1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2008 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * 82562G 10/100 Network Connection
31 * 82562G-2 10/100 Network Connection
32 * 82562GT 10/100 Network Connection
33 * 82562GT-2 10/100 Network Connection
34 * 82562V 10/100 Network Connection
35 * 82562V-2 10/100 Network Connection
36 * 82566DC-2 Gigabit Network Connection
37 * 82566DC Gigabit Network Connection
38 * 82566DM-2 Gigabit Network Connection
39 * 82566DM Gigabit Network Connection
40 * 82566MC Gigabit Network Connection
41 * 82566MM Gigabit Network Connection
42 * 82567LM Gigabit Network Connection
43 * 82567LF Gigabit Network Connection
44 * 82567V Gigabit Network Connection
45 * 82567LM-2 Gigabit Network Connection
46 * 82567LF-2 Gigabit Network Connection
47 * 82567V-2 Gigabit Network Connection
48 * 82567LF-3 Gigabit Network Connection
49 * 82567LM-3 Gigabit Network Connection
50 * 82567LM-4 Gigabit Network Connection
53 #include <linux/netdevice.h>
54 #include <linux/ethtool.h>
55 #include <linux/delay.h>
56 #include <linux/pci.h>
60 #define ICH_FLASH_GFPREG 0x0000
61 #define ICH_FLASH_HSFSTS 0x0004
62 #define ICH_FLASH_HSFCTL 0x0006
63 #define ICH_FLASH_FADDR 0x0008
64 #define ICH_FLASH_FDATA0 0x0010
65 #define ICH_FLASH_PR0 0x0074
67 #define ICH_FLASH_READ_COMMAND_TIMEOUT 500
68 #define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
69 #define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
70 #define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
71 #define ICH_FLASH_CYCLE_REPEAT_COUNT 10
73 #define ICH_CYCLE_READ 0
74 #define ICH_CYCLE_WRITE 2
75 #define ICH_CYCLE_ERASE 3
77 #define FLASH_GFPREG_BASE_MASK 0x1FFF
78 #define FLASH_SECTOR_ADDR_SHIFT 12
80 #define ICH_FLASH_SEG_SIZE_256 256
81 #define ICH_FLASH_SEG_SIZE_4K 4096
82 #define ICH_FLASH_SEG_SIZE_8K 8192
83 #define ICH_FLASH_SEG_SIZE_64K 65536
86 #define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
88 #define E1000_ICH_MNG_IAMT_MODE 0x2
90 #define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \
91 (ID_LED_DEF1_OFF2 << 8) | \
92 (ID_LED_DEF1_ON2 << 4) | \
95 #define E1000_ICH_NVM_SIG_WORD 0x13
96 #define E1000_ICH_NVM_SIG_MASK 0xC000
98 #define E1000_ICH8_LAN_INIT_TIMEOUT 1500
100 #define E1000_FEXTNVM_SW_CONFIG 1
101 #define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
103 #define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL
105 #define E1000_ICH_RAR_ENTRIES 7
107 #define PHY_PAGE_SHIFT 5
108 #define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
109 ((reg) & MAX_PHY_REG_ADDRESS))
110 #define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */
111 #define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */
113 #define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002
114 #define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
115 #define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200
117 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
118 /* Offset 04h HSFSTS */
119 union ich8_hws_flash_status
{
121 u16 flcdone
:1; /* bit 0 Flash Cycle Done */
122 u16 flcerr
:1; /* bit 1 Flash Cycle Error */
123 u16 dael
:1; /* bit 2 Direct Access error Log */
124 u16 berasesz
:2; /* bit 4:3 Sector Erase Size */
125 u16 flcinprog
:1; /* bit 5 flash cycle in Progress */
126 u16 reserved1
:2; /* bit 13:6 Reserved */
127 u16 reserved2
:6; /* bit 13:6 Reserved */
128 u16 fldesvalid
:1; /* bit 14 Flash Descriptor Valid */
129 u16 flockdn
:1; /* bit 15 Flash Config Lock-Down */
134 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
135 /* Offset 06h FLCTL */
136 union ich8_hws_flash_ctrl
{
137 struct ich8_hsflctl
{
138 u16 flcgo
:1; /* 0 Flash Cycle Go */
139 u16 flcycle
:2; /* 2:1 Flash Cycle */
140 u16 reserved
:5; /* 7:3 Reserved */
141 u16 fldbcount
:2; /* 9:8 Flash Data Byte Count */
142 u16 flockdn
:6; /* 15:10 Reserved */
147 /* ICH Flash Region Access Permissions */
148 union ich8_hws_flash_regacc
{
150 u32 grra
:8; /* 0:7 GbE region Read Access */
151 u32 grwa
:8; /* 8:15 GbE region Write Access */
152 u32 gmrag
:8; /* 23:16 GbE Master Read Access Grant */
153 u32 gmwag
:8; /* 31:24 GbE Master Write Access Grant */
158 /* ICH Flash Protected Region */
159 union ich8_flash_protected_range
{
161 u32 base
:13; /* 0:12 Protected Range Base */
162 u32 reserved1
:2; /* 13:14 Reserved */
163 u32 rpe
:1; /* 15 Read Protection Enable */
164 u32 limit
:13; /* 16:28 Protected Range Limit */
165 u32 reserved2
:2; /* 29:30 Reserved */
166 u32 wpe
:1; /* 31 Write Protection Enable */
171 static s32
e1000_setup_link_ich8lan(struct e1000_hw
*hw
);
172 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw
*hw
);
173 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw
*hw
);
174 static s32
e1000_check_polarity_ife_ich8lan(struct e1000_hw
*hw
);
175 static s32
e1000_erase_flash_bank_ich8lan(struct e1000_hw
*hw
, u32 bank
);
176 static s32
e1000_retry_write_flash_byte_ich8lan(struct e1000_hw
*hw
,
177 u32 offset
, u8 byte
);
178 static s32
e1000_read_flash_byte_ich8lan(struct e1000_hw
*hw
, u32 offset
,
180 static s32
e1000_read_flash_word_ich8lan(struct e1000_hw
*hw
, u32 offset
,
182 static s32
e1000_read_flash_data_ich8lan(struct e1000_hw
*hw
, u32 offset
,
184 static s32
e1000_setup_copper_link_ich8lan(struct e1000_hw
*hw
);
185 static s32
e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw
*hw
);
186 static s32
e1000_get_cfg_done_ich8lan(struct e1000_hw
*hw
);
188 static inline u16
__er16flash(struct e1000_hw
*hw
, unsigned long reg
)
190 return readw(hw
->flash_address
+ reg
);
193 static inline u32
__er32flash(struct e1000_hw
*hw
, unsigned long reg
)
195 return readl(hw
->flash_address
+ reg
);
198 static inline void __ew16flash(struct e1000_hw
*hw
, unsigned long reg
, u16 val
)
200 writew(val
, hw
->flash_address
+ reg
);
203 static inline void __ew32flash(struct e1000_hw
*hw
, unsigned long reg
, u32 val
)
205 writel(val
, hw
->flash_address
+ reg
);
208 #define er16flash(reg) __er16flash(hw, (reg))
209 #define er32flash(reg) __er32flash(hw, (reg))
210 #define ew16flash(reg,val) __ew16flash(hw, (reg), (val))
211 #define ew32flash(reg,val) __ew32flash(hw, (reg), (val))
214 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
215 * @hw: pointer to the HW structure
217 * Initialize family-specific PHY parameters and function pointers.
