2 * TCP CUBIC: Binary Increase Congestion control for TCP v2.3
4 * http://netsrv.csc.ncsu.edu/twiki/bin/view/Main/BIC
5 * This is from the implementation of CUBIC TCP in
6 * Sangtae Ha, Injong Rhee and Lisong Xu,
7 * "CUBIC: A New TCP-Friendly High-Speed TCP Variant"
8 * in ACM SIGOPS Operating System Review, July 2008.
10 * http://netsrv.csc.ncsu.edu/export/cubic_a_new_tcp_2008.pdf
12 * CUBIC integrates a new slow start algorithm, called HyStart.
13 * The details of HyStart are presented in
14 * Sangtae Ha and Injong Rhee,
15 * "Taming the Elephants: New TCP Slow Start", NCSU TechReport 2008.
17 * http://netsrv.csc.ncsu.edu/export/hystart_techreport_2008.pdf
19 * All testing results are available from:
20 * http://netsrv.csc.ncsu.edu/wiki/index.php/TCP_Testing
22 * Unless CUBIC is enabled and congestion window is large
23 * this behaves the same as the original Reno.
27 #include <linux/module.h>
28 #include <linux/math64.h>
31 #define BICTCP_BETA_SCALE 1024 /* Scale factor beta calculation
32 * max_cwnd = snd_cwnd * beta
34 #define BICTCP_HZ 10 /* BIC HZ 2^10 = 1024 */
36 /* Two methods of hybrid slow start */
37 #define HYSTART_ACK_TRAIN 0x1
38 #define HYSTART_DELAY 0x2
40 /* Number of delay samples for detecting the increase of delay */
41 #define HYSTART_MIN_SAMPLES 8
42 #define HYSTART_DELAY_MIN (2U<<3)
43 #define HYSTART_DELAY_MAX (16U<<3)
44 #define HYSTART_DELAY_THRESH(x) clamp(x, HYSTART_DELAY_MIN, HYSTART_DELAY_MAX)
46 static int fast_convergence __read_mostly
= 1;
47 static int beta __read_mostly
= 717; /* = 717/1024 (BICTCP_BETA_SCALE) */
48 static int initial_ssthresh __read_mostly
;
49 static int bic_scale __read_mostly
= 41;
50 static int tcp_friendliness __read_mostly
= 1;
52 static int hystart __read_mostly
= 1;
53 static int hystart_detect __read_mostly
= HYSTART_ACK_TRAIN
| HYSTART_DELAY
;
54 static int hystart_low_window __read_mostly
= 16;
56 static u32 cube_rtt_scale __read_mostly
;
57 static u32 beta_scale __read_mostly
;
58 static u64 cube_factor __read_mostly
;
60 /* Note parameters that are used for precomputing scale factors are read-only */
61 module_param(fast_convergence
, int, 0644);
62 MODULE_PARM_DESC(fast_convergence
, "turn on/off fast convergence");
63 module_param(beta
, int, 0644);
64 MODULE_PARM_DESC(beta
, "beta for multiplicative increase");
65 module_param(initial_ssthresh
, int, 0644);
66 MODULE_PARM_DESC(initial_ssthresh
, "initial value of slow start threshold");
67 module_param(bic_scale
, int, 0444);
68 MODULE_PARM_DESC(bic_scale
, "scale (scaled by 1024) value for bic function (bic_scale/1024)");
69 module_param(tcp_friendliness
, int, 0644);
70 MODULE_PARM_DESC(tcp_friendliness
, "turn on/off tcp friendliness");
71 module_param(hystart
, int, 0644);
72 MODULE_PARM_DESC(hystart
, "turn on/off hybrid slow start algorithm");
73 module_param(hystart_detect
, int, 0644);
74 MODULE_PARM_DESC(hystart_detect
, "hyrbrid slow start detection mechanisms"
75 " 1: packet-train 2: delay 3: both packet-train and delay");
76 module_param(hystart_low_window
, int, 0644);
77 MODULE_PARM_DESC(hystart_low_window
, "lower bound cwnd for hybrid slow start");
79 /* BIC TCP Parameters */
81 u32 cnt
; /* increase cwnd by 1 after ACKs */
82 u32 last_max_cwnd
; /* last maximum snd_cwnd */
83 u32 loss_cwnd
; /* congestion window at last loss */
84 u32 last_cwnd
; /* the last snd_cwnd */
85 u32 last_time
; /* time when updated last_cwnd */
86 u32 bic_origin_point
;/* origin point of bic function */
87 u32 bic_K
; /* time to origin point from the beginning of the current epoch */
88 u32 delay_min
; /* min delay */
