROT_PIO:
4948 if (ap->flags & ATA_FLAG_PIO_DMA)
4949 return 1;
4951 /* fall through */
4953 default:
4954 return 0;
4957 /* never reached */
4961 * ata_qc_issue - issue taskfile to device
4962 * @qc: command to issue to device
4964 * Prepare an ATA command to submission to device.
4965 * This includes mapping the data into a DMA-able
4966 * area, filling in the S/G table, and finally
4967 * writing the taskfile to hardware, starting the command.
4969 * LOCKING:
4970 * spin_lock_irqsave(host lock)
4972 void ata_qc_issue(struct ata_queued_cmd *qc)
4974 struct ata_port *ap = qc->ap;
4976 /* Make sure only one non-NCQ command is outstanding. The
4977 * check is skipped for old EH because it reuses active qc to
4978 * request ATAPI sense.
4980 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
4982 if (qc->tf.protocol == ATA_PROT_NCQ) {
4983 WARN_ON(ap->sactive & (1 << qc->tag));
4984 ap->sactive |= 1 << qc->tag;
4985 } else {
4986 WARN_ON(ap->sactive);
4987 ap->active_tag = qc->tag;
4990 qc->flags |= ATA_QCFLAG_ACTIVE;
4991 ap->qc_active |= 1 << qc->tag;
4993 if (ata_should_dma_map(qc)) {
4994 if (qc->flags & ATA_QCFLAG_SG) {
4995 if (ata_sg_setup(qc))
4996 goto sg_err;
4997 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4998 if (ata_sg_setup_one(qc))
4999 goto sg_err;
5001 } else {
5002 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5005 ap->ops->qc_prep(qc);
5007 qc->err_mask |= ap->ops->qc_issue(qc);
5008 if (unlikely(qc->err_mask))
5009 goto err;
5010 return;
5012 sg_err:
5013 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5014 qc->err_mask |= AC_ERR_SYSTEM;
5015 err:
5016 ata_qc_complete(qc);
5020 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5021 * @qc: command to issue to device
5023 * Using various libata functions and hooks, this function
5024 * starts an ATA command. ATA commands are grouped into
5025 * classes called "protocols", and issuing each type of protocol
5026 * is slightly different.
5028 * May be used as the qc_issue() entry in ata_port_operations.
5030 * LOCKING:
5031 * spin_lock_irqsave(host lock)
5033 * RETURNS:
5034 * Zero on success, AC_ERR_* mask on failure
5037 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
5039 struct ata_port *ap = qc->ap;
5041 /* Use polling pio if the LLD doesn't handle
5042 * interrupt driven pio and atapi CDB interrupt.
5044 if (ap->flags & ATA_FLAG_PIO_POLLING) {
5045 switch (qc->tf.protocol) {
5046 case ATA_PROT_PIO:
5047 case ATA_PROT_NODATA:
5048 case ATA_PROT_ATAPI:
5049 case ATA_PROT_ATAPI_NODATA:
5050 qc->tf.flags |= ATA_TFLAG_POLLING;
5051 break;
5052 case ATA_PROT_ATAPI_DMA:
5053 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
5054 /* see ata_dma_blacklisted() */
5055 BUG();
5056 break;
5057 default:
5058 break;
5062 /* Some controllers show flaky interrupt behavior after
5063 * setting xfer mode. Use polling instead.
5065 if (unlikely(qc->tf.command == ATA_CMD_SET_FEATURES &&
5066 qc->tf.feature == SETFEATURES_XFER) &&
5067 (ap->flags & ATA_FLAG_SETXFER_POLLING))
5068 qc->tf.flags |= ATA_TFLAG_POLLING;
5070 /* select the device */
5071 ata_dev_select(ap, qc->dev->devno, 1, 0);
5073 /* start the command */
5074 switch (qc->tf.protocol) {
5075 case ATA_PROT_NODATA:
5076 if (qc->tf.flags & ATA_TFLAG_POLLING)
5077 ata_qc_set_polling(qc);
5079 ata_tf_to_host(ap, &qc->tf);
5080 ap->hsm_task_state = HSM_ST_LAST;
5082 if (qc->tf.flags & ATA_TFLAG_POLLING)
5083 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5085 break;
5087 case ATA_PROT_DMA:
5088 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5090 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5091 ap->ops->bmdma_setup(qc); /* set up bmdma */
5092 ap->ops->bmdma_start(qc); /* initiate bmdma */
5093 ap->hsm_task_state = HSM_ST_LAST;
5094 break;
5096 case ATA_PROT_PIO:
5097 if (qc->tf.flags & ATA_TFLAG_POLLING)
5098 ata_qc_set_polling(qc);
5100 ata_tf_to_host(ap, &qc->tf);
5102 if (qc->tf.flags & ATA_TFLAG_WRITE) {
5103 /* PIO data out protocol */
5104 ap->hsm_task_state = HSM_ST_FIRST;
5105 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5107 /* always send first data block using
5108 * the ata_pio_task() codepath.
5110 } else {
5111 /* PIO data in protocol */
5112 ap->hsm_task_state = HSM_ST;
5114 if (qc->tf.flags & ATA_TFLAG_POLLING)
5115 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5117 /* if polling, ata_pio_task() handles the rest.
5118 * otherwise, interrupt handler takes over from here.
5122 break;
5124 case ATA_PROT_ATAPI:
5125 case ATA_PROT_ATAPI_NODATA:
5126 if (qc->tf.flags & ATA_TFLAG_POLLING)
5127 ata_qc_set_polling(qc);
5129 ata_tf_to_host(ap, &qc->tf);
5131 ap->hsm_task_state = HSM_ST_FIRST;
5133 /* send cdb by polling if no cdb interrupt */
5134 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5135 (qc->tf.flags & ATA_TFLAG_POLLING))
5136 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5137 break;
5139 case ATA_PROT_ATAPI_DMA:
5140 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5142 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5143 ap->ops->bmdma_setup(qc); /* set up bmdma */
5144 ap->hsm_task_state = HSM_ST_FIRST;
5146 /* send cdb by polling if no cdb interrupt */
5147 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5148 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5149 break;
5151 default:
5152 WARN_ON(1);
5153 return AC_ERR_SYSTEM;
5156 return 0;
5160 * ata_host_intr - Handle host interrupt for given (port, task)
5161 * @ap: Port on which interrupt arrived (possibly...)