219 static s32
e1000_init_phy_params_ich8lan(struct e1000_hw
*hw
)
221 struct e1000_phy_info
*phy
= &hw
->phy
;
226 phy
->reset_delay_us
= 100;
229 * We may need to do this twice - once for IGP and if that fails,
230 * we'll set BM func pointers and try again
232 ret_val
= e1000e_determine_phy_address(hw
);
234 hw
->phy
.ops
.write_phy_reg
= e1000e_write_phy_reg_bm
;
235 hw
->phy
.ops
.read_phy_reg
= e1000e_read_phy_reg_bm
;
236 ret_val
= e1000e_determine_phy_address(hw
);
242 while ((e1000_phy_unknown
== e1000e_get_phy_type_from_id(phy
->id
)) &&
245 ret_val
= e1000e_get_phy_id(hw
);
252 case IGP03E1000_E_PHY_ID
:
253 phy
->type
= e1000_phy_igp_3
;
254 phy
->autoneg_mask
= AUTONEG_ADVERTISE_SPEED_DEFAULT
;
257 case IFE_PLUS_E_PHY_ID
:
259 phy
->type
= e1000_phy_ife
;
260 phy
->autoneg_mask
= E1000_ALL_NOT_GIG
;
262 case BME1000_E_PHY_ID
:
263 phy
->type
= e1000_phy_bm
;
264 phy
->autoneg_mask
= AUTONEG_ADVERTISE_SPEED_DEFAULT
;
265 hw
->phy
.ops
.read_phy_reg
= e1000e_read_phy_reg_bm
;
266 hw
->phy
.ops
.write_phy_reg
= e1000e_write_phy_reg_bm
;
267 hw
->phy
.ops
.commit_phy
= e1000e_phy_sw_reset
;
270 return -E1000_ERR_PHY
;
278 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
279 * @hw: pointer to the HW structure
281 * Initialize family-specific NVM parameters and function
284 static s32
e1000_init_nvm_params_ich8lan(struct e1000_hw
*hw
)
286 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
287 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
289 u32 sector_base_addr
;
293 /* Can't read flash registers if the register set isn't mapped. */
294 if (!hw
->flash_address
) {
295 hw_dbg(hw
, "ERROR: Flash registers not mapped\n");
296 return -E1000_ERR_CONFIG
;
299 nvm
->type
= e1000_nvm_flash_sw
;
301 gfpreg
= er32flash(ICH_FLASH_GFPREG
);
304 * sector_X_addr is a "sector"-aligned address (4096 bytes)
305 * Add 1 to sector_end_addr since this sector is included in
308 sector_base_addr
= gfpreg
& FLASH_GFPREG_BASE_MASK
;
309 sector_end_addr
= ((gfpreg
>> 16) & FLASH_GFPREG_BASE_MASK
) + 1;
311 /* flash_base_addr is byte-aligned */
312 nvm
->flash_base_addr
= sector_base_addr
<< FLASH_SECTOR_ADDR_SHIFT
;
315 * find total size of the NVM, then cut in half since the total
316 * size represents two separate NVM banks.
318 nvm
->flash_bank_size
= (sector_end_addr
- sector_base_addr
)
319 << FLASH_SECTOR_ADDR_SHIFT
;
320 nvm
->flash_bank_size
/= 2;
321 /* Adjust to word count */
322 nvm
->flash_bank_size
/= sizeof(u16
);
324 nvm
->word_size
= E1000_ICH8_SHADOW_RAM_WORDS
;
326 /* Clear shadow ram */
327 for (i
= 0; i
< nvm
->word_size
; i
++) {
328 dev_spec
->shadow_ram
[i
].modified
= 0;
329 dev_spec
->shadow_ram
[i
].value
= 0xFFFF;
336 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
337 * @hw: pointer to the HW structure
339 * Initialize family-specific MAC parameters and function
342 static s32
e1000_init_mac_params_ich8lan(struct e1000_adapter
*adapter
)
344 struct e1000_hw
*hw
= &adapter
->hw
;
345 struct e1000_mac_info
*mac
= &hw
->mac
;
347 /* Set media type function pointer */
348 hw
->phy
.media_type
= e1000_media_type_copper
;
350 /* Set mta register count */
351 mac
->mta_reg_count
= 32;
352 /* Set rar entry count */
353 mac
->rar_entry_count
= E1000_ICH_RAR_ENTRIES
;
354 if (mac
->type
== e1000_ich8lan
)
355 mac
->rar_entry_count
--;
356 /* Set if manageability features are enabled. */
357 mac
->arc_subsystem_valid
= 1;
359 /* Enable PCS Lock-loss workaround for ICH8 */
360 if (mac
->type
== e1000_ich8lan
)
361 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw
, 1);
366 static s32
e1000_get_variants_ich8lan(struct e1000_adapter
*adapter
)
368 struct e1000_hw
*hw
= &adapter
->hw
;
371 rc
= e1000_init_mac_params_ich8lan(adapter
);
375 rc
= e1000_init_nvm_params_ich8lan(hw
);
379 rc
= e1000_init_phy_params_ich8lan(hw
);
383 if ((adapter
->hw
.mac
.type
== e1000_ich8lan
) &&
384 (adapter
->hw
.phy
.type
== e1000_phy_igp_3
))
385 adapter
->flags
|= FLAG_LSC_GIG_SPEED_DROP
;
390 static DEFINE_MUTEX(nvm_mutex
);
391 static pid_t nvm_owner
= -1;
394 * e1000_acquire_swflag_ich8lan - Acquire software control flag
395 * @hw: pointer to the HW structure
397 * Acquires the software control flag for performing NVM and PHY
398 * operations. This is a function pointer entry point only called by
399 * read/write routines for the PHY and NVM parts.
