2 * linux/kernel/irq/handle.c
4 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
5 * Copyright (C) 2005-2006, Thomas Gleixner, Russell King
7 * This file contains the core interrupt handling code.
9 * Detailed information is available in Documentation/DocBook/genericirq
13 #include <linux/irq.h>
14 #include <linux/module.h>
15 #include <linux/random.h>
16 #include <linux/interrupt.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/rculist.h>
19 #include <linux/hash.h>
21 #include "internals.h"
24 * lockdep: we want to handle all irq_desc locks as a single lock-class:
26 struct lock_class_key irq_desc_lock_class
;
29 * handle_bad_irq - handle spurious and unhandled irqs
30 * @irq: the interrupt number
31 * @desc: description of the interrupt
33 * Handles spurious and unhandled IRQ's. It also prints a debugmessage.
35 void handle_bad_irq(unsigned int irq
, struct irq_desc
*desc
)
37 print_irq_desc(irq
, desc
);
38 kstat_incr_irqs_this_cpu(irq
, desc
);
42 #if defined(CONFIG_SMP) && defined(CONFIG_GENERIC_HARDIRQS)
43 static void __init
init_irq_default_affinity(void)
45 alloc_bootmem_cpumask_var(&irq_default_affinity
);
46 cpumask_setall(irq_default_affinity
);
49 static void __init
init_irq_default_affinity(void)
55 * Linux has a controller-independent interrupt architecture.
56 * Every controller has a 'controller-template', that is used
57 * by the main code to do the right thing. Each driver-visible
58 * interrupt source is transparently wired to the appropriate
59 * controller. Thus drivers need not be aware of the
60 * interrupt-controller.
62 * The code is designed to be easily extended with new/different
63 * interrupt controllers, without having to do assembly magic or
64 * having to touch the generic code.
66 * Controller mappings for all interrupt sources:
68 int nr_irqs
= NR_IRQS
;
69 EXPORT_SYMBOL_GPL(nr_irqs
);
71 #ifdef CONFIG_SPARSE_IRQ
72 static struct irq_desc irq_desc_init
= {
74 .status
= IRQ_DISABLED
,
76 .handle_irq
= handle_bad_irq
,
78 .lock
= __SPIN_LOCK_UNLOCKED(irq_desc_init
.lock
),
80 .affinity
= CPU_MASK_ALL
84 void init_kstat_irqs(struct irq_desc
*desc
, int cpu
, int nr
)
90 /* Compute how many bytes we need per irq and allocate them */
91 bytes
= nr
* sizeof(unsigned int);
93 node
= cpu_to_node(cpu
);
94 ptr
= kzalloc_node(bytes
, GFP_ATOMIC
, node
);
95 printk(KERN_DEBUG
" alloc kstat_irqs on cpu %d node %d\n", cpu
, node
);
98 desc
->kstat_irqs
= (unsigned int *)ptr
;
101 static void init_one_irq_desc(int irq
, struct irq_desc
*desc
, int cpu
)
103 memcpy(desc
, &irq_desc_init
, sizeof(struct irq_desc
));
105 spin_lock_init(&desc
->lock
);
110 lockdep_set_class(&desc
->lock
, &irq_desc_lock_class
);
111 init_kstat_irqs(desc
, cpu
, nr_cpu_ids
);
112 if (!desc
->kstat_irqs
) {
113 printk(KERN_ERR
