x86: print out if acpi want physical flat of all
[linux-2.6/mini2440.git] / drivers / net / e1000e / ich8lan.c
blob523b9716a543aec21d923b58a07cd5162b3edab3
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2008 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * 82562G-2 10/100 Network Connection
31 * 82562GT 10/100 Network Connection
32 * 82562GT-2 10/100 Network Connection
33 * 82562V 10/100 Network Connection
34 * 82562V-2 10/100 Network Connection
35 * 82566DC-2 Gigabit Network Connection
36 * 82566DC Gigabit Network Connection
37 * 82566DM-2 Gigabit Network Connection
38 * 82566DM Gigabit Network Connection
39 * 82566MC Gigabit Network Connection
40 * 82566MM Gigabit Network Connection
41 * 82567LM Gigabit Network Connection
42 * 82567LF Gigabit Network Connection
43 * 82567LM-2 Gigabit Network Connection
44 * 82567LF-2 Gigabit Network Connection
45 * 82567V-2 Gigabit Network Connection
46 * 82567LF-3 Gigabit Network Connection
47 * 82567LM-3 Gigabit Network Connection
48 * 82567LM-4 Gigabit Network Connection
51 #include <linux/netdevice.h>
52 #include <linux/ethtool.h>
53 #include <linux/delay.h>
54 #include <linux/pci.h>
56 #include "e1000.h"
58 #define ICH_FLASH_GFPREG 0x0000
59 #define ICH_FLASH_HSFSTS 0x0004
60 #define ICH_FLASH_HSFCTL 0x0006
61 #define ICH_FLASH_FADDR 0x0008
62 #define ICH_FLASH_FDATA0 0x0010
63 #define ICH_FLASH_PR0 0x0074
65 #define ICH_FLASH_READ_COMMAND_TIMEOUT 500
66 #define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
67 #define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
68 #define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
69 #define ICH_FLASH_CYCLE_REPEAT_COUNT 10
71 #define ICH_CYCLE_READ 0
72 #define ICH_CYCLE_WRITE 2
73 #define ICH_CYCLE_ERASE 3
75 #define FLASH_GFPREG_BASE_MASK 0x1FFF
76 #define FLASH_SECTOR_ADDR_SHIFT 12
78 #define ICH_FLASH_SEG_SIZE_256 256
79 #define ICH_FLASH_SEG_SIZE_4K 4096
80 #define ICH_FLASH_SEG_SIZE_8K 8192
81 #define ICH_FLASH_SEG_SIZE_64K 65536
84 #define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
86 #define E1000_ICH_MNG_IAMT_MODE 0x2
88 #define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \
89 (ID_LED_DEF1_OFF2 << 8) | \
90 (ID_LED_DEF1_ON2 << 4) | \
91 (ID_LED_DEF1_DEF2))
93 #define E1000_ICH_NVM_SIG_WORD 0x13
94 #define E1000_ICH_NVM_SIG_MASK 0xC000
96 #define E1000_ICH8_LAN_INIT_TIMEOUT 1500
98 #define E1000_FEXTNVM_SW_CONFIG 1
99 #define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
101 #define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL
103 #define E1000_ICH_RAR_ENTRIES 7
105 #define PHY_PAGE_SHIFT 5
106 #define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
107 ((reg) & MAX_PHY_REG_ADDRESS))
108 #define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */
109 #define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */
111 #define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002
112 #define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
113 #define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200
115 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
116 /* Offset 04h HSFSTS */
117 union ich8_hws_flash_status {
118 struct ich8_hsfsts {
119 u16 flcdone :1; /* bit 0 Flash Cycle Done */
120 u16 flcerr :1; /* bit 1 Flash Cycle Error */
121 u16 dael :1; /* bit 2 Direct Access error Log */
122 u16 berasesz :2; /* bit 4:3 Sector Erase Size */
123 u16 flcinprog :1; /* bit 5 flash cycle in Progress */
124 u16 reserved1 :2; /* bit 13:6 Reserved */
125 u16 reserved2 :6; /* bit 13:6 Reserved */
126 u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
127 u16 flockdn :1; /* bit 15 Flash Config Lock-Down */
128 } hsf_status;
129 u16 regval;
132 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
133 /* Offset 06h FLCTL */
134 union ich8_hws_flash_ctrl {
135 struct ich8_hsflctl {
136 u16 flcgo :1; /* 0 Flash Cycle Go */
137 u16 flcycle :2; /* 2:1 Flash Cycle */
138 u16 reserved :5; /* 7:3 Reserved */
139 u16 fldbcount :2; /* 9:8 Flash Data Byte Count */
140 u16 flockdn :6; /* 15:10 Reserved */
141 } hsf_ctrl;
142 u16 regval;
145 /* ICH Flash Region Access Permissions */
146 union ich8_hws_flash_regacc {
147 struct ich8_flracc {
148 u32 grra :8; /* 0:7 GbE region Read Access */
149 u32 grwa :8; /* 8:15 GbE region Write Access */
150 u32 gmrag :8; /* 23:16 GbE Master Read Access Grant */
151 u32 gmwag :8; /* 31:24 GbE Master Write Access Grant */
152 } hsf_flregacc;
153 u16 regval;
156 /* ICH Flash Protected Region */
157 union ich8_flash_protected_range {
158 struct ich8_pr {
159 u32 base:13; /* 0:12 Protected Range Base */
160 u32 reserved1:2; /* 13:14 Reserved */
161 u32 rpe:1; /* 15 Read Protection Enable */
162 u32 limit:13; /* 16:28 Protected Range Limit */
163 u32 reserved2:2; /* 29:30 Reserved */
164 u32 wpe:1; /* 31 Write Protection Enable */
165 } range;
166 u32 regval;
169 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
170 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
171 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
172 static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw);
173 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
174 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
175 u32 offset, u8 byte);
176 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
177 u8 *data);
178 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
179 u16 *data);
180 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
181 u8 size, u16 *data);
182 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
183 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
184 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
186 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
188 return readw(hw->flash_address + reg);
191 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
193 return readl(hw->flash_address + reg);
196 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
198 writew(val, hw->flash_address + reg);
201 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
203 writel(val, hw->flash_address + reg);
206 #define er16flash(reg) __er16flash(hw, (reg))
207 #define er32flash(reg) __er32flash(hw, (reg))
208 #define ew16flash(reg,val) __ew16flash(hw, (reg), (val))
209 #define ew32flash(reg,val) __ew32flash(hw, (reg), (val))
212 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
213 * @hw: pointer to the HW structure
215 * Initialize family-specific PHY parameters and function pointers.
217 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
219 struct e1000_phy_info *phy = &hw->phy;
220 s32 ret_val;
221 u16 i = 0;
223 phy->addr = 1;
224 phy->reset_delay_us = 100;
227 * We may need to do this twice - once for IGP and if that fails,
228 * we'll set BM func pointers and try again
230 ret_val = e1000e_determine_phy_address(hw);
231 if (ret_val) {
232 hw->phy.ops.write_phy_reg = e1000e_write_phy_reg_bm;
233 hw->phy.ops.read_phy_reg = e1000e_read_phy_reg_bm;
234 ret_val = e1000e_determine_phy_address(hw);
235 if (ret_val)
236 return ret_val;
239 phy->id = 0;
240 while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
241 (i++ < 100)) {
242 msleep(1);
243 ret_val = e1000e_get_phy_id(hw);
244 if (ret_val)
245 return ret_val;
248 /* Verify phy id */
249 switch (phy->id) {
250 case IGP03E1000_E_PHY_ID:
251 phy->type = e1000_phy_igp_3;
252 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
253 break;
254 case IFE_E_PHY_ID:
255 case IFE_PLUS_E_PHY_ID:
256 case IFE_C_E_PHY_ID:
257 phy->type = e1000_phy_ife;
258 phy->autoneg_mask = E1000_ALL_NOT_GIG;
259 break;
260 case BME1000_E_PHY_ID:
261 phy->type = e1000_phy_bm;
262 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
263 hw->phy.ops.read_phy_reg = e1000e_read_phy_reg_bm;
264 hw->phy.ops.write_phy_reg = e1000e_write_phy_reg_bm;
265 hw->phy.ops.commit_phy = e1000e_phy_sw_reset;
266 break;
267 default:
268 return -E1000_ERR_PHY;
269 break;
272 return 0;
276 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
277 * @hw: pointer to the HW structure
279 * Initialize family-specific NVM parameters and function
280 * pointers.
282 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
284 struct e1000_nvm_info *nvm = &hw->nvm;
285 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
286 u32 gfpreg;
287 u32 sector_base_addr;
288 u32 sector_end_addr;
289 u16 i;
291 /* Can't read flash registers if the register set isn't mapped. */
292 if (!hw->flash_address) {
293 hw_dbg(hw, "ERROR: Flash registers not mapped\n");
294 return -E1000_ERR_CONFIG;
297 nvm->type = e1000_nvm_flash_sw;
299 gfpreg = er32flash(ICH_FLASH_GFPREG);
302 * sector_X_addr is a "sector"-aligned address (4096 bytes)
303 * Add 1 to sector_end_addr since this sector is included in
304 * the overall size.
306 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
307 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
309 /* flash_base_addr is byte-aligned */
310 nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
313 * find total size of the NVM, then cut in half since the total
314 * size represents two separate NVM banks.