89 u32 epoch_start
; /* beginning of an epoch */
90 u32 ack_cnt
; /* number of acks */
91 u32 tcp_cwnd
; /* estimated tcp cwnd */
92 #define ACK_RATIO_SHIFT 4
93 u16 delayed_ack
; /* estimate the ratio of Packets/ACKs << 4 */
94 u8 sample_cnt
; /* number of samples to decide curr_rtt */
95 u8 found
; /* the exit point is found? */
96 u32 round_start
; /* beginning of each round */
97 u32 end_seq
; /* end_seq of the round */
98 u32 last_jiffies
; /* last time when the ACK spacing is close */
99 u32 curr_rtt
; /* the minimum rtt of current round */
102 static inline void bictcp_reset(struct bictcp
*ca
)
105 ca
->last_max_cwnd
= 0;
109 ca
->bic_origin_point
= 0;
113 ca
->delayed_ack
= 2 << ACK_RATIO_SHIFT
;
119 static inline void bictcp_hystart_reset(struct sock
*sk
)
121 struct tcp_sock
*tp
= tcp_sk(sk
);
122 struct bictcp
*ca
= inet_csk_ca(sk
);
124 ca
->round_start
= ca
->last_jiffies
= jiffies
;
125 ca
->end_seq
= tp
->snd_nxt
;
130 static void bictcp_init(struct sock
*sk
)
132 bictcp_reset(inet_csk_ca(sk
));
135 bictcp_hystart_reset(sk
);
137 if (!hystart
&& initial_ssthresh
)
138 tcp_sk(sk
)->snd_ssthresh
= initial_ssthresh
;
141 /* calculate the cubic root of x using a table lookup followed by one
142 * Newton-Raphson iteration.
145 static u32
cubic_root(u64 a
)
149 * cbrt(x) MSB values for x MSB values in [0..63].
150 * Precomputed then refined by hand - Willy Tarreau
153 * v = cbrt(x << 18) - 1
154 * cbrt(x) = (v[x] + 10) >> 6
156 static const u8 v
[] = {
157 /* 0x00 */ 0, 54, 54, 54, 118, 118, 118, 118,
158 /* 0x08 */ 123, 129, 134, 138, 143, 147, 151, 156,
159 /* 0x10 */ 157, 161, 164, 168, 170, 173, 176, 179,
160 /* 0x18 */ 181, 185, 187, 190, 192, 194, 197, 199,
161 /* 0x20 */ 200, 202, 204, 206, 209, 211, 213, 215,
162 /* 0x28 */ 217, 219, 221, 222, 224, 225, 227, 229,
163 /* 0x30 */ 231, 232, 234, 236, 237, 239, 240, 242,
164 /* 0x38 */ 244, 245, 246, 248, 250, 251, 252, 254,
170 return ((u32
)v
[(u32
)a
] + 35) >> 6;
173 b
= ((b
* 84) >> 8) - 1;
174 shift
= (a
>> (b
* 3));
176 x
= ((u32
)(((u32
)v
[shift
] + 10) << b
)) >> 6;
179 * Newton-Raphson iteration
181 * x = ( 2 * x + a / x ) / 3
184 x
= (2 * x
+ (u32
)div64_u64(a
, (u64
)x
* (u64
)(x
- 1)));
185 x
= ((x
* 341) >> 10);
190 * Compute congestion window to use.
192 static inline void bictcp_update(struct bictcp
*ca
, u32 cwnd
)
195 u32 delta
, t
, bic_target
, max_cnt
;
197 ca
->ack_cnt
++; /* count the number of ACKs */
199 if (ca
->last_cwnd
== cwnd
&&
200 (s32
)(tcp_time_stamp
- ca
->last_time
) <= HZ
/ 32)
203 ca
->last_cwnd
= cwnd
;
204 ca
->last_time
= tcp_time_stamp
;
206 if (ca
->epoch_start
== 0) {
207 ca
->epoch_start
= tcp_time_stamp
; /* record the beginning of an epoch */
208 ca
->ack_cnt
= 1; /* start counting */
209 ca
->tcp_cwnd
= cwnd
; /* syn with cubic */
211 if (ca
->last_max_cwnd
<= cwnd
) {
213 ca
->bic_origin_point
= cwnd
;
215 /* Compute new K based on
216 * (wmax-cwnd) * (srtt>>3 / HZ) / c * 2^(3*bictcp_HZ)
218 ca
->bic_K
= cubic_root(cube_factor
219 * (ca
->last_max_cwnd
- cwnd
));
220 ca
->bic_origin_point
= ca
->last_max_cwnd
;
224 /* cubic function - calc*/
225 /* calculate c * time^3 / rtt,
226 * while considering overflow in calculation of time^3
227 * (so time^3 is done by using 64 bit)
228 * and without the support of division of 64bit numbers
229 * (so all divisions are done by using 32 bit)
230 * also NOTE the unit of those veriables
231 * time = (t - K) / 2^bictcp_HZ
232 * c = bic_scale >> 10
233 * rtt = (srtt >> 3) / HZ
234 * !!! The following code does not have overflow problems,
235 * if the cwnd < 1 million packets !!!
