[PATCH] md: remove the working_disks and failed_disks from raid5 state data.
[linux-2.6/mini2440.git] / mm / mempolicy.c
blob25788b1b7fcff4b6d116dffab3abe6e1ecc17d08
1 /*
2 * Simple NUMA memory policy for the Linux kernel.
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
11 * Support four policies per VMA and per process:
13 * The VMA policy has priority over the process policy for a page fault.
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
28 * preferred Try a specific node first before normal fallback.
29 * As a special case node -1 here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66 could replace all the switch()es with a mempolicy_ops structure.
69 #include <linux/mempolicy.h>
70 #include <linux/mm.h>
71 #include <linux/highmem.h>
72 #include <linux/hugetlb.h>
73 #include <linux/kernel.h>
74 #include <linux/sched.h>
75 #include <linux/mm.h>
76 #include <linux/nodemask.h>
77 #include <linux/cpuset.h>
78 #include <linux/gfp.h>
79 #include <linux/slab.h>
80 #include <linux/string.h>
81 #include <linux/module.h>
82 #include <linux/interrupt.h>
83 #include <linux/init.h>
84 #include <linux/compat.h>
85 #include <linux/mempolicy.h>
86 #include <linux/swap.h>
87 #include <linux/seq_file.h>
88 #include <linux/proc_fs.h>
89 #include <linux/migrate.h>
90 #include <linux/rmap.h>
91 #include <linux/security.h>
93 #include <asm/tlbflush.h>
94 #include <asm/uaccess.h>
96 /* Internal flags */
97 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
98 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
99 #define MPOL_MF_STATS (MPOL_MF_INTERNAL << 2) /* Gather statistics */
101 static struct kmem_cache *policy_cache;
102 static struct kmem_cache *sn_cache;
104 #define PDprintk(fmt...)
106 /* Highest zone. An specific allocation for a zone below that is not
107 policied. */
108 enum zone_type policy_zone = ZONE_DMA;
110 struct mempolicy default_policy = {
111 .refcnt = ATOMIC_INIT(1), /* never free it */
112 .policy = MPOL_DEFAULT,
115 /* Do sanity checking on a policy */
116 static int mpol_check_policy(int mode, nodemask_t *nodes)
118 int empty = nodes_empty(*nodes);
120 switch (mode) {
121 case MPOL_DEFAULT:
122 if (!empty)
123 return -EINVAL;
124 break;
125 case MPOL_BIND:
126 case MPOL_INTERLEAVE:
127 /* Preferred will only use the first bit, but allow
128 more for now. */
129 if (empty)
130 return -EINVAL;
131 break;
133 return nodes_subset(*nodes, node_online_map) ? 0 : -EINVAL;
136 /* Generate a custom zonelist for the BIND policy. */
137 static struct zonelist *bind_zonelist(nodemask_t *nodes)
139 struct zonelist *zl;
140 int num, max, nd;
141 enum zone_type k;
143 max = 1 + MAX_NR_ZONES * nodes_weight(*nodes);
144 zl = kmalloc(sizeof(struct zone *) * max, GFP_KERNEL);
145 if (!zl)
146 return NULL;
147 num = 0;
148 /* First put in the highest zones from all nodes, then all the next
149 lower zones etc. Avoid empty zones because the memory allocator
150 doesn't like them. If you implement node hot removal you
151 have to fix that. */
152 k = policy_zone;
153 while (1) {
154 for_each_node_mask(nd, *nodes) {
155 struct zone *z = &NODE_DATA(nd)->node_zones[k];
156 if (z->present_pages > 0)
157 zl->zones[num++] = z;
159 if (k == 0)
160 break;
161 k--;
163 zl->zones[num] = NULL;
164 return zl;
167 /* Create a new policy */
168 static struct mempolicy *mpol_new(int mode, nodemask_t *nodes)
170 struct mempolicy *policy;
172 PDprintk("setting mode %d nodes[0] %lx\n", mode, nodes_addr(*nodes)[0]);
173 if (mode == MPOL_DEFAULT)
174 return NULL;
175 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
176 if (!policy)
177 return ERR_PTR(-ENOMEM);
178 atomic_set(&policy->refcnt, 1);
179 switch (mode) {
180 case MPOL_INTERLEAVE:
181 policy->v.nodes = *nodes;
182 if (nodes_weight(*nodes) == 0) {
183 kmem_cache_free(policy_cache, policy);
184 return ERR_PTR(-EINVAL);
186 break;
187 case MPOL_PREFERRED:
188 policy->v.preferred_node = first_node(*nodes);
189 if (policy->v.preferred_node >= MAX_NUMNODES)
190 policy->v.preferred_node = -1;
191 break;
192 case MPOL_BIND:
193 policy->v.zonelist = bind_zonelist(nodes);
194 if (policy->v.zonelist == NULL) {
195 kmem_cache_free(policy_cache, policy);
196 return ERR_PTR(-ENOMEM);
198 break;
200 policy->policy = mode;
201 policy->cpuset_mems_allowed = cpuset_mems_allowed(current);
202 return policy;
205 static void gather_stats(struct page *, void *, int pte_dirty);
206 static void migrate_page_add(struct page *page, struct list_head *pagelist,
207 unsigned long flags);
209 /* Scan through pages checking if pages follow certain conditions. */
210 static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
211 unsigned long addr, unsigned long end,
212 const nodemask_t *nodes, unsigned long flags,
213 void *private)
215 pte_t *orig_pte;
216 pte_t *pte;
217 spinlock_t *ptl;
219 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
220 do {
221 struct page *page;
222 unsigned int nid;
224 if (!pte_present(*pte))
225 continue;
226 page = vm_normal_page(vma, addr, *pte);
227 if (!page)
228 continue;
230 * The check for PageReserved here is important to avoid
231 * handling zero pages and other pages that may have been
232 * marked special by the system.
234 * If the PageReserved would not be checked here then f.e.
235 * the location of the zero page could have an influence
236 * on MPOL_MF_STRICT, zero pages would be counted for
237 * the per node stats, and there would be useless attempts
238 * to put zero pages on the migration list.