316 nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
317 << FLASH_SECTOR_ADDR_SHIFT;
318 nvm->flash_bank_size /= 2;
319 /* Adjust to word count */
320 nvm->flash_bank_size /= sizeof(u16);
322 nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
324 /* Clear shadow ram */
325 for (i = 0; i < nvm->word_size; i++) {
326 dev_spec->shadow_ram[i].modified = 0;
327 dev_spec->shadow_ram[i].value = 0xFFFF;
330 return 0;
334 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
335 * @hw: pointer to the HW structure
337 * Initialize family-specific MAC parameters and function
338 * pointers.
340 static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter)
342 struct e1000_hw *hw = &adapter->hw;
343 struct e1000_mac_info *mac = &hw->mac;
345 /* Set media type function pointer */
346 hw->phy.media_type = e1000_media_type_copper;
348 /* Set mta register count */
349 mac->mta_reg_count = 32;
350 /* Set rar entry count */
351 mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
352 if (mac->type == e1000_ich8lan)
353 mac->rar_entry_count--;
354 /* Set if manageability features are enabled. */
355 mac->arc_subsystem_valid = 1;
357 /* Enable PCS Lock-loss workaround for ICH8 */
358 if (mac->type == e1000_ich8lan)
359 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, 1);
361 return 0;
364 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
366 struct e1000_hw *hw = &adapter->hw;
367 s32 rc;
369 rc = e1000_init_mac_params_ich8lan(adapter);
370 if (rc)
371 return rc;
373 rc = e1000_init_nvm_params_ich8lan(hw);
374 if (rc)
375 return rc;
377 rc = e1000_init_phy_params_ich8lan(hw);
378 if (rc)
379 return rc;
381 if ((adapter->hw.mac.type == e1000_ich8lan) &&
382 (adapter->hw.phy.type == e1000_phy_igp_3))
383 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
385 return 0;
388 static DEFINE_MUTEX(nvm_mutex);
389 static pid_t nvm_owner = -1;
392 * e1000_acquire_swflag_ich8lan - Acquire software control flag
393 * @hw: pointer to the HW structure
395 * Acquires the software control flag for performing NVM and PHY
396 * operations. This is a function pointer entry point only called by
397 * read/write routines for the PHY and NVM parts.
399 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
401 u32 extcnf_ctrl;
402 u32 timeout = PHY_CFG_TIMEOUT;
404 might_sleep();
406 if (!mutex_trylock(&nvm_mutex)) {
407 WARN(1, KERN_ERR "e1000e mutex contention. Owned by pid %d\n",
408 nvm_owner);
409 mutex_lock(&nvm_mutex);
411 nvm_owner = current->pid;
413 while (timeout) {
414 extcnf_ctrl = er32(EXTCNF_CTRL);
415 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
416 ew32(EXTCNF_CTRL, extcnf_ctrl);
418 extcnf_ctrl = er32(EXTCNF_CTRL);
419 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
420 break;
421 mdelay(1);
422 timeout--;
425 if (!timeout) {
426 hw_dbg(hw, "FW or HW has locked the resource for too long.\n");
427 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
428 ew32(EXTCNF_CTRL, extcnf_ctrl);
429 nvm_owner = -1;
430 mutex_unlock(&nvm_mutex);
431 return -E1000_ERR_CONFIG;
434 return 0;
438 * e1000_release_swflag_ich8lan - Release software control flag
439 * @hw: pointer to the HW structure
441 * Releases the software control flag for performing NVM and PHY operations.
442 * This is a function pointer entry point only called by read/write
443 * routines for the PHY and NVM parts.
445 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
447 u32 extcnf_ctrl;
449 extcnf_ctrl = er32(EXTCNF_CTRL);
450 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
451 ew32(EXTCNF_CTRL, extcnf_ctrl);
453 nvm_owner = -1;
454 mutex_unlock(&nvm_mutex);
458 * e1000_check_mng_mode_ich8lan - Checks management mode
459 * @hw: pointer to the HW structure
461 * This checks if the adapter has manageability enabled.
462 * This is a function pointer entry point only called by read/write
463 * routines for the PHY and NVM parts.
465 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
467 u32 fwsm = er32(FWSM);
469 return (fwsm & E1000_FWSM_MODE_MASK) ==
470 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT);
474 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
475 * @hw: pointer to the HW structure
477 * Checks if firmware is blocking the reset of the PHY.
478 * This is a function pointer entry point only called by
479 * reset routines.
481 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
483 u32 fwsm;
485 fwsm = er32(FWSM);
487 return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
491 * e1000_phy_force_speed_duplex_ich8lan - Force PHY speed & duplex
492 * @hw: pointer to the HW structure
494 * Forces the speed and duplex settings of the PHY.
495 * This is a function pointer entry point only called by
496 * PHY setup routines.
498 static s32 e1000_phy_force_speed_duplex_ich8lan(struct e1000_hw *hw)
500 struct e1000_phy_info *phy = &hw->phy;
501 s32 ret_val;
502 u16 data;
503 bool link;
505 if (phy->type != e1000_phy_ife) {
506 ret_val = e1000e_phy_force_speed_duplex_igp(hw);
507 return ret_val;
510 ret_val = e1e_rphy(hw, PHY_CONTROL, &data);
511 if (ret_val)
512 return ret_val;
514 e1000e_phy_force_speed_duplex_setup(hw, &data);
516 ret_val = e1e_wphy(hw, PHY_CONTROL, data);
517 if (ret_val)
518 return ret_val;
520 /* Disable MDI-X support for 10/100 */
521 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
522 if (ret_val)
523 return ret_val;
525 data &= ~IFE_PMC_AUTO_MDIX;
526 data &= ~IFE_PMC_FORCE_MDIX;
528 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
529 if (ret_val)
530 return ret_val;
532 hw_dbg(hw, "IFE PMC: %X\n", data);
534 udelay(1);
536 if (phy->autoneg_wait_to_complete) {
537 hw_dbg(hw, "Waiting for forced speed/duplex link on IFE phy.\n");
539 ret_val = e1000e_phy_has_link_generic(hw,
540 PHY_FORCE_LIMIT,
541 100000,
542 &link);
543 if (ret_val)
544 return ret_val;
546 if (!link)
547 hw_dbg(hw, "Link taking longer than expected.\n");
549 /* Try once more */
550 ret_val = e1000e_phy_has_link_generic(hw,
551 PHY_FORCE_LIMIT,
552 100000,
553 &link);
554 if (ret_val)
555 return ret_val;
558 return 0;
562 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
563 * @hw: pointer to the HW structure
565 * Resets the PHY
566 * This is a function pointer entry point called by drivers
567 * or other shared routines.
569 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
571 struct e1000_phy_info *phy = &hw->phy;
572 u32 i;
573 u32 data, cnf_size, cnf_base_addr, sw_cfg_mask;
574 s32 ret_val;
575 u16 loop = E1000_ICH8_LAN_INIT_TIMEOUT;
576 u16 word_addr, reg_data, reg_addr, phy_page = 0;
578 ret_val = e1000e_phy_hw_reset_generic(hw);
579 if (ret_val)
580 return ret_val;
583 * Initialize the PHY from the NVM on ICH platforms. This
584 * is needed due to an issue where the NVM configuration is
585 * not properly autoloaded after power transitions.
586 * Therefore, after each PHY reset, we will load the
587 * configuration data out of the NVM manually.
589 if (hw->mac.type == e1000_ich8lan && phy->type == e1000_phy_igp_3) {
590 struct e1000_adapter *adapter = hw->adapter;
592 /* Check if SW needs configure the PHY */
593 if ((adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M_AMT) ||
594 (adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M))
595 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
596 else
597 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
599 data = er32(FEXTNVM);
600 if (!(data & sw_cfg_mask))
601 return 0;
603 /* Wait for basic configuration completes before proceeding*/
604 do {
605 data = er32(STATUS);
606 data &= E1000_STATUS_LAN_INIT_DONE;
607 udelay(100);
608 } while ((!data) && --loop);
611 * If basic configuration is incomplete before the above loop
612 * count reaches 0, loading the configuration from NVM will
613 * leave the PHY in a bad state possibly resulting in no link.
615 if (loop == 0) {
616 hw_dbg(hw, "LAN_INIT_DONE not set, increase timeout\n");
619 /* Clear the Init Done bit for the next init event */
620 data = er32(STATUS);
621 data &= ~E1000_STATUS_LAN_INIT_DONE;
622 ew32(STATUS, data);
625 * Make sure HW does not configure LCD from PHY
626 * extended configuration before SW configuration
628 data = er32(EXTCNF_CTRL);
629 if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
630 return 0;
632 cnf_size = er32(EXTCNF_SIZE);
633 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
634 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
635 if (!cnf_size)
636 return 0;
638 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
639 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
641 /* Configure LCD from extended configuration region. */
643 /* cnf_base_addr is in DWORD */
644 word_addr = (u16)(cnf_base_addr << 1);
646 for (i = 0; i < cnf_size; i++) {
647 ret_val = e1000_read_nvm(hw,
648 (word_addr + i * 2),
650 &reg_data);
651 if (ret_val)
652 return ret_val;
654 ret_val = e1000_read_nvm(hw,
655 (word_addr + i * 2 + 1),
657 &reg_addr);
658 if (ret_val)
659 return ret_val;
661 /* Save off the PHY page for future writes. */
662 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
663 phy_page = reg_data;
664 continue;
667 reg_addr |= phy_page;
669 ret_val = e1e_wphy(hw, (u32)reg_addr, reg_data);
670 if (ret_val)
671 return ret_val;
675 return 0;
679 * e1000_get_phy_info_ife_ich8lan - Retrieves various IFE PHY states
680 * @hw: pointer to the HW structure
682 * Populates "phy" structure with various feature states.