5162 * @qc: Taskfile currently active in engine
5164 * Handle host interrupt for given queued command. Currently,
5165 * only DMA interrupts are handled. All other commands are
5166 * handled via polling with interrupts disabled (nIEN bit).
5168 * LOCKING:
5169 * spin_lock_irqsave(host lock)
5171 * RETURNS:
5172 * One if interrupt was handled, zero if not (shared irq).
5175 inline unsigned int ata_host_intr (struct ata_port *ap,
5176 struct ata_queued_cmd *qc)
5178 struct ata_eh_info *ehi = &ap->eh_info;
5179 u8 status, host_stat = 0;
5181 VPRINTK("ata%u: protocol %d task_state %d\n",
5182 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
5184 /* Check whether we are expecting interrupt in this state */
5185 switch (ap->hsm_task_state) {
5186 case HSM_ST_FIRST:
5187 /* Some pre-ATAPI-4 devices assert INTRQ
5188 * at this state when ready to receive CDB.
5191 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5192 * The flag was turned on only for atapi devices.
5193 * No need to check is_atapi_taskfile(&qc->tf) again.
5195 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5196 goto idle_irq;
5197 break;
5198 case HSM_ST_LAST:
5199 if (qc->tf.protocol == ATA_PROT_DMA ||
5200 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5201 /* check status of DMA engine */
5202 host_stat = ap->ops->bmdma_status(ap);
5203 VPRINTK("ata%u: host_stat 0x%X\n",
5204 ap->print_id, host_stat);
5206 /* if it's not our irq... */
5207 if (!(host_stat & ATA_DMA_INTR))
5208 goto idle_irq;
5210 /* before we do anything else, clear DMA-Start bit */
5211 ap->ops->bmdma_stop(qc);
5213 if (unlikely(host_stat & ATA_DMA_ERR)) {
5214 /* error when transfering data to/from memory */
5215 qc->err_mask |= AC_ERR_HOST_BUS;
5216 ap->hsm_task_state = HSM_ST_ERR;
5219 break;
5220 case HSM_ST:
5221 break;
5222 default:
5223 goto idle_irq;
5226 /* check altstatus */
5227 status = ata_altstatus(ap);
5228 if (status & ATA_BUSY)
5229 goto idle_irq;
5231 /* check main status, clearing INTRQ */
5232 status = ata_chk_status(ap);
5233 if (unlikely(status & ATA_BUSY))
5234 goto idle_irq;
5236 /* ack bmdma irq events */
5237 ap->ops->irq_clear(ap);
5239 ata_hsm_move(ap, qc, status, 0);
5241 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5242 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5243 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5245 return 1; /* irq handled */
5247 idle_irq:
5248 ap->stats.idle_irq++;
5250 #ifdef ATA_IRQ_TRAP
5251 if ((ap->stats.idle_irq % 1000) == 0) {
5252 ap->ops->irq_ack(ap, 0); /* debug trap */
5253 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
5254 return 1;
5256 #endif
5257 return 0; /* irq not handled */
5261 * ata_interrupt - Default ATA host interrupt handler
5262 * @irq: irq line (unused)
5263 * @dev_instance: pointer to our ata_host information structure
5265 * Default interrupt handler for PCI IDE devices. Calls
5266 * ata_host_intr() for each port that is not disabled.
5268 * LOCKING:
5269 * Obtains host lock during operation.
5271 * RETURNS:
5272 * IRQ_NONE or IRQ_HANDLED.
5275 irqreturn_t ata_interrupt (int irq, void *dev_instance)
5277 struct ata_host *host = dev_instance;
5278 unsigned int i;
5279 unsigned int handled = 0;
5280 unsigned long flags;
5282 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
5283 spin_lock_irqsave(&host->lock, flags);
5285 for (i = 0; i < host->n_ports; i++) {
5286 struct ata_port *ap;
5288 ap = host->ports[i];
5289 if (ap &&
5290 !(ap->flags & ATA_FLAG_DISABLED)) {
5291 struct ata_queued_cmd *qc;
5293 qc = ata_qc_from_tag(ap, ap->active_tag);
5294 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
5295 (qc->flags & ATA_QCFLAG_ACTIVE))
5296 handled |= ata_host_intr(ap, qc);
5300 spin_unlock_irqrestore(&host->lock, flags);
5302 return IRQ_RETVAL(handled);
5306 * sata_scr_valid - test whether SCRs are accessible
5307 * @ap: ATA port to test SCR accessibility for
5309 * Test whether SCRs are accessible for @ap.
5311 * LOCKING:
5312 * None.
5314 * RETURNS:
5315 * 1 if SCRs are accessible, 0 otherwise.
5317 int sata_scr_valid(struct ata_port *ap)
5319 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
5323 * sata_scr_read - read SCR register of the specified port
5324 * @ap: ATA port to read SCR for
5325 * @reg: SCR to read
5326 * @val: Place to store read value
5328 * Read SCR register @reg of @ap into *@val. This function is
5329 * guaranteed to succeed if the cable type of the port is SATA
5330 * and the port implements ->scr_read.
5332 * LOCKING:
5333 * None.
5335 * RETURNS:
5336 * 0 on success, negative errno on failure.