240 if (PageReserved(page))
241 continue;
242 nid = page_to_nid(page);
243 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
244 continue;
246 if (flags & MPOL_MF_STATS)
247 gather_stats(page, private, pte_dirty(*pte));
248 else if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
249 migrate_page_add(page, private, flags);
250 else
251 break;
252 } while (pte++, addr += PAGE_SIZE, addr != end);
253 pte_unmap_unlock(orig_pte, ptl);
254 return addr != end;
257 static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
258 unsigned long addr, unsigned long end,
259 const nodemask_t *nodes, unsigned long flags,
260 void *private)
262 pmd_t *pmd;
263 unsigned long next;
265 pmd = pmd_offset(pud, addr);
266 do {
267 next = pmd_addr_end(addr, end);
268 if (pmd_none_or_clear_bad(pmd))
269 continue;
270 if (check_pte_range(vma, pmd, addr, next, nodes,
271 flags, private))
272 return -EIO;
273 } while (pmd++, addr = next, addr != end);
274 return 0;
277 static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
278 unsigned long addr, unsigned long end,
279 const nodemask_t *nodes, unsigned long flags,
280 void *private)
282 pud_t *pud;
283 unsigned long next;
285 pud = pud_offset(pgd, addr);
286 do {
287 next = pud_addr_end(addr, end);
288 if (pud_none_or_clear_bad(pud))
289 continue;
290 if (check_pmd_range(vma, pud, addr, next, nodes,
291 flags, private))
292 return -EIO;
293 } while (pud++, addr = next, addr != end);
294 return 0;
297 static inline int check_pgd_range(struct vm_area_struct *vma,
298 unsigned long addr, unsigned long end,
299 const nodemask_t *nodes, unsigned long flags,
300 void *private)
302 pgd_t *pgd;
303 unsigned long next;
305 pgd = pgd_offset(vma->vm_mm, addr);
306 do {
307 next = pgd_addr_end(addr, end);
308 if (pgd_none_or_clear_bad(pgd))
309 continue;
310 if (check_pud_range(vma, pgd, addr, next, nodes,
311 flags, private))
312 return -EIO;
313 } while (pgd++, addr = next, addr != end);
314 return 0;
317 /* Check if a vma is migratable */
318 static inline int vma_migratable(struct vm_area_struct *vma)
320 if (vma->vm_flags & (
321 VM_LOCKED|VM_IO|VM_HUGETLB|VM_PFNMAP|VM_RESERVED))
322 return 0;
323 return 1;
327 * Check if all pages in a range are on a set of nodes.
328 * If pagelist != NULL then isolate pages from the LRU and
329 * put them on the pagelist.
331 static struct vm_area_struct *
332 check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
333 const nodemask_t *nodes, unsigned long flags, void *private)
335 int err;
336 struct vm_area_struct *first, *vma, *prev;
338 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
340 err = migrate_prep();
341 if (err)
342 return ERR_PTR(err);
345 first = find_vma(mm, start);
346 if (!first)
347 return ERR_PTR(-EFAULT);
348 prev = NULL;
349 for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
350 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
351 if (!vma->vm_next && vma->vm_end < end)
352 return ERR_PTR(-EFAULT);
353 if (prev && prev->vm_end < vma->vm_start)
354 return ERR_PTR(-EFAULT);
356 if (!is_vm_hugetlb_page(vma) &&
357 ((flags & MPOL_MF_STRICT) ||
358 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
359 vma_migratable(vma)))) {
360 unsigned long endvma = vma->vm_end;
362 if (endvma > end)
363 endvma = end;
364 if (vma->vm_start > start)
365 start = vma->vm_start;
366 err = check_pgd_range(vma, start, endvma, nodes,
367 flags, private);
368 if (err) {
369 first = ERR_PTR(err);
370 break;
373 prev = vma;
375 return first;
378 /* Apply policy to a single VMA */
379 static int policy_vma(struct vm_area_struct *vma, struct mempolicy *new)
381 int err = 0;
382 struct mempolicy *old = vma->vm_policy;
384 PDprintk("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
385 vma->vm_start, vma->vm_end, vma->vm_pgoff,
386 vma->vm_ops, vma->vm_file,
387 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
389 if (vma->vm_ops && vma->vm_ops->set_policy)
390 err = vma->vm_ops->set_policy(vma, new);
391 if (!err) {
392 mpol_get(new);
393 vma->vm_policy = new;
394 mpol_free(old);
396 return err;
399 /* Step 2: apply policy to a range and do splits. */
400 static int mbind_range(struct vm_area_struct *vma, unsigned long start,
401 unsigned long end, struct mempolicy *new)
403 struct vm_area_struct *next;
404 int err;
406 err = 0;
407 for (; vma && vma->vm_start < end; vma = next) {
408 next = vma->vm_next;
409 if (vma->vm_start < start)
410 err = split_vma(vma->vm_mm, vma, start, 1);
411 if (!err && vma->vm_end > end)
412 err = split_vma(vma->vm_mm, vma, end, 0);
413 if (!err)
414 err = policy_vma(vma, new);
415 if (err)
416 break;
418 return err;
421 static int contextualize_policy(int mode, nodemask_t *nodes)
423 if (!nodes)
424 return 0;
426 cpuset_update_task_memory_state();
427 if (!cpuset_nodes_subset_current_mems_allowed(*nodes))
428 return -EINVAL;
429 return mpol_check_policy(mode, nodes);
434 * Update task->flags PF_MEMPOLICY bit: set iff non-default
435 * mempolicy. Allows more rapid checking of this (combined perhaps
436 * with other PF_* flag bits) on memory allocation hot code paths.
438 * If called from outside this file, the task 'p' should -only- be
439 * a newly forked child not yet visible on the task list, because
440 * manipulating the task flags of a visible task is not safe.
442 * The above limitation is why this routine has the funny name
443 * mpol_fix_fork_child_flag().
445 * It is also safe to call this with a task pointer of current,
446 * which the static wrapper mpol_set_task_struct_flag() does,
447 * for use within this file.