238 /* change the unit from HZ to bictcp_HZ */
239 t
= ((tcp_time_stamp
+ (ca
->delay_min
>>3) - ca
->epoch_start
)
242 if (t
< ca
->bic_K
) /* t - K */
243 offs
= ca
->bic_K
- t
;
245 offs
= t
- ca
->bic_K
;
247 /* c/rtt * (t-K)^3 */
248 delta
= (cube_rtt_scale
* offs
* offs
* offs
) >> (10+3*BICTCP_HZ
);
249 if (t
< ca
->bic_K
) /* below origin*/
250 bic_target
= ca
->bic_origin_point
- delta
;
251 else /* above origin*/
252 bic_target
= ca
->bic_origin_point
+ delta
;
254 /* cubic function - calc bictcp_cnt*/
255 if (bic_target
> cwnd
) {
256 ca
->cnt
= cwnd
/ (bic_target
- cwnd
);
258 ca
->cnt
= 100 * cwnd
; /* very small increment*/
262 if (tcp_friendliness
) {
263 u32 scale
= beta_scale
;
264 delta
= (cwnd
* scale
) >> 3;
265 while (ca
->ack_cnt
> delta
) { /* update tcp cwnd */
266 ca
->ack_cnt
-= delta
;
270 if (ca
->tcp_cwnd
> cwnd
){ /* if bic is slower than tcp */
271 delta
= ca
->tcp_cwnd
- cwnd
;
272 max_cnt
= cwnd
/ delta
;
273 if (ca
->cnt
> max_cnt
)
278 ca
->cnt
= (ca
->cnt
<< ACK_RATIO_SHIFT
) / ca
->delayed_ack
;
279 if (ca
->cnt
== 0) /* cannot be zero */
283 static void bictcp_cong_avoid(struct sock
*sk
, u32 ack
, u32 in_flight
)
285 struct tcp_sock
*tp
= tcp_sk(sk
);
286 struct bictcp
*ca
= inet_csk_ca(sk
);
288 if (!tcp_is_cwnd_limited(sk
, in_flight
))
291 if (tp
->snd_cwnd
<= tp
->snd_ssthresh
) {
292 if (hystart
&& after(ack
, ca
->end_seq
))
293 bictcp_hystart_reset(sk
);
296 bictcp_update(ca
, tp
->snd_cwnd
);
298 /* In dangerous area, increase slowly.
299 * In theory this is tp->snd_cwnd += 1 / tp->snd_cwnd
301 if (tp
->snd_cwnd_cnt
>= ca
->cnt
) {
302 if (tp
->snd_cwnd
< tp
->snd_cwnd_clamp
)
304 tp
->snd_cwnd_cnt
= 0;
311 static u32
bictcp_recalc_ssthresh(struct sock
*sk
)
313 const struct tcp_sock
*tp
= tcp_sk(sk
);
314 struct bictcp
*ca
= inet_csk_ca(sk
);
316 ca
->epoch_start
= 0; /* end of epoch */
318 /* Wmax and fast convergence */
319 if (tp
->snd_cwnd
< ca
->last_max_cwnd
&& fast_convergence
)
320 ca
->last_max_cwnd
= (tp
->snd_cwnd
* (BICTCP_BETA_SCALE
+ beta
))
321 / (2 * BICTCP_BETA_SCALE
);
323 ca
->last_max_cwnd
= tp
->snd_cwnd
;
325 ca
->loss_cwnd
= tp
->snd_cwnd
;
327 return max((tp
->snd_cwnd
* beta
) / BICTCP_BETA_SCALE
, 2U);
330 static u32
bictcp_undo_cwnd(struct sock
*sk
)
332 struct bictcp
*ca
= inet_csk_ca(sk
);
334 return max(tcp_sk(sk
)->snd_cwnd
, ca
->last_max_cwnd
);
337 static void bictcp_state(struct sock
*sk
, u8 new_state
)
339 if (new_state
== TCP_CA_Loss
) {
340 bictcp_reset(inet_csk_ca(sk
));
341 bictcp_hystart_reset(sk
);
345 static void hystart_update(struct sock
*sk
, u32 delay
)
347 struct tcp_sock
*tp
= tcp_sk(sk
);
348 struct bictcp
*ca
= inet_csk_ca(sk
);
350 if (!(ca
->found
& hystart_detect
)) {
351 u32 curr_jiffies
= jiffies
;
353 /* first detection parameter - ack-train detection */
354 if (curr_jiffies
- ca
->last_jiffies
<= msecs_to_jiffies(2)) {
355 ca
->last_jiffies
= curr_jiffies
;
356 if (curr_jiffies
- ca
->round_start
>= ca
->delay_min
>>4)
357 ca
->found
|= HYSTART_ACK_TRAIN
;
360 /* obtain the minimum delay of more than sampling packets */
361 if (ca
->sample_cnt
< HYSTART_MIN_SAMPLES
) {
362 if (ca
->curr_rtt
== 0 || ca
->curr_rtt
> delay
)
363 ca
->curr_rtt
= delay
;
367 if (ca
->curr_rtt
> ca
->delay_min
+
368 HYSTART_DELAY_THRESH(ca
->delay_min
>>4))
369 ca
->found
|= HYSTART_DELAY
;
372 * Either one of two conditions are met,
373 * we exit from slow start immediately.