5338 int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
5340 if (sata_scr_valid(ap)) {
5341 *val = ap->ops->scr_read(ap, reg);
5342 return 0;
5344 return -EOPNOTSUPP;
5348 * sata_scr_write - write SCR register of the specified port
5349 * @ap: ATA port to write SCR for
5350 * @reg: SCR to write
5351 * @val: value to write
5353 * Write @val to SCR register @reg of @ap. This function is
5354 * guaranteed to succeed if the cable type of the port is SATA
5355 * and the port implements ->scr_read.
5357 * LOCKING:
5358 * None.
5360 * RETURNS:
5361 * 0 on success, negative errno on failure.
5363 int sata_scr_write(struct ata_port *ap, int reg, u32 val)
5365 if (sata_scr_valid(ap)) {
5366 ap->ops->scr_write(ap, reg, val);
5367 return 0;
5369 return -EOPNOTSUPP;
5373 * sata_scr_write_flush - write SCR register of the specified port and flush
5374 * @ap: ATA port to write SCR for
5375 * @reg: SCR to write
5376 * @val: value to write
5378 * This function is identical to sata_scr_write() except that this
5379 * function performs flush after writing to the register.
5381 * LOCKING:
5382 * None.
5384 * RETURNS:
5385 * 0 on success, negative errno on failure.
5387 int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5389 if (sata_scr_valid(ap)) {
5390 ap->ops->scr_write(ap, reg, val);
5391 ap->ops->scr_read(ap, reg);
5392 return 0;
5394 return -EOPNOTSUPP;
5398 * ata_port_online - test whether the given port is online
5399 * @ap: ATA port to test
5401 * Test whether @ap is online. Note that this function returns 0
5402 * if online status of @ap cannot be obtained, so
5403 * ata_port_online(ap) != !ata_port_offline(ap).
5405 * LOCKING:
5406 * None.
5408 * RETURNS:
5409 * 1 if the port online status is available and online.
5411 int ata_port_online(struct ata_port *ap)
5413 u32 sstatus;
5415 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5416 return 1;
5417 return 0;
5421 * ata_port_offline - test whether the given port is offline
5422 * @ap: ATA port to test
5424 * Test whether @ap is offline. Note that this function returns
5425 * 0 if offline status of @ap cannot be obtained, so
5426 * ata_port_online(ap) != !ata_port_offline(ap).
5428 * LOCKING:
5429 * None.
5431 * RETURNS:
5432 * 1 if the port offline status is available and offline.
5434 int ata_port_offline(struct ata_port *ap)
5436 u32 sstatus;
5438 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5439 return 1;
5440 return 0;
5443 int ata_flush_cache(struct ata_device *dev)
5445 unsigned int err_mask;
5446 u8 cmd;
5448 if (!ata_try_flush_cache(dev))
5449 return 0;
5451 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
5452 cmd = ATA_CMD_FLUSH_EXT;
5453 else
5454 cmd = ATA_CMD_FLUSH;
5456 err_mask = ata_do_simple_cmd(dev, cmd);
5457 if (err_mask) {
5458 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5459 return -EIO;
5462 return 0;
5465 #ifdef CONFIG_PM
5466 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5467 unsigned int action, unsigned int ehi_flags,
5468 int wait)
5470 unsigned long flags;
5471 int i, rc;
5473 for (i = 0; i < host->n_ports; i++) {
5474 struct ata_port *ap = host->ports[i];
5476 /* Previous resume operation might still be in
5477 * progress. Wait for PM_PENDING to clear.
5479 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5480 ata_port_wait_eh(ap);
5481 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5484 /* request PM ops to EH */
5485 spin_lock_irqsave(ap->lock, flags);
5487 ap->pm_mesg = mesg;
5488 if (wait) {
5489 rc = 0;
5490 ap->pm_result = &rc;
5493 ap->pflags |= ATA_PFLAG_PM_PENDING;
5494 ap->eh_info.action |= action;
5495 ap->eh_info.flags |= ehi_flags;
5497 ata_port_schedule_eh(ap);
5499 spin_unlock_irqrestore(ap->lock, flags);
5501 /* wait and check result */
5502 if (wait) {
5503 ata_port_wait_eh(ap);
5504 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5505 if (rc)
5506 return rc;
5510 return 0;
5514 * ata_host_suspend - suspend host
5515 * @host: host to suspend
5516 * @mesg: PM message
5518 * Suspend @host. Actual operation is performed by EH. This
5519 * function requests EH to perform PM operations and waits for EH
5520 * to finish.
5522 * LOCKING:
5523 * Kernel thread context (may sleep).
5525 * RETURNS:
5526 * 0 on success, -errno on failure.
5528 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5530 int i, j, rc;
5532 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5533 if (rc)
5534 goto fail;
5536 /* EH is quiescent now. Fail if we have any ready device.
5537 * This happens if hotplug occurs between completion of device
5538 * suspension and here.
5540 for (i = 0; i < host->n_ports; i++) {
5541 struct ata_port *ap = host->ports[i];
5543 for (j = 0; j < ATA_MAX_DEVICES; j++) {
5544 struct ata_device *dev = &ap->device[j];
5546 if (ata_dev_ready(dev)) {
5547 ata_port_printk(ap, KERN_WARNING,
5548 "suspend failed, device %d "
5549 "still active\n", dev->devno);
5550 rc = -EBUSY;
5551 goto fail;
5556 host->dev->power.power_state = mesg;
5557 return 0;
5559 fail:
5560 ata_host_resume(host);
5561 return rc;
5565 * ata_host_resume - resume host
5566 * @host: host to resume
5568 * Resume @host. Actual operation is performed by EH. This
5569 * function requests EH to perform PM operations and returns.
5570 * Note that all resume operations are performed parallely.
5572 * LOCKING:
5573 * Kernel thread context (may sleep).
5575 void ata_host_resume(struct ata_host *host)
5577 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5578 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5579 host->dev->power.power_state = PMSG_ON;
5581 #endif
5584 * ata_port_start - Set port up for dma.