450 void mpol_fix_fork_child_flag(struct task_struct *p)
452 if (p->mempolicy)
453 p->flags |= PF_MEMPOLICY;
454 else
455 p->flags &= ~PF_MEMPOLICY;
458 static void mpol_set_task_struct_flag(void)
460 mpol_fix_fork_child_flag(current);
463 /* Set the process memory policy */
464 long do_set_mempolicy(int mode, nodemask_t *nodes)
466 struct mempolicy *new;
468 if (contextualize_policy(mode, nodes))
469 return -EINVAL;
470 new = mpol_new(mode, nodes);
471 if (IS_ERR(new))
472 return PTR_ERR(new);
473 mpol_free(current->mempolicy);
474 current->mempolicy = new;
475 mpol_set_task_struct_flag();
476 if (new && new->policy == MPOL_INTERLEAVE)
477 current->il_next = first_node(new->v.nodes);
478 return 0;
481 /* Fill a zone bitmap for a policy */
482 static void get_zonemask(struct mempolicy *p, nodemask_t *nodes)
484 int i;
486 nodes_clear(*nodes);
487 switch (p->policy) {
488 case MPOL_BIND:
489 for (i = 0; p->v.zonelist->zones[i]; i++)
490 node_set(zone_to_nid(p->v.zonelist->zones[i]),
491 *nodes);
492 break;
493 case MPOL_DEFAULT:
494 break;
495 case MPOL_INTERLEAVE:
496 *nodes = p->v.nodes;
497 break;
498 case MPOL_PREFERRED:
499 /* or use current node instead of online map? */
500 if (p->v.preferred_node < 0)
501 *nodes = node_online_map;
502 else
503 node_set(p->v.preferred_node, *nodes);
504 break;
505 default:
506 BUG();
510 static int lookup_node(struct mm_struct *mm, unsigned long addr)
512 struct page *p;
513 int err;
515 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
516 if (err >= 0) {
517 err = page_to_nid(p);
518 put_page(p);
520 return err;
523 /* Retrieve NUMA policy */
524 long do_get_mempolicy(int *policy, nodemask_t *nmask,
525 unsigned long addr, unsigned long flags)
527 int err;
528 struct mm_struct *mm = current->mm;
529 struct vm_area_struct *vma = NULL;
530 struct mempolicy *pol = current->mempolicy;
532 cpuset_update_task_memory_state();
533 if (flags & ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR))
534 return -EINVAL;
535 if (flags & MPOL_F_ADDR) {
536 down_read(&mm->mmap_sem);
537 vma = find_vma_intersection(mm, addr, addr+1);
538 if (!vma) {
539 up_read(&mm->mmap_sem);
540 return -EFAULT;
542 if (vma->vm_ops && vma->vm_ops->get_policy)
543 pol = vma->vm_ops->get_policy(vma, addr);
544 else
545 pol = vma->vm_policy;
546 } else if (addr)
547 return -EINVAL;
549 if (!pol)
550 pol = &default_policy;
552 if (flags & MPOL_F_NODE) {
553 if (flags & MPOL_F_ADDR) {
554 err = lookup_node(mm, addr);
555 if (err < 0)
556 goto out;
557 *policy = err;
558 } else if (pol == current->mempolicy &&
559 pol->policy == MPOL_INTERLEAVE) {
560 *policy = current->il_next;
561 } else {
562 err = -EINVAL;
563 goto out;
565 } else
566 *policy = pol->policy;
568 if (vma) {
569 up_read(&current->mm->mmap_sem);
570 vma = NULL;
573 err = 0;
574 if (nmask)
575 get_zonemask(pol, nmask);
577 out:
578 if (vma)
579 up_read(&current->mm->mmap_sem);
580 return err;
583 #ifdef CONFIG_MIGRATION
585 * page migration
587 static void migrate_page_add(struct page *page, struct list_head *pagelist,
588 unsigned long flags)
591 * Avoid migrating a page that is shared with others.
593 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1)
594 isolate_lru_page(page, pagelist);
597 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
599 return alloc_pages_node(node, GFP_HIGHUSER, 0);
603 * Migrate pages from one node to a target node.
604 * Returns error or the number of pages not migrated.
606 int migrate_to_node(struct mm_struct *mm, int source, int dest, int flags)
608 nodemask_t nmask;
609 LIST_HEAD(pagelist);
610 int err = 0;
612 nodes_clear(nmask);
613 node_set(source, nmask);
615 check_range(mm, mm->mmap->vm_start, TASK_SIZE, &nmask,
616 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
618 if (!list_empty(&pagelist))
619 err = migrate_pages(&pagelist, new_node_page, dest);
621 return err;
625 * Move pages between the two nodesets so as to preserve the physical
626 * layout as much as possible.
628 * Returns the number of page that could not be moved.
630 int do_migrate_pages(struct mm_struct *mm,
631 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
633 LIST_HEAD(pagelist);
634 int busy = 0;
635 int err = 0;
636 nodemask_t tmp;
638 down_read(&mm->mmap_sem);
640 err = migrate_vmas(mm, from_nodes, to_nodes, flags);
641 if (err)
642 goto out;
645 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
646 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
647 * bit in 'tmp', and return that <source, dest> pair for migration.
648 * The pair of nodemasks 'to' and 'from' define the map.
650 * If no pair of bits is found that way, fallback to picking some
651 * pair of 'source' and 'dest' bits that are not the same. If the
652 * 'source' and 'dest' bits are the same, this represents a node
653 * that will be migrating to itself, so no pages need move.
655 * If no bits are left in 'tmp', or if all remaining bits left
656 * in 'tmp' correspond to the same bit in 'to', return false
657 * (nothing left to migrate).
659 * This lets us pick a pair of nodes to migrate between, such that
660 * if possible the dest node is not already occupied by some other
661 * source node, minimizing the risk of overloading the memory on a
662 * node that would happen if we migrated incoming memory to a node
663 * before migrating outgoing memory source that same node.
665 * A single scan of tmp is sufficient. As we go, we remember the
666 * most recent <s, d> pair that moved (s != d). If we find a pair
667 * that not only moved, but what's better, moved to an empty slot
668 * (d is not set in tmp), then we break out then, with that pair.
669 * Otherwise when we finish scannng from_tmp, we at least have the
670 * most recent <s, d> pair that moved. If we get all the way through
671 * the scan of tmp without finding any node that moved, much less
672 * moved to an empty node, then there is nothing left worth migrating.
675 tmp = *from_nodes;
676 while (!nodes_empty(tmp)) {
677 int s,d;
678 int source = -1;
679 int dest = 0;
681 for_each_node_mask(s, tmp) {
682 d = node_remap(s, *from_nodes, *to_nodes);
683 if (s == d)
684 continue;
686 source = s; /* Node moved. Memorize */
687 dest = d;
689 /* dest not in remaining from nodes? */
690 if (!node_isset(dest, tmp))
691 break;
693 if (source == -1)
694 break;
696 node_clear(source, tmp);
697 err = migrate_to_node(mm, source, dest, flags);
698 if (err > 0)
699 busy += err;
700 if (err < 0)
701 break;
703 out:
704 up_read(&mm->mmap_sem);
705 if (err < 0)
706 return err;
707 return busy;
711 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
713 struct vm_area_struct *vma = (struct vm_area_struct *)private;
715 return alloc_page_vma(GFP_HIGHUSER, vma, page_address_in_vma(page, vma));
717 #else
719 static void migrate_page_add(struct page *page, struct list_head *pagelist,
720 unsigned long flags)
724 int do_migrate_pages(struct mm_struct *mm,
725 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
727 return -ENOSYS;
730 static struct page *new_vma_page(struct page *page, unsigned long private)
732 return NULL;
734 #endif
736 long do_mbind(unsigned long start, unsigned long len,
737 unsigned long mode, nodemask_t *nmask, unsigned long flags)
739 struct vm_area_struct *vma;
740 struct mm_struct *mm = current->mm;
741 struct mempolicy *new;
742 unsigned long end;
743 int err;
744 LIST_HEAD(pagelist);
746 if ((flags & ~(unsigned long)(MPOL_MF_STRICT |
747 MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
748 || mode > MPOL_MAX)
749 return -EINVAL;
750 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
751 return -EPERM;
753 if (start & ~PAGE_MASK)
754 return -EINVAL;
756 if (mode == MPOL_DEFAULT)
757 flags &= ~MPOL_MF_STRICT;
759 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
760 end = start + len;
762 if (end < start)
763 return -EINVAL;
764 if (end == start)
765 return 0;
767 if (mpol_check_policy(mode, nmask))
768 return -EINVAL;
770 new = mpol_new(mode, nmask);
771 if (IS_ERR(new))
772 return PTR_ERR(new);
775 * If we are using the default policy then operation
776 * on discontinuous address spaces is okay after all
778 if (!new)
779 flags |= MPOL_MF_DISCONTIG_OK;
781 PDprintk("mbind %lx-%lx mode:%ld nodes:%lx\n",start,start+len,
782 mode,nodes_addr(nodes)[0]);
784 down_write(&mm->mmap_sem);
785 vma = check_range(mm, start, end, nmask,
786 flags | MPOL_MF_INVERT, &pagelist);
788 err = PTR_ERR(vma);
789 if (!IS_ERR(vma)) {
790 int nr_failed = 0;
792 err = mbind_range(vma, start, end, new);
794 if (!list_empty(&pagelist))
795 nr_failed = migrate_pages(&pagelist, new_vma_page,
796 (unsigned long)vma);
798 if (!err && nr_failed && (flags & MPOL_MF_STRICT))
799 err = -EIO;
802 up_write(&mm->mmap_sem);
803 mpol_free(new);
804 return err;
808 * User space interface with variable sized bitmaps for nodelists.