683 * This function is only called by other family-specific
684 * routines.
686 static s32 e1000_get_phy_info_ife_ich8lan(struct e1000_hw *hw)
688 struct e1000_phy_info *phy = &hw->phy;
689 s32 ret_val;
690 u16 data;
691 bool link;
693 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
694 if (ret_val)
695 return ret_val;
697 if (!link) {
698 hw_dbg(hw, "Phy info is only valid if link is up\n");
699 return -E1000_ERR_CONFIG;
702 ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
703 if (ret_val)
704 return ret_val;
705 phy->polarity_correction = (!(data & IFE_PSC_AUTO_POLARITY_DISABLE));
707 if (phy->polarity_correction) {
708 ret_val = e1000_check_polarity_ife_ich8lan(hw);
709 if (ret_val)
710 return ret_val;
711 } else {
712 /* Polarity is forced */
713 phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY)
714 ? e1000_rev_polarity_reversed
715 : e1000_rev_polarity_normal;
718 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
719 if (ret_val)
720 return ret_val;
722 phy->is_mdix = (data & IFE_PMC_MDIX_STATUS);
724 /* The following parameters are undefined for 10/100 operation. */
725 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
726 phy->local_rx = e1000_1000t_rx_status_undefined;
727 phy->remote_rx = e1000_1000t_rx_status_undefined;
729 return 0;
733 * e1000_get_phy_info_ich8lan - Calls appropriate PHY type get_phy_info
734 * @hw: pointer to the HW structure
736 * Wrapper for calling the get_phy_info routines for the appropriate phy type.
737 * This is a function pointer entry point called by drivers
738 * or other shared routines.
740 static s32 e1000_get_phy_info_ich8lan(struct e1000_hw *hw)
742 switch (hw->phy.type) {
743 case e1000_phy_ife:
744 return e1000_get_phy_info_ife_ich8lan(hw);
745 break;
746 case e1000_phy_igp_3:
747 case e1000_phy_bm:
748 return e1000e_get_phy_info_igp(hw);
749 break;
750 default:
751 break;
754 return -E1000_ERR_PHY_TYPE;
758 * e1000_check_polarity_ife_ich8lan - Check cable polarity for IFE PHY
759 * @hw: pointer to the HW structure
761 * Polarity is determined on the polarity reversal feature being enabled.
762 * This function is only called by other family-specific
763 * routines.
765 static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw)
767 struct e1000_phy_info *phy = &hw->phy;
768 s32 ret_val;
769 u16 phy_data, offset, mask;
772 * Polarity is determined based on the reversal feature being enabled.
774 if (phy->polarity_correction) {
775 offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
776 mask = IFE_PESC_POLARITY_REVERSED;
777 } else {
778 offset = IFE_PHY_SPECIAL_CONTROL;
779 mask = IFE_PSC_FORCE_POLARITY;
782 ret_val = e1e_rphy(hw, offset, &phy_data);
784 if (!ret_val)
785 phy->cable_polarity = (phy_data & mask)
786 ? e1000_rev_polarity_reversed
787 : e1000_rev_polarity_normal;
789 return ret_val;
793 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
794 * @hw: pointer to the HW structure
795 * @active: TRUE to enable LPLU, FALSE to disable
797 * Sets the LPLU D0 state according to the active flag. When
798 * activating LPLU this function also disables smart speed
799 * and vice versa. LPLU will not be activated unless the
800 * device autonegotiation advertisement meets standards of
801 * either 10 or 10/100 or 10/100/1000 at all duplexes.
802 * This is a function pointer entry point only called by
803 * PHY setup routines.
805 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
807 struct e1000_phy_info *phy = &hw->phy;
808 u32 phy_ctrl;
809 s32 ret_val = 0;
810 u16 data;
812 if (phy->type == e1000_phy_ife)
813 return ret_val;
815 phy_ctrl = er32(PHY_CTRL);
817 if (active) {
818 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
819 ew32(PHY_CTRL, phy_ctrl);
822 * Call gig speed drop workaround on LPLU before accessing
823 * any PHY registers
825 if ((hw->mac.type == e1000_ich8lan) &&
826 (hw->phy.type == e1000_phy_igp_3))
827 e1000e_gig_downshift_workaround_ich8lan(hw);
829 /* When LPLU is enabled, we should disable SmartSpeed */
830 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
831 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
832 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
833 if (ret_val)
834 return ret_val;
835 } else {
836 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
837 ew32(PHY_CTRL, phy_ctrl);
840 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
841 * during Dx states where the power conservation is most
842 * important. During driver activity we should enable
843 * SmartSpeed, so performance is maintained.
845 if (phy->smart_speed == e1000_smart_speed_on) {
846 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
847 &data);
848 if (ret_val)
849 return ret_val;
851 data |= IGP01E1000_PSCFR_SMART_SPEED;
852 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
853 data);
854 if (ret_val)
855 return ret_val;
856 } else if (phy->smart_speed == e1000_smart_speed_off) {
857 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
858 &data);
859 if (ret_val)
860 return ret_val;
862 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
863 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
864 data);
865 if (ret_val)
866 return ret_val;
870 return 0;
874 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
875 * @hw: pointer to the HW structure
876 * @active: TRUE to enable LPLU, FALSE to disable
878 * Sets the LPLU D3 state according to the active flag. When
879 * activating LPLU this function also disables smart speed
880 * and vice versa. LPLU will not be activated unless the
881 * device autonegotiation advertisement meets standards of
882 * either 10 or 10/100 or 10/100/1000 at all duplexes.
883 * This is a function pointer entry point only called by
884 * PHY setup routines.
886 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
888 struct e1000_phy_info *phy = &hw->phy;
889 u32 phy_ctrl;
890 s32 ret_val;
891 u16 data;
893 phy_ctrl = er32(PHY_CTRL);
895 if (!active) {
896 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
897 ew32(PHY_CTRL, phy_ctrl);
899 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
900 * during Dx states where the power conservation is most
901 * important. During driver activity we should enable
902 * SmartSpeed, so performance is maintained.
904 if (phy->smart_speed == e1000_smart_speed_on) {
905 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
906 &data);
907 if (ret_val)
908 return ret_val;
910 data |= IGP01E1000_PSCFR_SMART_SPEED;
911 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
912 data);
913 if (ret_val)
914 return ret_val;
915 } else if (phy->smart_speed == e1000_smart_speed_off) {
916 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
917 &data);
918 if (ret_val)
919 return ret_val;
921 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
922 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
923 data);
924 if (ret_val)
925 return ret_val;
927 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
928 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
929 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
930 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
931 ew32(PHY_CTRL, phy_ctrl);
934 * Call gig speed drop workaround on LPLU before accessing
935 * any PHY registers
937 if ((hw->mac.type == e1000_ich8lan) &&
938 (hw->phy.type == e1000_phy_igp_3))
939 e1000e_gig_downshift_workaround_ich8lan(hw);
941 /* When LPLU is enabled, we should disable SmartSpeed */
942 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
943 if (ret_val)
944 return ret_val;
946 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
947 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
950 return 0;
954 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
955 * @hw: pointer to the HW structure
956 * @bank: pointer to the variable that returns the active bank
958 * Reads signature byte from the NVM using the flash access registers.
960 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
962 struct e1000_nvm_info *nvm = &hw->nvm;
963 /* flash bank size is in words */
964 u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
965 u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
966 u8 bank_high_byte = 0;
968 if (hw->mac.type != e1000_ich10lan) {
969 if (er32(EECD) & E1000_EECD_SEC1VAL)
970 *bank = 1;
971 else
972 *bank = 0;
973 } else {
975 * Make sure the signature for bank 0 is valid,
976 * if not check for bank1
978 e1000_read_flash_byte_ich8lan(hw, act_offset, &bank_high_byte);
979 if ((bank_high_byte & 0xC0) == 0x80) {
980 *bank = 0;
981 } else {
983 * find if segment 1 is valid by verifying
984 * bit 15:14 = 10b in word 0x13
986 e1000_read_flash_byte_ich8lan(hw,
987 act_offset + bank1_offset,
988 &bank_high_byte);
990 /* bank1 has a valid signature equivalent to SEC1V */
991 if ((bank_high_byte & 0xC0) == 0x80) {
992 *bank = 1;
993 } else {
994 hw_dbg(hw, "ERROR: EEPROM not present\n");
995 return -E1000_ERR_NVM;
1000 return 0;
1004 * e1000_read_nvm_ich8lan - Read word(s) from the NVM
1005 * @hw: pointer to the HW structure
1006 * @offset: The offset (in bytes) of the word(s) to read.
1007 * @words: Size of data to read in words
1008 * @data: Pointer to the word(s) to read at offset.
