3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/slab.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/seq_file.h>
99 #include <linux/notifier.h>
100 #include <linux/kallsyms.h>
101 #include <linux/cpu.h>
102 #include <linux/sysctl.h>
103 #include <linux/module.h>
104 #include <linux/rcupdate.h>
105 #include <linux/string.h>
106 #include <linux/uaccess.h>
107 #include <linux/nodemask.h>
108 #include <linux/mempolicy.h>
109 #include <linux/mutex.h>
110 #include <linux/fault-inject.h>
111 #include <linux/rtmutex.h>
112 #include <linux/reciprocal_div.h>
114 #include <asm/cacheflush.h>
115 #include <asm/tlbflush.h>
116 #include <asm/page.h>
119 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
120 * 0 for faster, smaller code (especially in the critical paths).
122 * STATS - 1 to collect stats for /proc/slabinfo.
123 * 0 for faster, smaller code (especially in the critical paths).
125 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
128 #ifdef CONFIG_DEBUG_SLAB
131 #define FORCED_DEBUG 1
135 #define FORCED_DEBUG 0
138 /* Shouldn't this be in a header file somewhere? */
139 #define BYTES_PER_WORD sizeof(void *)
140 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
142 #ifndef cache_line_size
143 #define cache_line_size() L1_CACHE_BYTES
146 #ifndef ARCH_KMALLOC_MINALIGN
148 * Enforce a minimum alignment for the kmalloc caches.
149 * Usually, the kmalloc caches are cache_line_size() aligned, except when
150 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
151 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
152 * alignment larger than the alignment of a 64-bit integer.
153 * ARCH_KMALLOC_MINALIGN allows that.
154 * Note that increasing this value may disable some debug features.
156 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
159 #ifndef ARCH_SLAB_MINALIGN
161 * Enforce a minimum alignment for all caches.
162 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
163 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
164 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
165 * some debug features.
167 #define ARCH_SLAB_MINALIGN 0
170 #ifndef ARCH_KMALLOC_FLAGS
171 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
174 /* Legal flag mask for kmem_cache_create(). */
176 # define CREATE_MASK (SLAB_RED_ZONE | \
177 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
180 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
181 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
183 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
185 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
186 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
192 * Bufctl's are used for linking objs within a slab
195 * This implementation relies on "struct page" for locating the cache &
196 * slab an object belongs to.
197 * This allows the bufctl structure to be small (one int), but limits
198 * the number of objects a slab (not a cache) can contain when off-slab
199 * bufctls are used. The limit is the size of the largest general cache
200 * that does not use off-slab slabs.
201 * For 32bit archs with 4 kB pages, is this 56.
202 * This is not serious, as it is only for large objects, when it is unwise
203 * to have too many per slab.
204 * Note: This limit can be raised by introducing a general cache whose size
205 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
208 typedef unsigned int kmem_bufctl_t
;
209 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
210 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
211 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
212 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
217 * Manages the objs in a slab. Placed either at the beginning of mem allocated
218 * for a slab, or allocated from an general cache.
219 * Slabs are chained into three list: fully used, partial, fully free slabs.
222 struct list_head list
;
223 unsigned long colouroff
;
224 void *s_mem
; /* including colour offset */
225 unsigned int inuse
; /* num of objs active in slab */
227 unsigned short nodeid
;
233 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
234 * arrange for kmem_freepages to be called via RCU. This is useful if
235 * we need to approach a kernel structure obliquely, from its address
236 * obtained without the usual locking. We can lock the structure to
237 * stabilize it and check it's still at the given address, only if we
238 * can be sure that the memory has not been meanwhile reused for some
239 * other kind of object (which our subsystem's lock might corrupt).
241 * rcu_read_lock before reading the address, then rcu_read_unlock after
242 * taking the spinlock within the structure expected at that address.
244 * We assume struct slab_rcu can overlay struct slab when destroying.
247 struct rcu_head head
;
248 struct kmem_cache
*cachep
;
256 * - LIFO ordering, to hand out cache-warm objects from _alloc
257 * - reduce the number of linked list operations
258 * - reduce spinlock operations
260 * The limit is stored in the per-cpu structure to reduce the data cache
267 unsigned int batchcount
;
268 unsigned int touched
;
271 * Must have this definition in here for the proper
272 * alignment of array_cache. Also simplifies accessing
274 * [0] is for gcc 2.95. It should really be [].
279 * bootstrap: The caches do not work without cpuarrays anymore, but the
280 * cpuarrays are allocated from the generic caches...
282 #define BOOT_CPUCACHE_ENTRIES 1
283 struct arraycache_init
{
284 struct array_cache cache
;
285 void *entries
[BOOT_CPUCACHE_ENTRIES
];
289 * The slab lists for all objects.
292 struct list_head slabs_partial
; /* partial list first, better asm code */
293 struct list_head slabs_full
;
294 struct list_head slabs_free
;
295 unsigned long free_objects
;
296 unsigned int free_limit
;
297 unsigned int colour_next
; /* Per-node cache coloring */
298 spinlock_t list_lock
;
299 struct array_cache
*shared
; /* shared per node */
300 struct array_cache
**alien
; /* on other nodes */
301 unsigned long next_reap
; /* updated without locking */
302 int free_touched
; /* updated without locking */
306 * Need this for bootstrapping a per node allocator.
308 #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
309 struct kmem_list3 __initdata initkmem_list3
[NUM_INIT_LISTS
];
310 #define CACHE_CACHE 0
312 #define SIZE_L3 (1 + MAX_NUMNODES)
314 static int drain_freelist(struct kmem_cache
*cache
,
315 struct kmem_list3
*l3
, int tofree
);
316 static void free_block(struct kmem_cache
*cachep
, void **objpp
, int len
,
318 static int enable_cpucache(struct kmem_cache
*cachep
);
319 static void cache_reap(struct work_struct
*unused
);
322 * This function must be completely optimized away if a constant is passed to
323 * it. Mostly the same as what is in linux/slab.h except it returns an index.
325 static __always_inline
int index_of(const size_t size
)
327 extern void __bad_size(void);
329 if (__builtin_constant_p(size
)) {
337 #include "linux/kmalloc_sizes.h"
345 static int slab_early_init
= 1;
347 #define INDEX_AC index_of(sizeof(struct arraycache_init))
348 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
350 static void kmem_list3_init(struct kmem_list3
*parent
)
352 INIT_LIST_HEAD(&parent
->slabs_full
);
353 INIT_LIST_HEAD(&parent
->slabs_partial
);
354 INIT_LIST_HEAD(&parent
->slabs_free
);
355 parent
->shared
= NULL
;
356 parent
->alien
= NULL
;
357 parent
->colour_next
= 0;
358 spin_lock_init(&parent
->list_lock
);
359 parent
->free_objects
= 0;
360 parent
->free_touched
= 0;
363 #define MAKE_LIST(cachep, listp, slab, nodeid) \
365 INIT_LIST_HEAD(listp); \
366 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
369 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
371 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
372 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
373 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
383 /* 1) per-cpu data, touched during every alloc/free */
384 struct array_cache
*array
[NR_CPUS
];
385 /* 2) Cache tunables. Protected by cache_chain_mutex */
386 unsigned int batchcount
;
390 unsigned int buffer_size
;
391 u32 reciprocal_buffer_size
;
392 /* 3) touched by every alloc & free from the backend */
394 unsigned int flags
; /* constant flags */
395 unsigned int num
; /* # of objs per slab */
397 /* 4) cache_grow/shrink */
398 /* order of pgs per slab (2^n) */
399 unsigned int gfporder
;
401 /* force GFP flags, e.g. GFP_DMA */
404 size_t colour
; /* cache colouring range */
405 unsigned int colour_off
; /* colour offset */
406 struct kmem_cache
*slabp_cache
;
407 unsigned int slab_size
;
408 unsigned int dflags
; /* dynamic flags */
410 /* constructor func */
411 void (*ctor
)(struct kmem_cache
*, void *);
413 /* 5) cache creation/removal */
415 struct list_head next
;
419 unsigned long num_active
;
420 unsigned long num_allocations
;
421 unsigned long high_mark
;
423 unsigned long reaped
;
424 unsigned long errors
;
425 unsigned long max_freeable
;
426 unsigned long node_allocs
;
427 unsigned long node_frees
;
428 unsigned long node_overflow
;
436 * If debugging is enabled, then the allocator can add additional
437 * fields and/or padding to every object. buffer_size contains the total
438 * object size including these internal fields, the following two
439 * variables contain the offset to the user object and its size.
445 * We put nodelists[] at the end of kmem_cache, because we want to size
446 * this array to nr_node_ids slots instead of MAX_NUMNODES
447 * (see kmem_cache_init())
448 * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
449 * is statically defined, so we reserve the max number of nodes.
451 struct kmem_list3
*nodelists
[MAX_NUMNODES
];
453 * Do not add fields after nodelists[]
457 #define CFLGS_OFF_SLAB (0x80000000UL)
458 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
460 #define BATCHREFILL_LIMIT 16
462 * Optimization question: fewer reaps means less probability for unnessary
463 * cpucache drain/refill cycles.
465 * OTOH the cpuarrays can contain lots of objects,
466 * which could lock up otherwise freeable slabs.
468 #define REAPTIMEOUT_CPUC (2*HZ)
469 #define REAPTIMEOUT_LIST3 (4*HZ)
472 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
473 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
474 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
475 #define STATS_INC_GROWN(x) ((x)->grown++)
476 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
477 #define STATS_SET_HIGH(x) \
479 if ((x)->num_active > (x)->high_mark) \
480 (x)->high_mark = (x)->num_active; \
482 #define STATS_INC_ERR(x) ((x)->errors++)
483 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
484 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
485 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
486 #define STATS_SET_FREEABLE(x, i) \
488 if ((x)->max_freeable < i) \
489 (x)->max_freeable = i; \
491 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
492 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
493 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
494 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
496 #define STATS_INC_ACTIVE(x) do { } while (0)
497 #define STATS_DEC_ACTIVE(x) do { } while (0)
498 #define STATS_INC_ALLOCED(x) do { } while (0)
499 #define STATS_INC_GROWN(x) do { } while (0)
500 #define STATS_ADD_REAPED(x,y) do { } while (0)
501 #define STATS_SET_HIGH(x) do { } while (0)
502 #define STATS_INC_ERR(x) do { } while (0)
503 #define STATS_INC_NODEALLOCS(x) do { } while (0)
504 #define STATS_INC_NODEFREES(x) do { } while (0)
505 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
506 #define STATS_SET_FREEABLE(x, i) do { } while (0)
507 #define STATS_INC_ALLOCHIT(x) do { } while (0)
508 #define STATS_INC_ALLOCMISS(x) do { } while (0)
509 #define STATS_INC_FREEHIT(x) do { } while (0)
510 #define STATS_INC_FREEMISS(x) do { } while (0)
516 * memory layout of objects:
518 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
519 * the end of an object is aligned with the end of the real
520 * allocation. Catches writes behind the end of the allocation.
521 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
523 * cachep->obj_offset: The real object.
524 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
525 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
526 * [BYTES_PER_WORD long]
528 static int obj_offset(struct kmem_cache
*cachep
)
530 return cachep
->obj_offset
;
533 static int obj_size(struct kmem_cache
*cachep
)
535 return cachep
->obj_size
;
538 static unsigned long long *dbg_redzone1(struct kmem_cache
*cachep
, void *objp
)
540 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
541 return (unsigned long long*) (objp
+ obj_offset(cachep
) -
542 sizeof(unsigned long long));
545 static unsigned long long *dbg_redzone2(struct kmem_cache
*cachep
, void *objp
)
547 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
548 if (cachep
->flags
& SLAB_STORE_USER
)
549 return (unsigned long long *)(objp
+ cachep
->buffer_size
-
550 sizeof(unsigned long long) -
552 return (unsigned long long *) (objp
+ cachep
->buffer_size
-
553 sizeof(unsigned long long));
556 static void **dbg_userword(struct kmem_cache
*cachep
, void *objp
)
558 BUG_ON(!(cachep
->flags
& SLAB_STORE_USER
));
559 return (void **)(objp
+ cachep
->buffer_size
- BYTES_PER_WORD
);
564 #define obj_offset(x) 0
565 #define obj_size(cachep) (cachep->buffer_size)
566 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
567 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
568 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
573 * Do not go above this order unless 0 objects fit into the slab.
575 #define BREAK_GFP_ORDER_HI 1
576 #define BREAK_GFP_ORDER_LO 0
577 static int slab_break_gfp_order
= BREAK_GFP_ORDER_LO
;
580 * Functions for storing/retrieving the cachep and or slab from the page
581 * allocator. These are used to find the slab an obj belongs to. With kfree(),
582 * these are used to find the cache which an obj belongs to.
584 static inline void page_set_cache(struct page
*page
, struct kmem_cache
*cache
)
586 page
->lru
.next
= (struct list_head
*)cache
;
589 static inline struct kmem_cache
*page_get_cache(struct page
*page
)
591 page
= compound_head(page
);
592 BUG_ON(!PageSlab(page
));
593 return (struct kmem_cache
*)page
->lru
.next
;
596 static inline void page_set_slab(struct page
*page
, struct slab
*slab
)
598 page
->lru
.prev
= (struct list_head
*)slab
;
601 static inline struct slab
*page_get_slab(struct page
*page
)
603 BUG_ON(!PageSlab(page
));
604 return (struct slab
*)page
->lru
.prev
;
607 static inline struct kmem_cache
*virt_to_cache(const void *obj
)
609 struct page
*page
= virt_to_head_page(obj
);
610 return page_get_cache(page
);
613 static inline struct slab
*virt_to_slab(const void *obj
)
615 struct page
*page
= virt_to_head_page(obj
);
616 return page_get_slab(page
);
619 static inline void *index_to_obj(struct kmem_cache
*cache
, struct slab
*slab
,
622 return slab
->s_mem
+ cache
->buffer_size
* idx
;
626 * We want to avoid an expensive divide : (offset / cache->buffer_size)
627 * Using the fact that buffer_size is a constant for a particular cache,
628 * we can replace (offset / cache->buffer_size) by
629 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
631 static inline unsigned int obj_to_index(const struct kmem_cache
*cache
,
632 const struct slab
*slab
, void *obj
)
634 u32 offset
= (obj
- slab
->s_mem
);
635 return reciprocal_divide(offset
, cache
->reciprocal_buffer_size
);
639 * These are the default caches for kmalloc. Custom caches can have other sizes.
641 struct cache_sizes malloc_sizes
[] = {
642 #define CACHE(x) { .cs_size = (x) },
643 #include <linux/kmalloc_sizes.h>
647 EXPORT_SYMBOL(malloc_sizes
);
649 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
655 static struct cache_names __initdata cache_names
[] = {
656 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
657 #include <linux/kmalloc_sizes.h>
662 static struct arraycache_init initarray_cache __initdata
=
663 { {0, BOOT_CPUCACHE_ENTRIES
, 1, 0} };
664 static struct arraycache_init initarray_generic
=
665 { {0, BOOT_CPUCACHE_ENTRIES
, 1, 0} };
667 /* internal cache of cache description objs */
668 static struct kmem_cache cache_cache
= {
670 .limit
= BOOT_CPUCACHE_ENTRIES
,
672 .buffer_size
= sizeof(struct kmem_cache
),
673 .name
= "kmem_cache",
676 #define BAD_ALIEN_MAGIC 0x01020304ul
678 #ifdef CONFIG_LOCKDEP
681 * Slab sometimes uses the kmalloc slabs to store the slab headers
682 * for other slabs "off slab".
683 * The locking for this is tricky in that it nests within the locks
684 * of all other slabs in a few places; to deal with this special
685 * locking we put on-slab caches into a separate lock-class.
687 * We set lock class for alien array caches which are up during init.