811 /* Copy a node mask from user space. */
812 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
813 unsigned long maxnode)
815 unsigned long k;
816 unsigned long nlongs;
817 unsigned long endmask;
819 --maxnode;
820 nodes_clear(*nodes);
821 if (maxnode == 0 || !nmask)
822 return 0;
823 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
824 return -EINVAL;
826 nlongs = BITS_TO_LONGS(maxnode);
827 if ((maxnode % BITS_PER_LONG) == 0)
828 endmask = ~0UL;
829 else
830 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
832 /* When the user specified more nodes than supported just check
833 if the non supported part is all zero. */
834 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
835 if (nlongs > PAGE_SIZE/sizeof(long))
836 return -EINVAL;
837 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
838 unsigned long t;
839 if (get_user(t, nmask + k))
840 return -EFAULT;
841 if (k == nlongs - 1) {
842 if (t & endmask)
843 return -EINVAL;
844 } else if (t)
845 return -EINVAL;
847 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
848 endmask = ~0UL;
851 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
852 return -EFAULT;
853 nodes_addr(*nodes)[nlongs-1] &= endmask;
854 return 0;
857 /* Copy a kernel node mask to user space */
858 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
859 nodemask_t *nodes)
861 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
862 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
864 if (copy > nbytes) {
865 if (copy > PAGE_SIZE)
866 return -EINVAL;
867 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
868 return -EFAULT;
869 copy = nbytes;
871 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
874 asmlinkage long sys_mbind(unsigned long start, unsigned long len,
875 unsigned long mode,
876 unsigned long __user *nmask, unsigned long maxnode,
877 unsigned flags)
879 nodemask_t nodes;
880 int err;
882 err = get_nodes(&nodes, nmask, maxnode);
883 if (err)
884 return err;
885 return do_mbind(start, len, mode, &nodes, flags);
888 /* Set the process memory policy */
889 asmlinkage long sys_set_mempolicy(int mode, unsigned long __user *nmask,
890 unsigned long maxnode)
892 int err;
893 nodemask_t nodes;
895 if (mode < 0 || mode > MPOL_MAX)
896 return -EINVAL;
897 err = get_nodes(&nodes, nmask, maxnode);
898 if (err)
899 return err;
900 return do_set_mempolicy(mode, &nodes);
903 asmlinkage long sys_migrate_pages(pid_t pid, unsigned long maxnode,
904 const unsigned long __user *old_nodes,
905 const unsigned long __user *new_nodes)
907 struct mm_struct *mm;
908 struct task_struct *task;
909 nodemask_t old;
910 nodemask_t new;
911 nodemask_t task_nodes;
912 int err;
914 err = get_nodes(&old, old_nodes, maxnode);
915 if (err)
916 return err;
918 err = get_nodes(&new, new_nodes, maxnode);
919 if (err)
920 return err;
922 /* Find the mm_struct */
923 read_lock(&tasklist_lock);
924 task = pid ? find_task_by_pid(pid) : current;
925 if (!task) {
926 read_unlock(&tasklist_lock);
927 return -ESRCH;
929 mm = get_task_mm(task);
930 read_unlock(&tasklist_lock);
932 if (!mm)
933 return -EINVAL;
936 * Check if this process has the right to modify the specified
937 * process. The right exists if the process has administrative
938 * capabilities, superuser privileges or the same
939 * userid as the target process.
