2 * linux/kernel/profile.c
3 * Simple profiling. Manages a direct-mapped profile hit count buffer,
4 * with configurable resolution, support for restricting the cpus on
5 * which profiling is done, and switching between cpu time and
6 * schedule() calls via kernel command line parameters passed at boot.
8 * Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
10 * Consolidation of architecture support code for profiling,
11 * William Irwin, Oracle, July 2004
12 * Amortized hit count accounting via per-cpu open-addressed hashtables
13 * to resolve timer interrupt livelocks, William Irwin, Oracle, 2004
16 #include <linux/module.h>
17 #include <linux/profile.h>
18 #include <linux/bootmem.h>
19 #include <linux/notifier.h>
21 #include <linux/cpumask.h>
22 #include <linux/cpu.h>
23 #include <linux/highmem.h>
24 #include <linux/mutex.h>
25 #include <asm/sections.h>
26 #include <asm/semaphore.h>
27 #include <asm/irq_regs.h>
28 #include <asm/ptrace.h>
33 #define PROFILE_GRPSHIFT 3
34 #define PROFILE_GRPSZ (1 << PROFILE_GRPSHIFT)
35 #define NR_PROFILE_HIT (PAGE_SIZE/sizeof(struct profile_hit))
36 #define NR_PROFILE_GRP (NR_PROFILE_HIT/PROFILE_GRPSZ)
38 /* Oprofile timer tick hook */
39 static int (*timer_hook
)(struct pt_regs
*) __read_mostly
;
41 static atomic_t
*prof_buffer
;
42 static unsigned long prof_len
, prof_shift
;
44 int prof_on __read_mostly
;
45 EXPORT_SYMBOL_GPL(prof_on
);
47 static cpumask_t prof_cpu_mask
= CPU_MASK_ALL
;
49 static DEFINE_PER_CPU(struct profile_hit
*[2], cpu_profile_hits
);
50 static DEFINE_PER_CPU(int, cpu_profile_flip
);
51 static DEFINE_MUTEX(profile_flip_mutex
);
52 #endif /* CONFIG_SMP */
54 static int __init
profile_setup(char *str
)
56 static char __initdata schedstr
[] = "schedule";
57 static char __initdata sleepstr
[] = "sleep";
58 static char __initdata kvmstr
[] = "kvm";
61 if (!strncmp(str
, sleepstr
, strlen(sleepstr
))) {
62 #ifdef CONFIG_SCHEDSTATS
63 prof_on
= SLEEP_PROFILING
;
64 if (str
[strlen(sleepstr
)] == ',')
65 str
+= strlen(sleepstr
) + 1;
66 if (get_option(&str
, &par
))
69 "kernel sleep profiling enabled (shift: %ld)\n",
73 "kernel sleep profiling requires CONFIG_SCHEDSTATS\n");
74 #endif /* CONFIG_SCHEDSTATS */
75 } else if (!strncmp(str
, schedstr
, strlen(schedstr
))) {
76 prof_on
= SCHED_PROFILING
;
77 if (str
[strlen(schedstr
)] == ',')
78 str
+= strlen(schedstr
) + 1;
79 if (get_option(&str
, &par
))
82 "kernel schedule profiling enabled (shift: %ld)\n",
84 } else if (!strncmp(str
, kvmstr
, strlen(kvmstr
))) {
85 prof_on
= KVM_PROFILING
;
86 if (str
[strlen(kvmstr
)] == ',')
87 str
+= strlen(kvmstr
) + 1;
88 if (get_option(&str
, &par
))
91 "kernel KVM profiling enabled (shift: %ld)\n",
93 } else if (get_option(&str
, &par
)) {
95 prof_on
= CPU_PROFILING
;
96 printk(KERN_INFO
"kernel profiling enabled (shift: %ld)\n",
101 __setup("profile=", profile_setup
);
104 void __init
profile_init(void)
109 /* only text is profiled */
110 prof_len
= (_etext
- _stext
) >> prof_shift
;
111 prof_buffer
= alloc_bootmem(prof_len
*sizeof(atomic_t
));
114 /* Profile event notifications */
116 #ifdef CONFIG_PROFILING
118 static BLOCKING_NOTIFIER_HEAD(task_exit_notifier