688 * The lock annotation will be lost if all cpus of a node goes down and
689 * then comes back up during hotplug
691 static struct lock_class_key on_slab_l3_key
;
692 static struct lock_class_key on_slab_alc_key
;
694 static inline void init_lock_keys(void)
698 struct cache_sizes
*s
= malloc_sizes
;
700 while (s
->cs_size
!= ULONG_MAX
) {
702 struct array_cache
**alc
;
704 struct kmem_list3
*l3
= s
->cs_cachep
->nodelists
[q
];
705 if (!l3
|| OFF_SLAB(s
->cs_cachep
))
707 lockdep_set_class(&l3
->list_lock
, &on_slab_l3_key
);
710 * FIXME: This check for BAD_ALIEN_MAGIC
711 * should go away when common slab code is taught to
712 * work even without alien caches.
713 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
714 * for alloc_alien_cache,
716 if (!alc
|| (unsigned long)alc
== BAD_ALIEN_MAGIC
)
720 lockdep_set_class(&alc
[r
]->lock
,
728 static inline void init_lock_keys(void)
734 * 1. Guard access to the cache-chain.
735 * 2. Protect sanity of cpu_online_map against cpu hotplug events
737 static DEFINE_MUTEX(cache_chain_mutex
);
738 static struct list_head cache_chain
;
741 * chicken and egg problem: delay the per-cpu array allocation
742 * until the general caches are up.
752 * used by boot code to determine if it can use slab based allocator
754 int slab_is_available(void)
756 return g_cpucache_up
== FULL
;
759 static DEFINE_PER_CPU(struct delayed_work
, reap_work
);
761 static inline struct array_cache
*cpu_cache_get(struct kmem_cache
*cachep
)
763 return cachep
->array
[smp_processor_id()];
766 static inline struct kmem_cache
*__find_general_cachep(size_t size
,
769 struct cache_sizes
*csizep
= malloc_sizes
;
772 /* This happens if someone tries to call
773 * kmem_cache_create(), or __kmalloc(), before
774 * the generic caches are initialized.
776 BUG_ON(malloc_sizes
[INDEX_AC
].cs_cachep
== NULL
);
779 return ZERO_SIZE_PTR
;
781 while (size
> csizep
->cs_size
)
785 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
786 * has cs_{dma,}cachep==NULL. Thus no special case
787 * for large kmalloc calls required.
789 #ifdef CONFIG_ZONE_DMA
790 if (unlikely(gfpflags
& GFP_DMA
))
791 return csizep
->cs_dmacachep
;
793 return csizep
->cs_cachep
;
796 static struct kmem_cache
*kmem_find_general_cachep(size_t size
, gfp_t gfpflags
)
798 return __find_general_cachep(size
, gfpflags
);
801 static size_t slab_mgmt_size(size_t nr_objs
, size_t align
)
803 return ALIGN(sizeof(struct slab
)+nr_objs
*sizeof(kmem_bufctl_t
), align
);
807 * Calculate the number of objects and left-over bytes for a given buffer size.
809 static void cache_estimate(unsigned long gfporder
, size_t buffer_size
,
810 size_t align
, int flags
, size_t *left_over
,
815 size_t slab_size
= PAGE_SIZE
<< gfporder
;
818 * The slab management structure can be either off the slab or
819 * on it. For the latter case, the memory allocated for a
823 * - One kmem_bufctl_t for each object
824 * - Padding to respect alignment of @align
825 * - @buffer_size bytes for each object
827 * If the slab management structure is off the slab, then the
828 * alignment will already be calculated into the size. Because
829 * the slabs are all pages aligned, the objects will be at the
830 * correct alignment when allocated.
832 if (flags
& CFLGS_OFF_SLAB
) {
834 nr_objs
= slab_size
/ buffer_size
;
836 if (nr_objs
> SLAB_LIMIT
)
837 nr_objs
= SLAB_LIMIT
;
840 * Ignore padding for the initial guess. The padding
841 * is at most @align-1 bytes, and @buffer_size is at
842 * least @align. In the worst case, this result will
843 * be one greater than the number of objects that fit
844 * into the memory allocation when taking the padding
847 nr_objs
= (slab_size
- sizeof(struct slab
)) /
848 (buffer_size
+ sizeof(kmem_bufctl_t
));
851 * This calculated number will be either the right
852 * amount, or one greater than what we want.
854 if (slab_mgmt_size(nr_objs
, align
) + nr_objs
*buffer_size
858 if (nr_objs
> SLAB_LIMIT
)
859 nr_objs
= SLAB_LIMIT
;
861 mgmt_size
= slab_mgmt_size(nr_objs
, align
);
864 *left_over
= slab_size
- nr_objs
*buffer_size
- mgmt_size
;
867 #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
869 static void __slab_error(const char *function
, struct kmem_cache
*cachep
,
872 printk(KERN_ERR
"slab error in %s(): cache `%s': %s\n",
873 function
, cachep
->name
, msg
);
878 * By default on NUMA we use alien caches to stage the freeing of
879 * objects allocated from other nodes. This causes massive memory
880 * inefficiencies when using fake NUMA setup to split memory into a
881 * large number of small nodes, so it can be disabled on the command
885 static int use_alien_caches __read_mostly
= 1;
886 static int numa_platform __read_mostly
= 1;
887 static int __init
noaliencache_setup(char *s
)
889 use_alien_caches
= 0;
892 __setup("noaliencache", noaliencache_setup
);
896 * Special reaping functions for NUMA systems called from cache_reap().
897 * These take care of doing round robin flushing of alien caches (containing
898 * objects freed on different nodes from which they were allocated) and the
899 * flushing of remote pcps by calling drain_node_pages.
901 static DEFINE_PER_CPU(unsigned long, reap_node
);
903 static void init_reap_node(int cpu
)
907 node
= next_node(cpu_to_node(cpu
), node_online_map
);
908 if (node
== MAX_NUMNODES
)
909 node
= first_node(node_online_map
);
911 per_cpu(reap_node
, cpu
) = node
;
914 static void next_reap_node(void)
916 int node
= __get_cpu_var(reap_node
);
918 node
= next_node(node
, node_online_map
);
919 if (unlikely(node
>= MAX_NUMNODES
))
920 node
= first_node(node_online_map
);
921 __get_cpu_var(reap_node
) = node
;
925 #define init_reap_node(cpu) do { } while (0)
926 #define next_reap_node(void) do { } while (0)
930 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
931 * via the workqueue/eventd.
932 * Add the CPU number into the expiration time to minimize the possibility of
933 * the CPUs getting into lockstep and contending for the global cache chain
936 static void __cpuinit
start_cpu_timer(int cpu
)
938 struct delayed_work
*reap_work
= &per_cpu(reap_work
, cpu
);
941 * When this gets called from do_initcalls via cpucache_init(),
942 * init_workqueues() has already run, so keventd will be setup
945 if (keventd_up() && reap_work
->work
.func
== NULL
) {
947 INIT_DELAYED_WORK(reap_work
, cache_reap
);
948 schedule_delayed_work_on(cpu
, reap_work
,
949 __round_jiffies_relative(HZ
, cpu
));
953 static struct array_cache
*alloc_arraycache(int node
, int entries
,
956 int memsize
= sizeof(void *) * entries
+ sizeof(struct array_cache
);
957 struct array_cache
*nc
= NULL
;
959 nc
= kmalloc_node(memsize
, GFP_KERNEL
, node
);
963 nc
->batchcount
= batchcount
;
965 spin_lock_init(&nc
->lock
);
971 * Transfer objects in one arraycache to another.
972 * Locking must be handled by the caller.
974 * Return the number of entries transferred.
976 static int transfer_objects(struct array_cache
*to
,
977 struct array_cache
*from
, unsigned int max
)
979 /* Figure out how many entries to transfer */
980 int nr
= min(min(from
->avail
, max
), to
->limit
- to
->avail
);
985 memcpy(to
->entry
+ to
->avail
, from
->entry
+ from
->avail
-nr
,
996 #define drain_alien_cache(cachep, alien) do { } while (0)
997 #define reap_alien(cachep, l3) do { } while (0)
999 static inline struct array_cache
**alloc_alien_cache(int node
, int limit
)
1001 return (struct array_cache
**)BAD_ALIEN_MAGIC
;
1004 static inline void free_alien_cache(struct array_cache
**ac_ptr
)
1008 static inline int cache_free_alien(struct kmem_cache
*cachep
, void *objp
)
1013 static inline void *alternate_node_alloc(struct kmem_cache
*cachep
,
1019 static inline void *____cache_alloc_node(struct kmem_cache
*cachep
,
1020 gfp_t flags
, int nodeid
)
1025 #else /* CONFIG_NUMA */
1027 static void *____cache_alloc_node(struct kmem_cache
*, gfp_t
, int);
1028 static void *alternate_node_alloc(struct kmem_cache
*, gfp_t
);
1030 static struct array_cache
**alloc_alien_cache(int node
, int limit
)
1032 struct array_cache
**ac_ptr
;
1033 int memsize
= sizeof(void *) * nr_node_ids
;
1038 ac_ptr
= kmalloc_node(memsize
, GFP_KERNEL
, node
);
1041 if (i
== node
|| !node_online(i
)) {
1045 ac_ptr
[i
] = alloc_arraycache(node
, limit
, 0xbaadf00d);
1047 for (i
--; i
<= 0; i
--)
1057 static void free_alien_cache(struct array_cache
**ac_ptr
)
1068 static void __drain_alien_cache(struct kmem_cache
*cachep
,
1069 struct array_cache
*ac
, int node
)
1071 struct kmem_list3
*rl3
= cachep
->nodelists
[node
];
1074 spin_lock(&rl3
->list_lock
);
1076 * Stuff objects into the remote nodes shared array first.
1077 * That way we could avoid the overhead of putting the objects
1078 * into the free lists and getting them back later.
1081 transfer_objects(rl3
->shared
, ac
, ac
->limit
);
1083 free_block(cachep
, ac
->entry
, ac
->avail
, node
);
1085 spin_unlock(&rl3
->list_lock
);
1090 * Called from cache_reap() to regularly drain alien caches round robin.
1092 static void reap_alien(struct kmem_cache
*cachep
, struct kmem_list3
*l3
)
1094 int node
= __get_cpu_var(reap_node
);
1097 struct array_cache
*ac
= l3
->alien
[node
];
1099 if (ac
&& ac
->avail
&& spin_trylock_irq(&ac
->lock
)) {
1100 __drain_alien_cache(cachep
, ac
, node
);
1101 spin_unlock_irq(&ac
->lock
);
1106 static void drain_alien_cache(struct kmem_cache
*cachep
,
1107 struct array_cache
**alien
)
1110 struct array_cache
*ac
;
1111 unsigned long flags
;
1113 for_each_online_node(i
) {
1116 spin_lock_irqsave(&ac
->lock
, flags
);
1117 __drain_alien_cache(cachep
, ac
, i
);
1118 spin_unlock_irqrestore(&ac
->lock
, flags
);
1123 static inline int cache_free_alien(struct kmem_cache
*cachep
, void *objp
)
1125 struct slab
*slabp
= virt_to_slab(objp
);
1126 int nodeid
= slabp
->nodeid
;
1127 struct kmem_list3
*l3
;
1128 struct array_cache
*alien
= NULL
;
1131 node
= numa_node_id();
1134 * Make sure we are not freeing a object from another node to the array
1135 * cache on this cpu.
1137 if (likely(slabp
->nodeid
== node
))
1140 l3
= cachep
->nodelists
[node
];
1141 STATS_INC_NODEFREES(cachep
);
1142 if (l3
->alien
&& l3
->alien
[nodeid
]) {
1143 alien
= l3
->alien
[nodeid
];
1144 spin_lock(&alien
->lock
);
1145 if (unlikely(alien
->avail
== alien
->limit
)) {
1146 STATS_INC_ACOVERFLOW(cachep
);
1147 __drain_alien_cache(cachep
, alien
, nodeid
);
1149 alien
->entry
[alien
->avail
++] = objp
;
1150 spin_unlock(&alien
->lock
);
1152 spin_lock(&(cachep
->nodelists
[nodeid
])->list_lock
);
1153 free_block(cachep
, &objp
, 1, nodeid
);
1154 spin_unlock(&(cachep
->nodelists
[nodeid
])->list_lock
);
1160 static int __cpuinit
cpuup_callback(struct notifier_block
*nfb
,
1161 unsigned long action
, void *hcpu
)
1163 long cpu
= (long)hcpu
;
1164 struct kmem_cache
*cachep
;
1165 struct kmem_list3
*l3
= NULL
;
1166 int node
= cpu_to_node(cpu
);
1167 const int memsize
= sizeof(struct kmem_list3
);
1170 case CPU_LOCK_ACQUIRE
:
1171 mutex_lock(&cache_chain_mutex
);
1173 case CPU_UP_PREPARE
:
1174 case CPU_UP_PREPARE_FROZEN
:
1176 * We need to do this right in the beginning since
1177 * alloc_arraycache's are going to use this list.
1178 * kmalloc_node allows us to add the slab to the right
1179 * kmem_list3 and not this cpu's kmem_list3
1182 list_for_each_entry(cachep
, &cache_chain
, next
) {
1184 * Set up the size64 kmemlist for cpu before we can
1185 * begin anything. Make sure some other cpu on this
1186 * node has not already allocated this
1188 if (!cachep
->nodelists
[node
]) {
1189 l3
= kmalloc_node(memsize
, GFP_KERNEL
, node
);
1192 kmem_list3_init(l3
);
1193 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
+
1194 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
1197 * The l3s don't come and go as CPUs come and
1198 * go. cache_chain_mutex is sufficient
1201 cachep
->nodelists
[node
] = l3
;
1204 spin_lock_irq(&cachep
->nodelists
[node
]->list_lock
);
1205 cachep
->nodelists
[node
]->free_limit
=
1206 (1 + nr_cpus_node(node
)) *
1207 cachep
->batchcount
+ cachep
->num
;
1208 spin_unlock_irq(&cachep
->nodelists
[node
]->list_lock
);
1212 * Now we can go ahead with allocating the shared arrays and
1215 list_for_each_entry(cachep
, &cache_chain
, next
) {
1216 struct array_cache
*nc
;
1217 struct array_cache
*shared
= NULL
;
1218 struct array_cache
**alien
= NULL
;
1220 nc
= alloc_arraycache(node
, cachep
->limit
,
1221 cachep
->batchcount
);
1224 if (cachep
->shared
) {
1225 shared
= alloc_arraycache(node
,
1226 cachep
->shared
* cachep
->batchcount
,
1231 if (use_alien_caches
) {
1232 alien
= alloc_alien_cache(node
, cachep
->limit
);
1236 cachep
->array
[cpu
] = nc
;
1237 l3
= cachep
->nodelists
[node
];
1240 spin_lock_irq(&l3
->list_lock
);
1243 * We are serialised from CPU_DEAD or
1244 * CPU_UP_CANCELLED by the cpucontrol lock
1246 l3
->shared
= shared
;
1255 spin_unlock_irq(&l3
->list_lock
);
1257 free_alien_cache(alien
);
1261 case CPU_ONLINE_FROZEN
:
1262 start_cpu_timer(cpu
);
1264 #ifdef CONFIG_HOTPLUG_CPU
1265 case CPU_DOWN_PREPARE
:
1266 case CPU_DOWN_PREPARE_FROZEN
:
1268 * Shutdown cache reaper. Note that the cache_chain_mutex is
1269 * held so that if cache_reap() is invoked it cannot do
1270 * anything expensive but will only modify reap_work
1271 * and reschedule the timer.