401 static s32
e1000_acquire_swflag_ich8lan(struct e1000_hw
*hw
)
404 u32 timeout
= PHY_CFG_TIMEOUT
;
408 if (!mutex_trylock(&nvm_mutex
)) {
409 WARN(1, KERN_ERR
"e1000e mutex contention. Owned by pid %d\n",
411 mutex_lock(&nvm_mutex
);
413 nvm_owner
= current
->pid
;
416 extcnf_ctrl
= er32(EXTCNF_CTRL
);
417 extcnf_ctrl
|= E1000_EXTCNF_CTRL_SWFLAG
;
418 ew32(EXTCNF_CTRL
, extcnf_ctrl
);
420 extcnf_ctrl
= er32(EXTCNF_CTRL
);
421 if (extcnf_ctrl
& E1000_EXTCNF_CTRL_SWFLAG
)
428 hw_dbg(hw
, "FW or HW has locked the resource for too long.\n");
429 extcnf_ctrl
&= ~E1000_EXTCNF_CTRL_SWFLAG
;
430 ew32(EXTCNF_CTRL
, extcnf_ctrl
);
432 mutex_unlock(&nvm_mutex
);
433 return -E1000_ERR_CONFIG
;
440 * e1000_release_swflag_ich8lan - Release software control flag
441 * @hw: pointer to the HW structure
443 * Releases the software control flag for performing NVM and PHY operations.
444 * This is a function pointer entry point only called by read/write
445 * routines for the PHY and NVM parts.
447 static void e1000_release_swflag_ich8lan(struct e1000_hw
*hw
)
451 extcnf_ctrl
= er32(EXTCNF_CTRL
);
452 extcnf_ctrl
&= ~E1000_EXTCNF_CTRL_SWFLAG
;
453 ew32(EXTCNF_CTRL
, extcnf_ctrl
);
456 mutex_unlock(&nvm_mutex
);
460 * e1000_check_mng_mode_ich8lan - Checks management mode
461 * @hw: pointer to the HW structure
463 * This checks if the adapter has manageability enabled.
464 * This is a function pointer entry point only called by read/write
465 * routines for the PHY and NVM parts.
467 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw
*hw
)
469 u32 fwsm
= er32(FWSM
);
471 return (fwsm
& E1000_FWSM_MODE_MASK
) ==
472 (E1000_ICH_MNG_IAMT_MODE
<< E1000_FWSM_MODE_SHIFT
);
476 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
477 * @hw: pointer to the HW structure
479 * Checks if firmware is blocking the reset of the PHY.
480 * This is a function pointer entry point only called by
483 static s32
e1000_check_reset_block_ich8lan(struct e1000_hw
*hw
)
489 return (fwsm
& E1000_ICH_FWSM_RSPCIPHY
) ? 0 : E1000_BLK_PHY_RESET
;
493 * e1000_phy_force_speed_duplex_ich8lan - Force PHY speed & duplex
494 * @hw: pointer to the HW structure
496 * Forces the speed and duplex settings of the PHY.
497 * This is a function pointer entry point only called by
498 * PHY setup routines.
500 static s32
e1000_phy_force_speed_duplex_ich8lan(struct e1000_hw
*hw
)
502 struct e1000_phy_info
*phy
= &hw
->phy
;
507 if (phy
->type
!= e1000_phy_ife
) {
508 ret_val
= e1000e_phy_force_speed_duplex_igp(hw
);
512 ret_val
= e1e_rphy(hw
, PHY_CONTROL
, &data
);
516 e1000e_phy_force_speed_duplex_setup(hw
, &data
);
518 ret_val
= e1e_wphy(hw
, PHY_CONTROL
, data
);
522 /* Disable MDI-X support for 10/100 */
523 ret_val
= e1e_rphy(hw
, IFE_PHY_MDIX_CONTROL
, &data
);
527 data
&= ~IFE_PMC_AUTO_MDIX
;
528 data
&= ~IFE_PMC_FORCE_MDIX
;
530 ret_val
= e1e_wphy(hw
, IFE_PHY_MDIX_CONTROL
, data
);
534 hw_dbg(hw
, "IFE PMC: %X\n", data
);
538 if (phy
->autoneg_wait_to_complete
) {
539 hw_dbg(hw
, "Waiting for forced speed/duplex link on IFE phy.\n");
541 ret_val
= e1000e_phy_has_link_generic(hw
,
549 hw_dbg(hw
, "Link taking longer than expected.\n");
552 ret_val
= e1000e_phy_has_link_generic(hw
,
564 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
565 * @hw: pointer to the HW structure
568 * This is a function pointer entry point called by drivers
569 * or other shared routines.
571 static s32
e1000_phy_hw_reset_ich8lan(struct e1000_hw
*hw
)
573 struct e1000_phy_info
*phy
= &hw
->phy
;
575 u32 data
, cnf_size
, cnf_base_addr
, sw_cfg_mask
;
577 u16 loop
= E1000_ICH8_LAN_INIT_TIMEOUT
;
578 u16 word_addr
, reg_data
, reg_addr
, phy_page
= 0;
580 ret_val
= e1000e_phy_hw_reset_generic(hw
);
585 * Initialize the PHY from the NVM on ICH platforms. This
586 * is needed due to an issue where the NVM configuration is
587 * not properly autoloaded after power transitions.
588 * Therefore, after each PHY reset, we will load the
589 * configuration data out of the NVM manually.
591 if (hw
->mac
.type
== e1000_ich8lan
&& phy
->type
== e1000_phy_igp_3
) {
592 struct e1000_adapter
*adapter
= hw
->adapter
;
594 /* Check if SW needs configure the PHY */
595 if ((adapter
->pdev
->device
== E1000_DEV_ID_ICH8_IGP_M_AMT
) ||
596 (adapter
->pdev
->device
== E1000_DEV_ID_ICH8_IGP_M
))
597 sw_cfg_mask
= E1000_FEXTNVM_SW_CONFIG_ICH8M
;
599 sw_cfg_mask
= E1000_FEXTNVM_SW_CONFIG
;
601 data
= er32(FEXTNVM
);
602 if (!(data
& sw_cfg_mask
))
605 /* Wait for basic configuration completes before proceeding*/
608 data
&= E1000_STATUS_LAN_INIT_DONE
;
610 } while ((!data
) && --loop
);
613 * If basic configuration is incomplete before the above loop
614 * count reaches 0, loading the configuration from NVM will
615 * leave the PHY in a bad state possibly resulting in no link.