941 if ((current->euid != task->suid) && (current->euid != task->uid) &&
942 (current->uid != task->suid) && (current->uid != task->uid) &&
943 !capable(CAP_SYS_NICE)) {
944 err = -EPERM;
945 goto out;
948 task_nodes = cpuset_mems_allowed(task);
949 /* Is the user allowed to access the target nodes? */
950 if (!nodes_subset(new, task_nodes) && !capable(CAP_SYS_NICE)) {
951 err = -EPERM;
952 goto out;
955 err = security_task_movememory(task);
956 if (err)
957 goto out;
959 err = do_migrate_pages(mm, &old, &new,
960 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
961 out:
962 mmput(mm);
963 return err;
967 /* Retrieve NUMA policy */
968 asmlinkage long sys_get_mempolicy(int __user *policy,
969 unsigned long __user *nmask,
970 unsigned long maxnode,
971 unsigned long addr, unsigned long flags)
973 int err, pval;
974 nodemask_t nodes;
976 if (nmask != NULL && maxnode < MAX_NUMNODES)
977 return -EINVAL;
979 err = do_get_mempolicy(&pval, &nodes, addr, flags);
981 if (err)
982 return err;
984 if (policy && put_user(pval, policy))
985 return -EFAULT;
987 if (nmask)
988 err = copy_nodes_to_user(nmask, maxnode, &nodes);
990 return err;
993 #ifdef CONFIG_COMPAT
995 asmlinkage long compat_sys_get_mempolicy(int __user *policy,
996 compat_ulong_t __user *nmask,
997 compat_ulong_t maxnode,
998 compat_ulong_t addr, compat_ulong_t flags)
1000 long err;
1001 unsigned long __user *nm = NULL;
1002 unsigned long nr_bits, alloc_size;
1003 DECLARE_BITMAP(bm, MAX_NUMNODES);
1005 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1006 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1008 if (nmask)
1009 nm = compat_alloc_user_space(alloc_size);
1011 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1013 if (!err && nmask) {
1014 err = copy_from_user(bm, nm, alloc_size);
1015 /* ensure entire bitmap is zeroed */
1016 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1017 err |= compat_put_bitmap(nmask, bm, nr_bits);
1020 return err;
1023 asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1024 compat_ulong_t maxnode)
1026 long err = 0;
1027 unsigned long __user *nm = NULL;
1028 unsigned long nr_bits, alloc_size;
1029 DECLARE_BITMAP(bm, MAX_NUMNODES);
1031 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1032 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1034 if (nmask) {
1035 err = compat_get_bitmap(bm, nmask, nr_bits);
1036 nm = compat_alloc_user_space(alloc_size);
1037 err |= copy_to_user(nm, bm, alloc_size);
1040 if (err)
1041 return -EFAULT;
1043 return sys_set_mempolicy(mode, nm, nr_bits+1);
1046 asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1047 compat_ulong_t mode, compat_ulong_t __user *nmask,
1048 compat_ulong_t maxnode, compat_ulong_t flags)
1050 long err = 0;
1051 unsigned long __user *nm = NULL;
1052 unsigned long nr_bits, alloc_size;
1053 nodemask_t bm;
1055 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1056 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1058 if (nmask) {
1059 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1060 nm = compat_alloc_user_space(alloc_size);
1061 err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1064 if (err)
1065 return -EFAULT;
1067 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1070 #endif
1072 /* Return effective policy for a VMA */
1073 static struct mempolicy * get_vma_policy(struct task_struct *task,
1074 struct vm_area_struct *vma, unsigned long addr)
1076 struct mempolicy *pol = task->mempolicy;
1078 if (vma) {
1079 if (vma->vm_ops && vma->vm_ops->get_policy)
1080 pol = vma->vm_ops->get_policy(vma, addr);
1081 else if (vma->vm_policy &&
1082 vma->vm_policy->policy != MPOL_DEFAULT)
1083 pol = vma->vm_policy;
1085 if (!pol)
1086 pol = &default_policy;
1087 return pol;
1090 /* Return a zonelist representing a mempolicy */
1091 static struct zonelist *zonelist_policy(gfp_t gfp, struct mempolicy *policy)
1093 int nd;
1095 switch (policy->policy) {
1096 case MPOL_PREFERRED:
1097 nd = policy->v.preferred_node;
1098 if (nd < 0)
1099 nd = numa_node_id();
1100 break;
1101 case MPOL_BIND:
1102 /* Lower zones don't get a policy applied */
1103 /* Careful: current->mems_allowed might have moved */
1104 if (gfp_zone(gfp) >= policy_zone)
1105 if (cpuset_zonelist_valid_mems_allowed(policy->v.zonelist))
1106 return policy->v.zonelist;
1107 /*FALL THROUGH*/
1108 case MPOL_INTERLEAVE: /* should not happen */
1109 case MPOL_DEFAULT:
1110 nd = numa_node_id();
1111 break;
1112 default:
1113 nd = 0;
1114 BUG();
1116 return NODE_DATA(nd)->node_zonelists + gfp_zone(gfp);
1119 /* Do dynamic interleaving for a process */
1120 static unsigned interleave_nodes(struct mempolicy *policy)
1122 unsigned nid, next;
1123 struct task_struct *me = current;
1125 nid = me->il_next;
1126 next = next_node(nid, policy->v.nodes);
1127 if (next >= MAX_NUMNODES)
1128 next = first_node(policy->v.nodes);
1129 me->il_next = next;
1130 return nid;
1134 * Depending on the memory policy provide a node from which to allocate the
1135 * next slab entry.
1137 unsigned slab_node(struct mempolicy *policy)
1139 int pol = policy ? policy->policy : MPOL_DEFAULT;
1141 switch (pol) {
1142 case MPOL_INTERLEAVE:
1143 return interleave_nodes(policy);
1145 case MPOL_BIND:
1147 * Follow bind policy behavior and start allocation at the
1148 * first node.
1150 return zone_to_nid(policy->v.zonelist->zones[0]);
1152 case MPOL_PREFERRED:
1153 if (policy->v.preferred_node >= 0)
1154 return policy->v.preferred_node;
1155 /* Fall through */
1157 default:
1158 return numa_node_id();
1162 /* Do static interleaving for a VMA with known offset. */
1163 static unsigned offset_il_node(struct mempolicy *pol,
1164 struct vm_area_struct *vma, unsigned long off)
1166 unsigned nnodes = nodes_weight(pol->v.nodes);
1167 unsigned target = (unsigned)off % nnodes;
1168 int c;
1169 int nid = -1;
1171 c = 0;
1172 do {
1173 nid = next_node(nid, pol->v.nodes);
1174 c++;
1175 } while (c <= target);
1176 return nid;
1179 /* Determine a node number for interleave */
1180 static inline unsigned interleave_nid(struct mempolicy *pol,
1181 struct vm_area_struct *vma, unsigned long addr, int shift)
1183 if (vma) {
1184 unsigned long off;
1187 * for small pages, there is no difference between
1188 * shift and PAGE_SHIFT, so the bit-shift is safe.
1189 * for huge pages, since vm_pgoff is in units of small
1190 * pages, we need to shift off the always 0 bits to get
1191 * a useful offset.
1193 BUG_ON(shift < PAGE_SHIFT);
1194 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1195 off += (addr - vma->vm_start) >> shift;
1196 return offset_il_node(pol, vma, off);
1197 } else
1198 return interleave_nodes(pol);
1201 #ifdef CONFIG_HUGETLBFS
1202 /* Return a zonelist suitable for a huge page allocation. */
1203 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr)
1205 struct mempolicy *pol = get_vma_policy(current, vma, addr);
1207 if (pol->policy == MPOL_INTERLEAVE) {
1208 unsigned nid;
1210 nid = interleave_nid(pol, vma, addr, HPAGE_SHIFT);
1211 return NODE_DATA(nid)->node_zonelists + gfp_zone(GFP_HIGHUSER);
1213 return zonelist_policy(GFP_HIGHUSER, pol);
1215 #endif
1217 /* Allocate a page in interleaved policy.
1218 Own path because it needs to do special accounting. */
1219 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1220 unsigned nid)
1222 struct zonelist *zl;
1223 struct page *page;
1225 zl = NODE_DATA(nid)->node_zonelists + gfp_zone(gfp);
1226 page = __alloc_pages(gfp, order, zl);
1227 if (page && page_zone(page) == zl->zones[0])
1228 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1229 return page;
1233 * alloc_page_vma - Allocate a page for a VMA.
1235 * @gfp:
1236 * %GFP_USER user allocation.
1237 * %GFP_KERNEL kernel allocations,
1238 * %GFP_HIGHMEM highmem/user allocations,
1239 * %GFP_FS allocation should not call back into a file system.