5585 * @ap: Port to initialize
5587 * Called just after data structures for each port are
5588 * initialized. Allocates space for PRD table.
5590 * May be used as the port_start() entry in ata_port_operations.
5592 * LOCKING:
5593 * Inherited from caller.
5595 int ata_port_start(struct ata_port *ap)
5597 struct device *dev = ap->dev;
5598 int rc;
5600 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5601 GFP_KERNEL);
5602 if (!ap->prd)
5603 return -ENOMEM;
5605 rc = ata_pad_alloc(ap, dev);
5606 if (rc)
5607 return rc;
5609 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
5610 (unsigned long long)ap->prd_dma);
5611 return 0;
5615 * ata_dev_init - Initialize an ata_device structure
5616 * @dev: Device structure to initialize
5618 * Initialize @dev in preparation for probing.
5620 * LOCKING:
5621 * Inherited from caller.
5623 void ata_dev_init(struct ata_device *dev)
5625 struct ata_port *ap = dev->ap;
5626 unsigned long flags;
5628 /* SATA spd limit is bound to the first device */
5629 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5631 /* High bits of dev->flags are used to record warm plug
5632 * requests which occur asynchronously. Synchronize using
5633 * host lock.
5635 spin_lock_irqsave(ap->lock, flags);
5636 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5637 spin_unlock_irqrestore(ap->lock, flags);
5639 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5640 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
5641 dev->pio_mask = UINT_MAX;
5642 dev->mwdma_mask = UINT_MAX;
5643 dev->udma_mask = UINT_MAX;
5647 * ata_port_init - Initialize an ata_port structure
5648 * @ap: Structure to initialize
5649 * @host: Collection of hosts to which @ap belongs
5650 * @ent: Probe information provided by low-level driver
5651 * @port_no: Port number associated with this ata_port
5653 * Initialize a new ata_port structure.
5655 * LOCKING:
5656 * Inherited from caller.
5658 void ata_port_init(struct ata_port *ap, struct ata_host *host,
5659 const struct ata_probe_ent *ent, unsigned int port_no)
5661 unsigned int i;
5663 ap->lock = &host->lock;
5664 ap->flags = ATA_FLAG_DISABLED;
5665 ap->print_id = ata_print_id++;
5666 ap->ctl = ATA_DEVCTL_OBS;
5667 ap->host = host;
5668 ap->dev = ent->dev;
5669 ap->port_no = port_no;
5670 if (port_no == 1 && ent->pinfo2) {
5671 ap->pio_mask = ent->pinfo2->pio_mask;
5672 ap->mwdma_mask = ent->pinfo2->mwdma_mask;
5673 ap->udma_mask = ent->pinfo2->udma_mask;
5674 ap->flags |= ent->pinfo2->flags;
5675 ap->ops = ent->pinfo2->port_ops;
5676 } else {
5677 ap->pio_mask = ent->pio_mask;
5678 ap->mwdma_mask = ent->mwdma_mask;
5679 ap->udma_mask = ent->udma_mask;
5680 ap->flags |= ent->port_flags;
5681 ap->ops = ent->port_ops;
5683 ap->hw_sata_spd_limit = UINT_MAX;
5684 ap->active_tag = ATA_TAG_POISON;
5685 ap->last_ctl = 0xFF;
5687 #if defined(ATA_VERBOSE_DEBUG)
5688 /* turn on all debugging levels */
5689 ap->msg_enable = 0x00FF;
5690 #elif defined(ATA_DEBUG)
5691 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5692 #else
5693 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5694 #endif
5696 INIT_DELAYED_WORK(&ap->port_task, NULL);
5697 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5698 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5699 INIT_LIST_HEAD(&ap->eh_done_q);
5700 init_waitqueue_head(&ap->eh_wait_q);
5702 /* set cable type */
5703 ap->cbl = ATA_CBL_NONE;
5704 if (ap->flags & ATA_FLAG_SATA)
5705 ap->cbl = ATA_CBL_SATA;
5707 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5708 struct ata_device *dev = &ap->device[i];
5709 dev->ap = ap;
5710 dev->devno = i;
5711 ata_dev_init(dev);
5714 #ifdef ATA_IRQ_TRAP
5715 ap->stats.unhandled_irq = 1;
5716 ap->stats.idle_irq = 1;
5717 #endif
5719 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
5723 * ata_port_init_shost - Initialize SCSI host associated with ATA port
5724 * @ap: ATA port to initialize SCSI host for
5725 * @shost: SCSI host associated with @ap
5727 * Initialize SCSI host @shost associated with ATA port @ap.
5729 * LOCKING:
5730 * Inherited from caller.
5732 static void ata_port_init_shost(struct ata_port *ap, struct Scsi_Host *shost)
5734 ap->scsi_host = shost;
5736 shost->unique_id = ap->print_id;
5737 shost->max_id = 16;
5738 shost->max_lun = 1;
5739 shost->max_channel = 1;
5740 shost->max_cmd_len = 16;
5744 * ata_port_add - Attach low-level ATA driver to system
5745 * @ent: Information provided by low-level driver
5746 * @host: Collections of ports to which we add
5747 * @port_no: Port number associated with this host
5749 * Attach low-level ATA driver to system.
5751 * LOCKING:
5752 * PCI/etc. bus probe sem.
5754 * RETURNS:
5755 * New ata_port on success, for NULL on error.