);
119 static ATOMIC_NOTIFIER_HEAD(task_free_notifier
);
120 static BLOCKING_NOTIFIER_HEAD(munmap_notifier
);
122 void profile_task_exit(struct task_struct
*task
)
124 blocking_notifier_call_chain(&task_exit_notifier
, 0, task
);
127 int profile_handoff_task(struct task_struct
*task
)
130 ret
= atomic_notifier_call_chain(&task_free_notifier
, 0, task
);
131 return (ret
== NOTIFY_OK
) ? 1 : 0;
134 void profile_munmap(unsigned long addr
)
136 blocking_notifier_call_chain(&munmap_notifier
, 0, (void *)addr
);
139 int task_handoff_register(struct notifier_block
*n
)
141 return atomic_notifier_chain_register(&task_free_notifier
, n
);
143 EXPORT_SYMBOL_GPL(task_handoff_register
);
145 int task_handoff_unregister(struct notifier_block
*n
)
147 return atomic_notifier_chain_unregister(&task_free_notifier
, n
);
149 EXPORT_SYMBOL_GPL(task_handoff_unregister
);
151 int profile_event_register(enum profile_type type
, struct notifier_block
*n
)
156 case PROFILE_TASK_EXIT
:
157 err
= blocking_notifier_chain_register(
158 &task_exit_notifier
, n
);
161 err
= blocking_notifier_chain_register(
162 &munmap_notifier
, n
);
168 EXPORT_SYMBOL_GPL(profile_event_register
);
170 int profile_event_unregister(enum profile_type type
, struct notifier_block
*n
)
175 case PROFILE_TASK_EXIT
:
176 err
= blocking_notifier_chain_unregister(
177 &task_exit_notifier
, n
);
180 err
= blocking_notifier_chain_unregister(
181 &munmap_notifier
, n
);
187 EXPORT_SYMBOL_GPL(profile_event_unregister
);
189 int register_timer_hook(int (*hook
)(struct pt_regs
*))
196 EXPORT_SYMBOL_GPL(register_timer_hook
);
198 void unregister_timer_hook(int (*hook
)(struct pt_regs
*))
200 WARN_ON(hook
!= timer_hook
);
202 /* make sure all CPUs see the NULL hook */
203 synchronize_sched(); /* Allow ongoing interrupts to complete. */
205 EXPORT_SYMBOL_GPL(unregister_timer_hook
);
207 #endif /* CONFIG_PROFILING */
212 * Each cpu has a pair of open-addressed hashtables for pending
213 * profile hits. read_profile() IPI's all cpus to request them
214 * to flip buffers and flushes their contents to prof_buffer itself.
215 * Flip requests are serialized by the profile_flip_mutex. The sole
216 * use of having a second hashtable is for avoiding cacheline
217 * contention that would otherwise happen during flushes of pending
218 * profile hits required for the accuracy of reported profile hits
219 * and so resurrect the interrupt livelock issue.
221 * The open-addressed hashtables are indexed by profile buffer slot
222 * and hold the number of pending hits to that profile buffer slot on
223 * a cpu in an entry. When the hashtable overflows, all pending hits
224 * are accounted to their corresponding profile buffer slots with
225 * atomic_add() and the hashtable emptied. As numerous pending hits
226 * may be accounted to a profile buffer slot in a hashtable entry,
227 * this amortizes a number of atomic profile buffer increments likely
228 * to be far larger than the number of entries in the hashtable,
229 * particularly given that the number of distinct profile buffer
230 * positions to which hits are accounted during short intervals (e.g.