1010 * Reads a word(s) from the NVM using the flash access registers.
1012 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
1013 u16 *data)
1015 struct e1000_nvm_info *nvm = &hw->nvm;
1016 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1017 u32 act_offset;
1018 s32 ret_val;
1019 u32 bank = 0;
1020 u16 i, word;
1022 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
1023 (words == 0)) {
1024 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
1025 return -E1000_ERR_NVM;
1028 ret_val = e1000_acquire_swflag_ich8lan(hw);
1029 if (ret_val)
1030 return ret_val;
1032 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
1033 if (ret_val)
1034 return ret_val;
1036 act_offset = (bank) ? nvm->flash_bank_size : 0;
1037 act_offset += offset;
1039 for (i = 0; i < words; i++) {
1040 if ((dev_spec->shadow_ram) &&
1041 (dev_spec->shadow_ram[offset+i].modified)) {
1042 data[i] = dev_spec->shadow_ram[offset+i].value;
1043 } else {
1044 ret_val = e1000_read_flash_word_ich8lan(hw,
1045 act_offset + i,
1046 &word);
1047 if (ret_val)
1048 break;
1049 data[i] = word;
1053 e1000_release_swflag_ich8lan(hw);
1055 return ret_val;
1059 * e1000_flash_cycle_init_ich8lan - Initialize flash
1060 * @hw: pointer to the HW structure
1062 * This function does initial flash setup so that a new read/write/erase cycle
1063 * can be started.
1065 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
1067 union ich8_hws_flash_status hsfsts;
1068 s32 ret_val = -E1000_ERR_NVM;
1069 s32 i = 0;
1071 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1073 /* Check if the flash descriptor is valid */
1074 if (hsfsts.hsf_status.fldesvalid == 0) {
1075 hw_dbg(hw, "Flash descriptor invalid. "
1076 "SW Sequencing must be used.");
1077 return -E1000_ERR_NVM;
1080 /* Clear FCERR and DAEL in hw status by writing 1 */
1081 hsfsts.hsf_status.flcerr = 1;
1082 hsfsts.hsf_status.dael = 1;
1084 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1087 * Either we should have a hardware SPI cycle in progress
1088 * bit to check against, in order to start a new cycle or
1089 * FDONE bit should be changed in the hardware so that it
1090 * is 1 after hardware reset, which can then be used as an
1091 * indication whether a cycle is in progress or has been
1092 * completed.
1095 if (hsfsts.hsf_status.flcinprog == 0) {
1097 * There is no cycle running at present,
1098 * so we can start a cycle
1099 * Begin by setting Flash Cycle Done.
1101 hsfsts.hsf_status.flcdone = 1;
1102 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1103 ret_val = 0;
1104 } else {
1106 * otherwise poll for sometime so the current
1107 * cycle has a chance to end before giving up.
1109 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
1110 hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS);
1111 if (hsfsts.hsf_status.flcinprog == 0) {
1112 ret_val = 0;
1113 break;
1115 udelay(1);
1117 if (ret_val == 0) {
1119 * Successful in waiting for previous cycle to timeout,
1120 * now set the Flash Cycle Done.
1122 hsfsts.hsf_status.flcdone = 1;
1123 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1124 } else {
1125 hw_dbg(hw, "Flash controller busy, cannot get access");
1129 return ret_val;
1133 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
1134 * @hw: pointer to the HW structure
1135 * @timeout: maximum time to wait for completion
1137 * This function starts a flash cycle and waits for its completion.
1139 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
1141 union ich8_hws_flash_ctrl hsflctl;
1142 union ich8_hws_flash_status hsfsts;
1143 s32 ret_val = -E1000_ERR_NVM;
1144 u32 i = 0;
1146 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
1147 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1148 hsflctl.hsf_ctrl.flcgo = 1;
1149 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1151 /* wait till FDONE bit is set to 1 */
1152 do {
1153 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1154 if (hsfsts.hsf_status.flcdone == 1)
1155 break;
1156 udelay(1);
1157 } while (i++ < timeout);
1159 if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
1160 return 0;
1162 return ret_val;
1166 * e1000_read_flash_word_ich8lan - Read word from flash
1167 * @hw: pointer to the HW structure
1168 * @offset: offset to data location
1169 * @data: pointer to the location for storing the data
1171 * Reads the flash word at offset into data. Offset is converted
1172 * to bytes before read.
1174 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
1175 u16 *data)
1177 /* Must convert offset into bytes. */
1178 offset <<= 1;
1180 return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
1184 * e1000_read_flash_byte_ich8lan - Read byte from flash
1185 * @hw: pointer to the HW structure
1186 * @offset: The offset of the byte to read.
1187 * @data: Pointer to a byte to store the value read.
1189 * Reads a single byte from the NVM using the flash access registers.
1191 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
1192 u8 *data)
1194 s32 ret_val;
1195 u16 word = 0;
1197 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
1198 if (ret_val)
1199 return ret_val;
1201 *data = (u8)word;
1203 return 0;
1207 * e1000_read_flash_data_ich8lan - Read byte or word from NVM
1208 * @hw: pointer to the HW structure
1209 * @offset: The offset (in bytes) of the byte or word to read.
1210 * @size: Size of data to read, 1=byte 2=word
1211 * @data: Pointer to the word to store the value read.
1213 * Reads a byte or word from the NVM using the flash access registers.
1215 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
1216 u8 size, u16 *data)
1218 union ich8_hws_flash_status hsfsts;
1219 union ich8_hws_flash_ctrl hsflctl;
1220 u32 flash_linear_addr;
1221 u32 flash_data = 0;
1222 s32 ret_val = -E1000_ERR_NVM;
1223 u8 count = 0;
1225 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
1226 return -E1000_ERR_NVM;
1228 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
1229 hw->nvm.flash_base_addr;
1231 do {
1232 udelay(1);
1233 /* Steps */
1234 ret_val = e1000_flash_cycle_init_ich8lan(hw);
1235 if (ret_val != 0)
1236 break;
1238 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1239 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
1240 hsflctl.hsf_ctrl.fldbcount = size - 1;
1241 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
1242 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1244 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
1246 ret_val = e1000_flash_cycle_ich8lan(hw,
1247 ICH_FLASH_READ_COMMAND_TIMEOUT);
1250 * Check if FCERR is set to 1, if set to 1, clear it
1251 * and try the whole sequence a few more times, else
1252 * read in (shift in) the Flash Data0, the order is
1253 * least significant byte first msb to lsb
1255 if (ret_val == 0) {
1256 flash_data = er32flash(ICH_FLASH_FDATA0);
1257 if (size == 1) {
1258 *data = (u8)(flash_data & 0x000000FF);
1259 } else if (size == 2) {
1260 *data = (u16)(flash_data & 0x0000FFFF);
1262 break;
1263 } else {
1265 * If we've gotten here, then things are probably
1266 * completely hosed, but if the error condition is
1267 * detected, it won't hurt to give it another try...
1268 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
1270 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1271 if (hsfsts.hsf_status.flcerr == 1) {
1272 /* Repeat for some time before giving up. */
1273 continue;
1274 } else if (hsfsts.hsf_status.flcdone == 0) {
1275 hw_dbg(hw, "Timeout error - flash cycle "
1276 "did not complete.");
1277 break;
1280 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
1282 return ret_val;
1286 * e1000_write_nvm_ich8lan - Write word(s) to the NVM
1287 * @hw: pointer to the HW structure
1288 * @offset: The offset (in bytes) of the word(s) to write.
1289 * @words: Size of data to write in words
1290 * @data: Pointer to the word(s) to write at offset.
1292 * Writes a byte or word to the NVM using the flash access registers.
1294 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
1295 u16 *data)
1297 struct e1000_nvm_info *nvm = &hw->nvm;
1298 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1299 s32 ret_val;
1300 u16 i;
1302 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
1303 (words == 0)) {
1304 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
1305 return -E1000_ERR_NVM;
1308 ret_val = e1000_acquire_swflag_ich8lan(hw);
1309 if (ret_val)
1310 return ret_val;
1312 for (i = 0; i < words; i++) {
1313 dev_spec->shadow_ram[offset+i].modified = 1;
1314 dev_spec->shadow_ram[offset+i].value = data[i];
1317 e1000_release_swflag_ich8lan(hw);
1319 return 0;
1323 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
1324 * @hw: pointer to the HW structure
1326 * The NVM checksum is updated by calling the generic update_nvm_checksum,
1327 * which writes the checksum to the shadow ram. The changes in the shadow
1328 * ram are then committed to the EEPROM by processing each bank at a time
1329 * checking for the modified bit and writing only the pending changes.
1330 * After a successful commit, the shadow ram is cleared and is ready for
1331 * future writes.