5757 static struct ata_port * ata_port_add(const struct ata_probe_ent *ent,
5758 struct ata_host *host,
5759 unsigned int port_no)
5761 struct Scsi_Host *shost;
5762 struct ata_port *ap;
5764 DPRINTK("ENTER\n");
5766 if (!ent->port_ops->error_handler &&
5767 !(ent->port_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
5768 printk(KERN_ERR "ata%u: no reset mechanism available\n",
5769 port_no);
5770 return NULL;
5773 shost = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
5774 if (!shost)
5775 return NULL;
5777 shost->transportt = &ata_scsi_transport_template;
5779 ap = ata_shost_to_port(shost);
5781 ata_port_init(ap, host, ent, port_no);
5782 ata_port_init_shost(ap, shost);
5784 return ap;
5787 static void ata_host_release(struct device *gendev, void *res)
5789 struct ata_host *host = dev_get_drvdata(gendev);
5790 int i;
5792 for (i = 0; i < host->n_ports; i++) {
5793 struct ata_port *ap = host->ports[i];
5795 if (ap && ap->ops->port_stop)
5796 ap->ops->port_stop(ap);
5799 if (host->ops->host_stop)
5800 host->ops->host_stop(host);
5802 for (i = 0; i < host->n_ports; i++) {
5803 struct ata_port *ap = host->ports[i];
5805 if (ap)
5806 scsi_host_put(ap->scsi_host);
5808 host->ports[i] = NULL;
5811 dev_set_drvdata(gendev, NULL);
5815 * ata_sas_host_init - Initialize a host struct
5816 * @host: host to initialize
5817 * @dev: device host is attached to
5818 * @flags: host flags
5819 * @ops: port_ops
5821 * LOCKING:
5822 * PCI/etc. bus probe sem.
5826 void ata_host_init(struct ata_host *host, struct device *dev,
5827 unsigned long flags, const struct ata_port_operations *ops)
5829 spin_lock_init(&host->lock);
5830 host->dev = dev;
5831 host->flags = flags;
5832 host->ops = ops;
5836 * ata_device_add - Register hardware device with ATA and SCSI layers
5837 * @ent: Probe information describing hardware device to be registered
5839 * This function processes the information provided in the probe
5840 * information struct @ent, allocates the necessary ATA and SCSI
5841 * host information structures, initializes them, and registers
5842 * everything with requisite kernel subsystems.
5844 * This function requests irqs, probes the ATA bus, and probes
5845 * the SCSI bus.
5847 * LOCKING:
5848 * PCI/etc. bus probe sem.
5850 * RETURNS:
5851 * Number of ports registered. Zero on error (no ports registered).
5853 int ata_device_add(const struct ata_probe_ent *ent)
5855 unsigned int i;
5856 struct device *dev = ent->dev;
5857 struct ata_host *host;
5858 int rc;
5860 DPRINTK("ENTER\n");
5862 if (ent->irq == 0) {
5863 dev_printk(KERN_ERR, dev, "is not available: No interrupt assigned.\n");
5864 return 0;
5867 if (!devres_open_group(dev, ata_device_add, GFP_KERNEL))
5868 return 0;
5870 /* alloc a container for our list of ATA ports (buses) */
5871 host = devres_alloc(ata_host_release, sizeof(struct ata_host) +
5872 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
5873 if (!host)
5874 goto err_out;
5875 devres_add(dev, host);
5876 dev_set_drvdata(dev, host);
5878 ata_host_init(host, dev, ent->_host_flags, ent->port_ops);
5879 host->n_ports = ent->n_ports;
5880 host->irq = ent->irq;
5881 host->irq2 = ent->irq2;
5882 host->iomap = ent->iomap;
5883 host->private_data = ent->private_data;
5885 /* register each port bound to this device */
5886 for (i = 0; i < host->n_ports; i++) {
5887 struct ata_port *ap;
5888 unsigned long xfer_mode_mask;
5889 int irq_line = ent->irq;
5891 ap = ata_port_add(ent, host, i);
5892 host->ports[i] = ap;
5893 if (!ap)
5894 goto err_out;
5896 /* dummy? */
5897 if (ent->dummy_port_mask & (1 << i)) {
5898 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
5899 ap->ops = &ata_dummy_port_ops;
5900 continue;
5903 /* start port */
5904 rc = ap->ops->port_start(ap);
5905 if (rc) {
5906 host->ports[i] = NULL;
5907 scsi_host_put(ap->scsi_host);
5908 goto err_out;
5911 /* Report the secondary IRQ for second channel legacy */
5912 if (i == 1 && ent->irq2)
5913 irq_line = ent->irq2;
5915 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
5916 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
5917 (ap->pio_mask << ATA_SHIFT_PIO);
5919 /* print per-port info to dmesg */
5920 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%p "
5921 "ctl 0x%p bmdma 0x%p irq %d\n",
5922 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
5923 ata_mode_string(xfer_mode_mask),
5924 ap->ioaddr.cmd_addr,
5925 ap->ioaddr.ctl_addr,
5926 ap->ioaddr.bmdma_addr,
5927 irq_line);
5929 /* freeze port before requesting IRQ */
5930 ata_eh_freeze_port(ap);
5933 /* obtain irq, that may be shared between channels */
5934 rc = devm_request_irq(dev, ent->irq, ent->port_ops->irq_handler,
5935 ent->irq_flags, DRV_NAME, host);
5936 if (rc) {
5937 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5938 ent->irq, rc);
5939 goto err_out;
5942 /* do we have a second IRQ for the other channel, eg legacy mode */
5943 if (ent->irq2) {
5944 /* We will get weird core code crashes later if this is true
5945 so trap it now */
5946 BUG_ON(ent->irq == ent->irq2);
5948 rc = devm_request_irq(dev, ent->irq2,
5949 ent->port_ops->irq_handler, ent->irq_flags,
5950 DRV_NAME, host);
5951 if (rc) {
5952 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5953 ent->irq2, rc);
5954 goto err_out;
5958 /* resource acquisition complete */
5959 devres_remove_group(dev, ata_device_add);
5961 /* perform each probe synchronously */
5962 DPRINTK("probe begin\n");
5963 for (i = 0; i < host->n_ports; i++) {
5964 struct ata_port *ap = host->ports[i];
5965 u32 scontrol;
5966 int rc;
5968 /* init sata_spd_limit to the current value */
5969 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
5970 int spd = (scontrol >> 4) & 0xf;
5971 ap->hw_sata_spd_limit &= (1 << spd) - 1;
5973 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5975 rc = scsi_add_host(ap->scsi_host, dev);
5976 if (rc) {
5977 ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
5978 /* FIXME: do something useful here */
5979 /* FIXME: handle unconditional calls to
5980 * scsi_scan_host and ata_host_remove, below,
5981 * at the very least
5985 if (ap->ops->error_handler) {
5986 struct ata_eh_info *ehi = &ap->eh_info;
5987 unsigned long flags;
5989 ata_port_probe(ap);
5991 /* kick EH for boot probing */
5992 spin_lock_irqsave(ap->lock, flags);
5994 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
5995 ehi->action |= ATA_EH_SOFTRESET;
5996 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5998 ap->pflags |= ATA_PFLAG_LOADING;
5999 ata_port_schedule_eh(ap);
6001 spin_unlock_irqrestore(ap->lock, flags);
6003 /* wait for EH to finish */
6004 ata_port_wait_eh(ap);
6005 } else {
6006 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6007 rc = ata_bus_probe(ap);
6008 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6010 if (rc) {
6011 /* FIXME: do something useful here?