1273 cancel_rearming_delayed_work(&per_cpu(reap_work
, cpu
));
1274 /* Now the cache_reaper is guaranteed to be not running. */
1275 per_cpu(reap_work
, cpu
).work
.func
= NULL
;
1277 case CPU_DOWN_FAILED
:
1278 case CPU_DOWN_FAILED_FROZEN
:
1279 start_cpu_timer(cpu
);
1282 case CPU_DEAD_FROZEN
:
1284 * Even if all the cpus of a node are down, we don't free the
1285 * kmem_list3 of any cache. This to avoid a race between
1286 * cpu_down, and a kmalloc allocation from another cpu for
1287 * memory from the node of the cpu going down. The list3
1288 * structure is usually allocated from kmem_cache_create() and
1289 * gets destroyed at kmem_cache_destroy().
1293 case CPU_UP_CANCELED
:
1294 case CPU_UP_CANCELED_FROZEN
:
1295 list_for_each_entry(cachep
, &cache_chain
, next
) {
1296 struct array_cache
*nc
;
1297 struct array_cache
*shared
;
1298 struct array_cache
**alien
;
1301 mask
= node_to_cpumask(node
);
1302 /* cpu is dead; no one can alloc from it. */
1303 nc
= cachep
->array
[cpu
];
1304 cachep
->array
[cpu
] = NULL
;
1305 l3
= cachep
->nodelists
[node
];
1308 goto free_array_cache
;
1310 spin_lock_irq(&l3
->list_lock
);
1312 /* Free limit for this kmem_list3 */
1313 l3
->free_limit
-= cachep
->batchcount
;
1315 free_block(cachep
, nc
->entry
, nc
->avail
, node
);
1317 if (!cpus_empty(mask
)) {
1318 spin_unlock_irq(&l3
->list_lock
);
1319 goto free_array_cache
;
1322 shared
= l3
->shared
;
1324 free_block(cachep
, shared
->entry
,
1325 shared
->avail
, node
);
1332 spin_unlock_irq(&l3
->list_lock
);
1336 drain_alien_cache(cachep
, alien
);
1337 free_alien_cache(alien
);
1343 * In the previous loop, all the objects were freed to
1344 * the respective cache's slabs, now we can go ahead and
1345 * shrink each nodelist to its limit.
1347 list_for_each_entry(cachep
, &cache_chain
, next
) {
1348 l3
= cachep
->nodelists
[node
];
1351 drain_freelist(cachep
, l3
, l3
->free_objects
);
1354 case CPU_LOCK_RELEASE
:
1355 mutex_unlock(&cache_chain_mutex
);
1363 static struct notifier_block __cpuinitdata cpucache_notifier
= {
1364 &cpuup_callback
, NULL
, 0
1368 * swap the static kmem_list3 with kmalloced memory
1370 static void init_list(struct kmem_cache
*cachep
, struct kmem_list3
*list
,
1373 struct kmem_list3
*ptr
;
1375 ptr
= kmalloc_node(sizeof(struct kmem_list3
), GFP_KERNEL
, nodeid
);
1378 local_irq_disable();
1379 memcpy(ptr
, list
, sizeof(struct kmem_list3
));
1381 * Do not assume that spinlocks can be initialized via memcpy:
1383 spin_lock_init(&ptr
->list_lock
);
1385 MAKE_ALL_LISTS(cachep
, ptr
, nodeid
);
1386 cachep
->nodelists
[nodeid
] = ptr
;
1391 * Initialisation. Called after the page allocator have been initialised and
1392 * before smp_init().
1394 void __init
kmem_cache_init(void)
1397 struct cache_sizes
*sizes
;
1398 struct cache_names
*names
;
1403 if (num_possible_nodes() == 1) {
1404 use_alien_caches
= 0;
1408 for (i
= 0; i
< NUM_INIT_LISTS
; i
++) {
1409 kmem_list3_init(&initkmem_list3
[i
]);
1410 if (i
< MAX_NUMNODES
)
1411 cache_cache
.nodelists
[i
] = NULL
;
1415 * Fragmentation resistance on low memory - only use bigger
1416 * page orders on machines with more than 32MB of memory.
1418 if (num_physpages
> (32 << 20) >> PAGE_SHIFT
)
1419 slab_break_gfp_order
= BREAK_GFP_ORDER_HI
;
1421 /* Bootstrap is tricky, because several objects are allocated
1422 * from caches that do not exist yet:
1423 * 1) initialize the cache_cache cache: it contains the struct
1424 * kmem_cache structures of all caches, except cache_cache itself:
1425 * cache_cache is statically allocated.
1426 * Initially an __init data area is used for the head array and the
1427 * kmem_list3 structures, it's replaced with a kmalloc allocated
1428 * array at the end of the bootstrap.
1429 * 2) Create the first kmalloc cache.
1430 * The struct kmem_cache for the new cache is allocated normally.
1431 * An __init data area is used for the head array.
1432 * 3) Create the remaining kmalloc caches, with minimally sized
1434 * 4) Replace the __init data head arrays for cache_cache and the first
1435 * kmalloc cache with kmalloc allocated arrays.
1436 * 5) Replace the __init data for kmem_list3 for cache_cache and
1437 * the other cache's with kmalloc allocated memory.
1438 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1441 node
= numa_node_id();
1443 /* 1) create the cache_cache */
1444 INIT_LIST_HEAD(&cache_chain
);
1445 list_add(&cache_cache
.next
, &cache_chain
);
1446 cache_cache
.colour_off
= cache_line_size();
1447 cache_cache
.array
[smp_processor_id()] = &initarray_cache
.cache
;
1448 cache_cache
.nodelists
[node
] = &initkmem_list3
[CACHE_CACHE
];
1451 * struct kmem_cache size depends on nr_node_ids, which
1452 * can be less than MAX_NUMNODES.
1454 cache_cache
.buffer_size
= offsetof(struct kmem_cache
, nodelists
) +
1455 nr_node_ids
* sizeof(struct kmem_list3
*);
1457 cache_cache
.obj_size
= cache_cache
.buffer_size
;
1459 cache_cache
.buffer_size
= ALIGN(cache_cache
.buffer_size
,
1461 cache_cache
.reciprocal_buffer_size
=
1462 reciprocal_value(cache_cache
.buffer_size
);
1464 for (order
= 0; order
< MAX_ORDER
; order
++) {
1465 cache_estimate(order
, cache_cache
.buffer_size
,
1466 cache_line_size(), 0, &left_over
, &cache_cache
.num
);
1467 if (cache_cache
.num
)
1470 BUG_ON(!cache_cache
.num
);
1471 cache_cache
.gfporder
= order
;
1472 cache_cache
.colour
= left_over
/ cache_cache
.colour_off
;
1473 cache_cache
.slab_size
= ALIGN(cache_cache
.num
* sizeof(kmem_bufctl_t
) +
1474 sizeof(struct slab
), cache_line_size());
1476 /* 2+3) create the kmalloc caches */
1477 sizes
= malloc_sizes
;
1478 names
= cache_names
;
1481 * Initialize the caches that provide memory for the array cache and the
1482 * kmem_list3 structures first. Without this, further allocations will
1486 sizes
[INDEX_AC
].cs_cachep
= kmem_cache_create(names
[INDEX_AC
].name
,
1487 sizes
[INDEX_AC
].cs_size
,
1488 ARCH_KMALLOC_MINALIGN
,
1489 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1492 if (INDEX_AC
!= INDEX_L3
) {
1493 sizes
[INDEX_L3
].cs_cachep
=
1494 kmem_cache_create(names
[INDEX_L3
].name
,
1495 sizes
[INDEX_L3
].cs_size
,
1496 ARCH_KMALLOC_MINALIGN
,
1497 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1501 slab_early_init
= 0;
1503 while (sizes
->cs_size
!= ULONG_MAX
) {
1505 * For performance, all the general caches are L1 aligned.
1506 * This should be particularly beneficial on SMP boxes, as it
1507 * eliminates "false sharing".
1508 * Note for systems short on memory removing the alignment will
1509 * allow tighter packing of the smaller caches.
1511 if (!sizes
->cs_cachep
) {
1512 sizes
->cs_cachep
= kmem_cache_create(names
->name
,
1514 ARCH_KMALLOC_MINALIGN
,
1515 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1518 #ifdef CONFIG_ZONE_DMA
1519 sizes
->cs_dmacachep
= kmem_cache_create(
1522 ARCH_KMALLOC_MINALIGN
,
1523 ARCH_KMALLOC_FLAGS
|SLAB_CACHE_DMA
|
1530 /* 4) Replace the bootstrap head arrays */
1532 struct array_cache
*ptr
;
1534 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_KERNEL
);
1536 local_irq_disable();
1537 BUG_ON(cpu_cache_get(&cache_cache
) != &initarray_cache
.cache
);
1538 memcpy(ptr
, cpu_cache_get(&cache_cache
),
1539 sizeof(struct arraycache_init
));
1541 * Do not assume that spinlocks can be initialized via memcpy:
1543 spin_lock_init(&ptr
->lock
);
1545 cache_cache
.array
[smp_processor_id()] = ptr
;
1548 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_KERNEL
);
1550 local_irq_disable();
1551 BUG_ON(cpu_cache_get(malloc_sizes
[INDEX_AC
].cs_cachep
)
1552 != &initarray_generic
.cache
);
1553 memcpy(ptr
, cpu_cache_get(malloc_sizes
[INDEX_AC
].cs_cachep
),
1554 sizeof(struct arraycache_init
));
1556 * Do not assume that spinlocks can be initialized via memcpy:
1558 spin_lock_init(&ptr
->lock
);
1560 malloc_sizes
[INDEX_AC
].cs_cachep
->array
[smp_processor_id()] =
1564 /* 5) Replace the bootstrap kmem_list3's */
1568 /* Replace the static kmem_list3 structures for the boot cpu */
1569 init_list(&cache_cache
, &initkmem_list3
[CACHE_CACHE
], node
);
1571 for_each_node_state(nid
, N_NORMAL_MEMORY
) {
1572 init_list(malloc_sizes
[INDEX_AC
].cs_cachep
,
1573 &initkmem_list3
[SIZE_AC
+ nid
], nid
);
1575 if (INDEX_AC
!= INDEX_L3
) {
1576 init_list(malloc_sizes
[INDEX_L3
].cs_cachep
,
1577 &initkmem_list3
[SIZE_L3
+ nid
], nid
);
1582 /* 6) resize the head arrays to their final sizes */
1584 struct kmem_cache
*cachep
;
1585 mutex_lock(&cache_chain_mutex
);
1586 list_for_each_entry(cachep
, &cache_chain
, next
)
1587 if (enable_cpucache(cachep
))
1589 mutex_unlock(&cache_chain_mutex
);
1592 /* Annotate slab for lockdep -- annotate the malloc caches */
1597 g_cpucache_up
= FULL
;
1600 * Register a cpu startup notifier callback that initializes
1601 * cpu_cache_get for all new cpus
1603 register_cpu_notifier(&cpucache_notifier
);
1606 * The reap timers are started later, with a module init call: That part
1607 * of the kernel is not yet operational.
1611 static int __init
cpucache_init(void)
1616 * Register the timers that return unneeded pages to the page allocator
1618 for_each_online_cpu(cpu
)
1619 start_cpu_timer(cpu
);
1622 __initcall(cpucache_init
);
1625 * Interface to system's page allocator. No need to hold the cache-lock.
1627 * If we requested dmaable memory, we will get it. Even if we
1628 * did not request dmaable memory, we might get it, but that
1629 * would be relatively rare and ignorable.
1631 static void *kmem_getpages(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
)
1639 * Nommu uses slab's for process anonymous memory allocations, and thus
1640 * requires __GFP_COMP to properly refcount higher order allocations
1642 flags
|= __GFP_COMP
;
1645 flags
|= cachep
->gfpflags
;
1646 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1647 flags
|= __GFP_RECLAIMABLE
;
1649 page
= alloc_pages_node(nodeid
, flags
, cachep
->gfporder
);
1653 nr_pages
= (1 << cachep
->gfporder
);
1654 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1655 add_zone_page_state(page_zone(page
),
1656 NR_SLAB_RECLAIMABLE
, nr_pages
);
1658 add_zone_page_state(page_zone(page
),
1659 NR_SLAB_UNRECLAIMABLE
, nr_pages
);
1660 for (i
= 0; i
< nr_pages
; i
++)
1661 __SetPageSlab(page
+ i
);
1662 return page_address(page
);
1666 * Interface to system's page release.