1240 * %GFP_ATOMIC don't sleep.
1242 * @vma: Pointer to VMA or NULL if not available.
1243 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1245 * This function allocates a page from the kernel page pool and applies
1246 * a NUMA policy associated with the VMA or the current process.
1247 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1248 * mm_struct of the VMA to prevent it from going away. Should be used for
1249 * all allocations for pages that will be mapped into
1250 * user space. Returns NULL when no page can be allocated.
1252 * Should be called with the mm_sem of the vma hold.
1254 struct page *
1255 alloc_page_vma(gfp_t gfp, struct vm_area_struct *vma, unsigned long addr)
1257 struct mempolicy *pol = get_vma_policy(current, vma, addr);
1259 cpuset_update_task_memory_state();
1261 if (unlikely(pol->policy == MPOL_INTERLEAVE)) {
1262 unsigned nid;
1264 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT);
1265 return alloc_page_interleave(gfp, 0, nid);
1267 return __alloc_pages(gfp, 0, zonelist_policy(gfp, pol));
1271 * alloc_pages_current - Allocate pages.
1273 * @gfp:
1274 * %GFP_USER user allocation,
1275 * %GFP_KERNEL kernel allocation,
1276 * %GFP_HIGHMEM highmem allocation,
1277 * %GFP_FS don't call back into a file system.
1278 * %GFP_ATOMIC don't sleep.
1279 * @order: Power of two of allocation size in pages. 0 is a single page.
1281 * Allocate a page from the kernel page pool. When not in
1282 * interrupt context and apply the current process NUMA policy.
1283 * Returns NULL when no page can be allocated.
1285 * Don't call cpuset_update_task_memory_state() unless
1286 * 1) it's ok to take cpuset_sem (can WAIT), and
1287 * 2) allocating for current task (not interrupt).
1289 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
1291 struct mempolicy *pol = current->mempolicy;
1293 if ((gfp & __GFP_WAIT) && !in_interrupt())
1294 cpuset_update_task_memory_state();
1295 if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
1296 pol = &default_policy;
1297 if (pol->policy == MPOL_INTERLEAVE)
1298 return alloc_page_interleave(gfp, order, interleave_nodes(pol));
1299 return __alloc_pages(gfp, order, zonelist_policy(gfp, pol));
1301 EXPORT_SYMBOL(alloc_pages_current);
1304 * If mpol_copy() sees current->cpuset == cpuset_being_rebound, then it
1305 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
1306 * with the mems_allowed returned by cpuset_mems_allowed(). This
1307 * keeps mempolicies cpuset relative after its cpuset moves. See
1308 * further kernel/cpuset.c update_nodemask().
1310 void *cpuset_being_rebound;
1312 /* Slow path of a mempolicy copy */
1313 struct mempolicy *__mpol_copy(struct mempolicy *old)
1315 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
1317 if (!new)
1318 return ERR_PTR(-ENOMEM);
1319 if (current_cpuset_is_being_rebound()) {
1320 nodemask_t mems = cpuset_mems_allowed(current);
1321 mpol_rebind_policy(old, &mems);
1323 *new = *old;
1324 atomic_set(&new->refcnt, 1);
1325 if (new->policy == MPOL_BIND) {
1326 int sz = ksize(old->v.zonelist);
1327 new->v.zonelist = kmemdup(old->v.zonelist, sz, SLAB_KERNEL);
1328 if (!new->v.zonelist) {
1329 kmem_cache_free(policy_cache, new);
1330 return ERR_PTR(-ENOMEM);
1333 return new;
1336 /* Slow path of a mempolicy comparison */
1337 int __mpol_equal(struct mempolicy *a, struct mempolicy *b)
1339 if (!a || !b)
1340 return 0;
1341 if (a->policy != b->policy)
1342 return 0;
1343 switch (a->policy) {
1344 case MPOL_DEFAULT:
1345 return 1;
1346 case MPOL_INTERLEAVE:
1347 return nodes_equal(a->v.nodes, b->v.nodes);
1348 case MPOL_PREFERRED:
1349 return a->v.preferred_node == b->v.preferred_node;
1350 case MPOL_BIND: {
1351 int i;
1352 for (i = 0; a->v.zonelist->zones[i]; i++)
1353 if (a->v.zonelist->zones[i] != b->v.zonelist->zones[i])
1354 return 0;
1355 return b->v.zonelist->zones[i] == NULL;
1357 default:
1358 BUG();
1359 return 0;
1363 /* Slow path of a mpol destructor. */
1364 void __mpol_free(struct mempolicy *p)
1366 if (!atomic_dec_and_test(&p->refcnt))
1367 return;
1368 if (p->policy == MPOL_BIND)
1369 kfree(p->v.zonelist);
1370 p->policy = MPOL_DEFAULT;
1371 kmem_cache_free(policy_cache, p);
1375 * Shared memory backing store policy support.
1377 * Remember policies even when nobody has shared memory mapped.
1378 * The policies are kept in Red-Black tree linked from the inode.
1379 * They are protected by the sp->lock spinlock, which should be held
1380 * for any accesses to the tree.