618 hw_dbg(hw
, "LAN_INIT_DONE not set, increase timeout\n");
621 /* Clear the Init Done bit for the next init event */
623 data
&= ~E1000_STATUS_LAN_INIT_DONE
;
627 * Make sure HW does not configure LCD from PHY
628 * extended configuration before SW configuration
630 data
= er32(EXTCNF_CTRL
);
631 if (data
& E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE
)
634 cnf_size
= er32(EXTCNF_SIZE
);
635 cnf_size
&= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK
;
636 cnf_size
>>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT
;
640 cnf_base_addr
= data
& E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK
;
641 cnf_base_addr
>>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT
;
643 /* Configure LCD from extended configuration region. */
645 /* cnf_base_addr is in DWORD */
646 word_addr
= (u16
)(cnf_base_addr
<< 1);
648 for (i
= 0; i
< cnf_size
; i
++) {
649 ret_val
= e1000_read_nvm(hw
,
656 ret_val
= e1000_read_nvm(hw
,
657 (word_addr
+ i
* 2 + 1),
663 /* Save off the PHY page for future writes. */
664 if (reg_addr
== IGP01E1000_PHY_PAGE_SELECT
) {
669 reg_addr
|= phy_page
;
671 ret_val
= e1e_wphy(hw
, (u32
)reg_addr
, reg_data
);
681 * e1000_get_phy_info_ife_ich8lan - Retrieves various IFE PHY states
682 * @hw: pointer to the HW structure
684 * Populates "phy" structure with various feature states.
685 * This function is only called by other family-specific
688 static s32
e1000_get_phy_info_ife_ich8lan(struct e1000_hw
*hw
)
690 struct e1000_phy_info
*phy
= &hw
->phy
;
695 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
700 hw_dbg(hw
, "Phy info is only valid if link is up\n");
701 return -E1000_ERR_CONFIG
;
704 ret_val
= e1e_rphy(hw
, IFE_PHY_SPECIAL_CONTROL
, &data
);
707 phy
->polarity_correction
= (!(data
& IFE_PSC_AUTO_POLARITY_DISABLE
));
709 if (phy
->polarity_correction
) {
710 ret_val
= e1000_check_polarity_ife_ich8lan(hw
);
714 /* Polarity is forced */
715 phy
->cable_polarity
= (data
& IFE_PSC_FORCE_POLARITY
)
716 ? e1000_rev_polarity_reversed
717 : e1000_rev_polarity_normal
;
720 ret_val
= e1e_rphy(hw
, IFE_PHY_MDIX_CONTROL
, &data
);
724 phy
->is_mdix
= (data
& IFE_PMC_MDIX_STATUS
);
726 /* The following parameters are undefined for 10/100 operation. */
727 phy
->cable_length
= E1000_CABLE_LENGTH_UNDEFINED
;
728 phy
->local_rx
= e1000_1000t_rx_status_undefined
;
729 phy
->remote_rx
= e1000_1000t_rx_status_undefined
;
735 * e1000_get_phy_info_ich8lan - Calls appropriate PHY type get_phy_info
736 * @hw: pointer to the HW structure
738 * Wrapper for calling the get_phy_info routines for the appropriate phy type.
739 * This is a function pointer entry point called by drivers
740 * or other shared routines.
742 static s32
e1000_get_phy_info_ich8lan(struct e1000_hw
*hw
)
744 switch (hw
->phy
.type
) {
746 return e1000_get_phy_info_ife_ich8lan(hw
);
748 case e1000_phy_igp_3
:
750 return e1000e_get_phy_info_igp(hw
);
756 return -E1000_ERR_PHY_TYPE
;
760 * e1000_check_polarity_ife_ich8lan - Check cable polarity for IFE PHY
761 * @hw: pointer to the HW structure
763 * Polarity is determined on the polarity reversal feature being enabled.
764 * This function is only called by other family-specific
767 static s32
e1000_check_polarity_ife_ich8lan(struct e1000_hw
*hw
)
769 struct e1000_phy_info
*phy
= &hw
->phy
;
771 u16 phy_data
, offset
, mask
;
774 * Polarity is determined based on the reversal feature being enabled.
776 if (phy
->polarity_correction
) {
777 offset
= IFE_PHY_EXTENDED_STATUS_CONTROL
;
778 mask
= IFE_PESC_POLARITY_REVERSED
;
780 offset
= IFE_PHY_SPECIAL_CONTROL
;
781 mask
= IFE_PSC_FORCE_POLARITY
;
784 ret_val
= e1e_rphy(hw
, offset
, &phy_data
);
787 phy
->cable_polarity
= (phy_data
& mask
)
788 ? e1000_rev_polarity_reversed
789 : e1000_rev_polarity_normal
;
795 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
796 * @hw: pointer to the HW structure
797 * @active: TRUE to enable LPLU, FALSE to disable
799 * Sets the LPLU D0 state according to the active flag. When
800 * activating LPLU this function also disables smart speed
801 * and vice versa. LPLU will not be activated unless the
802 * device autonegotiation advertisement meets standards of
803 * either 10 or 10/100 or 10/100/1000 at all duplexes.
804 * This is a function pointer entry point only called by
805 * PHY setup routines.
807 static s32
e1000_set_d0_lplu_state_ich8lan(struct e1000_hw
*hw
, bool active
)
809 struct e1000_phy_info
*phy
= &hw
->phy
;
814 if (phy
->type
== e1000_phy_ife
)
817 phy_ctrl
= er32(PHY_CTRL
);
820 phy_ctrl
|= E1000_PHY_CTRL_D0A_LPLU
;
821 ew32(PHY_CTRL
, phy_ctrl
);
824 * Call gig speed drop workaround on LPLU before accessing
827 if ((hw
->mac
.type
== e1000_ich8lan
) &&
828 (hw
->phy
.type
== e1000_phy_igp_3
))
829 e1000e_gig_downshift_workaround_ich8lan(hw
);
831 /* When LPLU is enabled, we should disable SmartSpeed */
832 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, &data
);
833 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
834 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, data
);
838 phy_ctrl
&= ~E1000_PHY_CTRL_D0A_LPLU
;
839 ew32(PHY_CTRL
, phy_ctrl
);
842 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
843 * during Dx states where the power conservation is most
844 * important. During driver activity we should enable
845 * SmartSpeed, so performance is maintained.