1668 static void kmem_freepages(struct kmem_cache
*cachep
, void *addr
)
1670 unsigned long i
= (1 << cachep
->gfporder
);
1671 struct page
*page
= virt_to_page(addr
);
1672 const unsigned long nr_freed
= i
;
1674 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1675 sub_zone_page_state(page_zone(page
),
1676 NR_SLAB_RECLAIMABLE
, nr_freed
);
1678 sub_zone_page_state(page_zone(page
),
1679 NR_SLAB_UNRECLAIMABLE
, nr_freed
);
1681 BUG_ON(!PageSlab(page
));
1682 __ClearPageSlab(page
);
1685 if (current
->reclaim_state
)
1686 current
->reclaim_state
->reclaimed_slab
+= nr_freed
;
1687 free_pages((unsigned long)addr
, cachep
->gfporder
);
1690 static void kmem_rcu_free(struct rcu_head
*head
)
1692 struct slab_rcu
*slab_rcu
= (struct slab_rcu
*)head
;
1693 struct kmem_cache
*cachep
= slab_rcu
->cachep
;
1695 kmem_freepages(cachep
, slab_rcu
->addr
);
1696 if (OFF_SLAB(cachep
))
1697 kmem_cache_free(cachep
->slabp_cache
, slab_rcu
);
1702 #ifdef CONFIG_DEBUG_PAGEALLOC
1703 static void store_stackinfo(struct kmem_cache
*cachep
, unsigned long *addr
,
1704 unsigned long caller
)
1706 int size
= obj_size(cachep
);
1708 addr
= (unsigned long *)&((char *)addr
)[obj_offset(cachep
)];
1710 if (size
< 5 * sizeof(unsigned long))
1713 *addr
++ = 0x12345678;
1715 *addr
++ = smp_processor_id();
1716 size
-= 3 * sizeof(unsigned long);
1718 unsigned long *sptr
= &caller
;
1719 unsigned long svalue
;
1721 while (!kstack_end(sptr
)) {
1723 if (kernel_text_address(svalue
)) {
1725 size
-= sizeof(unsigned long);
1726 if (size
<= sizeof(unsigned long))
1732 *addr
++ = 0x87654321;
1736 static void poison_obj(struct kmem_cache
*cachep
, void *addr
, unsigned char val
)
1738 int size
= obj_size(cachep
);
1739 addr
= &((char *)addr
)[obj_offset(cachep
)];
1741 memset(addr
, val
, size
);
1742 *(unsigned char *)(addr
+ size
- 1) = POISON_END
;
1745 static void dump_line(char *data
, int offset
, int limit
)
1748 unsigned char error
= 0;
1751 printk(KERN_ERR
"%03x:", offset
);
1752 for (i
= 0; i
< limit
; i
++) {
1753 if (data
[offset
+ i
] != POISON_FREE
) {
1754 error
= data
[offset
+ i
];
1757 printk(" %02x", (unsigned char)data
[offset
+ i
]);
1761 if (bad_count
== 1) {
1762 error
^= POISON_FREE
;
1763 if (!(error
& (error
- 1))) {
1764 printk(KERN_ERR
"Single bit error detected. Probably "
1767 printk(KERN_ERR
"Run memtest86+ or a similar memory "
1770 printk(KERN_ERR
"Run a memory test tool.\n");
1779 static void print_objinfo(struct kmem_cache
*cachep
, void *objp
, int lines
)
1784 if (cachep
->flags
& SLAB_RED_ZONE
) {
1785 printk(KERN_ERR
"Redzone: 0x%llx/0x%llx.\n",
1786 *dbg_redzone1(cachep
, objp
),
1787 *dbg_redzone2(cachep
, objp
));
1790 if (cachep
->flags
& SLAB_STORE_USER
) {
1791 printk(KERN_ERR
"Last user: [<%p>]",
1792 *dbg_userword(cachep
, objp
));
1793 print_symbol("(%s)",
1794 (unsigned long)*dbg_userword(cachep
, objp
));
1797 realobj
= (char *)objp
+ obj_offset(cachep
);
1798 size
= obj_size(cachep
);
1799 for (i
= 0; i
< size
&& lines
; i
+= 16, lines
--) {
1802 if (i
+ limit
> size
)
1804 dump_line(realobj
, i
, limit
);
1808 static void check_poison_obj(struct kmem_cache
*cachep
, void *objp
)
1814 realobj
= (char *)objp
+ obj_offset(cachep
);
1815 size
= obj_size(cachep
);
1817 for (i
= 0; i
< size
; i
++) {
1818 char exp
= POISON_FREE
;
1821 if (realobj
[i
] != exp
) {
1827 "Slab corruption: %s start=%p, len=%d\n",
1828 cachep
->name
, realobj
, size
);
1829 print_objinfo(cachep
, objp
, 0);
1831 /* Hexdump the affected line */
1834 if (i
+ limit
> size
)
1836 dump_line(realobj
, i
, limit
);
1839 /* Limit to 5 lines */
1845 /* Print some data about the neighboring objects, if they
1848 struct slab
*slabp
= virt_to_slab(objp
);
1851 objnr
= obj_to_index(cachep
, slabp
, objp
);
1853 objp
= index_to_obj(cachep
, slabp
, objnr
- 1);
1854 realobj
= (char *)objp
+ obj_offset(cachep
);
1855 printk(KERN_ERR
"Prev obj: start=%p, len=%d\n",
1857 print_objinfo(cachep
, objp
, 2);
1859 if (objnr
+ 1 < cachep
->num
) {
1860 objp
= index_to_obj(cachep
, slabp
, objnr
+ 1);
1861 realobj
= (char *)objp
+ obj_offset(cachep
);
1862 printk(KERN_ERR
"Next obj: start=%p, len=%d\n",
1864 print_objinfo(cachep
, objp
, 2);
1872 * slab_destroy_objs - destroy a slab and its objects
1873 * @cachep: cache pointer being destroyed
1874 * @slabp: slab pointer being destroyed
1876 * Call the registered destructor for each object in a slab that is being
1879 static void slab_destroy_objs(struct kmem_cache
*cachep
, struct slab
*slabp
)
1882 for (i
= 0; i
< cachep
->num
; i
++) {
1883 void *objp
= index_to_obj(cachep
, slabp
, i
);
1885 if (cachep
->flags
& SLAB_POISON
) {
1886 #ifdef CONFIG_DEBUG_PAGEALLOC
1887 if (cachep
->buffer_size
% PAGE_SIZE
== 0 &&
1889 kernel_map_pages(virt_to_page(objp
),
1890 cachep
->buffer_size
/ PAGE_SIZE
, 1);
1892 check_poison_obj(cachep
, objp
);
1894 check_poison_obj(cachep
, objp
);
1897 if (cachep
->flags
& SLAB_RED_ZONE
) {
1898 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
1899 slab_error(cachep
, "start of a freed object "
1901 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
1902 slab_error(cachep
, "end of a freed object "
1908 static void slab_destroy_objs(struct kmem_cache
*cachep
, struct slab
*slabp
)
1914 * slab_destroy - destroy and release all objects in a slab
1915 * @cachep: cache pointer being destroyed
1916 * @slabp: slab pointer being destroyed
1918 * Destroy all the objs in a slab, and release the mem back to the system.
1919 * Before calling the slab must have been unlinked from the cache. The
1920 * cache-lock is not held/needed.
1922 static void slab_destroy(struct kmem_cache
*cachep
, struct slab
*slabp
)
1924 void *addr
= slabp
->s_mem
- slabp
->colouroff
;
1926 slab_destroy_objs(cachep
, slabp
);
1927 if (unlikely(cachep
->flags
& SLAB_DESTROY_BY_RCU
)) {
1928 struct slab_rcu
*slab_rcu
;
1930 slab_rcu
= (struct slab_rcu
*)slabp
;
1931 slab_rcu
->cachep
= cachep
;
1932 slab_rcu
->addr
= addr
;
1933 call_rcu(&slab_rcu
->head
, kmem_rcu_free
);
1935 kmem_freepages(cachep
, addr
);
1936 if (OFF_SLAB(cachep
))
1937 kmem_cache_free(cachep
->slabp_cache
, slabp
);
1942 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1943 * size of kmem_list3.
1945 static void __init
set_up_list3s(struct kmem_cache
*cachep
, int index
)
1949 for_each_node_state(node
, N_NORMAL_MEMORY
) {
1950 cachep
->nodelists
[node
] = &initkmem_list3
[index
+ node
];
1951 cachep
->nodelists
[node
]->next_reap
= jiffies
+
1953 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
1957 static void __kmem_cache_destroy(struct kmem_cache
*cachep
)
1960 struct kmem_list3
*l3
;
1962 for_each_online_cpu(i
)
1963 kfree(cachep
->array
[i
]);
1965 /* NUMA: free the list3 structures */
1966 for_each_online_node(i
) {
1967 l3
= cachep
->nodelists
[i
];
1970 free_alien_cache(l3
->alien
);
1974 kmem_cache_free(&cache_cache
, cachep
);
1979 * calculate_slab_order - calculate size (page order) of slabs
1980 * @cachep: pointer to the cache that is being created
1981 * @size: size of objects to be created in this cache.
1982 * @align: required alignment for the objects.
1983 * @flags: slab allocation flags
1985 * Also calculates the number of objects per slab.
1987 * This could be made much more intelligent. For now, try to avoid using
1988 * high order pages for slabs. When the gfp() functions are more friendly
1989 * towards high-order requests, this should be changed.
1991 static size_t calculate_slab_order(struct kmem_cache
*cachep
,
1992 size_t size
, size_t align
, unsigned long flags
)
1994 unsigned long offslab_limit
;
1995 size_t left_over
= 0;
1998 for (gfporder
= 0; gfporder
<= KMALLOC_MAX_ORDER
; gfporder
++) {
2002 cache_estimate(gfporder
, size
, align
, flags
, &remainder
, &num
);
2006 if (flags
& CFLGS_OFF_SLAB
) {
2008 * Max number of objs-per-slab for caches which
2009 * use off-slab slabs. Needed to avoid a possible
2010 * looping condition in cache_grow().
2012 offslab_limit
= size
- sizeof(struct slab
);
2013 offslab_limit
/= sizeof(kmem_bufctl_t
);
2015 if (num
> offslab_limit
)
2019 /* Found something acceptable - save it away */
2021 cachep
->gfporder
= gfporder
;
2022 left_over
= remainder
;
2025 * A VFS-reclaimable slab tends to have most allocations
2026 * as GFP_NOFS and we really don't want to have to be allocating
2027 * higher-order pages when we are unable to shrink dcache.
2029 if (flags
& SLAB_RECLAIM_ACCOUNT
)
2033 * Large number of objects is good, but very large slabs are
2034 * currently bad for the gfp()s.
2036 if (gfporder
>= slab_break_gfp_order
)
2040 * Acceptable internal fragmentation?
2042 if (left_over
* 8 <= (PAGE_SIZE
<< gfporder
))
2048 static int __init_refok
setup_cpu_cache(struct kmem_cache
*cachep
)
2050 if (g_cpucache_up
== FULL
)
2051 return enable_cpucache(cachep
);
2053 if (g_cpucache_up
== NONE
) {
2055 * Note: the first kmem_cache_create must create the cache
2056 * that's used by kmalloc(24), otherwise the creation of
2057 * further caches will BUG().
2059 cachep
->array
[smp_processor_id()] = &initarray_generic
.cache
;
2062 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2063 * the first cache, then we need to set up all its list3s,
2064 * otherwise the creation of further caches will BUG().
2066 set_up_list3s(cachep
, SIZE_AC
);
2067 if (INDEX_AC
== INDEX_L3
)
2068 g_cpucache_up
= PARTIAL_L3
;
2070 g_cpucache_up
= PARTIAL_AC
;
2072 cachep
->array
[smp_processor_id()] =
2073 kmalloc(sizeof(struct arraycache_init
), GFP_KERNEL
);
2075 if (g_cpucache_up
== PARTIAL_AC
) {
2076 set_up_list3s(cachep
, SIZE_L3
);
2077 g_cpucache_up
= PARTIAL_L3
;
2080 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2081 cachep
->nodelists
[node
] =
2082 kmalloc_node(sizeof(struct kmem_list3
),
2084 BUG_ON(!cachep
->nodelists
[node
]);
2085 kmem_list3_init(cachep
->nodelists
[node
]);
2089 cachep
->nodelists
[numa_node_id()]->next_reap
=
2090 jiffies
+ REAPTIMEOUT_LIST3
+
2091 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
2093 cpu_cache_get(cachep
)->avail
= 0;
2094 cpu_cache_get(cachep
)->limit
= BOOT_CPUCACHE_ENTRIES
;
2095 cpu_cache_get(cachep
)->batchcount
= 1;
2096 cpu_cache_get(cachep
)->touched
= 0;
2097 cachep
->batchcount
= 1;
2098 cachep
->limit
= BOOT_CPUCACHE_ENTRIES
;
2103 * kmem_cache_create - Create a cache.
2104 * @name: A string which is used in /proc/slabinfo to identify this cache.
2105 * @size: The size of objects to be created in this cache.
2106 * @align: The required alignment for the objects.
2107 * @flags: SLAB flags
2108 * @ctor: A constructor for the objects.
2110 * Returns a ptr to the cache on success, NULL on failure.
2111 * Cannot be called within a int, but can be interrupted.
2112 * The @ctor is run when new pages are allocated by the cache.
2114 * @name must be valid until the cache is destroyed. This implies that
2115 * the module calling this has to destroy the cache before getting unloaded.
2119 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2120 * to catch references to uninitialised memory.
2122 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2123 * for buffer overruns.
2125 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2126 * cacheline. This can be beneficial if you're counting cycles as closely
2130 kmem_cache_create (const char *name
, size_t size
, size_t align
,
2131 unsigned long flags
,
2132 void (*ctor
)(struct kmem_cache
*, void *))
2134 size_t left_over
, slab_size
, ralign
;
2135 struct kmem_cache
*cachep
= NULL
, *pc
;
2138 * Sanity checks... these are all serious usage bugs.
2140 if (!name
|| in_interrupt() || (size
< BYTES_PER_WORD
) ||
2141 size
> KMALLOC_MAX_SIZE
) {
2142 printk(KERN_ERR
"%s: Early error in slab %s\n", __FUNCTION__
,
2148 * We use cache_chain_mutex to ensure a consistent view of
2149 * cpu_online_map as well. Please see cpuup_callback
2151 mutex_lock(&cache_chain_mutex
);
2153 list_for_each_entry(pc
, &cache_chain
, next
) {
2158 * This happens when the module gets unloaded and doesn't
2159 * destroy its slab cache and no-one else reuses the vmalloc
2160 * area of the module. Print a warning.
2162 res
= probe_kernel_address(pc
->name
, tmp
);
2165 "SLAB: cache with size %d has lost its name\n",
2170 if (!strcmp(pc
->name
, name
)) {
2172 "kmem_cache_create: duplicate cache %s\n", name
);
2179 WARN_ON(strchr(name
, ' ')); /* It confuses parsers */
2182 * Enable redzoning and last user accounting, except for caches with
2183 * large objects, if the increased size would increase the object size
2184 * above the next power of two: caches with object sizes just above a
2185 * power of two have a significant amount of internal fragmentation.
2187 if (size
< 4096 || fls(size
- 1) == fls(size
-1 + REDZONE_ALIGN
+
2188 2 * sizeof(unsigned long long)))
2189 flags
|= SLAB_RED_ZONE
| SLAB_STORE_USER
;
2190 if (!(flags
& SLAB_DESTROY_BY_RCU
))
2191 flags
|= SLAB_POISON
;
2193 if (flags
& SLAB_DESTROY_BY_RCU
)
2194 BUG_ON(flags
& SLAB_POISON
);
2197 * Always checks flags, a caller might be expecting debug support which
2200 BUG_ON(flags
& ~CREATE_MASK
);
2203 * Check that size is in terms of words. This is needed to avoid
2204 * unaligned accesses for some archs when redzoning is used, and makes
2205 * sure any on-slab bufctl's are also correctly aligned.
2207 if (size
& (BYTES_PER_WORD
- 1)) {
2208 size
+= (BYTES_PER_WORD
- 1);
2209 size
&= ~(BYTES_PER_WORD
- 1);
2212 /* calculate the final buffer alignment: */
2214 /* 1) arch recommendation: can be overridden for debug */
2215 if (flags
& SLAB_HWCACHE_ALIGN
) {
2217 * Default alignment: as specified by the arch code. Except if
2218 * an object is really small, then squeeze multiple objects into
2221 ralign
= cache_line_size();
2222 while (size
<= ralign
/ 2)
2225 ralign
= BYTES_PER_WORD
;
2229 * Redzoning and user store require word alignment or possibly larger.
2230 * Note this will be overridden by architecture or caller mandated
2231 * alignment if either is greater than BYTES_PER_WORD.
2233 if (flags
& SLAB_STORE_USER
)
2234 ralign
= BYTES_PER_WORD
;
2236 if (flags
& SLAB_RED_ZONE
) {
2237 ralign
= REDZONE_ALIGN
;
2238 /* If redzoning, ensure that the second redzone is suitably
2239 * aligned, by adjusting the object size accordingly. */
2240 size
+= REDZONE_ALIGN
- 1;
2241 size
&= ~(REDZONE_ALIGN
- 1);
2244 /* 2) arch mandated alignment */
2245 if (ralign
< ARCH_SLAB_MINALIGN
) {
2246 ralign
= ARCH_SLAB_MINALIGN
;
2248 /* 3) caller mandated alignment */
2249 if (ralign
< align
) {
2252 /* disable debug if necessary */
2253 if (ralign
> __alignof__(unsigned long long))
2254 flags
&= ~(SLAB_RED_ZONE
| SLAB_STORE_USER
);
2260 /* Get cache's description obj. */
2261 cachep
= kmem_cache_zalloc(&cache_cache
, GFP_KERNEL
);
2266 cachep
->obj_size
= size
;
2269 * Both debugging options require word-alignment which is calculated
2272 if (flags
& SLAB_RED_ZONE
) {
2273 /* add space for red zone words */
2274 cachep
->obj_offset
+= sizeof(unsigned long long);
2275 size
+= 2 * sizeof(unsigned long long);
2277 if (flags
& SLAB_STORE_USER
) {
2278 /* user store requires one word storage behind the end of
2279 * the real object. But if the second red zone needs to be
2280 * aligned to 64 bits, we must allow that much space.
2282 if (flags
& SLAB_RED_ZONE
)
2283 size
+= REDZONE_ALIGN
;
2285 size
+= BYTES_PER_WORD
;
2287 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2288 if (size
>= malloc_sizes
[INDEX_L3
+ 1].cs_size
2289 && cachep
->obj_size
> cache_line_size() && size
< PAGE_SIZE
) {
2290 cachep
->obj_offset
+= PAGE_SIZE
- size
;
2297 * Determine if the slab management is 'on' or 'off' slab.
2298 * (bootstrapping cannot cope with offslab caches so don't do
2301 if ((size
>= (PAGE_SIZE
>> 3)) && !slab_early_init
)
2303 * Size is large, assume best to place the slab management obj
2304 * off-slab (should allow better packing of objs).