1383 /* lookup first element intersecting start-end */
1384 /* Caller holds sp->lock */
1385 static struct sp_node *
1386 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
1388 struct rb_node *n = sp->root.rb_node;
1390 while (n) {
1391 struct sp_node *p = rb_entry(n, struct sp_node, nd);
1393 if (start >= p->end)
1394 n = n->rb_right;
1395 else if (end <= p->start)
1396 n = n->rb_left;
1397 else
1398 break;
1400 if (!n)
1401 return NULL;
1402 for (;;) {
1403 struct sp_node *w = NULL;
1404 struct rb_node *prev = rb_prev(n);
1405 if (!prev)
1406 break;
1407 w = rb_entry(prev, struct sp_node, nd);
1408 if (w->end <= start)
1409 break;
1410 n = prev;
1412 return rb_entry(n, struct sp_node, nd);
1415 /* Insert a new shared policy into the list. */
1416 /* Caller holds sp->lock */
1417 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
1419 struct rb_node **p = &sp->root.rb_node;
1420 struct rb_node *parent = NULL;
1421 struct sp_node *nd;
1423 while (*p) {
1424 parent = *p;
1425 nd = rb_entry(parent, struct sp_node, nd);
1426 if (new->start < nd->start)
1427 p = &(*p)->rb_left;
1428 else if (new->end > nd->end)
1429 p = &(*p)->rb_right;
1430 else
1431 BUG();
1433 rb_link_node(&new->nd, parent, p);
1434 rb_insert_color(&new->nd, &sp->root);
1435 PDprintk("inserting %lx-%lx: %d\n", new->start, new->end,
1436 new->policy ? new->policy->policy : 0);
1439 /* Find shared policy intersecting idx */
1440 struct mempolicy *
1441 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
1443 struct mempolicy *pol = NULL;
1444 struct sp_node *sn;
1446 if (!sp->root.rb_node)
1447 return NULL;
1448 spin_lock(&sp->lock);
1449 sn = sp_lookup(sp, idx, idx+1);
1450 if (sn) {
1451 mpol_get(sn->policy);
1452 pol = sn->policy;
1454 spin_unlock(&sp->lock);
1455 return pol;
1458 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
1460 PDprintk("deleting %lx-l%x\n", n->start, n->end);
1461 rb_erase(&n->nd, &sp->root);
1462 mpol_free(n->policy);
1463 kmem_cache_free(sn_cache, n);
1466 struct sp_node *
1467 sp_alloc(unsigned long start, unsigned long end, struct mempolicy *pol)
1469 struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
1471 if (!n)
1472 return NULL;
1473 n->start = start;
1474 n->end = end;
1475 mpol_get(pol);
1476 n->policy = pol;
1477 return n;
1480 /* Replace a policy range. */
1481 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
1482 unsigned long end, struct sp_node *new)
1484 struct sp_node *n, *new2 = NULL;
1486 restart:
1487 spin_lock(&sp->lock);
1488 n = sp_lookup(sp, start, end);
1489 /* Take care of old policies in the same range. */
1490 while (n && n->start < end) {
1491 struct rb_node *next = rb_next(&n->nd);
1492 if (n->start >= start) {
1493 if (n->end <= end)
1494 sp_delete(sp, n);
1495 else
1496 n->start = end;
1497 } else {
1498 /* Old policy spanning whole new range. */
1499 if (n->end > end) {
1500 if (!new2) {
1501 spin_unlock(&sp->lock);
1502 new2 = sp_alloc(end, n->end, n->policy);
1503 if (!new2)
1504 return -ENOMEM;
1505 goto restart;
1507 n->end = start;
1508 sp_insert(sp, new2);
1509 new2 = NULL;
1510 break;
1511 } else
1512 n->end = start;
1514 if (!next)
1515 break;
1516 n = rb_entry(next, struct sp_node, nd);
1518 if (new)
1519 sp_insert(sp, new);
1520 spin_unlock(&sp->lock);
1521 if (new2) {
1522 mpol_free(new2->policy);
1523 kmem_cache_free(sn_cache, new2);
1525 return 0;
1528 void mpol_shared_policy_init(struct shared_policy *info, int policy,
1529 nodemask_t *policy_nodes)
1531 info->root = RB_ROOT;
1532 spin_lock_init(&info->lock);
1534 if (policy != MPOL_DEFAULT) {
1535 struct mempolicy *newpol;
1537 /* Falls back to MPOL_DEFAULT on any error */
1538 newpol = mpol_new(policy, policy_nodes);
1539 if (!IS_ERR(newpol)) {
1540 /* Create pseudo-vma that contains just the policy */
1541 struct vm_area_struct pvma;
1543 memset(&pvma, 0, sizeof(struct vm_area_struct));
1544 /* Policy covers entire file */
1545 pvma.vm_end = TASK_SIZE;
1546 mpol_set_shared_policy(info, &pvma, newpol);
1547 mpol_free(newpol);
1552 int mpol_set_shared_policy(struct shared_policy *info,
1553 struct vm_area_struct *vma, struct mempolicy *npol)
1555 int err;
1556 struct sp_node *new = NULL;
1557 unsigned long sz = vma_pages(vma);
1559 PDprintk("set_shared_policy %lx sz %lu %d %lx\n",
1560 vma->vm_pgoff,
1561 sz, npol? npol->policy : -1,
1562 npol ? nodes_addr(npol->v.nodes)[0] : -1);
1564 if (npol) {
1565 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
1566 if (!new)
1567 return -ENOMEM;
1569 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
1570 if (err && new)
1571 kmem_cache_free(sn_cache, new);
1572 return err;
1575 /* Free a backing policy store on inode delete. */
1576 void mpol_free_shared_policy(struct shared_policy *p)
1578 struct sp_node *n;
1579 struct rb_node *next;
1581 if (!p->root.rb_node)
1582 return;
1583 spin_lock(&p->lock);
1584 next = rb_first(&p->root);
1585 while (next) {
1586 n = rb_entry(next, struct sp_node, nd);
1587 next = rb_next(&n->nd);
1588 rb_erase(&n->nd, &p->root);
1589 mpol_free(n->policy);
1590 kmem_cache_free(sn_cache, n);
1592 spin_unlock(&p->lock);
1595 /* assumes fs == KERNEL_DS */
1596 void __init numa_policy_init(void)
1598 policy_cache = kmem_cache_create("numa_policy",
1599 sizeof(struct mempolicy),
1600 0, SLAB_PANIC, NULL, NULL);
1602 sn_cache = kmem_cache_create("shared_policy_node",
1603 sizeof(struct sp_node),
1604 0, SLAB_PANIC, NULL, NULL);
1606 /* Set interleaving policy for system init. This way not all
1607 the data structures allocated at system boot end up in node zero. */
1609 if (do_set_mempolicy(MPOL_INTERLEAVE, &node_online_map))
1610 printk("numa_policy_init: interleaving failed\n");
1613 /* Reset policy of current process to default */
1614 void numa_default_policy(void)
1616 do_set_mempolicy(MPOL_DEFAULT, NULL);
1619 /* Migrate a policy to a different set of nodes */
1620 void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
1622 nodemask_t *mpolmask;
1623 nodemask_t tmp;
1625 if (!pol)
1626 return;
1627 mpolmask = &pol->cpuset_mems_allowed;
1628 if (nodes_equal(*mpolmask, *newmask))
1629 return;
1631 switch (pol->policy) {
1632 case MPOL_DEFAULT:
1633 break;
1634 case MPOL_INTERLEAVE:
1635 nodes_remap(tmp, pol->v.nodes, *mpolmask, *newmask);
1636 pol->v.nodes = tmp;
1637 *mpolmask = *newmask;
1638 current->il_next = node_remap(current->il_next,
1639 *mpolmask, *newmask);
1640 break;
1641 case MPOL_PREFERRED:
1642 pol->v.preferred_node = node_remap(pol->v.preferred_node,
1643 *mpolmask, *newmask);
1644 *mpolmask = *newmask;
1645 break;
1646 case MPOL_BIND: {
1647 nodemask_t nodes;
1648 struct zone **z;
1649 struct zonelist *zonelist;
1651 nodes_clear(nodes);
1652 for (z = pol->v.zonelist->zones; *z; z++)
1653 node_set(zone_to_nid(*z), nodes);
1654 nodes_remap(tmp, nodes, *mpolmask, *newmask);
1655 nodes = tmp;
1657 zonelist = bind_zonelist(&nodes);
1659 /* If no mem, then zonelist is NULL and we keep old zonelist.