"can not alloc kstat_irqs\n");
116 arch_init_chip_data(desc
, cpu
);
120 * Protect the sparse_irqs:
122 DEFINE_SPINLOCK(sparse_irq_lock
);
124 struct irq_desc
*irq_desc_ptrs
[NR_IRQS
] __read_mostly
;
126 static struct irq_desc irq_desc_legacy
[NR_IRQS_LEGACY
] __cacheline_aligned_in_smp
= {
127 [0 ... NR_IRQS_LEGACY
-1] = {
129 .status
= IRQ_DISABLED
,
130 .chip
= &no_irq_chip
,
131 .handle_irq
= handle_bad_irq
,
133 .lock
= __SPIN_LOCK_UNLOCKED(irq_desc_init
.lock
),
135 .affinity
= CPU_MASK_ALL
140 /* FIXME: use bootmem alloc ...*/
141 static unsigned int kstat_irqs_legacy
[NR_IRQS_LEGACY
][NR_CPUS
];
143 int __init
early_irq_init(void)
145 struct irq_desc
*desc
;
149 init_irq_default_affinity();
151 desc
= irq_desc_legacy
;
152 legacy_count
= ARRAY_SIZE(irq_desc_legacy
);
154 for (i
= 0; i
< legacy_count
; i
++) {
156 desc
[i
].kstat_irqs
= kstat_irqs_legacy
[i
];
157 lockdep_set_class(&desc
[i
].lock
, &irq_desc_lock_class
);
159 irq_desc_ptrs
[i
] = desc
+ i
;
162 for (i
= legacy_count
; i
< NR_IRQS
; i
++)
163 irq_desc_ptrs
[i
] = NULL
;
165 return arch_early_irq_init();
168 struct irq_desc
*irq_to_desc(unsigned int irq
)
170 return (irq
< NR_IRQS
) ? irq_desc_ptrs
[irq
] : NULL
;
173 struct irq_desc
*irq_to_desc_alloc_cpu(unsigned int irq
, int cpu
)
175 struct irq_desc
*desc
;
179 if (irq
>= NR_IRQS
) {
180 printk(KERN_WARNING
"irq >= NR_IRQS in irq_to_desc_alloc: %d %d\n",
186 desc
= irq_desc_ptrs
[irq
];
190 spin_lock_irqsave(&sparse_irq_lock
, flags
);
192 /* We have to check it to avoid races with another CPU */
193 desc
= irq_desc_ptrs
[irq
];
197 node
= cpu_to_node(cpu
);
198 desc
= kzalloc_node(sizeof(*desc
), GFP_ATOMIC
, node
);
199 printk(KERN_DEBUG
" alloc irq_desc for %d on cpu %d node %d\n",
202 printk(KERN_ERR
"can not alloc irq_desc\n");
205 init_one_irq_desc(irq
, desc
, cpu
);
207 irq_desc_ptrs
[irq
] = desc
;
210 spin_unlock_irqrestore(&sparse_irq_lock
, flags
);
215 #else /* !CONFIG_SPARSE_IRQ */
217 struct irq_desc irq_desc
[NR_IRQS
] __cacheline_aligned_in_smp
= {
218 [0 ... NR_IRQS
-1] = {
219 .status
= IRQ_DISABLED
,
220 .chip
= &no_irq_chip
,
221 .handle_irq
= handle_bad_irq
,
223 .lock
= __SPIN_LOCK_UNLOCKED(irq_desc
->lock
),
225 .affinity
= CPU_MASK_ALL
230 int __init
early_irq_init(void)
232 struct irq_desc
*desc
;
236 init_irq_default_affinity();
239 count
= ARRAY_SIZE(irq_desc
);
241 for (i
= 0; i
< count
; i
++)
244 return arch_early_irq_init();
247 struct irq_desc
*irq_to_desc(unsigned int irq
)
249 return (irq
< NR_IRQS
) ? irq_desc
+ irq
: NULL
;
252 struct irq_desc
*irq_to_desc_alloc_cpu(unsigned int irq
, int cpu
)
254 return irq_to_desc(irq
);
256 #endif /* !CONFIG_SPARSE_IRQ */
259 * What should we do if we get a hw irq event on an illegal vector?
260 * Each architecture has to answer this themself.