231 * several seconds) is usually very small. Exclusion from buffer
232 * flipping is provided by interrupt disablement (note that for
233 * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from
235 * The hash function is meant to be lightweight as opposed to strong,
236 * and was vaguely inspired by ppc64 firmware-supported inverted
237 * pagetable hash functions, but uses a full hashtable full of finite
238 * collision chains, not just pairs of them.
242 static void __profile_flip_buffers(void *unused
)
244 int cpu
= smp_processor_id();
246 per_cpu(cpu_profile_flip
, cpu
) = !per_cpu(cpu_profile_flip
, cpu
);
249 static void profile_flip_buffers(void)
253 mutex_lock(&profile_flip_mutex
);
254 j
= per_cpu(cpu_profile_flip
, get_cpu());
256 on_each_cpu(__profile_flip_buffers
, NULL
, 0, 1);
257 for_each_online_cpu(cpu
) {
258 struct profile_hit
*hits
= per_cpu(cpu_profile_hits
, cpu
)[j
];
259 for (i
= 0; i
< NR_PROFILE_HIT
; ++i
) {
265 atomic_add(hits
[i
].hits
, &prof_buffer
[hits
[i
].pc
]);
266 hits
[i
].hits
= hits
[i
].pc
= 0;
269 mutex_unlock(&profile_flip_mutex
);
272 static void profile_discard_flip_buffers(void)
276 mutex_lock(&profile_flip_mutex
);
277 i
= per_cpu(cpu_profile_flip
, get_cpu());
279 on_each_cpu(__profile_flip_buffers
, NULL
, 0, 1);
280 for_each_online_cpu(cpu
) {
281 struct profile_hit
*hits
= per_cpu(cpu_profile_hits
, cpu
)[i
];
282 memset(hits
, 0, NR_PROFILE_HIT
*sizeof(struct profile_hit
));
284 mutex_unlock(&profile_flip_mutex
);
287 void profile_hits(int type
, void *__pc
, unsigned int nr_hits
)
289 unsigned long primary
, secondary
, flags
, pc
= (unsigned long)__pc
;
291 struct profile_hit
*hits
;
293 if (prof_on
!= type
|| !prof_buffer
)
295 pc
= min((pc
- (unsigned long)_stext
) >> prof_shift
, prof_len
- 1);
296 i
= primary
= (pc
& (NR_PROFILE_GRP
- 1)) << PROFILE_GRPSHIFT
;
297 secondary
= (~(pc
<< 1) & (NR_PROFILE_GRP
- 1)) << PROFILE_GRPSHIFT
;
299 hits
= per_cpu(cpu_profile_hits
, cpu
)[per_cpu(cpu_profile_flip
, cpu
)];
305 * We buffer the global profiler buffer into a per-CPU
306 * queue and thus reduce the number of global (and possibly
307 * NUMA-alien) accesses. The write-queue is self-coalescing:
309 local_irq_save(flags
);
311 for (j
= 0; j
< PROFILE_GRPSZ
; ++j
) {
312 if (hits
[i
+ j
].pc
== pc
) {
313 hits
[i
+ j
].hits
+= nr_hits
;
315 } else if (!hits
[i
+ j
].hits
) {
317 hits
[i
+ j
].hits
= nr_hits
;
321 i
= (i
+ secondary
) & (NR_PROFILE_HIT
- 1);
322 } while (i
!= primary
);
325 * Add the current hit(s) and flush the write-queue out
326 * to the global buffer:
328 atomic_add(nr_hits
, &prof_buffer
[pc
]);
329 for (i
= 0; i
< NR_PROFILE_HIT
; ++i
) {
330 atomic_add(hits
[i
].hits
, &prof_buffer
[hits
[i
].pc
]);
331 hits
[i
].pc
= hits
[i
].hits
= 0;
334 local_irq_restore(flags
);
338 static int __devinit
profile_cpu_callback(struct notifier_block
*info
,
339 unsigned long action
, void *__cpu
)
341 int node
, cpu
= (unsigned long)__cpu
;
346 case CPU_UP_PREPARE_FROZEN
:
347 node