6012 * Current libata behavior will
6013 * tear down everything when
6014 * the module is removed
6015 * or the h/w is unplugged.
6021 /* probes are done, now scan each port's disk(s) */
6022 DPRINTK("host probe begin\n");
6023 for (i = 0; i < host->n_ports; i++) {
6024 struct ata_port *ap = host->ports[i];
6026 ata_scsi_scan_host(ap);
6029 VPRINTK("EXIT, returning %u\n", ent->n_ports);
6030 return ent->n_ports; /* success */
6032 err_out:
6033 devres_release_group(dev, ata_device_add);
6034 VPRINTK("EXIT, returning %d\n", rc);
6035 return 0;
6039 * ata_port_detach - Detach ATA port in prepration of device removal
6040 * @ap: ATA port to be detached
6042 * Detach all ATA devices and the associated SCSI devices of @ap;
6043 * then, remove the associated SCSI host. @ap is guaranteed to
6044 * be quiescent on return from this function.
6046 * LOCKING:
6047 * Kernel thread context (may sleep).
6049 void ata_port_detach(struct ata_port *ap)
6051 unsigned long flags;
6052 int i;
6054 if (!ap->ops->error_handler)
6055 goto skip_eh;
6057 /* tell EH we're leaving & flush EH */
6058 spin_lock_irqsave(ap->lock, flags);
6059 ap->pflags |= ATA_PFLAG_UNLOADING;
6060 spin_unlock_irqrestore(ap->lock, flags);
6062 ata_port_wait_eh(ap);
6064 /* EH is now guaranteed to see UNLOADING, so no new device
6065 * will be attached. Disable all existing devices.
6067 spin_lock_irqsave(ap->lock, flags);
6069 for (i = 0; i < ATA_MAX_DEVICES; i++)
6070 ata_dev_disable(&ap->device[i]);
6072 spin_unlock_irqrestore(ap->lock, flags);
6074 /* Final freeze & EH. All in-flight commands are aborted. EH
6075 * will be skipped and retrials will be terminated with bad
6076 * target.
6078 spin_lock_irqsave(ap->lock, flags);
6079 ata_port_freeze(ap); /* won't be thawed */
6080 spin_unlock_irqrestore(ap->lock, flags);
6082 ata_port_wait_eh(ap);
6084 /* Flush hotplug task. The sequence is similar to
6085 * ata_port_flush_task().
6087 flush_workqueue(ata_aux_wq);
6088 cancel_delayed_work(&ap->hotplug_task);
6089 flush_workqueue(ata_aux_wq);
6091 skip_eh:
6092 /* remove the associated SCSI host */
6093 scsi_remove_host(ap->scsi_host);
6097 * ata_host_detach - Detach all ports of an ATA host
6098 * @host: Host to detach
6100 * Detach all ports of @host.
6102 * LOCKING:
6103 * Kernel thread context (may sleep).
6105 void ata_host_detach(struct ata_host *host)
6107 int i;
6109 for (i = 0; i < host->n_ports; i++)
6110 ata_port_detach(host->ports[i]);
6113 struct ata_probe_ent *
6114 ata_probe_ent_alloc(struct device *dev, const struct ata_port_info *port)
6116 struct ata_probe_ent *probe_ent;
6118 probe_ent = devm_kzalloc(dev, sizeof(*probe_ent), GFP_KERNEL);
6119 if (!probe_ent) {
6120 printk(KERN_ERR DRV_NAME "(%s): out of memory\n",
6121 kobject_name(&(dev->kobj)));
6122 return NULL;
6125 INIT_LIST_HEAD(&probe_ent->node);
6126 probe_ent->dev = dev;
6128 probe_ent->sht = port->sht;
6129 probe_ent->port_flags = port->flags;
6130 probe_ent->pio_mask = port->pio_mask;
6131 probe_ent->mwdma_mask = port->mwdma_mask;
6132 probe_ent->udma_mask = port->udma_mask;
6133 probe_ent->port_ops = port->port_ops;
6134 probe_ent->private_data = port->private_data;
6136 return probe_ent;
6140 * ata_std_ports - initialize ioaddr with standard port offsets.
6141 * @ioaddr: IO address structure to be initialized
6143 * Utility function which initializes data_addr, error_addr,
6144 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6145 * device_addr, status_addr, and command_addr to standard offsets
6146 * relative to cmd_addr.
6148 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
6151 void ata_std_ports(struct ata_ioports *ioaddr)
6153 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6154 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6155 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6156 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6157 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6158 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6159 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6160 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6161 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6162 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6166 #ifdef CONFIG_PCI
6169 * ata_pci_remove_one - PCI layer callback for device removal
6170 * @pdev: PCI device that was removed
6172 * PCI layer indicates to libata via this hook that hot-unplug or
6173 * module unload event has occurred. Detach all ports. Resource
6174 * release is handled via devres.