1333 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
1335 struct e1000_nvm_info *nvm = &hw->nvm;
1336 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1337 u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
1338 s32 ret_val;
1339 u16 data;
1341 ret_val = e1000e_update_nvm_checksum_generic(hw);
1342 if (ret_val)
1343 return ret_val;
1345 if (nvm->type != e1000_nvm_flash_sw)
1346 return ret_val;
1348 ret_val = e1000_acquire_swflag_ich8lan(hw);
1349 if (ret_val)
1350 return ret_val;
1353 * We're writing to the opposite bank so if we're on bank 1,
1354 * write to bank 0 etc. We also need to erase the segment that
1355 * is going to be written
1357 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
1358 if (ret_val)
1359 return ret_val;
1361 if (bank == 0) {
1362 new_bank_offset = nvm->flash_bank_size;
1363 old_bank_offset = 0;
1364 e1000_erase_flash_bank_ich8lan(hw, 1);
1365 } else {
1366 old_bank_offset = nvm->flash_bank_size;
1367 new_bank_offset = 0;
1368 e1000_erase_flash_bank_ich8lan(hw, 0);
1371 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
1373 * Determine whether to write the value stored
1374 * in the other NVM bank or a modified value stored
1375 * in the shadow RAM
1377 if (dev_spec->shadow_ram[i].modified) {
1378 data = dev_spec->shadow_ram[i].value;
1379 } else {
1380 e1000_read_flash_word_ich8lan(hw,
1381 i + old_bank_offset,
1382 &data);
1386 * If the word is 0x13, then make sure the signature bits
1387 * (15:14) are 11b until the commit has completed.
1388 * This will allow us to write 10b which indicates the
1389 * signature is valid. We want to do this after the write
1390 * has completed so that we don't mark the segment valid
1391 * while the write is still in progress
1393 if (i == E1000_ICH_NVM_SIG_WORD)
1394 data |= E1000_ICH_NVM_SIG_MASK;
1396 /* Convert offset to bytes. */
1397 act_offset = (i + new_bank_offset) << 1;
1399 udelay(100);
1400 /* Write the bytes to the new bank. */
1401 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1402 act_offset,
1403 (u8)data);
1404 if (ret_val)
1405 break;
1407 udelay(100);
1408 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1409 act_offset + 1,
1410 (u8)(data >> 8));
1411 if (ret_val)
1412 break;
1416 * Don't bother writing the segment valid bits if sector
1417 * programming failed.
1419 if (ret_val) {
1420 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
1421 hw_dbg(hw, "Flash commit failed.\n");
1422 e1000_release_swflag_ich8lan(hw);
1423 return ret_val;
1427 * Finally validate the new segment by setting bit 15:14
1428 * to 10b in word 0x13 , this can be done without an
1429 * erase as well since these bits are 11 to start with
1430 * and we need to change bit 14 to 0b
1432 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
1433 e1000_read_flash_word_ich8lan(hw, act_offset, &data);
1434 data &= 0xBFFF;
1435 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1436 act_offset * 2 + 1,
1437 (u8)(data >> 8));
1438 if (ret_val) {
1439 e1000_release_swflag_ich8lan(hw);
1440 return ret_val;
1444 * And invalidate the previously valid segment by setting
1445 * its signature word (0x13) high_byte to 0b. This can be
1446 * done without an erase because flash erase sets all bits
1447 * to 1's. We can write 1's to 0's without an erase
1449 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
1450 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
1451 if (ret_val) {
1452 e1000_release_swflag_ich8lan(hw);
1453 return ret_val;
1456 /* Great! Everything worked, we can now clear the cached entries. */
1457 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
1458 dev_spec->shadow_ram[i].modified = 0;
1459 dev_spec->shadow_ram[i].value = 0xFFFF;
1462 e1000_release_swflag_ich8lan(hw);
1465 * Reload the EEPROM, or else modifications will not appear
1466 * until after the next adapter reset.
1468 e1000e_reload_nvm(hw);
1469 msleep(10);
1471 return ret_val;
1475 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
1476 * @hw: pointer to the HW structure
1478 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
1479 * If the bit is 0, that the EEPROM had been modified, but the checksum was not
1480 * calculated, in which case we need to calculate the checksum and set bit 6.
1482 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
1484 s32 ret_val;
1485 u16 data;
1488 * Read 0x19 and check bit 6. If this bit is 0, the checksum
1489 * needs to be fixed. This bit is an indication that the NVM
1490 * was prepared by OEM software and did not calculate the
1491 * checksum...a likely scenario.
1493 ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
1494 if (ret_val)
1495 return ret_val;
1497 if ((data & 0x40) == 0) {
1498 data |= 0x40;
1499 ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
1500 if (ret_val)
1501 return ret_val;
1502 ret_val = e1000e_update_nvm_checksum(hw);
1503 if (ret_val)
1504 return ret_val;
1507 return e1000e_validate_nvm_checksum_generic(hw);
1511 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
1512 * @hw: pointer to the HW structure
1514 * To prevent malicious write/erase of the NVM, set it to be read-only
1515 * so that the hardware ignores all write/erase cycles of the NVM via
1516 * the flash control registers. The shadow-ram copy of the NVM will
1517 * still be updated, however any updates to this copy will not stick
1518 * across driver reloads.
1520 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
1522 union ich8_flash_protected_range pr0;
1523 union ich8_hws_flash_status hsfsts;
1524 u32 gfpreg;
1525 s32 ret_val;
1527 ret_val = e1000_acquire_swflag_ich8lan(hw);
1528 if (ret_val)
1529 return;
1531 gfpreg = er32flash(ICH_FLASH_GFPREG);
1533 /* Write-protect GbE Sector of NVM */
1534 pr0.regval = er32flash(ICH_FLASH_PR0);
1535 pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
1536 pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
1537 pr0.range.wpe = true;
1538 ew32flash(ICH_FLASH_PR0, pr0.regval);
1541 * Lock down a subset of GbE Flash Control Registers, e.g.
1542 * PR0 to prevent the write-protection from being lifted.
1543 * Once FLOCKDN is set, the registers protected by it cannot
1544 * be written until FLOCKDN is cleared by a hardware reset.
1546 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1547 hsfsts.hsf_status.flockdn = true;
1548 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1550 e1000_release_swflag_ich8lan(hw);
1554 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
1555 * @hw: pointer to the HW structure
1556 * @offset: The offset (in bytes) of the byte/word to read.
1557 * @size: Size of data to read, 1=byte 2=word
1558 * @data: The byte(s) to write to the NVM.
1560 * Writes one/two bytes to the NVM using the flash access registers.
1562 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
1563 u8 size, u16 data)
1565 union ich8_hws_flash_status hsfsts;
1566 union ich8_hws_flash_ctrl hsflctl;
1567 u32 flash_linear_addr;
1568 u32 flash_data = 0;
1569 s32 ret_val;
1570 u8 count = 0;
1572 if (size < 1 || size > 2 || data > size * 0xff ||
1573 offset > ICH_FLASH_LINEAR_ADDR_MASK)
1574 return -E1000_ERR_NVM;
1576 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
1577 hw->nvm.flash_base_addr;
1579 do {
1580 udelay(1);
1581 /* Steps */
1582 ret_val = e1000_flash_cycle_init_ich8lan(hw);
1583 if (ret_val)
1584 break;
1586 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1587 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
1588 hsflctl.hsf_ctrl.fldbcount = size -1;
1589 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
1590 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1592 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
1594 if (size == 1)
1595 flash_data = (u32)data & 0x00FF;
1596 else
1597 flash_data = (u32)data;
1599 ew32flash(ICH_FLASH_FDATA0, flash_data);
1602 * check if FCERR is set to 1 , if set to 1, clear it
1603 * and try the whole sequence a few more times else done
1605 ret_val = e1000_flash_cycle_ich8lan(hw,
1606 ICH_FLASH_WRITE_COMMAND_TIMEOUT);
1607 if (!ret_val)
1608 break;
1611 * If we're here, then things are most likely
1612 * completely hosed, but if the error condition
1613 * is detected, it won't hurt to give it another
1614 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
1616 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1617 if (hsfsts.hsf_status.flcerr == 1)
1618 /* Repeat for some time before giving up. */
1619 continue;
1620 if (hsfsts.hsf_status.flcdone == 0) {
1621 hw_dbg(hw, "Timeout error - flash cycle "
1622 "did not complete.");
1623 break;
1625 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
1627 return ret_val;
1631 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
1632 * @hw: pointer to the HW structure
1633 * @offset: The index of the byte to read.
1634 * @data: The byte to write to the NVM.
1636 * Writes a single byte to the NVM using the flash access registers.
1638 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
1639 u8 data)
1641 u16 word = (u16)data;
1643 return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
1647 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
1648 * @hw: pointer to the HW structure
1649 * @offset: The offset of the byte to write.
1650 * @byte: The byte to write to the NVM.
1652 * Writes a single byte to the NVM using the flash access registers.
1653 * Goes through a retry algorithm before giving up.
1655 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
1656 u32 offset, u8 byte)
1658 s32 ret_val;
1659 u16 program_retries;
1661 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
1662 if (!ret_val)
1663 return ret_val;
1665 for (program_retries = 0; program_retries < 100; program_retries++) {
1666 hw_dbg(hw, "Retrying Byte %2.2X at offset %u\n", byte, offset);
1667 udelay(100);
1668 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
1669 if (!ret_val)
1670 break;
1672 if (program_retries == 100)
1673 return -E1000_ERR_NVM;
1675 return 0;
1679 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
1680 * @hw: pointer to the HW structure
1681 * @bank: 0 for first bank, 1 for second bank, etc.
1683 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
1684 * bank N is 4096 * N + flash_reg_addr.