= cpu_to_node(cpu
);
348 per_cpu(cpu_profile_flip
, cpu
) = 0;
349 if (!per_cpu(cpu_profile_hits
, cpu
)[1]) {
350 page
= alloc_pages_node(node
,
351 GFP_KERNEL
| __GFP_ZERO
,
355 per_cpu(cpu_profile_hits
, cpu
)[1] = page_address(page
);
357 if (!per_cpu(cpu_profile_hits
, cpu
)[0]) {
358 page
= alloc_pages_node(node
,
359 GFP_KERNEL
| __GFP_ZERO
,
363 per_cpu(cpu_profile_hits
, cpu
)[0] = page_address(page
);
367 page
= virt_to_page(per_cpu(cpu_profile_hits
, cpu
)[1]);
368 per_cpu(cpu_profile_hits
, cpu
)[1] = NULL
;
372 case CPU_ONLINE_FROZEN
:
373 cpu_set(cpu
, prof_cpu_mask
);
375 case CPU_UP_CANCELED
:
376 case CPU_UP_CANCELED_FROZEN
:
378 case CPU_DEAD_FROZEN
:
379 cpu_clear(cpu
, prof_cpu_mask
);
380 if (per_cpu(cpu_profile_hits
, cpu
)[0]) {
381 page
= virt_to_page(per_cpu(cpu_profile_hits
, cpu
)[0]);
382 per_cpu(cpu_profile_hits
, cpu
)[0] = NULL
;
385 if (per_cpu(cpu_profile_hits
, cpu
)[1]) {
386 page
= virt_to_page(per_cpu(cpu_profile_hits
, cpu
)[1]);
387 per_cpu(cpu_profile_hits
, cpu
)[1] = NULL
;
394 #else /* !CONFIG_SMP */
395 #define profile_flip_buffers() do { } while (0)
396 #define profile_discard_flip_buffers() do { } while (0)
397 #define profile_cpu_callback NULL
399 void profile_hits(int type
, void *__pc
, unsigned int nr_hits
)
403 if (prof_on
!= type
|| !prof_buffer
)
405 pc
= ((unsigned long)__pc
- (unsigned long)_stext
) >> prof_shift
;
406 atomic_add(nr_hits
, &prof_buffer
[min(pc
, prof_len
- 1)]);
408 #endif /* !CONFIG_SMP */
409 EXPORT_SYMBOL_GPL(profile_hits
);
411 void profile_tick(int type
)
413 struct pt_regs
*regs
= get_irq_regs();
415 if (type
== CPU_PROFILING
&& timer_hook
)
417 if (!user_mode(regs
) && cpu_isset(smp_processor_id(), prof_cpu_mask
))
418 profile_hit(type
, (void *)profile_pc(regs
));
421 #ifdef CONFIG_PROC_FS
422 #include <linux/proc_fs.h>
423 #include <asm/uaccess.h>
424 #include <asm/ptrace.h>
426 static int prof_cpu_mask_read_proc(char *page
, char **start
, off_t off
,
427 int count
, int *eof
, void *data
)
429 int len
= cpumask_scnprintf(page
, count
, *(cpumask_t
*)data
);
432 len
+= sprintf(page
+ len
, "\n");
436 static int prof_cpu_mask_write_proc(struct file
*file
,
437 const char __user
*buffer
, unsigned long count
, void *data
)
439 cpumask_t
*mask
= (cpumask_t
*)data
;
440 unsigned long full_count
= count
, err
;
443 err
= cpumask_parse_user(buffer
, count
, new_value
);
451 void create_prof_cpu_mask(struct proc_dir_entry
*root_irq_dir
)
453 struct proc_dir_entry
*entry
;
455 /* create /proc/irq/prof_cpu_mask */
456 entry
= create_proc_entry("prof_cpu_mask", 0600, root_irq_dir
);
459 entry
->data
= (void *)&prof_cpu_mask
;
460 entry
->read_proc
= prof_cpu_mask_read_proc
;
461 entry
->write_proc
= prof_cpu_mask_write_proc
;
465 * This function accesses profiling information. The returned data is
466 * binary: the sampling step and the actual contents of the profile
467 * buffer. Use of the program readprofile is recommended in order to
468 * get meaningful info out of these data.