847 if (phy
->smart_speed
== e1000_smart_speed_on
) {
848 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
853 data
|= IGP01E1000_PSCFR_SMART_SPEED
;
854 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
858 } else if (phy
->smart_speed
== e1000_smart_speed_off
) {
859 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
864 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
865 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
876 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
877 * @hw: pointer to the HW structure
878 * @active: TRUE to enable LPLU, FALSE to disable
880 * Sets the LPLU D3 state according to the active flag. When
881 * activating LPLU this function also disables smart speed
882 * and vice versa. LPLU will not be activated unless the
883 * device autonegotiation advertisement meets standards of
884 * either 10 or 10/100 or 10/100/1000 at all duplexes.
885 * This is a function pointer entry point only called by
886 * PHY setup routines.
888 static s32
e1000_set_d3_lplu_state_ich8lan(struct e1000_hw
*hw
, bool active
)
890 struct e1000_phy_info
*phy
= &hw
->phy
;
895 phy_ctrl
= er32(PHY_CTRL
);
898 phy_ctrl
&= ~E1000_PHY_CTRL_NOND0A_LPLU
;
899 ew32(PHY_CTRL
, phy_ctrl
);
901 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
902 * during Dx states where the power conservation is most
903 * important. During driver activity we should enable
904 * SmartSpeed, so performance is maintained.
906 if (phy
->smart_speed
== e1000_smart_speed_on
) {
907 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
912 data
|= IGP01E1000_PSCFR_SMART_SPEED
;
913 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
917 } else if (phy
->smart_speed
== e1000_smart_speed_off
) {
918 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
923 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
924 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
929 } else if ((phy
->autoneg_advertised
== E1000_ALL_SPEED_DUPLEX
) ||
930 (phy
->autoneg_advertised
== E1000_ALL_NOT_GIG
) ||
931 (phy
->autoneg_advertised
== E1000_ALL_10_SPEED
)) {
932 phy_ctrl
|= E1000_PHY_CTRL_NOND0A_LPLU
;
933 ew32(PHY_CTRL
, phy_ctrl
);
936 * Call gig speed drop workaround on LPLU before accessing
939 if ((hw
->mac
.type
== e1000_ich8lan
) &&
940 (hw
->phy
.type
== e1000_phy_igp_3
))
941 e1000e_gig_downshift_workaround_ich8lan(hw
);
943 /* When LPLU is enabled, we should disable SmartSpeed */
944 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, &data
);
948 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
949 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, data
);
956 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
957 * @hw: pointer to the HW structure
958 * @bank: pointer to the variable that returns the active bank
960 * Reads signature byte from the NVM using the flash access registers.
962 static s32
e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw
*hw
, u32
*bank
)
964 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
965 /* flash bank size is in words */
966 u32 bank1_offset
= nvm
->flash_bank_size
* sizeof(u16
);
967 u32 act_offset
= E1000_ICH_NVM_SIG_WORD
* 2 + 1;
968 u8 bank_high_byte
= 0;
970 if (hw
->mac
.type
!= e1000_ich10lan
) {
971 if (er32(EECD
) & E1000_EECD_SEC1VAL
)
977 * Make sure the signature for bank 0 is valid,
978 * if not check for bank1
980 e1000_read_flash_byte_ich8lan(hw
, act_offset
, &bank_high_byte
);
981 if ((bank_high_byte
& 0xC0) == 0x80) {
985 * find if segment 1 is valid by verifying
986 * bit 15:14 = 10b in word 0x13
988 e1000_read_flash_byte_ich8lan(hw
,
989 act_offset
+ bank1_offset
,
992 /* bank1 has a valid signature equivalent to SEC1V */
993 if ((bank_high_byte
& 0xC0) == 0x80) {
996 hw_dbg(hw
, "ERROR: EEPROM not present\n");
997 return -E1000_ERR_NVM
;
1006 * e1000_read_nvm_ich8lan - Read word(s) from the NVM
1007 * @hw: pointer to the HW structure
1008 * @offset: The offset (in bytes) of the word(s) to read.
1009 * @words: Size of data to read in words
1010 * @data: Pointer to the word(s) to read at offset.
1012 * Reads a word(s) from the NVM using the flash access registers.
1014 static s32
e1000_read_nvm_ich8lan(struct e1000_hw
*hw
, u16 offset
, u16 words
,
1017 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
1018 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
1024 if ((offset
>= nvm
->word_size
) || (words
> nvm
->word_size
- offset
) ||
1026 hw_dbg(hw
, "nvm parameter(s) out of bounds\n");
1027 return -E1000_ERR_NVM
;
1030 ret_val
= e1000_acquire_swflag_ich8lan(hw
);
1034 ret_val
= e1000_valid_nvm_bank_detect_ich8lan(hw
, &bank
);
1038 act_offset
= (bank
) ? nvm
->flash_bank_size
: 0;
1039 act_offset
+= offset
;
1041 for (i
= 0; i
< words
; i
++) {
1042 if ((dev_spec
->shadow_ram
) &&
1043 (dev_spec
->shadow_ram
[offset
+i
].modified
)) {
1044 data
[i
] = dev_spec
->shadow_ram
[offset
+i
].value
;
1046 ret_val
= e1000_read_flash_word_ich8lan(hw
,
1055 e1000_release_swflag_ich8lan(hw
);
1061 * e1000_flash_cycle_init_ich8lan - Initialize flash
1062 * @hw: pointer to the HW structure
1064 * This function does initial flash setup so that a new read/write/erase cycle
1067 static s32
e1000_flash_cycle_init_ich8lan(struct e1000_hw
*hw
)
1069 union ich8_hws_flash_status hsfsts
;
1070 s32 ret_val
= -E1000_ERR_NVM
;
1073 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
1075 /* Check if the flash descriptor is valid */
1076 if (hsfsts
.hsf_status
.fldesvalid
== 0) {
1077 hw_dbg(hw
, "Flash descriptor invalid. "
1078 "SW Sequencing must be used.");
1079 return -E1000_ERR_NVM
;
1082 /* Clear FCERR and DAEL in hw status by writing 1 */
1083 hsfsts
.hsf_status
.flcerr
= 1;
1084 hsfsts
.hsf_status
.dael
= 1;
1086 ew16flash(ICH_FLASH_HSFSTS
, hsfsts
.regval
);
1089 * Either we should have a hardware SPI cycle in progress
1090 * bit to check against, in order to start a new cycle or
1091 * FDONE bit should be changed in the hardware so that it
1092 * is 1 after hardware reset, which can then be used as an
1093 * indication whether a cycle is in progress or has been
1097 if (hsfsts
.hsf_status
.flcinprog
== 0) {
1099 * There is no cycle running at present,
1100 * so we can start a cycle
1101 * Begin by setting Flash Cycle Done.