1660 * If that old zonelist has no remaining mems_allowed nodes,
1661 * then zonelist_policy() will "FALL THROUGH" to MPOL_DEFAULT.
1664 if (zonelist) {
1665 /* Good - got mem - substitute new zonelist */
1666 kfree(pol->v.zonelist);
1667 pol->v.zonelist = zonelist;
1669 *mpolmask = *newmask;
1670 break;
1672 default:
1673 BUG();
1674 break;
1679 * Wrapper for mpol_rebind_policy() that just requires task
1680 * pointer, and updates task mempolicy.
1683 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
1685 mpol_rebind_policy(tsk->mempolicy, new);
1689 * Rebind each vma in mm to new nodemask.
1691 * Call holding a reference to mm. Takes mm->mmap_sem during call.
1694 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
1696 struct vm_area_struct *vma;
1698 down_write(&mm->mmap_sem);
1699 for (vma = mm->mmap; vma; vma = vma->vm_next)
1700 mpol_rebind_policy(vma->vm_policy, new);
1701 up_write(&mm->mmap_sem);
1705 * Display pages allocated per node and memory policy via /proc.
1708 static const char *policy_types[] = { "default", "prefer", "bind",
1709 "interleave" };
1712 * Convert a mempolicy into a string.
1713 * Returns the number of characters in buffer (if positive)
1714 * or an error (negative)
1716 static inline int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
1718 char *p = buffer;
1719 int l;
1720 nodemask_t nodes;
1721 int mode = pol ? pol->policy : MPOL_DEFAULT;
1723 switch (mode) {
1724 case MPOL_DEFAULT:
1725 nodes_clear(nodes);
1726 break;
1728 case MPOL_PREFERRED:
1729 nodes_clear(nodes);
1730 node_set(pol->v.preferred_node, nodes);
1731 break;
1733 case MPOL_BIND:
1734 get_zonemask(pol, &nodes);
1735 break;
1737 case MPOL_INTERLEAVE:
1738 nodes = pol->v.nodes;
1739 break;
1741 default:
1742 BUG();
1743 return -EFAULT;
1746 l = strlen(policy_types[mode]);
1747 if (buffer + maxlen < p + l + 1)
1748 return -ENOSPC;
1750 strcpy(p, policy_types[mode]);
1751 p += l;
1753 if (!nodes_empty(nodes)) {
1754 if (buffer + maxlen < p + 2)
1755 return -ENOSPC;
1756 *p++ = '=';
1757 p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
1759 return p - buffer;
1762 struct numa_maps {
1763 unsigned long pages;
1764 unsigned long anon;
1765 unsigned long active;
1766 unsigned long writeback;
1767 unsigned long mapcount_max;
1768 unsigned long dirty;
1769 unsigned long swapcache;
1770 unsigned long node[MAX_NUMNODES];
1773 static void gather_stats(struct page *page, void *private, int pte_dirty)
1775 struct numa_maps *md = private;
1776 int count = page_mapcount(page);
1778 md->pages++;
1779 if (pte_dirty || PageDirty(page))
1780 md->dirty++;
1782 if (PageSwapCache(page))
1783 md->swapcache++;
1785 if (PageActive(page))
1786 md->active++;
1788 if (PageWriteback(page))
1789 md->writeback++;
1791 if (PageAnon(page))
1792 md->anon++;
1794 if (count > md->mapcount_max)
1795 md->mapcount_max = count;
1797 md->node[page_to_nid(page)]++;
1800 #ifdef CONFIG_HUGETLB_PAGE
1801 static void check_huge_range(struct vm_area_struct *vma,
1802 unsigned long start, unsigned long end,
1803 struct numa_maps *md)
1805 unsigned long addr;
1806 struct page *page;
1808 for (addr = start; addr < end; addr += HPAGE_SIZE) {
1809 pte_t *ptep = huge_pte_offset(vma->vm_mm, addr & HPAGE_MASK);
1810 pte_t pte;
1812 if (!ptep)
1813 continue;
1815 pte = *ptep;
1816 if (pte_none(pte))
1817 continue;
1819 page = pte_page(pte);
1820 if (!page)
1821 continue;
1823 gather_stats(page, md, pte_dirty(*ptep));
1826 #else
1827 static inline void check_huge_range(struct vm_area_struct *vma,
1828 unsigned long start, unsigned long end,
1829 struct numa_maps *md)
1832 #endif
1834 int show_numa_map(struct seq_file *m, void *v)
1836 struct proc_maps_private *priv = m->private;
1837 struct vm_area_struct *vma = v;
1838 struct numa_maps *md;
1839 struct file *file = vma->vm_file;
1840 struct mm_struct *mm = vma->vm_mm;
1841 int n;
1842 char buffer[50];
1844 if (!mm)
1845 return 0;
1847 md = kzalloc(sizeof(struct numa_maps), GFP_KERNEL);
1848 if (!md)
1849 return 0;
1851 mpol_to_str(buffer, sizeof(buffer),
1852 get_vma_policy(priv->task, vma, vma->vm_start));
1854 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1856 if (file) {
1857 seq_printf(m, " file=");
1858 seq_path(m, file->f_vfsmnt, file->f_dentry, "\n\t= ");
1859 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1860 seq_printf(m, " heap");
1861 } else if (vma->vm_start <= mm->start_stack &&
1862 vma->vm_end >= mm->start_stack) {
1863 seq_printf(m, " stack");
1866 if (is_vm_hugetlb_page(vma)) {
1867 check_huge_range(vma, vma->vm_start, vma->vm_end, md);
1868 seq_printf(m, " huge");
1869 } else {
1870 check_pgd_range(vma, vma->vm_start, vma->vm_end,
1871 &node_online_map, MPOL_MF_STATS, md);
1874 if (!md->pages)
1875 goto out;
1877 if (md->anon)
1878 seq_printf(m," anon=%lu",md->anon);
1880 if (md->dirty)
1881 seq_printf(m," dirty=%lu",md->dirty);
1883 if (md->pages != md->anon && md->pages != md->dirty)
1884 seq_printf(m, " mapped=%lu", md->pages);
1886 if (md->mapcount_max > 1)
1887 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1889 if (md->swapcache)
1890 seq_printf(m," swapcache=%lu", md->swapcache);
1892 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1893 seq_printf(m," active=%lu", md->active);
1895 if (md->writeback)
1896 seq_printf(m," writeback=%lu", md->writeback);
1898 for_each_online_node(n)
1899 if (md->node[n])
1900 seq_printf(m, " N%d=%lu", n, md->node[n]);
1901 out:
1902 seq_putc(m, '\n');
1903 kfree(md);
1905 if (m->count < m->size)
1906 m->version = (vma != priv->tail_vma) ? vma->vm_start : 0;
1907 return 0;