1686 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
1688 struct e1000_nvm_info *nvm = &hw->nvm;
1689 union ich8_hws_flash_status hsfsts;
1690 union ich8_hws_flash_ctrl hsflctl;
1691 u32 flash_linear_addr;
1692 /* bank size is in 16bit words - adjust to bytes */
1693 u32 flash_bank_size = nvm->flash_bank_size * 2;
1694 s32 ret_val;
1695 s32 count = 0;
1696 s32 iteration;
1697 s32 sector_size;
1698 s32 j;
1700 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1703 * Determine HW Sector size: Read BERASE bits of hw flash status
1704 * register
1705 * 00: The Hw sector is 256 bytes, hence we need to erase 16
1706 * consecutive sectors. The start index for the nth Hw sector
1707 * can be calculated as = bank * 4096 + n * 256
1708 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
1709 * The start index for the nth Hw sector can be calculated
1710 * as = bank * 4096
1711 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
1712 * (ich9 only, otherwise error condition)
1713 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
1715 switch (hsfsts.hsf_status.berasesz) {
1716 case 0:
1717 /* Hw sector size 256 */
1718 sector_size = ICH_FLASH_SEG_SIZE_256;
1719 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
1720 break;
1721 case 1:
1722 sector_size = ICH_FLASH_SEG_SIZE_4K;
1723 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_4K;
1724 break;
1725 case 2:
1726 if (hw->mac.type == e1000_ich9lan) {
1727 sector_size = ICH_FLASH_SEG_SIZE_8K;
1728 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_8K;
1729 } else {
1730 return -E1000_ERR_NVM;
1732 break;
1733 case 3:
1734 sector_size = ICH_FLASH_SEG_SIZE_64K;
1735 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_64K;
1736 break;
1737 default:
1738 return -E1000_ERR_NVM;
1741 /* Start with the base address, then add the sector offset. */
1742 flash_linear_addr = hw->nvm.flash_base_addr;
1743 flash_linear_addr += (bank) ? (sector_size * iteration) : 0;
1745 for (j = 0; j < iteration ; j++) {
1746 do {
1747 /* Steps */
1748 ret_val = e1000_flash_cycle_init_ich8lan(hw);
1749 if (ret_val)
1750 return ret_val;
1753 * Write a value 11 (block Erase) in Flash
1754 * Cycle field in hw flash control
1756 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1757 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
1758 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1761 * Write the last 24 bits of an index within the
1762 * block into Flash Linear address field in Flash
1763 * Address.
1765 flash_linear_addr += (j * sector_size);
1766 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
1768 ret_val = e1000_flash_cycle_ich8lan(hw,
1769 ICH_FLASH_ERASE_COMMAND_TIMEOUT);
1770 if (ret_val == 0)
1771 break;
1774 * Check if FCERR is set to 1. If 1,
1775 * clear it and try the whole sequence
1776 * a few more times else Done
1778 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1779 if (hsfsts.hsf_status.flcerr == 1)
1780 /* repeat for some time before giving up */
1781 continue;
1782 else if (hsfsts.hsf_status.flcdone == 0)
1783 return ret_val;
1784 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
1787 return 0;
1791 * e1000_valid_led_default_ich8lan - Set the default LED settings
1792 * @hw: pointer to the HW structure
1793 * @data: Pointer to the LED settings
1795 * Reads the LED default settings from the NVM to data. If the NVM LED
1796 * settings is all 0's or F's, set the LED default to a valid LED default
1797 * setting.
1799 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
1801 s32 ret_val;
1803 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1804 if (ret_val) {
1805 hw_dbg(hw, "NVM Read Error\n");
1806 return ret_val;
1809 if (*data == ID_LED_RESERVED_0000 ||
1810 *data == ID_LED_RESERVED_FFFF)
1811 *data = ID_LED_DEFAULT_ICH8LAN;
1813 return 0;
1817 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
1818 * @hw: pointer to the HW structure
1820 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
1821 * register, so the the bus width is hard coded.
1823 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
1825 struct e1000_bus_info *bus = &hw->bus;
1826 s32 ret_val;
1828 ret_val = e1000e_get_bus_info_pcie(hw);
1831 * ICH devices are "PCI Express"-ish. They have
1832 * a configuration space, but do not contain
1833 * PCI Express Capability registers, so bus width
1834 * must be hardcoded.
1836 if (bus->width == e1000_bus_width_unknown)
1837 bus->width = e1000_bus_width_pcie_x1;
1839 return ret_val;
1843 * e1000_reset_hw_ich8lan - Reset the hardware
1844 * @hw: pointer to the HW structure
1846 * Does a full reset of the hardware which includes a reset of the PHY and
1847 * MAC.
1849 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
1851 u32 ctrl, icr, kab;
1852 s32 ret_val;
1855 * Prevent the PCI-E bus from sticking if there is no TLP connection
1856 * on the last TLP read/write transaction when MAC is reset.
1858 ret_val = e1000e_disable_pcie_master(hw);
1859 if (ret_val) {
1860 hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
1863 hw_dbg(hw, "Masking off all interrupts\n");
1864 ew32(IMC, 0xffffffff);
1867 * Disable the Transmit and Receive units. Then delay to allow
1868 * any pending transactions to complete before we hit the MAC
1869 * with the global reset.
1871 ew32(RCTL, 0);
1872 ew32(TCTL, E1000_TCTL_PSP);
1873 e1e_flush();
1875 msleep(10);
1877 /* Workaround for ICH8 bit corruption issue in FIFO memory */
1878 if (hw->mac.type == e1000_ich8lan) {
1879 /* Set Tx and Rx buffer allocation to 8k apiece. */
1880 ew32(PBA, E1000_PBA_8K);
1881 /* Set Packet Buffer Size to 16k. */
1882 ew32(PBS, E1000_PBS_16K);
1885 ctrl = er32(CTRL);
1887 if (!e1000_check_reset_block(hw)) {
1889 * PHY HW reset requires MAC CORE reset at the same
1890 * time to make sure the interface between MAC and the
1891 * external PHY is reset.
1893 ctrl |= E1000_CTRL_PHY_RST;
1895 ret_val = e1000_acquire_swflag_ich8lan(hw);
1896 hw_dbg(hw, "Issuing a global reset to ich8lan");
1897 ew32(CTRL, (ctrl | E1000_CTRL_RST));
1898 msleep(20);
1900 /* release the swflag because it is not reset by hardware reset */
1901 e1000_release_swflag_ich8lan(hw);
1903 ret_val = e1000e_get_auto_rd_done(hw);
1904 if (ret_val) {
1906 * When auto config read does not complete, do not
1907 * return with an error. This can happen in situations
1908 * where there is no eeprom and prevents getting link.
1910 hw_dbg(hw, "Auto Read Done did not complete\n");
1913 ew32(IMC, 0xffffffff);
1914 icr = er32(ICR);
1916 kab = er32(KABGTXD);
1917 kab |= E1000_KABGTXD_BGSQLBIAS;
1918 ew32(KABGTXD, kab);
1920 return ret_val;
1924 * e1000_init_hw_ich8lan - Initialize the hardware
1925 * @hw: pointer to the HW structure
1927 * Prepares the hardware for transmit and receive by doing the following:
1928 * - initialize hardware bits
1929 * - initialize LED identification
1930 * - setup receive address registers
1931 * - setup flow control
1932 * - setup transmit descriptors
1933 * - clear statistics
1935 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
1937 struct e1000_mac_info *mac = &hw->mac;
1938 u32 ctrl_ext, txdctl, snoop;
1939 s32 ret_val;
1940 u16 i;
1942 e1000_initialize_hw_bits_ich8lan(hw);
1944 /* Initialize identification LED */
1945 ret_val = e1000e_id_led_init(hw);
1946 if (ret_val) {
1947 hw_dbg(hw, "Error initializing identification LED\n");
1948 return ret_val;
1951 /* Setup the receive address. */
1952 e1000e_init_rx_addrs(hw, mac->rar_entry_count);
1954 /* Zero out the Multicast HASH table */
1955 hw_dbg(hw, "Zeroing the MTA\n");
1956 for (i = 0; i < mac->mta_reg_count; i++)
1957 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
1959 /* Setup link and flow control */
1960 ret_val = e1000_setup_link_ich8lan(hw);
1962 /* Set the transmit descriptor write-back policy for both queues */
1963 txdctl = er32(TXDCTL(0));
1964 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
1965 E1000_TXDCTL_FULL_TX_DESC_WB;
1966 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
1967 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
1968 ew32(TXDCTL(0), txdctl);
1969 txdctl = er32(TXDCTL(1));
1970 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
1971 E1000_TXDCTL_FULL_TX_DESC_WB;
1972 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
1973 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
1974 ew32(TXDCTL(1), txdctl);
1977 * ICH8 has opposite polarity of no_snoop bits.
1978 * By default, we should use snoop behavior.
1980 if (mac->type == e1000_ich8lan)
1981 snoop = PCIE_ICH8_SNOOP_ALL;
1982 else
1983 snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
1984 e1000e_set_pcie_no_snoop(hw, snoop);
1986 ctrl_ext = er32(CTRL_EXT);
1987 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
1988 ew32(CTRL_EXT, ctrl_ext);
1991 * Clear all of the statistics registers (clear on read). It is
1992 * important that we do this after we have tried to establish link
1993 * because the symbol error count will increment wildly if there
1994 * is no link.