1103 hsfsts
.hsf_status
.flcdone
= 1;
1104 ew16flash(ICH_FLASH_HSFSTS
, hsfsts
.regval
);
1108 * otherwise poll for sometime so the current
1109 * cycle has a chance to end before giving up.
1111 for (i
= 0; i
< ICH_FLASH_READ_COMMAND_TIMEOUT
; i
++) {
1112 hsfsts
.regval
= __er16flash(hw
, ICH_FLASH_HSFSTS
);
1113 if (hsfsts
.hsf_status
.flcinprog
== 0) {
1121 * Successful in waiting for previous cycle to timeout,
1122 * now set the Flash Cycle Done.
1124 hsfsts
.hsf_status
.flcdone
= 1;
1125 ew16flash(ICH_FLASH_HSFSTS
, hsfsts
.regval
);
1127 hw_dbg(hw
, "Flash controller busy, cannot get access");
1135 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
1136 * @hw: pointer to the HW structure
1137 * @timeout: maximum time to wait for completion
1139 * This function starts a flash cycle and waits for its completion.
1141 static s32
e1000_flash_cycle_ich8lan(struct e1000_hw
*hw
, u32 timeout
)
1143 union ich8_hws_flash_ctrl hsflctl
;
1144 union ich8_hws_flash_status hsfsts
;
1145 s32 ret_val
= -E1000_ERR_NVM
;
1148 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
1149 hsflctl
.regval
= er16flash(ICH_FLASH_HSFCTL
);
1150 hsflctl
.hsf_ctrl
.flcgo
= 1;
1151 ew16flash(ICH_FLASH_HSFCTL
, hsflctl
.regval
);
1153 /* wait till FDONE bit is set to 1 */
1155 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
1156 if (hsfsts
.hsf_status
.flcdone
== 1)
1159 } while (i
++ < timeout
);
1161 if (hsfsts
.hsf_status
.flcdone
== 1 && hsfsts
.hsf_status
.flcerr
== 0)
1168 * e1000_read_flash_word_ich8lan - Read word from flash
1169 * @hw: pointer to the HW structure
1170 * @offset: offset to data location
1171 * @data: pointer to the location for storing the data
1173 * Reads the flash word at offset into data. Offset is converted
1174 * to bytes before read.
1176 static s32
e1000_read_flash_word_ich8lan(struct e1000_hw
*hw
, u32 offset
,
1179 /* Must convert offset into bytes. */
1182 return e1000_read_flash_data_ich8lan(hw
, offset
, 2, data
);
1186 * e1000_read_flash_byte_ich8lan - Read byte from flash
1187 * @hw: pointer to the HW structure
1188 * @offset: The offset of the byte to read.
1189 * @data: Pointer to a byte to store the value read.
1191 * Reads a single byte from the NVM using the flash access registers.
1193 static s32
e1000_read_flash_byte_ich8lan(struct e1000_hw
*hw
, u32 offset
,
1199 ret_val
= e1000_read_flash_data_ich8lan(hw
, offset
, 1, &word
);
1209 * e1000_read_flash_data_ich8lan - Read byte or word from NVM
1210 * @hw: pointer to the HW structure
1211 * @offset: The offset (in bytes) of the byte or word to read.
1212 * @size: Size of data to read, 1=byte 2=word
1213 * @data: Pointer to the word to store the value read.
1215 * Reads a byte or word from the NVM using the flash access registers.
1217 static s32
e1000_read_flash_data_ich8lan(struct e1000_hw
*hw
, u32 offset
,
1220 union ich8_hws_flash_status hsfsts
;
1221 union ich8_hws_flash_ctrl hsflctl
;
1222 u32 flash_linear_addr
;
1224 s32 ret_val
= -E1000_ERR_NVM
;
1227 if (size
< 1 || size
> 2 || offset
> ICH_FLASH_LINEAR_ADDR_MASK
)
1228 return -E1000_ERR_NVM
;
1230 flash_linear_addr
= (ICH_FLASH_LINEAR_ADDR_MASK
& offset
) +
1231 hw
->nvm
.flash_base_addr
;
1236 ret_val
= e1000_flash_cycle_init_ich8lan(hw
);
1240 hsflctl
.regval
= er16flash(ICH_FLASH_HSFCTL
);
1241 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
1242 hsflctl
.hsf_ctrl
.fldbcount
= size
- 1;
1243 hsflctl
.hsf_ctrl
.flcycle
= ICH_CYCLE_READ
;
1244 ew16flash(ICH_FLASH_HSFCTL
, hsflctl
.regval
);
1246 ew32flash(ICH_FLASH_FADDR
, flash_linear_addr
);
1248 ret_val
= e1000_flash_cycle_ich8lan(hw
,
1249 ICH_FLASH_READ_COMMAND_TIMEOUT
);
1252 * Check if FCERR is set to 1, if set to 1, clear it
1253 * and try the whole sequence a few more times, else
1254 * read in (shift in) the Flash Data0, the order is
1255 * least significant byte first msb to lsb
1258 flash_data
= er32flash(ICH_FLASH_FDATA0
);
1260 *data
= (u8
)(flash_data
& 0x000000FF);
1261 } else if (size
== 2) {
1262 *data
= (u16
)(flash_data
& 0x0000FFFF);
1267 * If we've gotten here, then things are probably
1268 * completely hosed, but if the error condition is
1269 * detected, it won't hurt to give it another try...
1270 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
1272 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
1273 if (hsfsts
.hsf_status
.flcerr
== 1) {
1274 /* Repeat for some time before giving up. */
1276 } else if (hsfsts
.hsf_status
.flcdone
== 0) {
1277 hw_dbg(hw
, "Timeout error - flash cycle "
1278 "did not complete.");
1282 } while (count
++ < ICH_FLASH_CYCLE_REPEAT_COUNT
);
1288 * e1000_write_nvm_ich8lan - Write word(s) to the NVM
1289 * @hw: pointer to the HW structure
1290 * @offset: The offset (in bytes) of the word(s) to write.
1291 * @words: Size of data to write in words
1292 * @data: Pointer to the word(s) to write at offset.
1294 * Writes a byte or word to the NVM using the flash access registers.