2306 flags
|= CFLGS_OFF_SLAB
;
2308 size
= ALIGN(size
, align
);
2310 left_over
= calculate_slab_order(cachep
, size
, align
, flags
);
2314 "kmem_cache_create: couldn't create cache %s.\n", name
);
2315 kmem_cache_free(&cache_cache
, cachep
);
2319 slab_size
= ALIGN(cachep
->num
* sizeof(kmem_bufctl_t
)
2320 + sizeof(struct slab
), align
);
2323 * If the slab has been placed off-slab, and we have enough space then
2324 * move it on-slab. This is at the expense of any extra colouring.
2326 if (flags
& CFLGS_OFF_SLAB
&& left_over
>= slab_size
) {
2327 flags
&= ~CFLGS_OFF_SLAB
;
2328 left_over
-= slab_size
;
2331 if (flags
& CFLGS_OFF_SLAB
) {
2332 /* really off slab. No need for manual alignment */
2334 cachep
->num
* sizeof(kmem_bufctl_t
) + sizeof(struct slab
);
2337 cachep
->colour_off
= cache_line_size();
2338 /* Offset must be a multiple of the alignment. */
2339 if (cachep
->colour_off
< align
)
2340 cachep
->colour_off
= align
;
2341 cachep
->colour
= left_over
/ cachep
->colour_off
;
2342 cachep
->slab_size
= slab_size
;
2343 cachep
->flags
= flags
;
2344 cachep
->gfpflags
= 0;
2345 if (CONFIG_ZONE_DMA_FLAG
&& (flags
& SLAB_CACHE_DMA
))
2346 cachep
->gfpflags
|= GFP_DMA
;
2347 cachep
->buffer_size
= size
;
2348 cachep
->reciprocal_buffer_size
= reciprocal_value(size
);
2350 if (flags
& CFLGS_OFF_SLAB
) {
2351 cachep
->slabp_cache
= kmem_find_general_cachep(slab_size
, 0u);
2353 * This is a possibility for one of the malloc_sizes caches.
2354 * But since we go off slab only for object size greater than
2355 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2356 * this should not happen at all.
2357 * But leave a BUG_ON for some lucky dude.
2359 BUG_ON(ZERO_OR_NULL_PTR(cachep
->slabp_cache
));
2361 cachep
->ctor
= ctor
;
2362 cachep
->name
= name
;
2364 if (setup_cpu_cache(cachep
)) {
2365 __kmem_cache_destroy(cachep
);
2370 /* cache setup completed, link it into the list */
2371 list_add(&cachep
->next
, &cache_chain
);
2373 if (!cachep
&& (flags
& SLAB_PANIC
))
2374 panic("kmem_cache_create(): failed to create slab `%s'\n",
2376 mutex_unlock(&cache_chain_mutex
);
2379 EXPORT_SYMBOL(kmem_cache_create
);
2382 static void check_irq_off(void)
2384 BUG_ON(!irqs_disabled());
2387 static void check_irq_on(void)
2389 BUG_ON(irqs_disabled());
2392 static void check_spinlock_acquired(struct kmem_cache
*cachep
)
2396 assert_spin_locked(&cachep
->nodelists
[numa_node_id()]->list_lock
);
2400 static void check_spinlock_acquired_node(struct kmem_cache
*cachep
, int node
)
2404 assert_spin_locked(&cachep
->nodelists
[node
]->list_lock
);
2409 #define check_irq_off() do { } while(0)
2410 #define check_irq_on() do { } while(0)
2411 #define check_spinlock_acquired(x) do { } while(0)
2412 #define check_spinlock_acquired_node(x, y) do { } while(0)
2415 static void drain_array(struct kmem_cache
*cachep
, struct kmem_list3
*l3
,
2416 struct array_cache
*ac
,
2417 int force
, int node
);
2419 static void do_drain(void *arg
)
2421 struct kmem_cache
*cachep
= arg
;
2422 struct array_cache
*ac
;
2423 int node
= numa_node_id();
2426 ac
= cpu_cache_get(cachep
);
2427 spin_lock(&cachep
->nodelists
[node
]->list_lock
);
2428 free_block(cachep
, ac
->entry
, ac
->avail
, node
);
2429 spin_unlock(&cachep
->nodelists
[node
]->list_lock
);
2433 static void drain_cpu_caches(struct kmem_cache
*cachep
)
2435 struct kmem_list3
*l3
;
2438 on_each_cpu(do_drain
, cachep
, 1, 1);
2440 for_each_online_node(node
) {
2441 l3
= cachep
->nodelists
[node
];
2442 if (l3
&& l3
->alien
)
2443 drain_alien_cache(cachep
, l3
->alien
);
2446 for_each_online_node(node
) {
2447 l3
= cachep
->nodelists
[node
];
2449 drain_array(cachep
, l3
, l3
->shared
, 1, node
);
2454 * Remove slabs from the list of free slabs.
2455 * Specify the number of slabs to drain in tofree.
2457 * Returns the actual number of slabs released.
2459 static int drain_freelist(struct kmem_cache
*cache
,
2460 struct kmem_list3
*l3
, int tofree
)
2462 struct list_head
*p
;
2467 while (nr_freed
< tofree
&& !list_empty(&l3
->slabs_free
)) {
2469 spin_lock_irq(&l3
->list_lock
);
2470 p
= l3
->slabs_free
.prev
;
2471 if (p
== &l3
->slabs_free
) {
2472 spin_unlock_irq(&l3
->list_lock
);
2476 slabp
= list_entry(p
, struct slab
, list
);
2478 BUG_ON(slabp
->inuse
);
2480 list_del(&slabp
->list
);
2482 * Safe to drop the lock. The slab is no longer linked
2485 l3
->free_objects
-= cache
->num
;
2486 spin_unlock_irq(&l3
->list_lock
);
2487 slab_destroy(cache
, slabp
);
2494 /* Called with cache_chain_mutex held to protect against cpu hotplug */
2495 static int __cache_shrink(struct kmem_cache
*cachep
)
2498 struct kmem_list3
*l3
;
2500 drain_cpu_caches(cachep
);
2503 for_each_online_node(i
) {
2504 l3
= cachep
->nodelists
[i
];
2508 drain_freelist(cachep
, l3
, l3
->free_objects
);
2510 ret
+= !list_empty(&l3
->slabs_full
) ||
2511 !list_empty(&l3
->slabs_partial
);
2513 return (ret
? 1 : 0);
2517 * kmem_cache_shrink - Shrink a cache.
2518 * @cachep: The cache to shrink.
2520 * Releases as many slabs as possible for a cache.
2521 * To help debugging, a zero exit status indicates all slabs were released.
2523 int kmem_cache_shrink(struct kmem_cache
*cachep
)
2526 BUG_ON(!cachep
|| in_interrupt());
2528 mutex_lock(&cache_chain_mutex
);
2529 ret
= __cache_shrink(cachep
);
2530 mutex_unlock(&cache_chain_mutex
);
2533 EXPORT_SYMBOL(kmem_cache_shrink
);
2536 * kmem_cache_destroy - delete a cache
2537 * @cachep: the cache to destroy
2539 * Remove a &struct kmem_cache object from the slab cache.
2541 * It is expected this function will be called by a module when it is
2542 * unloaded. This will remove the cache completely, and avoid a duplicate
2543 * cache being allocated each time a module is loaded and unloaded, if the
2544 * module doesn't have persistent in-kernel storage across loads and unloads.
2546 * The cache must be empty before calling this function.
2548 * The caller must guarantee that noone will allocate memory from the cache
2549 * during the kmem_cache_destroy().
2551 void kmem_cache_destroy(struct kmem_cache
*cachep
)
2553 BUG_ON(!cachep
|| in_interrupt());
2555 /* Find the cache in the chain of caches. */
2556 mutex_lock(&cache_chain_mutex
);
2558 * the chain is never empty, cache_cache is never destroyed
2560 list_del(&cachep
->next
);
2561 if (__cache_shrink(cachep
)) {
2562 slab_error(cachep
, "Can't free all objects");
2563 list_add(&cachep
->next
, &cache_chain
);
2564 mutex_unlock(&cache_chain_mutex
);
2568 if (unlikely(cachep
->flags
& SLAB_DESTROY_BY_RCU
))
2571 __kmem_cache_destroy(cachep
);
2572 mutex_unlock(&cache_chain_mutex
);
2574 EXPORT_SYMBOL(kmem_cache_destroy
);
2577 * Get the memory for a slab management obj.
2578 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2579 * always come from malloc_sizes caches. The slab descriptor cannot
2580 * come from the same cache which is getting created because,
2581 * when we are searching for an appropriate cache for these
2582 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2583 * If we are creating a malloc_sizes cache here it would not be visible to
2584 * kmem_find_general_cachep till the initialization is complete.
2585 * Hence we cannot have slabp_cache same as the original cache.
2587 static struct slab
*alloc_slabmgmt(struct kmem_cache
*cachep
, void *objp
,
2588 int colour_off
, gfp_t local_flags
,
2593 if (OFF_SLAB(cachep
)) {
2594 /* Slab management obj is off-slab. */
2595 slabp
= kmem_cache_alloc_node(cachep
->slabp_cache
,
2596 local_flags
& ~GFP_THISNODE
, nodeid
);
2600 slabp
= objp
+ colour_off
;
2601 colour_off
+= cachep
->slab_size
;
2604 slabp
->colouroff
= colour_off
;
2605 slabp
->s_mem
= objp
+ colour_off
;
2606 slabp
->nodeid
= nodeid
;
2610 static inline kmem_bufctl_t
*slab_bufctl(struct slab
*slabp
)
2612 return (kmem_bufctl_t
*) (slabp
+ 1);
2615 static void cache_init_objs(struct kmem_cache
*cachep
,
2620 for (i
= 0; i
< cachep
->num
; i
++) {
2621 void *objp
= index_to_obj(cachep
, slabp
, i
);
2623 /* need to poison the objs? */
2624 if (cachep
->flags
& SLAB_POISON
)
2625 poison_obj(cachep
, objp
, POISON_FREE
);
2626 if (cachep
->flags
& SLAB_STORE_USER
)
2627 *dbg_userword(cachep
, objp
) = NULL
;
2629 if (cachep
->flags
& SLAB_RED_ZONE
) {
2630 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
2631 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
2634 * Constructors are not allowed to allocate memory from the same
2635 * cache which they are a constructor for. Otherwise, deadlock.
2636 * They must also be threaded.
2638 if (cachep
->ctor
&& !(cachep
->flags
& SLAB_POISON
))
2639 cachep
->ctor(cachep
, objp
+ obj_offset(cachep
));
2641 if (cachep
->flags
& SLAB_RED_ZONE
) {
2642 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
2643 slab_error(cachep
, "constructor overwrote the"
2644 " end of an object");
2645 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
2646 slab_error(cachep
, "constructor overwrote the"
2647 " start of an object");
2649 if ((cachep
->buffer_size
% PAGE_SIZE
) == 0 &&
2650 OFF_SLAB(cachep
) && cachep
->flags
& SLAB_POISON
)
2651 kernel_map_pages(virt_to_page(objp
),
2652 cachep
->buffer_size
/ PAGE_SIZE
, 0);
2655 cachep
->ctor(cachep
, objp
);
2657 slab_bufctl(slabp
)[i
] = i
+ 1;
2659 slab_bufctl(slabp
)[i
- 1] = BUFCTL_END
;
2663 static void kmem_flagcheck(struct kmem_cache
*cachep
, gfp_t flags
)
2665 if (CONFIG_ZONE_DMA_FLAG
) {
2666 if (flags
& GFP_DMA
)
2667 BUG_ON(!(cachep
->gfpflags
& GFP_DMA
));
2669 BUG_ON(cachep
->gfpflags
& GFP_DMA
);
2673 static void *slab_get_obj(struct kmem_cache
*cachep
, struct slab
*slabp
,
2676 void *objp
= index_to_obj(cachep
, slabp
, slabp
->free
);
2680 next
= slab_bufctl(slabp
)[slabp
->free
];
2682 slab_bufctl(slabp
)[slabp
->free
] = BUFCTL_FREE
;
2683 WARN_ON(slabp
->nodeid
!= nodeid
);
2690 static void slab_put_obj(struct kmem_cache
*cachep
, struct slab
*slabp
,
2691 void *objp
, int nodeid
)
2693 unsigned int objnr
= obj_to_index(cachep
, slabp
, objp
);
2696 /* Verify that the slab belongs to the intended node */
2697 WARN_ON(slabp
->nodeid
!= nodeid
);
2699 if (slab_bufctl(slabp
)[objnr
] + 1 <= SLAB_LIMIT
+ 1) {
2700 printk(KERN_ERR
"slab: double free detected in cache "
2701 "'%s', objp %p\n", cachep
->name
, objp
);
2705 slab_bufctl(slabp
)[objnr
] = slabp
->free
;
2706 slabp
->free
= objnr
;
2711 * Map pages beginning at addr to the given cache and slab. This is required
2712 * for the slab allocator to be able to lookup the cache and slab of a
2713 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2715 static void slab_map_pages(struct kmem_cache
*cache
, struct slab
*slab
,
2721 page
= virt_to_page(addr
);
2724 if (likely(!PageCompound(page
)))
2725 nr_pages
<<= cache
->gfporder
;
2728 page_set_cache(page
, cache
);
2729 page_set_slab(page
, slab
);
2731 } while (--nr_pages
);
2735 * Grow (by 1) the number of slabs within a cache. This is called by
2736 * kmem_cache_alloc() when there are no active objs left in a cache.
2738 static int cache_grow(struct kmem_cache
*cachep
,
2739 gfp_t flags
, int nodeid
, void *objp
)
2744 struct kmem_list3
*l3
;
2747 * Be lazy and only check for valid flags here, keeping it out of the
2748 * critical path in kmem_cache_alloc().
2750 BUG_ON(flags
& GFP_SLAB_BUG_MASK
);
2751 local_flags
= flags
& (GFP_CONSTRAINT_MASK
|GFP_RECLAIM_MASK
);
2753 /* Take the l3 list lock to change the colour_next on this node */
2755 l3
= cachep
->nodelists
[nodeid
];
2756 spin_lock(&l3
->list_lock
);
2758 /* Get colour for the slab, and cal the next value. */
2759 offset
= l3
->colour_next
;
2761 if (l3
->colour_next
>= cachep
->colour
)
2762 l3
->colour_next
= 0;
2763 spin_unlock(&l3
->list_lock
);
2765 offset
*= cachep
->colour_off
;
2767 if (local_flags
& __GFP_WAIT
)
2771 * The test for missing atomic flag is performed here, rather than
2772 * the more obvious place, simply to reduce the critical path length
2773 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2774 * will eventually be caught here (where it matters).
2776 kmem_flagcheck(cachep
, flags
);
2779 * Get mem for the objs. Attempt to allocate a physical page from
2783 objp
= kmem_getpages(cachep
, local_flags
, nodeid
);
2787 /* Get slab management. */
2788 slabp
= alloc_slabmgmt(cachep
, objp
, offset
,
2789 local_flags
& ~GFP_CONSTRAINT_MASK
, nodeid
);
2793 slabp
->nodeid
= nodeid
;
2794 slab_map_pages(cachep
, slabp
, objp
);
2796 cache_init_objs(cachep
, slabp
);
2798 if (local_flags
& __GFP_WAIT
)
2799 local_irq_disable();
2801 spin_lock(&l3
->list_lock
);
2803 /* Make slab active. */
2804 list_add_tail(&slabp
->list
, &(l3
->slabs_free
));
2805 STATS_INC_GROWN(cachep
);
2806 l3
->free_objects
+= cachep
->num
;
2807 spin_unlock(&l3
->list_lock
);
2810 kmem_freepages(cachep
, objp
);
2812 if (local_flags
& __GFP_WAIT
)
2813 local_irq_disable();
2820 * Perform extra freeing checks:
2821 * - detect bad pointers.