1996 e1000_clear_hw_cntrs_ich8lan(hw);
1998 return 0;
2001 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
2002 * @hw: pointer to the HW structure
2004 * Sets/Clears required hardware bits necessary for correctly setting up the
2005 * hardware for transmit and receive.
2007 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
2009 u32 reg;
2011 /* Extended Device Control */
2012 reg = er32(CTRL_EXT);
2013 reg |= (1 << 22);
2014 ew32(CTRL_EXT, reg);
2016 /* Transmit Descriptor Control 0 */
2017 reg = er32(TXDCTL(0));
2018 reg |= (1 << 22);
2019 ew32(TXDCTL(0), reg);
2021 /* Transmit Descriptor Control 1 */
2022 reg = er32(TXDCTL(1));
2023 reg |= (1 << 22);
2024 ew32(TXDCTL(1), reg);
2026 /* Transmit Arbitration Control 0 */
2027 reg = er32(TARC(0));
2028 if (hw->mac.type == e1000_ich8lan)
2029 reg |= (1 << 28) | (1 << 29);
2030 reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
2031 ew32(TARC(0), reg);
2033 /* Transmit Arbitration Control 1 */
2034 reg = er32(TARC(1));
2035 if (er32(TCTL) & E1000_TCTL_MULR)
2036 reg &= ~(1 << 28);
2037 else
2038 reg |= (1 << 28);
2039 reg |= (1 << 24) | (1 << 26) | (1 << 30);
2040 ew32(TARC(1), reg);
2042 /* Device Status */
2043 if (hw->mac.type == e1000_ich8lan) {
2044 reg = er32(STATUS);
2045 reg &= ~(1 << 31);
2046 ew32(STATUS, reg);
2051 * e1000_setup_link_ich8lan - Setup flow control and link settings
2052 * @hw: pointer to the HW structure
2054 * Determines which flow control settings to use, then configures flow
2055 * control. Calls the appropriate media-specific link configuration
2056 * function. Assuming the adapter has a valid link partner, a valid link
2057 * should be established. Assumes the hardware has previously been reset
2058 * and the transmitter and receiver are not enabled.
2060 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
2062 s32 ret_val;
2064 if (e1000_check_reset_block(hw))
2065 return 0;
2068 * ICH parts do not have a word in the NVM to determine
2069 * the default flow control setting, so we explicitly
2070 * set it to full.
2072 if (hw->fc.type == e1000_fc_default)
2073 hw->fc.type = e1000_fc_full;
2075 hw->fc.original_type = hw->fc.type;
2077 hw_dbg(hw, "After fix-ups FlowControl is now = %x\n", hw->fc.type);
2079 /* Continue to configure the copper link. */
2080 ret_val = e1000_setup_copper_link_ich8lan(hw);
2081 if (ret_val)
2082 return ret_val;
2084 ew32(FCTTV, hw->fc.pause_time);
2086 return e1000e_set_fc_watermarks(hw);
2090 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
2091 * @hw: pointer to the HW structure
2093 * Configures the kumeran interface to the PHY to wait the appropriate time
2094 * when polling the PHY, then call the generic setup_copper_link to finish
2095 * configuring the copper link.
2097 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
2099 u32 ctrl;
2100 s32 ret_val;
2101 u16 reg_data;
2103 ctrl = er32(CTRL);
2104 ctrl |= E1000_CTRL_SLU;
2105 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2106 ew32(CTRL, ctrl);
2109 * Set the mac to wait the maximum time between each iteration
2110 * and increase the max iterations when polling the phy;
2111 * this fixes erroneous timeouts at 10Mbps.
2113 ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
2114 if (ret_val)
2115 return ret_val;
2116 ret_val = e1000e_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
2117 if (ret_val)
2118 return ret_val;
2119 reg_data |= 0x3F;
2120 ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
2121 if (ret_val)
2122 return ret_val;
2124 if (hw->phy.type == e1000_phy_igp_3) {
2125 ret_val = e1000e_copper_link_setup_igp(hw);
2126 if (ret_val)
2127 return ret_val;
2128 } else if (hw->phy.type == e1000_phy_bm) {
2129 ret_val = e1000e_copper_link_setup_m88(hw);
2130 if (ret_val)
2131 return ret_val;
2134 if (hw->phy.type == e1000_phy_ife) {
2135 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
2136 if (ret_val)
2137 return ret_val;
2139 reg_data &= ~IFE_PMC_AUTO_MDIX;
2141 switch (hw->phy.mdix) {
2142 case 1:
2143 reg_data &= ~IFE_PMC_FORCE_MDIX;
2144 break;
2145 case 2:
2146 reg_data |= IFE_PMC_FORCE_MDIX;
2147 break;
2148 case 0:
2149 default:
2150 reg_data |= IFE_PMC_AUTO_MDIX;
2151 break;
2153 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
2154 if (ret_val)
2155 return ret_val;
2157 return e1000e_setup_copper_link(hw);
2161 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
2162 * @hw: pointer to the HW structure
2163 * @speed: pointer to store current link speed
2164 * @duplex: pointer to store the current link duplex
2166 * Calls the generic get_speed_and_duplex to retrieve the current link
2167 * information and then calls the Kumeran lock loss workaround for links at
2168 * gigabit speeds.
2170 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
2171 u16 *duplex)
2173 s32 ret_val;
2175 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
2176 if (ret_val)
2177 return ret_val;
2179 if ((hw->mac.type == e1000_ich8lan) &&
2180 (hw->phy.type == e1000_phy_igp_3) &&
2181 (*speed == SPEED_1000)) {
2182 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
2185 return ret_val;
2189 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
2190 * @hw: pointer to the HW structure
2192 * Work-around for 82566 Kumeran PCS lock loss:
2193 * On link status change (i.e. PCI reset, speed change) and link is up and
2194 * speed is gigabit-
2195 * 0) if workaround is optionally disabled do nothing
2196 * 1) wait 1ms for Kumeran link to come up
2197 * 2) check Kumeran Diagnostic register PCS lock loss bit
2198 * 3) if not set the link is locked (all is good), otherwise...
2199 * 4) reset the PHY
2200 * 5) repeat up to 10 times
2201 * Note: this is only called for IGP3 copper when speed is 1gb.
2203 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
2205 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2206 u32 phy_ctrl;
2207 s32 ret_val;
2208 u16 i, data;
2209 bool link;
2211 if (!dev_spec->kmrn_lock_loss_workaround_enabled)
2212 return 0;
2215 * Make sure link is up before proceeding. If not just return.
2216 * Attempting this while link is negotiating fouled up link
2217 * stability
2219 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2220 if (!link)
2221 return 0;
2223 for (i = 0; i < 10; i++) {
2224 /* read once to clear */
2225 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
2226 if (ret_val)
2227 return ret_val;
2228 /* and again to get new status */
2229 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
2230 if (ret_val)
2231 return ret_val;
2233 /* check for PCS lock */
2234 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
2235 return 0;
2237 /* Issue PHY reset */
2238 e1000_phy_hw_reset(hw);
2239 mdelay(5);
2241 /* Disable GigE link negotiation */
2242 phy_ctrl = er32(PHY_CTRL);
2243 phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
2244 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
2245 ew32(PHY_CTRL, phy_ctrl);
2248 * Call gig speed drop workaround on Gig disable before accessing
2249 * any PHY registers
2251 e1000e_gig_downshift_workaround_ich8lan(hw);
2253 /* unable to acquire PCS lock */
2254 return -E1000_ERR_PHY;
2258 * e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
2259 * @hw: pointer to the HW structure
2260 * @state: boolean value used to set the current Kumeran workaround state
2262 * If ICH8, set the current Kumeran workaround state (enabled - TRUE
2263 * /disabled - FALSE).
2265 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
2266 bool state)
2268 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2270 if (hw->mac.type != e1000_ich8lan) {
2271 hw_dbg(hw, "Workaround applies to ICH8 only.\n");
2272 return;
2275 dev_spec->kmrn_lock_loss_workaround_enabled = state;
2279 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
2280 * @hw: pointer to the HW structure
2282 * Workaround for 82566 power-down on D3 entry:
2283 * 1) disable gigabit link
2284 * 2) write VR power-down enable
2285 * 3) read it back
2286 * Continue if successful, else issue LCD reset and repeat
2288 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
2290 u32 reg;
2291 u16 data;
2292 u8 retry = 0;
2294 if (hw->phy.type != e1000_phy_igp_3)
2295 return;
2297 /* Try the workaround twice (if needed) */
2298 do {
2299 /* Disable link */
2300 reg = er32(PHY_CTRL);
2301 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
2302 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
2303 ew32(PHY_CTRL, reg);
2306 * Call gig speed drop workaround on Gig disable before
2307 * accessing any PHY registers
2309 if (hw->mac.type == e1000_ich8lan)
2310 e1000e_gig_downshift_workaround_ich8lan(hw);
2312 /* Write VR power-down enable */
2313 e1e_rphy(hw, IGP3_VR_CTRL, &data);
2314 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
2315 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
2317 /* Read it back and test */
2318 e1e_rphy(hw, IGP3_VR_CTRL, &data);
2319 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
2320 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
2321 break;
2323 /* Issue PHY reset and repeat at most one more time */
2324 reg = er32(CTRL);
2325 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
2326 retry++;
2327 } while (retry);
2331 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
2332 * @hw: pointer to the HW structure
2334 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
2335 * LPLU, Gig disable, MDIC PHY reset):
2336 * 1) Set Kumeran Near-end loopback
2337 * 2) Clear Kumeran Near-end loopback
2338 * Should only be called for ICH8[m] devices with IGP_3 Phy.