375 if (ca
->found
& hystart_detect
)
376 tp
->snd_ssthresh
= tp
->snd_cwnd
;
380 /* Track delayed acknowledgment ratio using sliding window
381 * ratio = (15*ratio + sample) / 16
383 static void bictcp_acked(struct sock
*sk
, u32 cnt
, s32 rtt_us
)
385 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
386 const struct tcp_sock
*tp
= tcp_sk(sk
);
387 struct bictcp
*ca
= inet_csk_ca(sk
);
390 if (icsk
->icsk_ca_state
== TCP_CA_Open
) {
391 cnt
-= ca
->delayed_ack
>> ACK_RATIO_SHIFT
;
392 ca
->delayed_ack
+= cnt
;
395 /* Some calls are for duplicates without timetamps */
399 /* Discard delay samples right after fast recovery */
400 if ((s32
)(tcp_time_stamp
- ca
->epoch_start
) < HZ
)
403 delay
= usecs_to_jiffies(rtt_us
) << 3;
407 /* first time call or link delay decreases */
408 if (ca
->delay_min
== 0 || ca
->delay_min
> delay
)
409 ca
->delay_min
= delay
;
411 /* hystart triggers when cwnd is larger than some threshold */
412 if (hystart
&& tp
->snd_cwnd
<= tp
->snd_ssthresh
&&
413 tp
->snd_cwnd
>= hystart_low_window
)
414 hystart_update(sk
, delay
);
417 static struct tcp_congestion_ops cubictcp
= {
419 .ssthresh
= bictcp_recalc_ssthresh
,
420 .cong_avoid
= bictcp_cong_avoid
,
421 .set_state
= bictcp_state
,
422 .undo_cwnd
= bictcp_undo_cwnd
,
423 .pkts_acked
= bictcp_acked
,
424 .owner
= THIS_MODULE
,
428 static int __init
cubictcp_register(void)
430 BUILD_BUG_ON(sizeof(struct bictcp
) > ICSK_CA_PRIV_SIZE
);
432 /* Precompute a bunch of the scaling factors that are used per-packet
433 * based on SRTT of 100ms
436 beta_scale
= 8*(BICTCP_BETA_SCALE
+beta
)/ 3 / (BICTCP_BETA_SCALE
- beta
);
438 cube_rtt_scale
= (bic_scale
* 10); /* 1024*c/rtt */
440 /* calculate the "K" for (wmax-cwnd) = c/rtt * K^3
441 * so K = cubic_root( (wmax-cwnd)*rtt/c )
442 * the unit of K is bictcp_HZ=2^10, not HZ
444 * c = bic_scale >> 10
447 * the following code has been designed and tested for
448 * cwnd < 1 million packets
450 * HZ < 1,000,00 (corresponding to 10 nano-second)
453 /* 1/c * 2^2*bictcp_HZ * srtt */
454 cube_factor
= 1ull << (10+3*BICTCP_HZ
); /* 2^40 */
456 /* divide by bic_scale and by constant Srtt (100ms) */
457 do_div(cube_factor
, bic_scale
* 10);
459 return tcp_register_congestion_control(&cubictcp
);
462 static void __exit
cubictcp_unregister(void)
464 tcp_unregister_congestion_control(&cubictcp
);
467 module_init(cubictcp_register
);
468 module_exit(cubictcp_unregister
);
470 MODULE_AUTHOR("Sangtae Ha, Stephen Hemminger");
471 MODULE_LICENSE("GPL");
472 MODULE_DESCRIPTION("CUBIC TCP");
473 MODULE_VERSION("2.3");