2822 * - POISON/RED_ZONE checking
2824 static void kfree_debugcheck(const void *objp
)
2826 if (!virt_addr_valid(objp
)) {
2827 printk(KERN_ERR
"kfree_debugcheck: out of range ptr %lxh.\n",
2828 (unsigned long)objp
);
2833 static inline void verify_redzone_free(struct kmem_cache
*cache
, void *obj
)
2835 unsigned long long redzone1
, redzone2
;
2837 redzone1
= *dbg_redzone1(cache
, obj
);
2838 redzone2
= *dbg_redzone2(cache
, obj
);
2843 if (redzone1
== RED_ACTIVE
&& redzone2
== RED_ACTIVE
)
2846 if (redzone1
== RED_INACTIVE
&& redzone2
== RED_INACTIVE
)
2847 slab_error(cache
, "double free detected");
2849 slab_error(cache
, "memory outside object was overwritten");
2851 printk(KERN_ERR
"%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2852 obj
, redzone1
, redzone2
);
2855 static void *cache_free_debugcheck(struct kmem_cache
*cachep
, void *objp
,
2862 objp
-= obj_offset(cachep
);
2863 kfree_debugcheck(objp
);
2864 page
= virt_to_head_page(objp
);
2866 slabp
= page_get_slab(page
);
2868 if (cachep
->flags
& SLAB_RED_ZONE
) {
2869 verify_redzone_free(cachep
, objp
);
2870 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
2871 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
2873 if (cachep
->flags
& SLAB_STORE_USER
)
2874 *dbg_userword(cachep
, objp
) = caller
;
2876 objnr
= obj_to_index(cachep
, slabp
, objp
);
2878 BUG_ON(objnr
>= cachep
->num
);
2879 BUG_ON(objp
!= index_to_obj(cachep
, slabp
, objnr
));
2881 #ifdef CONFIG_DEBUG_SLAB_LEAK
2882 slab_bufctl(slabp
)[objnr
] = BUFCTL_FREE
;
2884 if (cachep
->flags
& SLAB_POISON
) {
2885 #ifdef CONFIG_DEBUG_PAGEALLOC
2886 if ((cachep
->buffer_size
% PAGE_SIZE
)==0 && OFF_SLAB(cachep
)) {
2887 store_stackinfo(cachep
, objp
, (unsigned long)caller
);
2888 kernel_map_pages(virt_to_page(objp
),
2889 cachep
->buffer_size
/ PAGE_SIZE
, 0);
2891 poison_obj(cachep
, objp
, POISON_FREE
);
2894 poison_obj(cachep
, objp
, POISON_FREE
);
2900 static void check_slabp(struct kmem_cache
*cachep
, struct slab
*slabp
)
2905 /* Check slab's freelist to see if this obj is there. */
2906 for (i
= slabp
->free
; i
!= BUFCTL_END
; i
= slab_bufctl(slabp
)[i
]) {
2908 if (entries
> cachep
->num
|| i
>= cachep
->num
)
2911 if (entries
!= cachep
->num
- slabp
->inuse
) {
2913 printk(KERN_ERR
"slab: Internal list corruption detected in "
2914 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2915 cachep
->name
, cachep
->num
, slabp
, slabp
->inuse
);
2917 i
< sizeof(*slabp
) + cachep
->num
* sizeof(kmem_bufctl_t
);
2920 printk("\n%03x:", i
);
2921 printk(" %02x", ((unsigned char *)slabp
)[i
]);
2928 #define kfree_debugcheck(x) do { } while(0)
2929 #define cache_free_debugcheck(x,objp,z) (objp)
2930 #define check_slabp(x,y) do { } while(0)
2933 static void *cache_alloc_refill(struct kmem_cache
*cachep
, gfp_t flags
)
2936 struct kmem_list3
*l3
;
2937 struct array_cache
*ac
;
2940 node
= numa_node_id();
2943 ac
= cpu_cache_get(cachep
);
2945 batchcount
= ac
->batchcount
;
2946 if (!ac
->touched
&& batchcount
> BATCHREFILL_LIMIT
) {
2948 * If there was little recent activity on this cache, then
2949 * perform only a partial refill. Otherwise we could generate
2952 batchcount
= BATCHREFILL_LIMIT
;
2954 l3
= cachep
->nodelists
[node
];
2956 BUG_ON(ac
->avail
> 0 || !l3
);
2957 spin_lock(&l3
->list_lock
);
2959 /* See if we can refill from the shared array */
2960 if (l3
->shared
&& transfer_objects(ac
, l3
->shared
, batchcount
))
2963 while (batchcount
> 0) {
2964 struct list_head
*entry
;
2966 /* Get slab alloc is to come from. */
2967 entry
= l3
->slabs_partial
.next
;
2968 if (entry
== &l3
->slabs_partial
) {
2969 l3
->free_touched
= 1;
2970 entry
= l3
->slabs_free
.next
;
2971 if (entry
== &l3
->slabs_free
)
2975 slabp
= list_entry(entry
, struct slab
, list
);
2976 check_slabp(cachep
, slabp
);
2977 check_spinlock_acquired(cachep
);
2980 * The slab was either on partial or free list so
2981 * there must be at least one object available for
2984 BUG_ON(slabp
->inuse
< 0 || slabp
->inuse
>= cachep
->num
);
2986 while (slabp
->inuse
< cachep
->num
&& batchcount
--) {
2987 STATS_INC_ALLOCED(cachep
);
2988 STATS_INC_ACTIVE(cachep
);
2989 STATS_SET_HIGH(cachep
);
2991 ac
->entry
[ac
->avail
++] = slab_get_obj(cachep
, slabp
,
2994 check_slabp(cachep
, slabp
);
2996 /* move slabp to correct slabp list: */
2997 list_del(&slabp
->list
);
2998 if (slabp
->free
== BUFCTL_END
)
2999 list_add(&slabp
->list
, &l3
->slabs_full
);
3001 list_add(&slabp
->list
, &l3
->slabs_partial
);
3005 l3
->free_objects
-= ac
->avail
;
3007 spin_unlock(&l3
->list_lock
);
3009 if (unlikely(!ac
->avail
)) {
3011 x
= cache_grow(cachep
, flags
| GFP_THISNODE
, node
, NULL
);
3013 /* cache_grow can reenable interrupts, then ac could change. */
3014 ac
= cpu_cache_get(cachep
);
3015 if (!x
&& ac
->avail
== 0) /* no objects in sight? abort */
3018 if (!ac
->avail
) /* objects refilled by interrupt? */
3022 return ac
->entry
[--ac
->avail
];
3025 static inline void cache_alloc_debugcheck_before(struct kmem_cache
*cachep
,
3028 might_sleep_if(flags
& __GFP_WAIT
);
3030 kmem_flagcheck(cachep
, flags
);
3035 static void *cache_alloc_debugcheck_after(struct kmem_cache
*cachep
,
3036 gfp_t flags
, void *objp
, void *caller
)
3040 if (cachep
->flags
& SLAB_POISON
) {
3041 #ifdef CONFIG_DEBUG_PAGEALLOC
3042 if ((cachep
->buffer_size
% PAGE_SIZE
) == 0 && OFF_SLAB(cachep
))
3043 kernel_map_pages(virt_to_page(objp
),
3044 cachep
->buffer_size
/ PAGE_SIZE
, 1);
3046 check_poison_obj(cachep
, objp
);
3048 check_poison_obj(cachep
, objp
);
3050 poison_obj(cachep
, objp
, POISON_INUSE
);
3052 if (cachep
->flags
& SLAB_STORE_USER
)
3053 *dbg_userword(cachep
, objp
) = caller
;
3055 if (cachep
->flags
& SLAB_RED_ZONE
) {
3056 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
||
3057 *dbg_redzone2(cachep
, objp
) != RED_INACTIVE
) {
3058 slab_error(cachep
, "double free, or memory outside"
3059 " object was overwritten");
3061 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3062 objp
, *dbg_redzone1(cachep
, objp
),
3063 *dbg_redzone2(cachep
, objp
));
3065 *dbg_redzone1(cachep
, objp
) = RED_ACTIVE
;
3066 *dbg_redzone2(cachep
, objp
) = RED_ACTIVE
;
3068 #ifdef CONFIG_DEBUG_SLAB_LEAK
3073 slabp
= page_get_slab(virt_to_head_page(objp
));
3074 objnr
= (unsigned)(objp
- slabp
->s_mem
) / cachep
->buffer_size
;
3075 slab_bufctl(slabp
)[objnr
] = BUFCTL_ACTIVE
;
3078 objp
+= obj_offset(cachep
);
3079 if (cachep
->ctor
&& cachep
->flags
& SLAB_POISON
)
3080 cachep
->ctor(cachep
, objp
);
3081 #if ARCH_SLAB_MINALIGN
3082 if ((u32
)objp
& (ARCH_SLAB_MINALIGN
-1)) {
3083 printk(KERN_ERR
"0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3084 objp
, ARCH_SLAB_MINALIGN
);
3090 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3093 #ifdef CONFIG_FAILSLAB
3095 static struct failslab_attr
{
3097 struct fault_attr attr
;
3099 u32 ignore_gfp_wait
;
3100 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3101 struct dentry
*ignore_gfp_wait_file
;
3105 .attr
= FAULT_ATTR_INITIALIZER
,
3106 .ignore_gfp_wait
= 1,
3109 static int __init
setup_failslab(char *str
)
3111 return setup_fault_attr(&failslab
.attr
, str
);
3113 __setup("failslab=", setup_failslab
);
3115 static int should_failslab(struct kmem_cache
*cachep
, gfp_t flags
)
3117 if (cachep
== &cache_cache
)
3119 if (flags
& __GFP_NOFAIL
)
3121 if (failslab
.ignore_gfp_wait
&& (flags
& __GFP_WAIT
))
3124 return should_fail(&failslab
.attr
, obj_size(cachep
));
3127 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3129 static int __init
failslab_debugfs(void)
3131 mode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
3135 err
= init_fault_attr_dentries(&failslab
.attr
, "failslab");
3138 dir
= failslab
.attr
.dentries
.dir
;
3140 failslab
.ignore_gfp_wait_file
=
3141 debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
3142 &failslab
.ignore_gfp_wait
);
3144 if (!failslab
.ignore_gfp_wait_file
) {
3146 debugfs_remove(failslab
.ignore_gfp_wait_file
);
3147 cleanup_fault_attr_dentries(&failslab
.attr
);
3153 late_initcall(failslab_debugfs
);
3155 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3157 #else /* CONFIG_FAILSLAB */
3159 static inline int should_failslab(struct kmem_cache
*cachep
, gfp_t flags
)
3164 #endif /* CONFIG_FAILSLAB */
3166 static inline void *____cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3169 struct array_cache
*ac
;
3173 ac
= cpu_cache_get(cachep
);
3174 if (likely(ac
->avail
)) {
3175 STATS_INC_ALLOCHIT(cachep
);
3177 objp
= ac
->entry
[--ac
->avail
];
3179 STATS_INC_ALLOCMISS(cachep
);
3180 objp
= cache_alloc_refill(cachep
, flags
);
3187 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3189 * If we are in_interrupt, then process context, including cpusets and
3190 * mempolicy, may not apply and should not be used for allocation policy.
3192 static void *alternate_node_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3194 int nid_alloc
, nid_here
;
3196 if (in_interrupt() || (flags
& __GFP_THISNODE
))
3198 nid_alloc
= nid_here
= numa_node_id();
3199 if (cpuset_do_slab_mem_spread() && (cachep
->flags
& SLAB_MEM_SPREAD
))
3200 nid_alloc
= cpuset_mem_spread_node();
3201 else if (current
->mempolicy
)
3202 nid_alloc
= slab_node(current
->mempolicy
);
3203 if (nid_alloc
!= nid_here
)
3204 return ____cache_alloc_node(cachep
, flags
, nid_alloc
);
3209 * Fallback function if there was no memory available and no objects on a
3210 * certain node and fall back is permitted. First we scan all the
3211 * available nodelists for available objects. If that fails then we
3212 * perform an allocation without specifying a node. This allows the page
3213 * allocator to do its reclaim / fallback magic. We then insert the
3214 * slab into the proper nodelist and then allocate from it.
3216 static void *fallback_alloc(struct kmem_cache
*cache
, gfp_t flags
)
3218 struct zonelist
*zonelist
;
3224 if (flags
& __GFP_THISNODE
)
3227 zonelist
= &NODE_DATA(slab_node(current
->mempolicy
))
3228 ->node_zonelists
[gfp_zone(flags
)];
3229 local_flags
= flags
& (GFP_CONSTRAINT_MASK
|GFP_RECLAIM_MASK
);
3233 * Look through allowed nodes for objects available
3234 * from existing per node queues.
3236 for (z
= zonelist
->zones
; *z
&& !obj
; z
++) {
3237 nid
= zone_to_nid(*z
);
3239 if (cpuset_zone_allowed_hardwall(*z
, flags
) &&
3240 cache
->nodelists
[nid
] &&
3241 cache
->nodelists
[nid
]->free_objects
)
3242 obj
= ____cache_alloc_node(cache
,
3243 flags
| GFP_THISNODE
, nid
);
3248 * This allocation will be performed within the constraints
3249 * of the current cpuset / memory policy requirements.
3250 * We may trigger various forms of reclaim on the allowed
3251 * set and go into memory reserves if necessary.
3253 if (local_flags
& __GFP_WAIT
)
3255 kmem_flagcheck(cache
, flags
);
3256 obj
= kmem_getpages(cache
, flags
, -1);
3257 if (local_flags
& __GFP_WAIT
)
3258 local_irq_disable();
3261 * Insert into the appropriate per node queues
3263 nid
= page_to_nid(virt_to_page(obj
));
3264 if (cache_grow(cache
, flags
, nid
, obj
)) {
3265 obj
= ____cache_alloc_node(cache
,
3266 flags
| GFP_THISNODE
, nid
);
3269 * Another processor may allocate the
3270 * objects in the slab since we are
3271 * not holding any locks.
3275 /* cache_grow already freed obj */
3284 * A interface to enable slab creation on nodeid
3286 static void *____cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
,
3289 struct list_head
*entry
;
3291 struct kmem_list3
*l3
;
3295 l3
= cachep
->nodelists
[nodeid
];
3300 spin_lock(&l3
->list_lock
);
3301 entry
= l3
->slabs_partial
.next
;
3302 if (entry
== &l3
->slabs_partial
) {
3303 l3
->free_touched
= 1;
3304 entry
= l3
->slabs_free
.next
;
3305 if (entry
== &l3
->slabs_free
)
3309 slabp
= list_entry(entry
, struct slab
, list
);
3310 check_spinlock_acquired_node(cachep
, nodeid
);
3311 check_slabp(cachep
, slabp
);
3313 STATS_INC_NODEALLOCS(cachep
);
3314 STATS_INC_ACTIVE(cachep
);
3315 STATS_SET_HIGH(cachep
);
3317 BUG_ON(slabp
->inuse
== cachep
->num
);
3319 obj
= slab_get_obj(cachep
, slabp
, nodeid
);
3320 check_slabp(cachep
, slabp
);
3322 /* move slabp to correct slabp list: */
3323 list_del(&slabp
->list
);
3325 if (slabp
->free
== BUFCTL_END
)
3326 list_add(&slabp
->list
, &l3
->slabs_full
);
3328 list_add(&slabp
->list
, &l3
->slabs_partial
);
3330 spin_unlock(&l3
->list_lock
);
3334 spin_unlock(&l3
->list_lock
);
3335 x
= cache_grow(cachep
, flags
| GFP_THISNODE
, nodeid
, NULL
);
3339 return fallback_alloc(cachep
, flags
);
3346 * kmem_cache_alloc_node - Allocate an object on the specified node
3347 * @cachep: The cache to allocate from.