6176 * LOCKING:
6177 * Inherited from PCI layer (may sleep).
6179 void ata_pci_remove_one(struct pci_dev *pdev)
6181 struct device *dev = pci_dev_to_dev(pdev);
6182 struct ata_host *host = dev_get_drvdata(dev);
6184 ata_host_detach(host);
6187 /* move to PCI subsystem */
6188 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6190 unsigned long tmp = 0;
6192 switch (bits->width) {
6193 case 1: {
6194 u8 tmp8 = 0;
6195 pci_read_config_byte(pdev, bits->reg, &tmp8);
6196 tmp = tmp8;
6197 break;
6199 case 2: {
6200 u16 tmp16 = 0;
6201 pci_read_config_word(pdev, bits->reg, &tmp16);
6202 tmp = tmp16;
6203 break;
6205 case 4: {
6206 u32 tmp32 = 0;
6207 pci_read_config_dword(pdev, bits->reg, &tmp32);
6208 tmp = tmp32;
6209 break;
6212 default:
6213 return -EINVAL;
6216 tmp &= bits->mask;
6218 return (tmp == bits->val) ? 1 : 0;
6221 #ifdef CONFIG_PM
6222 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6224 pci_save_state(pdev);
6225 pci_disable_device(pdev);
6227 if (mesg.event == PM_EVENT_SUSPEND)
6228 pci_set_power_state(pdev, PCI_D3hot);
6231 int ata_pci_device_do_resume(struct pci_dev *pdev)
6233 int rc;
6235 pci_set_power_state(pdev, PCI_D0);
6236 pci_restore_state(pdev);
6238 rc = pcim_enable_device(pdev);
6239 if (rc) {
6240 dev_printk(KERN_ERR, &pdev->dev,
6241 "failed to enable device after resume (%d)\n", rc);
6242 return rc;
6245 pci_set_master(pdev);
6246 return 0;
6249 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6251 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6252 int rc = 0;
6254 rc = ata_host_suspend(host, mesg);
6255 if (rc)
6256 return rc;
6258 ata_pci_device_do_suspend(pdev, mesg);
6260 return 0;
6263 int ata_pci_device_resume(struct pci_dev *pdev)
6265 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6266 int rc;
6268 rc = ata_pci_device_do_resume(pdev);
6269 if (rc == 0)
6270 ata_host_resume(host);
6271 return rc;
6273 #endif /* CONFIG_PM */
6275 #endif /* CONFIG_PCI */
6278 static int __init ata_init(void)
6280 ata_probe_timeout *= HZ;
6281 ata_wq = create_workqueue("ata");
6282 if (!ata_wq)
6283 return -ENOMEM;
6285 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6286 if (!ata_aux_wq) {
6287 destroy_workqueue(ata_wq);
6288 return -ENOMEM;
6291 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6292 return 0;
6295 static void __exit ata_exit(void)
6297 destroy_workqueue(ata_wq);
6298 destroy_workqueue(ata_aux_wq);
6301 subsys_initcall(ata_init);
6302 module_exit(ata_exit);
6304 static unsigned long ratelimit_time;
6305 static DEFINE_SPINLOCK(ata_ratelimit_lock);
6307 int ata_ratelimit(void)
6309 int rc;
6310 unsigned long flags;
6312 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6314 if (time_after(jiffies, ratelimit_time)) {
6315 rc = 1;
6316 ratelimit_time = jiffies + (HZ/5);
6317 } else
6318 rc = 0;
6320 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6322 return rc;
6326 * ata_wait_register - wait until register value changes
6327 * @reg: IO-mapped register
6328 * @mask: Mask to apply to read register value
6329 * @val: Wait condition
6330 * @interval_msec: polling interval in milliseconds
6331 * @timeout_msec: timeout in milliseconds
6333 * Waiting for some bits of register to change is a common
6334 * operation for ATA controllers. This function reads 32bit LE
6335 * IO-mapped register @reg and tests for the following condition.
6337 * (*@reg & mask) != val
6339 * If the condition is met, it returns; otherwise, the process is
6340 * repeated after @interval_msec until timeout.
6342 * LOCKING:
6343 * Kernel thread context (may sleep)
6345 * RETURNS:
6346 * The final register value.
6348 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6349 unsigned long interval_msec,
6350 unsigned long timeout_msec)
6352 unsigned long timeout;
6353 u32 tmp;
6355 tmp = ioread32(reg);
6357 /* Calculate timeout _after_ the first read to make sure
6358 * preceding writes reach the controller before starting to
6359 * eat away the timeout.
6361 timeout = jiffies + (timeout_msec * HZ) / 1000;
6363 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6364 msleep(interval_msec);
6365 tmp = ioread32(reg);
6368 return tmp;
6372 * Dummy port_ops
6374 static void ata_dummy_noret(struct ata_port *ap) { }
6375 static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6376 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6378 static u8 ata_dummy_check_status(struct ata_port *ap)
6380 return ATA_DRDY;
6383 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6385 return AC_ERR_SYSTEM;
6388 const struct ata_port_operations ata_dummy_port_ops = {
6389 .port_disable = ata_port_disable,
6390 .check_status = ata_dummy_check_status,
6391 .check_altstatus = ata_dummy_check_status,
6392 .dev_select = ata_noop_dev_select,
6393 .qc_prep = ata_noop_qc_prep,
6394 .qc_issue = ata_dummy_qc_issue,
6395 .freeze = ata_dummy_noret,
6396 .thaw = ata_dummy_noret,
6397 .error_handler = ata_dummy_noret,
6398 .post_internal_cmd = ata_dummy_qc_noret,
6399 .irq_clear = ata_dummy_noret,
6400 .port_start = ata_dummy_ret0,
6401 .port_stop = ata_dummy_noret,
6405 * libata is essentially a library of internal helper functions for
6406 * low-level ATA host controller drivers. As such, the API/ABI is
6407 * likely to change as new drivers are added and updated.