471 read_profile(struct file
*file
, char __user
*buf
, size_t count
, loff_t
*ppos
)
473 unsigned long p
= *ppos
;
476 unsigned int sample_step
= 1 << prof_shift
;
478 profile_flip_buffers();
479 if (p
>= (prof_len
+1)*sizeof(unsigned int))
481 if (count
> (prof_len
+1)*sizeof(unsigned int) - p
)
482 count
= (prof_len
+1)*sizeof(unsigned int) - p
;
485 while (p
< sizeof(unsigned int) && count
> 0) {
486 if (put_user(*((char *)(&sample_step
)+p
), buf
))
488 buf
++; p
++; count
--; read
++;
490 pnt
= (char *)prof_buffer
+ p
- sizeof(atomic_t
);
491 if (copy_to_user(buf
, (void *)pnt
, count
))
499 * Writing to /proc/profile resets the counters
501 * Writing a 'profiling multiplier' value into it also re-sets the profiling
502 * interrupt frequency, on architectures that support this.
504 static ssize_t
write_profile(struct file
*file
, const char __user
*buf
,
505 size_t count
, loff_t
*ppos
)
508 extern int setup_profiling_timer(unsigned int multiplier
);
510 if (count
== sizeof(int)) {
511 unsigned int multiplier
;
513 if (copy_from_user(&multiplier
, buf
, sizeof(int)))
516 if (setup_profiling_timer(multiplier
))
520 profile_discard_flip_buffers();
521 memset(prof_buffer
, 0, prof_len
* sizeof(atomic_t
));
525 static const struct file_operations proc_profile_operations
= {
526 .read
= read_profile
,
527 .write
= write_profile
,
531 static void __init
profile_nop(void *unused
)
535 static int __init
create_hash_tables(void)
539 for_each_online_cpu(cpu
) {
540 int node
= cpu_to_node(cpu
);
543 page
= alloc_pages_node(node
,
544 GFP_KERNEL
| __GFP_ZERO
| GFP_THISNODE
,
548 per_cpu(cpu_profile_hits
, cpu
)[1]
549 = (struct profile_hit
*)page_address(page
);
550 page
= alloc_pages_node(node
,
551 GFP_KERNEL
| __GFP_ZERO
| GFP_THISNODE
,
555 per_cpu(cpu_profile_hits
, cpu
)[0]
556 = (struct profile_hit
*)page_address(page
);
562 on_each_cpu(profile_nop
, NULL
, 0, 1);
563 for_each_online_cpu(cpu
) {
566 if (per_cpu(cpu_profile_hits
, cpu
)[0]) {
567 page
= virt_to_page(per_cpu(cpu_profile_hits
, cpu
)[0]);
568 per_cpu(cpu_profile_hits
, cpu
)[0] = NULL
;
571 if (per_cpu(cpu_profile_hits
, cpu
)[1]) {
572 page
= virt_to_page(per_cpu(cpu_profile_hits
, cpu
)[1]);
573 per_cpu(cpu_profile_hits
, cpu
)[1] = NULL
;
580 #define create_hash_tables() ({ 0; })
583 static int __init
create_proc_profile(void)
585 struct proc_dir_entry
*entry
;
589 if (create_hash_tables())
591 entry
= create_proc_entry("profile", S_IWUSR
| S_IRUGO
, NULL
);
594 entry
->proc_fops
= &proc_profile_operations
;
595 entry
->size
= (1+prof_len
) * sizeof(atomic_t
);
596 hotcpu_notifier(profile_cpu_callback
, 0);
599 module_init(create_proc_profile
);
600 #endif /* CONFIG_PROC_FS */