3348 * @flags: See kmalloc().
3349 * @nodeid: node number of the target node.
3350 * @caller: return address of caller, used for debug information
3352 * Identical to kmem_cache_alloc but it will allocate memory on the given
3353 * node, which can improve the performance for cpu bound structures.
3355 * Fallback to other node is possible if __GFP_THISNODE is not set.
3357 static __always_inline
void *
3358 __cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
,
3361 unsigned long save_flags
;
3364 if (should_failslab(cachep
, flags
))
3367 cache_alloc_debugcheck_before(cachep
, flags
);
3368 local_irq_save(save_flags
);
3370 if (unlikely(nodeid
== -1))
3371 nodeid
= numa_node_id();
3373 if (unlikely(!cachep
->nodelists
[nodeid
])) {
3374 /* Node not bootstrapped yet */
3375 ptr
= fallback_alloc(cachep
, flags
);
3379 if (nodeid
== numa_node_id()) {
3381 * Use the locally cached objects if possible.
3382 * However ____cache_alloc does not allow fallback
3383 * to other nodes. It may fail while we still have
3384 * objects on other nodes available.
3386 ptr
= ____cache_alloc(cachep
, flags
);
3390 /* ___cache_alloc_node can fall back to other nodes */
3391 ptr
= ____cache_alloc_node(cachep
, flags
, nodeid
);
3393 local_irq_restore(save_flags
);
3394 ptr
= cache_alloc_debugcheck_after(cachep
, flags
, ptr
, caller
);
3396 if (unlikely((flags
& __GFP_ZERO
) && ptr
))
3397 memset(ptr
, 0, obj_size(cachep
));
3402 static __always_inline
void *
3403 __do_cache_alloc(struct kmem_cache
*cache
, gfp_t flags
)
3407 if (unlikely(current
->flags
& (PF_SPREAD_SLAB
| PF_MEMPOLICY
))) {
3408 objp
= alternate_node_alloc(cache
, flags
);
3412 objp
= ____cache_alloc(cache
, flags
);
3415 * We may just have run out of memory on the local node.
3416 * ____cache_alloc_node() knows how to locate memory on other nodes
3419 objp
= ____cache_alloc_node(cache
, flags
, numa_node_id());
3426 static __always_inline
void *
3427 __do_cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3429 return ____cache_alloc(cachep
, flags
);
3432 #endif /* CONFIG_NUMA */
3434 static __always_inline
void *
3435 __cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
, void *caller
)
3437 unsigned long save_flags
;
3440 if (should_failslab(cachep
, flags
))
3443 cache_alloc_debugcheck_before(cachep
, flags
);
3444 local_irq_save(save_flags
);
3445 objp
= __do_cache_alloc(cachep
, flags
);
3446 local_irq_restore(save_flags
);
3447 objp
= cache_alloc_debugcheck_after(cachep
, flags
, objp
, caller
);
3450 if (unlikely((flags
& __GFP_ZERO
) && objp
))
3451 memset(objp
, 0, obj_size(cachep
));
3457 * Caller needs to acquire correct kmem_list's list_lock
3459 static void free_block(struct kmem_cache
*cachep
, void **objpp
, int nr_objects
,
3463 struct kmem_list3
*l3
;
3465 for (i
= 0; i
< nr_objects
; i
++) {
3466 void *objp
= objpp
[i
];
3469 slabp
= virt_to_slab(objp
);
3470 l3
= cachep
->nodelists
[node
];
3471 list_del(&slabp
->list
);
3472 check_spinlock_acquired_node(cachep
, node
);
3473 check_slabp(cachep
, slabp
);
3474 slab_put_obj(cachep
, slabp
, objp
, node
);
3475 STATS_DEC_ACTIVE(cachep
);
3477 check_slabp(cachep
, slabp
);
3479 /* fixup slab chains */
3480 if (slabp
->inuse
== 0) {
3481 if (l3
->free_objects
> l3
->free_limit
) {
3482 l3
->free_objects
-= cachep
->num
;
3483 /* No need to drop any previously held
3484 * lock here, even if we have a off-slab slab
3485 * descriptor it is guaranteed to come from
3486 * a different cache, refer to comments before
3489 slab_destroy(cachep
, slabp
);
3491 list_add(&slabp
->list
, &l3
->slabs_free
);
3494 /* Unconditionally move a slab to the end of the
3495 * partial list on free - maximum time for the
3496 * other objects to be freed, too.
3498 list_add_tail(&slabp
->list
, &l3
->slabs_partial
);
3503 static void cache_flusharray(struct kmem_cache
*cachep
, struct array_cache
*ac
)
3506 struct kmem_list3
*l3
;
3507 int node
= numa_node_id();
3509 batchcount
= ac
->batchcount
;
3511 BUG_ON(!batchcount
|| batchcount
> ac
->avail
);
3514 l3
= cachep
->nodelists
[node
];
3515 spin_lock(&l3
->list_lock
);
3517 struct array_cache
*shared_array
= l3
->shared
;
3518 int max
= shared_array
->limit
- shared_array
->avail
;
3520 if (batchcount
> max
)
3522 memcpy(&(shared_array
->entry
[shared_array
->avail
]),
3523 ac
->entry
, sizeof(void *) * batchcount
);
3524 shared_array
->avail
+= batchcount
;
3529 free_block(cachep
, ac
->entry
, batchcount
, node
);
3534 struct list_head
*p
;
3536 p
= l3
->slabs_free
.next
;
3537 while (p
!= &(l3
->slabs_free
)) {
3540 slabp
= list_entry(p
, struct slab
, list
);
3541 BUG_ON(slabp
->inuse
);
3546 STATS_SET_FREEABLE(cachep
, i
);
3549 spin_unlock(&l3
->list_lock
);
3550 ac
->avail
-= batchcount
;
3551 memmove(ac
->entry
, &(ac
->entry
[batchcount
]), sizeof(void *)*ac
->avail
);
3555 * Release an obj back to its cache. If the obj has a constructed state, it must
3556 * be in this state _before_ it is released. Called with disabled ints.
3558 static inline void __cache_free(struct kmem_cache
*cachep
, void *objp
)
3560 struct array_cache
*ac
= cpu_cache_get(cachep
);
3563 objp
= cache_free_debugcheck(cachep
, objp
, __builtin_return_address(0));
3566 * Skip calling cache_free_alien() when the platform is not numa.
3567 * This will avoid cache misses that happen while accessing slabp (which
3568 * is per page memory reference) to get nodeid. Instead use a global
3569 * variable to skip the call, which is mostly likely to be present in
3572 if (numa_platform
&& cache_free_alien(cachep
, objp
))
3575 if (likely(ac
->avail
< ac
->limit
)) {
3576 STATS_INC_FREEHIT(cachep
);
3577 ac
->entry
[ac
->avail
++] = objp
;
3580 STATS_INC_FREEMISS(cachep
);
3581 cache_flusharray(cachep
, ac
);
3582 ac
->entry
[ac
->avail
++] = objp
;
3587 * kmem_cache_alloc - Allocate an object
3588 * @cachep: The cache to allocate from.
3589 * @flags: See kmalloc().
3591 * Allocate an object from this cache. The flags are only relevant
3592 * if the cache has no available objects.
3594 void *kmem_cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3596 return __cache_alloc(cachep
, flags
, __builtin_return_address(0));
3598 EXPORT_SYMBOL(kmem_cache_alloc
);
3601 * kmem_ptr_validate - check if an untrusted pointer might
3603 * @cachep: the cache we're checking against
3604 * @ptr: pointer to validate
3606 * This verifies that the untrusted pointer looks sane:
3607 * it is _not_ a guarantee that the pointer is actually
3608 * part of the slab cache in question, but it at least
3609 * validates that the pointer can be dereferenced and
3610 * looks half-way sane.
3612 * Currently only used for dentry validation.
3614 int kmem_ptr_validate(struct kmem_cache
*cachep
, const void *ptr
)
3616 unsigned long addr
= (unsigned long)ptr
;
3617 unsigned long min_addr
= PAGE_OFFSET
;
3618 unsigned long align_mask
= BYTES_PER_WORD
- 1;
3619 unsigned long size
= cachep
->buffer_size
;
3622 if (unlikely(addr
< min_addr
))
3624 if (unlikely(addr
> (unsigned long)high_memory
- size
))
3626 if (unlikely(addr
& align_mask
))
3628 if (unlikely(!kern_addr_valid(addr
)))
3630 if (unlikely(!kern_addr_valid(addr
+ size
- 1)))
3632 page
= virt_to_page(ptr
);
3633 if (unlikely(!PageSlab(page
)))
3635 if (unlikely(page_get_cache(page
) != cachep
))
3643 void *kmem_cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
)
3645 return __cache_alloc_node(cachep
, flags
, nodeid
,
3646 __builtin_return_address(0));
3648 EXPORT_SYMBOL(kmem_cache_alloc_node
);
3650 static __always_inline
void *
3651 __do_kmalloc_node(size_t size
, gfp_t flags
, int node
, void *caller
)
3653 struct kmem_cache
*cachep
;
3655 cachep
= kmem_find_general_cachep(size
, flags
);
3656 if (unlikely(ZERO_OR_NULL_PTR(cachep
)))
3658 return kmem_cache_alloc_node(cachep
, flags
, node
);
3661 #ifdef CONFIG_DEBUG_SLAB
3662 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3664 return __do_kmalloc_node(size
, flags
, node
,
3665 __builtin_return_address(0));
3667 EXPORT_SYMBOL(__kmalloc_node
);
3669 void *__kmalloc_node_track_caller(size_t size
, gfp_t flags
,
3670 int node
, void *caller
)
3672 return __do_kmalloc_node(size
, flags
, node
, caller
);
3674 EXPORT_SYMBOL(__kmalloc_node_track_caller
);
3676 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3678 return __do_kmalloc_node(size
, flags
, node
, NULL
);
3680 EXPORT_SYMBOL(__kmalloc_node
);
3681 #endif /* CONFIG_DEBUG_SLAB */
3682 #endif /* CONFIG_NUMA */
3685 * __do_kmalloc - allocate memory
3686 * @size: how many bytes of memory are required.
3687 * @flags: the type of memory to allocate (see kmalloc).
3688 * @caller: function caller for debug tracking of the caller
3690 static __always_inline
void *__do_kmalloc(size_t size
, gfp_t flags
,
3693 struct kmem_cache
*cachep
;
3695 /* If you want to save a few bytes .text space: replace
3697 * Then kmalloc uses the uninlined functions instead of the inline
3700 cachep
= __find_general_cachep(size
, flags
);
3701 if (unlikely(ZERO_OR_NULL_PTR(cachep
)))
3703 return __cache_alloc(cachep
, flags
, caller
);
3707 #ifdef CONFIG_DEBUG_SLAB
3708 void *__kmalloc(size_t size
, gfp_t flags
)
3710 return __do_kmalloc(size
, flags
, __builtin_return_address(0));
3712 EXPORT_SYMBOL(__kmalloc
);
3714 void *__kmalloc_track_caller(size_t size
, gfp_t flags
, void *caller
)
3716 return __do_kmalloc(size
, flags
, caller
);
3718 EXPORT_SYMBOL(__kmalloc_track_caller
);
3721 void *__kmalloc(size_t size
, gfp_t flags
)
3723 return __do_kmalloc(size
, flags
, NULL
);
3725 EXPORT_SYMBOL(__kmalloc
);
3729 * kmem_cache_free - Deallocate an object
3730 * @cachep: The cache the allocation was from.
3731 * @objp: The previously allocated object.
3733 * Free an object which was previously allocated from this
3736 void kmem_cache_free(struct kmem_cache
*cachep
, void *objp
)
3738 unsigned long flags
;
3740 BUG_ON(virt_to_cache(objp
) != cachep
);
3742 local_irq_save(flags
);
3743 debug_check_no_locks_freed(objp
, obj_size(cachep
));
3744 __cache_free(cachep
, objp
);
3745 local_irq_restore(flags
);
3747 EXPORT_SYMBOL(kmem_cache_free
);
3750 * kfree - free previously allocated memory
3751 * @objp: pointer returned by kmalloc.
3753 * If @objp is NULL, no operation is performed.
3755 * Don't free memory not originally allocated by kmalloc()
3756 * or you will run into trouble.
3758 void kfree(const void *objp
)
3760 struct kmem_cache
*c
;
3761 unsigned long flags
;
3763 if (unlikely(ZERO_OR_NULL_PTR(objp
)))
3765 local_irq_save(flags
);
3766 kfree_debugcheck(objp
);
3767 c
= virt_to_cache(objp
);
3768 debug_check_no_locks_freed(objp
, obj_size(c
));
3769 __cache_free(c
, (void *)objp
);
3770 local_irq_restore(flags
);
3772 EXPORT_SYMBOL(kfree
);
3774 unsigned int kmem_cache_size(struct kmem_cache
*cachep
)
3776 return obj_size(cachep
);
3778 EXPORT_SYMBOL(kmem_cache_size
);
3780 const char *kmem_cache_name(struct kmem_cache
*cachep
)
3782 return cachep
->name
;
3784 EXPORT_SYMBOL_GPL(kmem_cache_name
);
3787 * This initializes kmem_list3 or resizes varioius caches for all nodes.
3789 static int alloc_kmemlist(struct kmem_cache
*cachep
)
3792 struct kmem_list3
*l3
;
3793 struct array_cache
*new_shared
;
3794 struct array_cache
**new_alien
= NULL
;
3796 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3798 if (use_alien_caches
) {
3799 new_alien
= alloc_alien_cache(node
, cachep
->limit
);
3805 if (cachep
->shared
) {
3806 new_shared
= alloc_arraycache(node
,
3807 cachep
->shared
*cachep
->batchcount
,
3810 free_alien_cache(new_alien
);
3815 l3
= cachep
->nodelists
[node
];
3817 struct array_cache
*shared
= l3
->shared
;
3819 spin_lock_irq(&l3
->list_lock
);
3822 free_block(cachep
, shared
->entry
,
3823 shared
->avail
, node
);
3825 l3
->shared
= new_shared
;
3827 l3
->alien
= new_alien
;
3830 l3
->free_limit
= (1 + nr_cpus_node(node
)) *
3831 cachep
->batchcount
+ cachep
->num
;
3832 spin_unlock_irq(&l3
->list_lock
);
3834 free_alien_cache(new_alien
);
3837 l3
= kmalloc_node(sizeof(struct kmem_list3
), GFP_KERNEL
, node
);
3839 free_alien_cache(new_alien
);
3844 kmem_list3_init(l3
);
3845 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
+
3846 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
3847 l3
->shared
= new_shared
;
3848 l3
->alien
= new_alien
;
3849 l3
->free_limit
= (1 + nr_cpus_node(node
)) *
3850 cachep
->batchcount
+ cachep
->num
;
3851 cachep
->nodelists
[node
] = l3
;
3856 if (!cachep
->next
.next
) {
3857 /* Cache is not active yet. Roll back what we did */
3860 if (cachep
->nodelists
[node
]) {
3861 l3
= cachep
->nodelists
[node
];
3864 free_alien_cache(l3
->alien
);
3866 cachep
->nodelists
[node
] = NULL
;
3874 struct ccupdate_struct
{
3875 struct kmem_cache
*cachep
;
3876 struct array_cache
*new[NR_CPUS
];
3879 static void do_ccupdate_local(void *info
)
3881 struct ccupdate_struct
*new = info
;
3882 struct array_cache
*old
;
3885 old
= cpu_cache_get(new->cachep
);
3887 new->cachep
->array
[smp_processor_id()] = new->new[smp_processor_id()];
3888 new->new[smp_processor_id()] = old
;
3891 /* Always called with the cache_chain_mutex held */
3892 static int do_tune_cpucache(struct kmem_cache
*cachep
, int limit
,
3893 int batchcount
, int shared
)
3895 struct ccupdate_struct
*new;
3898 new = kzalloc(sizeof(*new), GFP_KERNEL
);
3902 for_each_online_cpu(i
) {
3903 new->new[i
] = alloc_arraycache(cpu_to_node(i
), limit
,
3906 for (i
--; i
>= 0; i
--)
3912 new->cachep
= cachep
;
3914 on_each_cpu(do_ccupdate_local
, (void *)new, 1, 1);
3917 cachep
->batchcount
= batchcount
;
3918 cachep
->limit
= limit
;
3919 cachep
->shared
= shared
;
3921 for_each_online_cpu(i
) {
3922 struct array_cache
*ccold
= new->new[i
];
3925 spin_lock_irq(&cachep
->nodelists
[cpu_to_node(i
)]->list_lock
);
3926 free_block(cachep
, ccold
->entry
, ccold
->avail
, cpu_to_node(i
));
3927 spin_unlock_irq(&cachep
->nodelists
[cpu_to_node(i
)]->list_lock
);
3931 return alloc_kmemlist(cachep
);
3934 /* Called with cache_chain_mutex held always */
3935 static int enable_cpucache(struct kmem_cache
*cachep
)
3941 * The head array serves three purposes:
3942 * - create a LIFO ordering, i.e. return objects that are cache-warm
3943 * - reduce the number of spinlock operations.