2340 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
2342 s32 ret_val;
2343 u16 reg_data;
2345 if ((hw->mac.type != e1000_ich8lan) ||
2346 (hw->phy.type != e1000_phy_igp_3))
2347 return;
2349 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
2350 &reg_data);
2351 if (ret_val)
2352 return;
2353 reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
2354 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
2355 reg_data);
2356 if (ret_val)
2357 return;
2358 reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
2359 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
2360 reg_data);
2364 * e1000e_disable_gig_wol_ich8lan - disable gig during WoL
2365 * @hw: pointer to the HW structure
2367 * During S0 to Sx transition, it is possible the link remains at gig
2368 * instead of negotiating to a lower speed. Before going to Sx, set
2369 * 'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
2370 * to a lower speed.
2372 * Should only be called for ICH9 and ICH10 devices.
2374 void e1000e_disable_gig_wol_ich8lan(struct e1000_hw *hw)
2376 u32 phy_ctrl;
2378 if ((hw->mac.type == e1000_ich10lan) ||
2379 (hw->mac.type == e1000_ich9lan)) {
2380 phy_ctrl = er32(PHY_CTRL);
2381 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU |
2382 E1000_PHY_CTRL_GBE_DISABLE;
2383 ew32(PHY_CTRL, phy_ctrl);
2386 return;
2390 * e1000_cleanup_led_ich8lan - Restore the default LED operation
2391 * @hw: pointer to the HW structure
2393 * Return the LED back to the default configuration.
2395 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
2397 if (hw->phy.type == e1000_phy_ife)
2398 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
2400 ew32(LEDCTL, hw->mac.ledctl_default);
2401 return 0;
2405 * e1000_led_on_ich8lan - Turn LEDs on
2406 * @hw: pointer to the HW structure
2408 * Turn on the LEDs.
2410 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
2412 if (hw->phy.type == e1000_phy_ife)
2413 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
2414 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
2416 ew32(LEDCTL, hw->mac.ledctl_mode2);
2417 return 0;
2421 * e1000_led_off_ich8lan - Turn LEDs off
2422 * @hw: pointer to the HW structure
2424 * Turn off the LEDs.
2426 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
2428 if (hw->phy.type == e1000_phy_ife)
2429 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
2430 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
2432 ew32(LEDCTL, hw->mac.ledctl_mode1);
2433 return 0;
2437 * e1000_get_cfg_done_ich8lan - Read config done bit
2438 * @hw: pointer to the HW structure
2440 * Read the management control register for the config done bit for
2441 * completion status. NOTE: silicon which is EEPROM-less will fail trying
2442 * to read the config done bit, so an error is *ONLY* logged and returns
2443 * E1000_SUCCESS. If we were to return with error, EEPROM-less silicon
2444 * would not be able to be reset or change link.
2446 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
2448 u32 bank = 0;
2450 e1000e_get_cfg_done(hw);
2452 /* If EEPROM is not marked present, init the IGP 3 PHY manually */
2453 if (hw->mac.type != e1000_ich10lan) {
2454 if (((er32(EECD) & E1000_EECD_PRES) == 0) &&
2455 (hw->phy.type == e1000_phy_igp_3)) {
2456 e1000e_phy_init_script_igp3(hw);
2458 } else {
2459 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
2460 /* Maybe we should do a basic PHY config */
2461 hw_dbg(hw, "EEPROM not present\n");
2462 return -E1000_ERR_CONFIG;
2466 return 0;
2470 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
2471 * @hw: pointer to the HW structure
2473 * Clears hardware counters specific to the silicon family and calls
2474 * clear_hw_cntrs_generic to clear all general purpose counters.
2476 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
2478 u32 temp;
2480 e1000e_clear_hw_cntrs_base(hw);
2482 temp = er32(ALGNERRC);
2483 temp = er32(RXERRC);
2484 temp = er32(TNCRS);
2485 temp = er32(CEXTERR);
2486 temp = er32(TSCTC);
2487 temp = er32(TSCTFC);
2489 temp = er32(MGTPRC);
2490 temp = er32(MGTPDC);
2491 temp = er32(MGTPTC);
2493 temp = er32(IAC);
2494 temp = er32(ICRXOC);
2498 static struct e1000_mac_operations ich8_mac_ops = {
2499 .check_mng_mode = e1000_check_mng_mode_ich8lan,
2500 .check_for_link = e1000e_check_for_copper_link,
2501 .cleanup_led = e1000_cleanup_led_ich8lan,
2502 .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan,
2503 .get_bus_info = e1000_get_bus_info_ich8lan,
2504 .get_link_up_info = e1000_get_link_up_info_ich8lan,
2505 .led_on = e1000_led_on_ich8lan,
2506 .led_off = e1000_led_off_ich8lan,
2507 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
2508 .reset_hw = e1000_reset_hw_ich8lan,
2509 .init_hw = e1000_init_hw_ich8lan,
2510 .setup_link = e1000_setup_link_ich8lan,
2511 .setup_physical_interface= e1000_setup_copper_link_ich8lan,
2514 static struct e1000_phy_operations ich8_phy_ops = {
2515 .acquire_phy = e1000_acquire_swflag_ich8lan,
2516 .check_reset_block = e1000_check_reset_block_ich8lan,
2517 .commit_phy = NULL,
2518 .force_speed_duplex = e1000_phy_force_speed_duplex_ich8lan,
2519 .get_cfg_done = e1000_get_cfg_done_ich8lan,
2520 .get_cable_length = e1000e_get_cable_length_igp_2,
2521 .get_phy_info = e1000_get_phy_info_ich8lan,
2522 .read_phy_reg = e1000e_read_phy_reg_igp,
2523 .release_phy = e1000_release_swflag_ich8lan,
2524 .reset_phy = e1000_phy_hw_reset_ich8lan,
2525 .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan,
2526 .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan,
2527 .write_phy_reg = e1000e_write_phy_reg_igp,
2530 static struct e1000_nvm_operations ich8_nvm_ops = {
2531 .acquire_nvm = e1000_acquire_swflag_ich8lan,
2532 .read_nvm = e1000_read_nvm_ich8lan,
2533 .release_nvm = e1000_release_swflag_ich8lan,
2534 .update_nvm = e1000_update_nvm_checksum_ich8lan,
2535 .valid_led_default = e1000_valid_led_default_ich8lan,
2536 .validate_nvm = e1000_validate_nvm_checksum_ich8lan,
2537 .write_nvm = e1000_write_nvm_ich8lan,
2540 struct e1000_info e1000_ich8_info = {
2541 .mac = e1000_ich8lan,
2542 .flags = FLAG_HAS_WOL
2543 | FLAG_IS_ICH
2544 | FLAG_RX_CSUM_ENABLED
2545 | FLAG_HAS_CTRLEXT_ON_LOAD
2546 | FLAG_HAS_AMT
2547 | FLAG_HAS_FLASH
2548 | FLAG_APME_IN_WUC,
2549 .pba = 8,
2550 .get_variants = e1000_get_variants_ich8lan,
2551 .mac_ops = &ich8_mac_ops,
2552 .phy_ops = &ich8_phy_ops,
2553 .nvm_ops = &ich8_nvm_ops,
2556 struct e1000_info e1000_ich9_info = {
2557 .mac = e1000_ich9lan,
2558 .flags = FLAG_HAS_JUMBO_FRAMES
2559 | FLAG_IS_ICH
2560 | FLAG_HAS_WOL
2561 | FLAG_RX_CSUM_ENABLED
2562 | FLAG_HAS_CTRLEXT_ON_LOAD
2563 | FLAG_HAS_AMT
2564 | FLAG_HAS_ERT
2565 | FLAG_HAS_FLASH
2566 | FLAG_APME_IN_WUC,
2567 .pba = 10,
2568 .get_variants = e1000_get_variants_ich8lan,
2569 .mac_ops = &ich8_mac_ops,
2570 .phy_ops = &ich8_phy_ops,
2571 .nvm_ops = &ich8_nvm_ops,
2574 struct e1000_info e1000_ich10_info = {
2575 .mac = e1000_ich10lan,
2576 .flags = FLAG_HAS_JUMBO_FRAMES
2577 | FLAG_IS_ICH
2578 | FLAG_HAS_WOL
2579 | FLAG_RX_CSUM_ENABLED
2580 | FLAG_HAS_CTRLEXT_ON_LOAD
2581 | FLAG_HAS_AMT
2582 | FLAG_HAS_ERT
2583 | FLAG_HAS_FLASH
2584 | FLAG_APME_IN_WUC,
2585 .pba = 10,
2586 .get_variants = e1000_get_variants_ich8lan,
2587 .mac_ops = &ich8_mac_ops,
2588 .phy_ops = &ich8_phy_ops,
2589 .nvm_ops = &ich8_nvm_ops,