1296 static s32
e1000_write_nvm_ich8lan(struct e1000_hw
*hw
, u16 offset
, u16 words
,
1299 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
1300 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
1304 if ((offset
>= nvm
->word_size
) || (words
> nvm
->word_size
- offset
) ||
1306 hw_dbg(hw
, "nvm parameter(s) out of bounds\n");
1307 return -E1000_ERR_NVM
;
1310 ret_val
= e1000_acquire_swflag_ich8lan(hw
);
1314 for (i
= 0; i
< words
; i
++) {
1315 dev_spec
->shadow_ram
[offset
+i
].modified
= 1;
1316 dev_spec
->shadow_ram
[offset
+i
].value
= data
[i
];
1319 e1000_release_swflag_ich8lan(hw
);
1325 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
1326 * @hw: pointer to the HW structure
1328 * The NVM checksum is updated by calling the generic update_nvm_checksum,
1329 * which writes the checksum to the shadow ram. The changes in the shadow
1330 * ram are then committed to the EEPROM by processing each bank at a time
1331 * checking for the modified bit and writing only the pending changes.
1332 * After a successful commit, the shadow ram is cleared and is ready for
1335 static s32
e1000_update_nvm_checksum_ich8lan(struct e1000_hw
*hw
)
1337 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
1338 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
1339 u32 i
, act_offset
, new_bank_offset
, old_bank_offset
, bank
;
1343 ret_val
= e1000e_update_nvm_checksum_generic(hw
);
1347 if (nvm
->type
!= e1000_nvm_flash_sw
)
1350 ret_val
= e1000_acquire_swflag_ich8lan(hw
);
1355 * We're writing to the opposite bank so if we're on bank 1,
1356 * write to bank 0 etc. We also need to erase the segment that
1357 * is going to be written
1359 ret_val
= e1000_valid_nvm_bank_detect_ich8lan(hw
, &bank
);
1364 new_bank_offset
= nvm
->flash_bank_size
;
1365 old_bank_offset
= 0;
1366 e1000_erase_flash_bank_ich8lan(hw
, 1);
1368 old_bank_offset
= nvm
->flash_bank_size
;
1369 new_bank_offset
= 0;
1370 e1000_erase_flash_bank_ich8lan(hw
, 0);
1373 for (i
= 0; i
< E1000_ICH8_SHADOW_RAM_WORDS
; i
++) {
1375 * Determine whether to write the value stored
1376 * in the other NVM bank or a modified value stored
1379 if (dev_spec
->shadow_ram
[i
].modified
) {
1380 data
= dev_spec
->shadow_ram
[i
].value
;
1382 e1000_read_flash_word_ich8lan(hw
,
1383 i
+ old_bank_offset
,
1388 * If the word is 0x13, then make sure the signature bits
1389 * (15:14) are 11b until the commit has completed.
1390 * This will allow us to write 10b which indicates the
1391 * signature is valid. We want to do this after the write
1392 * has completed so that we don't mark the segment valid
1393 * while the write is still in progress
1395 if (i
== E1000_ICH_NVM_SIG_WORD
)
1396 data
|= E1000_ICH_NVM_SIG_MASK
;
1398 /* Convert offset to bytes. */
1399 act_offset
= (i
+ new_bank_offset
) << 1;
1402 /* Write the bytes to the new bank. */
1403 ret_val
= e1000_retry_write_flash_byte_ich8lan(hw
,
1410 ret_val
= e1000_retry_write_flash_byte_ich8lan(hw
,
1418 * Don't bother writing the segment valid bits if sector
1419 * programming failed.
1422 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
1423 hw_dbg(hw
, "Flash commit failed.\n");
1424 e1000_release_swflag_ich8lan(hw
);
1429 * Finally validate the new segment by setting bit 15:14
1430 * to 10b in word 0x13 , this can be done without an
1431 * erase as well since these bits are 11 to start with
1432 * and we need to change bit 14 to 0b
1434 act_offset
= new_bank_offset
+ E1000_ICH_NVM_SIG_WORD
;
1435 e1000_read_flash_word_ich8lan(hw
, act_offset
, &data
);
1437 ret_val
= e1000_retry_write_flash_byte_ich8lan(hw
,
1441 e1000_release_swflag_ich8lan(hw
);
1446 * And invalidate the previously valid segment by setting
1447 * its signature word (0x13) high_byte to 0b. This can be
1448 * done without an erase because flash erase sets all bits
1449 * to 1's. We can write 1's to 0's without an erase
1451 act_offset
= (old_bank_offset
+ E1000_ICH_NVM_SIG_WORD
) * 2 + 1;
1452 ret_val
= e1000_retry_write_flash_byte_ich8lan(hw
, act_offset
, 0);
1454 e1000_release_swflag_ich8lan(hw
);
1458 /* Great! Everything worked, we can now clear the cached entries. */
1459 for (i
= 0; i
< E1000_ICH8_SHADOW_RAM_WORDS
; i
++) {
1460 dev_spec
->shadow_ram
[i
].modified
= 0;
1461 dev_spec
->shadow_ram
[i
].value
= 0xFFFF;
1464 e1000_release_swflag_ich8lan(hw
);
1467 * Reload the EEPROM, or else modifications will not appear
1468 * until after the next adapter reset.
1470 e1000e_reload_nvm(hw
);
1477 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
1478 * @hw: pointer to the HW structure
1480 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
1481 * If the bit is 0, that the EEPROM had been modified, but the checksum was not
1482 * calculated, in which case we need to calculate the checksum and set bit 6.
1484 static s32
e1000_validate_nvm_checksum_ich8lan(struct e1000_hw
*hw
)
1490 * Read 0x19 and check bit 6. If this bit is 0, the checksum
1491 * needs to be fixed. This bit is an indication that the NVM
1492 * was prepared by OEM software and did not calculate the
1493 * checksum...a likely scenario.
1495 ret_val
= e1000_read_nvm(hw
, 0x19, 1, &data
);
1499 if ((data
& 0x40) == 0) {
1501 ret_val
= e1000_write_nvm(hw
, 0x19, 1, &data
);
1504 ret_val
= e1000e_update_nvm_checksum(hw
);
1509 return e1000e_validate_nvm_checksum_generic(hw
);
1513 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
1514 * @hw: pointer to the HW structure
1516 * To prevent malicious write/erase of the NVM, set it to be read-only
1517 * so that the hardware ignores all write/erase cycles of the NVM via
1518 * the flash control registers. The shadow-ram copy of the NVM will
1519 * still be updated, however any updates to this copy will not stick
1520 * across driver reloads.