3944 * - reduce the number of linked list operations on the slab and
3945 * bufctl chains: array operations are cheaper.
3946 * The numbers are guessed, we should auto-tune as described by
3949 if (cachep
->buffer_size
> 131072)
3951 else if (cachep
->buffer_size
> PAGE_SIZE
)
3953 else if (cachep
->buffer_size
> 1024)
3955 else if (cachep
->buffer_size
> 256)
3961 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3962 * allocation behaviour: Most allocs on one cpu, most free operations
3963 * on another cpu. For these cases, an efficient object passing between
3964 * cpus is necessary. This is provided by a shared array. The array
3965 * replaces Bonwick's magazine layer.
3966 * On uniprocessor, it's functionally equivalent (but less efficient)
3967 * to a larger limit. Thus disabled by default.
3970 if (cachep
->buffer_size
<= PAGE_SIZE
&& num_possible_cpus() > 1)
3975 * With debugging enabled, large batchcount lead to excessively long
3976 * periods with disabled local interrupts. Limit the batchcount
3981 err
= do_tune_cpucache(cachep
, limit
, (limit
+ 1) / 2, shared
);
3983 printk(KERN_ERR
"enable_cpucache failed for %s, error %d.\n",
3984 cachep
->name
, -err
);
3989 * Drain an array if it contains any elements taking the l3 lock only if
3990 * necessary. Note that the l3 listlock also protects the array_cache
3991 * if drain_array() is used on the shared array.
3993 void drain_array(struct kmem_cache
*cachep
, struct kmem_list3
*l3
,
3994 struct array_cache
*ac
, int force
, int node
)
3998 if (!ac
|| !ac
->avail
)
4000 if (ac
->touched
&& !force
) {
4003 spin_lock_irq(&l3
->list_lock
);
4005 tofree
= force
? ac
->avail
: (ac
->limit
+ 4) / 5;
4006 if (tofree
> ac
->avail
)
4007 tofree
= (ac
->avail
+ 1) / 2;
4008 free_block(cachep
, ac
->entry
, tofree
, node
);
4009 ac
->avail
-= tofree
;
4010 memmove(ac
->entry
, &(ac
->entry
[tofree
]),
4011 sizeof(void *) * ac
->avail
);
4013 spin_unlock_irq(&l3
->list_lock
);
4018 * cache_reap - Reclaim memory from caches.
4019 * @w: work descriptor
4021 * Called from workqueue/eventd every few seconds.
4023 * - clear the per-cpu caches for this CPU.
4024 * - return freeable pages to the main free memory pool.
4026 * If we cannot acquire the cache chain mutex then just give up - we'll try
4027 * again on the next iteration.
4029 static void cache_reap(struct work_struct
*w
)
4031 struct kmem_cache
*searchp
;
4032 struct kmem_list3
*l3
;
4033 int node
= numa_node_id();
4034 struct delayed_work
*work
=
4035 container_of(w
, struct delayed_work
, work
);
4037 if (!mutex_trylock(&cache_chain_mutex
))
4038 /* Give up. Setup the next iteration. */
4041 list_for_each_entry(searchp
, &cache_chain
, next
) {
4045 * We only take the l3 lock if absolutely necessary and we
4046 * have established with reasonable certainty that
4047 * we can do some work if the lock was obtained.
4049 l3
= searchp
->nodelists
[node
];
4051 reap_alien(searchp
, l3
);
4053 drain_array(searchp
, l3
, cpu_cache_get(searchp
), 0, node
);
4056 * These are racy checks but it does not matter
4057 * if we skip one check or scan twice.
4059 if (time_after(l3
->next_reap
, jiffies
))
4062 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
;
4064 drain_array(searchp
, l3
, l3
->shared
, 0, node
);
4066 if (l3
->free_touched
)
4067 l3
->free_touched
= 0;
4071 freed
= drain_freelist(searchp
, l3
, (l3
->free_limit
+
4072 5 * searchp
->num
- 1) / (5 * searchp
->num
));
4073 STATS_ADD_REAPED(searchp
, freed
);
4079 mutex_unlock(&cache_chain_mutex
);
4082 /* Set up the next iteration */
4083 schedule_delayed_work(work
, round_jiffies_relative(REAPTIMEOUT_CPUC
));
4086 #ifdef CONFIG_PROC_FS
4088 static void print_slabinfo_header(struct seq_file
*m
)
4091 * Output format version, so at least we can change it
4092 * without _too_ many complaints.
4095 seq_puts(m
, "slabinfo - version: 2.1 (statistics)\n");
4097 seq_puts(m
, "slabinfo - version: 2.1\n");
4099 seq_puts(m
, "# name <active_objs> <num_objs> <objsize> "
4100 "<objperslab> <pagesperslab>");
4101 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
4102 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4104 seq_puts(m
, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4105 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4106 seq_puts(m
, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4111 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
4115 mutex_lock(&cache_chain_mutex
);
4117 print_slabinfo_header(m
);
4119 return seq_list_start(&cache_chain
, *pos
);
4122 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
4124 return seq_list_next(p
, &cache_chain
, pos
);
4127 static void s_stop(struct seq_file
*m
, void *p
)
4129 mutex_unlock(&cache_chain_mutex
);
4132 static int s_show(struct seq_file
*m
, void *p
)
4134 struct kmem_cache
*cachep
= list_entry(p
, struct kmem_cache
, next
);
4136 unsigned long active_objs
;
4137 unsigned long num_objs
;
4138 unsigned long active_slabs
= 0;
4139 unsigned long num_slabs
, free_objects
= 0, shared_avail
= 0;
4143 struct kmem_list3
*l3
;
4147 for_each_online_node(node
) {
4148 l3
= cachep
->nodelists
[node
];
4153 spin_lock_irq(&l3
->list_lock
);
4155 list_for_each_entry(slabp
, &l3
->slabs_full
, list
) {
4156 if (slabp
->inuse
!= cachep
->num
&& !error
)
4157 error
= "slabs_full accounting error";
4158 active_objs
+= cachep
->num
;
4161 list_for_each_entry(slabp
, &l3
->slabs_partial
, list
) {
4162 if (slabp
->inuse
== cachep
->num
&& !error
)
4163 error
= "slabs_partial inuse accounting error";
4164 if (!slabp
->inuse
&& !error
)
4165 error
= "slabs_partial/inuse accounting error";
4166 active_objs
+= slabp
->inuse
;
4169 list_for_each_entry(slabp
, &l3
->slabs_free
, list
) {
4170 if (slabp
->inuse
&& !error
)
4171 error
= "slabs_free/inuse accounting error";
4174 free_objects
+= l3
->free_objects
;
4176 shared_avail
+= l3
->shared
->avail
;
4178 spin_unlock_irq(&l3
->list_lock
);
4180 num_slabs
+= active_slabs
;
4181 num_objs
= num_slabs
* cachep
->num
;
4182 if (num_objs
- active_objs
!= free_objects
&& !error
)
4183 error
= "free_objects accounting error";
4185 name
= cachep
->name
;
4187 printk(KERN_ERR
"slab: cache %s error: %s\n", name
, error
);
4189 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d",
4190 name
, active_objs
, num_objs
, cachep
->buffer_size
,
4191 cachep
->num
, (1 << cachep
->gfporder
));
4192 seq_printf(m
, " : tunables %4u %4u %4u",
4193 cachep
->limit
, cachep
->batchcount
, cachep
->shared
);
4194 seq_printf(m
, " : slabdata %6lu %6lu %6lu",
4195 active_slabs
, num_slabs
, shared_avail
);
4198 unsigned long high
= cachep
->high_mark
;
4199 unsigned long allocs
= cachep
->num_allocations
;
4200 unsigned long grown
= cachep
->grown
;
4201 unsigned long reaped
= cachep
->reaped
;
4202 unsigned long errors
= cachep
->errors
;
4203 unsigned long max_freeable
= cachep
->max_freeable
;
4204 unsigned long node_allocs
= cachep
->node_allocs
;
4205 unsigned long node_frees
= cachep
->node_frees
;
4206 unsigned long overflows
= cachep
->node_overflow
;
4208 seq_printf(m
, " : globalstat %7lu %6lu %5lu %4lu \
4209 %4lu %4lu %4lu %4lu %4lu", allocs
, high
, grown
,
4210 reaped
, errors
, max_freeable
, node_allocs
,
4211 node_frees
, overflows
);
4215 unsigned long allochit
= atomic_read(&cachep
->allochit
);
4216 unsigned long allocmiss
= atomic_read(&cachep
->allocmiss
);
4217 unsigned long freehit
= atomic_read(&cachep
->freehit
);
4218 unsigned long freemiss
= atomic_read(&cachep
->freemiss
);
4220 seq_printf(m
, " : cpustat %6lu %6lu %6lu %6lu",
4221 allochit
, allocmiss
, freehit
, freemiss
);
4229 * slabinfo_op - iterator that generates /proc/slabinfo
4238 * num-pages-per-slab
4239 * + further values on SMP and with statistics enabled
4242 const struct seq_operations slabinfo_op
= {
4249 #define MAX_SLABINFO_WRITE 128
4251 * slabinfo_write - Tuning for the slab allocator
4253 * @buffer: user buffer
4254 * @count: data length
4257 ssize_t
slabinfo_write(struct file
*file
, const char __user
* buffer
,
4258 size_t count
, loff_t
*ppos
)
4260 char kbuf
[MAX_SLABINFO_WRITE
+ 1], *tmp
;
4261 int limit
, batchcount
, shared
, res
;
4262 struct kmem_cache
*cachep
;
4264 if (count
> MAX_SLABINFO_WRITE
)
4266 if (copy_from_user(&kbuf
, buffer
, count
))
4268 kbuf
[MAX_SLABINFO_WRITE
] = '\0';
4270 tmp
= strchr(kbuf
, ' ');
4275 if (sscanf(tmp
, " %d %d %d", &limit
, &batchcount
, &shared
) != 3)
4278 /* Find the cache in the chain of caches. */
4279 mutex_lock(&cache_chain_mutex
);
4281 list_for_each_entry(cachep
, &cache_chain
, next
) {
4282 if (!strcmp(cachep
->name
, kbuf
)) {
4283 if (limit
< 1 || batchcount
< 1 ||
4284 batchcount
> limit
|| shared
< 0) {
4287 res
= do_tune_cpucache(cachep
, limit
,
4288 batchcount
, shared
);
4293 mutex_unlock(&cache_chain_mutex
);
4299 #ifdef CONFIG_DEBUG_SLAB_LEAK
4301 static void *leaks_start(struct seq_file
*m
, loff_t
*pos
)
4303 mutex_lock(&cache_chain_mutex
);
4304 return seq_list_start(&cache_chain
, *pos
);
4307 static inline int add_caller(unsigned long *n
, unsigned long v
)
4317 unsigned long *q
= p
+ 2 * i
;
4331 memmove(p
+ 2, p
, n
[1] * 2 * sizeof(unsigned long) - ((void *)p
- (void *)n
));
4337 static void handle_slab(unsigned long *n
, struct kmem_cache
*c
, struct slab
*s
)
4343 for (i
= 0, p
= s
->s_mem
; i
< c
->num
; i
++, p
+= c
->buffer_size
) {
4344 if (slab_bufctl(s
)[i
] != BUFCTL_ACTIVE
)
4346 if (!add_caller(n
, (unsigned long)*dbg_userword(c
, p
)))
4351 static void show_symbol(struct seq_file
*m
, unsigned long address
)
4353 #ifdef CONFIG_KALLSYMS
4354 unsigned long offset
, size
;
4355 char modname
[MODULE_NAME_LEN
], name
[KSYM_NAME_LEN
];
4357 if (lookup_symbol_attrs(address
, &size
, &offset
, modname
, name
) == 0) {
4358 seq_printf(m
, "%s+%#lx/%#lx", name
, offset
, size
);
4360 seq_printf(m
, " [%s]", modname
);
4364 seq_printf(m
, "%p", (void *)address
);
4367 static int leaks_show(struct seq_file
*m
, void *p
)
4369 struct kmem_cache
*cachep
= list_entry(p
, struct kmem_cache
, next
);
4371 struct kmem_list3
*l3
;
4373 unsigned long *n
= m
->private;
4377 if (!(cachep
->flags
& SLAB_STORE_USER
))
4379 if (!(cachep
->flags
& SLAB_RED_ZONE
))
4382 /* OK, we can do it */
4386 for_each_online_node(node
) {
4387 l3
= cachep
->nodelists
[node
];
4392 spin_lock_irq(&l3
->list_lock
);
4394 list_for_each_entry(slabp
, &l3
->slabs_full
, list
)
4395 handle_slab(n
, cachep
, slabp
);
4396 list_for_each_entry(slabp
, &l3
->slabs_partial
, list
)
4397 handle_slab(n
, cachep
, slabp
);
4398 spin_unlock_irq(&l3
->list_lock
);
4400 name
= cachep
->name
;
4402 /* Increase the buffer size */
4403 mutex_unlock(&cache_chain_mutex
);
4404 m
->private = kzalloc(n
[0] * 4 * sizeof(unsigned long), GFP_KERNEL
);
4406 /* Too bad, we are really out */
4408 mutex_lock(&cache_chain_mutex
);
4411 *(unsigned long *)m
->private = n
[0] * 2;
4413 mutex_lock(&cache_chain_mutex
);
4414 /* Now make sure this entry will be retried */
4418 for (i
= 0; i
< n
[1]; i
++) {
4419 seq_printf(m
, "%s: %lu ", name
, n
[2*i
+3]);
4420 show_symbol(m
, n
[2*i
+2]);
4427 const struct seq_operations slabstats_op
= {
4428 .start
= leaks_start
,
4437 * ksize - get the actual amount of memory allocated for a given object
4438 * @objp: Pointer to the object
4440 * kmalloc may internally round up allocations and return more memory
4441 * than requested. ksize() can be used to determine the actual amount of
4442 * memory allocated. The caller may use this additional memory, even though
4443 * a smaller amount of memory was initially specified with the kmalloc call.
4444 * The caller must guarantee that objp points to a valid object previously
4445 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4446 * must not be freed during the duration of the call.
4448 size_t ksize(const void *objp
)
4451 if (unlikely(objp
== ZERO_SIZE_PTR
))
4454 return obj_size(virt_to_cache(objp
));