6408 * Do not depend on ABI/API stability.
6411 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6412 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6413 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6414 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6415 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6416 EXPORT_SYMBOL_GPL(ata_std_ports);
6417 EXPORT_SYMBOL_GPL(ata_host_init);
6418 EXPORT_SYMBOL_GPL(ata_device_add);
6419 EXPORT_SYMBOL_GPL(ata_host_detach);
6420 EXPORT_SYMBOL_GPL(ata_sg_init);
6421 EXPORT_SYMBOL_GPL(ata_sg_init_one);
6422 EXPORT_SYMBOL_GPL(ata_hsm_move);
6423 EXPORT_SYMBOL_GPL(ata_qc_complete);
6424 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6425 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
6426 EXPORT_SYMBOL_GPL(ata_tf_load);
6427 EXPORT_SYMBOL_GPL(ata_tf_read);
6428 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6429 EXPORT_SYMBOL_GPL(ata_std_dev_select);
6430 EXPORT_SYMBOL_GPL(sata_print_link_status);
6431 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6432 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6433 EXPORT_SYMBOL_GPL(ata_check_status);
6434 EXPORT_SYMBOL_GPL(ata_altstatus);
6435 EXPORT_SYMBOL_GPL(ata_exec_command);
6436 EXPORT_SYMBOL_GPL(ata_port_start);
6437 EXPORT_SYMBOL_GPL(ata_interrupt);
6438 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6439 EXPORT_SYMBOL_GPL(ata_data_xfer);
6440 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
6441 EXPORT_SYMBOL_GPL(ata_qc_prep);
6442 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6443 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6444 EXPORT_SYMBOL_GPL(ata_bmdma_start);
6445 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6446 EXPORT_SYMBOL_GPL(ata_bmdma_status);
6447 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6448 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6449 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6450 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6451 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6452 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
6453 EXPORT_SYMBOL_GPL(ata_port_probe);
6454 EXPORT_SYMBOL_GPL(ata_dev_disable);
6455 EXPORT_SYMBOL_GPL(sata_set_spd);
6456 EXPORT_SYMBOL_GPL(sata_phy_debounce);
6457 EXPORT_SYMBOL_GPL(sata_phy_resume);
6458 EXPORT_SYMBOL_GPL(sata_phy_reset);
6459 EXPORT_SYMBOL_GPL(__sata_phy_reset);
6460 EXPORT_SYMBOL_GPL(ata_bus_reset);
6461 EXPORT_SYMBOL_GPL(ata_std_prereset);
6462 EXPORT_SYMBOL_GPL(ata_std_softreset);
6463 EXPORT_SYMBOL_GPL(sata_port_hardreset);
6464 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6465 EXPORT_SYMBOL_GPL(ata_std_postreset);
6466 EXPORT_SYMBOL_GPL(ata_dev_classify);
6467 EXPORT_SYMBOL_GPL(ata_dev_pair);
6468 EXPORT_SYMBOL_GPL(ata_port_disable);
6469 EXPORT_SYMBOL_GPL(ata_ratelimit);
6470 EXPORT_SYMBOL_GPL(ata_wait_register);
6471 EXPORT_SYMBOL_GPL(ata_busy_sleep);
6472 EXPORT_SYMBOL_GPL(ata_port_queue_task);
6473 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6474 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6475 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6476 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6477 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6478 EXPORT_SYMBOL_GPL(ata_host_intr);
6479 EXPORT_SYMBOL_GPL(sata_scr_valid);
6480 EXPORT_SYMBOL_GPL(sata_scr_read);
6481 EXPORT_SYMBOL_GPL(sata_scr_write);
6482 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6483 EXPORT_SYMBOL_GPL(ata_port_online);
6484 EXPORT_SYMBOL_GPL(ata_port_offline);
6485 #ifdef CONFIG_PM
6486 EXPORT_SYMBOL_GPL(ata_host_suspend);
6487 EXPORT_SYMBOL_GPL(ata_host_resume);
6488 #endif /* CONFIG_PM */
6489 EXPORT_SYMBOL_GPL(ata_id_string);
6490 EXPORT_SYMBOL_GPL(ata_id_c_string);
6491 EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
6492 EXPORT_SYMBOL_GPL(ata_device_blacklisted);
6493 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6495 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6496 EXPORT_SYMBOL_GPL(ata_timing_compute);
6497 EXPORT_SYMBOL_GPL(ata_timing_merge);
6499 #ifdef CONFIG_PCI
6500 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6501 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
6502 EXPORT_SYMBOL_GPL(ata_pci_init_one);
6503 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6504 #ifdef CONFIG_PM
6505 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6506 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6507 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6508 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6509 #endif /* CONFIG_PM */
6510 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6511 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
6512 #endif /* CONFIG_PCI */
6514 #ifdef CONFIG_PM
6515 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
6516 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
6517 #endif /* CONFIG_PM */
6519 EXPORT_SYMBOL_GPL(ata_eng_timeout);
6520 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6521 EXPORT_SYMBOL_GPL(ata_port_abort);
6522 EXPORT_SYMBOL_GPL(ata_port_freeze);
6523 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6524 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6525 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6526 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6527 EXPORT_SYMBOL_GPL(ata_do_eh);
6528 EXPORT_SYMBOL_GPL(ata_irq_on);
6529 EXPORT_SYMBOL_GPL(ata_dummy_irq_on);
6530 EXPORT_SYMBOL_GPL(ata_irq_ack);
6531 EXPORT_SYMBOL_GPL(ata_dummy_irq_ack);
6532 EXPORT_SYMBOL_GPL(ata_dev_try_classify);
6534 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6535 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6536 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6537 EXPORT_SYMBOL_GPL(ata_cable_sata);