262 static void ack_bad(unsigned int irq
)
264 struct irq_desc
*desc
= irq_to_desc(irq
);
266 print_irq_desc(irq
, desc
);
273 static void noop(unsigned int irq
)
277 static unsigned int noop_ret(unsigned int irq
)
283 * Generic no controller implementation
285 struct irq_chip no_irq_chip
= {
296 * Generic dummy implementation which can be used for
297 * real dumb interrupt sources
299 struct irq_chip dummy_irq_chip
= {
312 * Special, empty irq handler:
314 irqreturn_t
no_action(int cpl
, void *dev_id
)
320 * handle_IRQ_event - irq action chain handler
321 * @irq: the interrupt number
322 * @action: the interrupt action chain for this irq
324 * Handles the action chain of an irq event
326 irqreturn_t
handle_IRQ_event(unsigned int irq
, struct irqaction
*action
)
328 irqreturn_t ret
, retval
= IRQ_NONE
;
329 unsigned int status
= 0;
331 if (!(action
->flags
& IRQF_DISABLED
))
332 local_irq_enable_in_hardirq();
335 ret
= action
->handler(irq
, action
->dev_id
);
336 if (ret
== IRQ_HANDLED
)
337 status
|= action
->flags
;
339 action
= action
->next
;
342 if (status
& IRQF_SAMPLE_RANDOM
)
343 add_interrupt_randomness(irq
);
349 #ifndef CONFIG_GENERIC_HARDIRQS_NO__DO_IRQ
351 * __do_IRQ - original all in one highlevel IRQ handler
352 * @irq: the interrupt number
354 * __do_IRQ handles all normal device IRQ's (the special
355 * SMP cross-CPU interrupts have their own specific
358 * This is the original x86 implementation which is used for every
361 unsigned int __do_IRQ(unsigned int irq
)
363 struct irq_desc
*desc
= irq_to_desc(irq
);
364 struct irqaction
*action
;
367 kstat_incr_irqs_this_cpu(irq
, desc
);
369 if (CHECK_IRQ_PER_CPU(desc
->status
)) {
370 irqreturn_t action_ret
;
373 * No locking required for CPU-local interrupts:
375 if (desc
->chip
->ack
) {
376 desc
->chip
->ack(irq
);
378 desc
= irq_remap_to_desc(irq
, desc
);
380 if (likely(!(desc
->status
& IRQ_DISABLED
))) {
381 action_ret
= handle_IRQ_event(irq
, desc
->action
);
383 note_interrupt(irq
, desc
, action_ret
);
385 desc
->chip
->end(irq
);
389 spin_lock(&desc
->lock
);
390 if (desc
->chip
->ack
) {
391 desc
->chip
->ack(irq
);
392 desc
= irq_remap_to_desc(irq
, desc
);
395 * REPLAY is when Linux resends an IRQ that was dropped earlier
396 * WAITING is used by probe to mark irqs that are being tested
398 status
= desc
->status
& ~(IRQ_REPLAY
| IRQ_WAITING
);
399 status
|= IRQ_PENDING
; /* we _want_ to handle it */
402 * If the IRQ is disabled for whatever reason, we cannot
403 * use the action we have.
406 if (likely(!(status
& (IRQ_DISABLED
| IRQ_INPROGRESS
)))) {
407 action
= desc
->action
;
408 status
&= ~IRQ_PENDING
; /* we commit to handling */
409 status
|= IRQ_INPROGRESS
; /* we are handling it */
411 desc
->status
= status
;
414 * If there is no IRQ handler or it was disabled, exit early.
415 * Since we set PENDING, if another processor is handling
416 * a different instance of this same irq, the other processor
417 * will take care of it.
419 if (unlikely(!action
))
423 * Edge triggered interrupts need to remember
425 * This applies to any hw interrupts that allow a second
426 * instance of the same irq to arrive while we are in do_IRQ
427 * or in the handler. But the code here only handles the _second_
428 * instance of the irq, not the third or fourth. So it is mostly
429 * useful for irq hardware that does not mask cleanly in an
433 irqreturn_t action_ret
;
435 spin_unlock(&desc
->lock
);
437 action_ret
= handle_IRQ_event(irq
, action
);
439 note_interrupt(irq
, desc
, action_ret
);
441 spin_lock(&desc
->lock
);
442 if (likely(!(desc
->status
& IRQ_PENDING
)))
444 desc
->status
&= ~IRQ_PENDING
;
446 desc
->status
&= ~IRQ_INPROGRESS
;
450 * The ->end() handler has to deal with interrupts which got
451 * disabled while the handler was running.
453 desc
->chip
->end(irq
);
454 spin_unlock(&desc
->lock
);
460 void early_init_irq_lock_class(void)
462 struct irq_desc
*desc
;
465 for_each_irq_desc(i
, desc
) {
466 lockdep_set_class(&desc
->lock
, &irq_desc_lock_class
);
470 #ifdef CONFIG_SPARSE_IRQ
471 unsigned int kstat_irqs_cpu(unsigned int irq
, int cpu
)
473 struct irq_desc
*desc
= irq_to_desc(irq
);
474 return desc
? desc
->kstat_irqs
[cpu
] : 0;
477 EXPORT_SYMBOL(kstat_irqs_cpu
);