1522 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw
*hw
)
1524 union ich8_flash_protected_range pr0
;
1525 union ich8_hws_flash_status hsfsts
;
1529 ret_val
= e1000_acquire_swflag_ich8lan(hw
);
1533 gfpreg
= er32flash(ICH_FLASH_GFPREG
);
1535 /* Write-protect GbE Sector of NVM */
1536 pr0
.regval
= er32flash(ICH_FLASH_PR0
);
1537 pr0
.range
.base
= gfpreg
& FLASH_GFPREG_BASE_MASK
;
1538 pr0
.range
.limit
= ((gfpreg
>> 16) & FLASH_GFPREG_BASE_MASK
);
1539 pr0
.range
.wpe
= true;
1540 ew32flash(ICH_FLASH_PR0
, pr0
.regval
);
1543 * Lock down a subset of GbE Flash Control Registers, e.g.
1544 * PR0 to prevent the write-protection from being lifted.
1545 * Once FLOCKDN is set, the registers protected by it cannot
1546 * be written until FLOCKDN is cleared by a hardware reset.
1548 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
1549 hsfsts
.hsf_status
.flockdn
= true;
1550 ew32flash(ICH_FLASH_HSFSTS
, hsfsts
.regval
);
1552 e1000_release_swflag_ich8lan(hw
);
1556 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
1557 * @hw: pointer to the HW structure
1558 * @offset: The offset (in bytes) of the byte/word to read.
1559 * @size: Size of data to read, 1=byte 2=word
1560 * @data: The byte(s) to write to the NVM.
1562 * Writes one/two bytes to the NVM using the flash access registers.
1564 static s32
e1000_write_flash_data_ich8lan(struct e1000_hw
*hw
, u32 offset
,
1567 union ich8_hws_flash_status hsfsts
;
1568 union ich8_hws_flash_ctrl hsflctl
;
1569 u32 flash_linear_addr
;
1574 if (size
< 1 || size
> 2 || data
> size
* 0xff ||
1575 offset
> ICH_FLASH_LINEAR_ADDR_MASK
)
1576 return -E1000_ERR_NVM
;
1578 flash_linear_addr
= (ICH_FLASH_LINEAR_ADDR_MASK
& offset
) +
1579 hw
->nvm
.flash_base_addr
;
1584 ret_val
= e1000_flash_cycle_init_ich8lan(hw
);
1588 hsflctl
.regval
= er16flash(ICH_FLASH_HSFCTL
);
1589 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
1590 hsflctl
.hsf_ctrl
.fldbcount
= size
-1;
1591 hsflctl
.hsf_ctrl
.flcycle
= ICH_CYCLE_WRITE
;
1592 ew16flash(ICH_FLASH_HSFCTL
, hsflctl
.regval
);
1594 ew32flash(ICH_FLASH_FADDR
, flash_linear_addr
);
1597 flash_data
= (u32
)data
& 0x00FF;
1599 flash_data
= (u32
)data
;
1601 ew32flash(ICH_FLASH_FDATA0
, flash_data
);
1604 * check if FCERR is set to 1 , if set to 1, clear it
1605 * and try the whole sequence a few more times else done
1607 ret_val
= e1000_flash_cycle_ich8lan(hw
,
1608 ICH_FLASH_WRITE_COMMAND_TIMEOUT
);
1613 * If we're here, then things are most likely
1614 * completely hosed, but if the error condition
1615 * is detected, it won't hurt to give it another
1616 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
1618 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
1619 if (hsfsts
.hsf_status
.flcerr
== 1)
1620 /* Repeat for some time before giving up. */
1622 if (hsfsts
.hsf_status
.flcdone
== 0) {
1623 hw_dbg(hw
, "Timeout error - flash cycle "
1624 "did not complete.");
1627 } while (count
++ < ICH_FLASH_CYCLE_REPEAT_COUNT
);
1633 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
1634 * @hw: pointer to the HW structure
1635 * @offset: The index of the byte to read.
1636 * @data: The byte to write to the NVM.
1638 * Writes a single byte to the NVM using the flash access registers.
1640 static s32
e1000_write_flash_byte_ich8lan(struct e1000_hw
*hw
, u32 offset
,
1643 u16 word
= (u16
)data
;
1645 return e1000_write_flash_data_ich8lan(hw
, offset
, 1, word
);
1649 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
1650 * @hw: pointer to the HW structure
1651 * @offset: The offset of the byte to write.
1652 * @byte: The byte to write to the NVM.
1654 * Writes a single byte to the NVM using the flash access registers.
1655 * Goes through a retry algorithm before giving up.
1657 static s32
e1000_retry_write_flash_byte_ich8lan(struct e1000_hw
*hw
,
1658 u32 offset
, u8 byte
)
1661 u16 program_retries
;
1663 ret_val
= e1000_write_flash_byte_ich8lan(hw
, offset
, byte
);
1667 for (program_retries
= 0; program_retries
< 100; program_retries
++) {
1668 hw_dbg(hw
, "Retrying Byte %2.2X at offset %u\n", byte
, offset
);
1670 ret_val
= e1000_write_flash_byte_ich8lan(hw
, offset
, byte
);
1674 if (program_retries
== 100)
1675 return -E1000_ERR_NVM
;
1681 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
1682 * @hw: pointer to the HW structure
1683 * @bank: 0 for first bank, 1 for second bank, etc.
1685 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
1686 * bank N is 4096 * N + flash_reg_addr.
1688 static s32
e1000_erase_flash_bank_ich8lan(struct e1000_hw
*hw
, u32 bank
)
1690 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
1691 union ich8_hws_flash_status hsfsts
;
1692 union ich8_hws_flash_ctrl hsflctl
;
1693 u32 flash_linear_addr
;
1694 /* bank size is in 16bit words - adjust to bytes */
1695 u32 flash_bank_size
= nvm
->flash_bank_size
* 2;
1702 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
1705 * Determine HW Sector size: Read BERASE bits of hw flash status
1707 * 00: The Hw sector is 256 bytes, hence we need to erase 16
1708 * consecutive sectors. The start index for the nth Hw sector
1709 * can be calculated as = bank * 4096 + n * 256
1710 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
1711 * The start index for the nth Hw sector can be calculated
1713 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
1714 * (ich9 only, otherwise error condition)
1715 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
1717 switch (hsfsts
.hsf_status
.berasesz
) {
1719 /* Hw sector size 256 */
1720 sector_size
= ICH_FLASH_SEG_SIZE_256
;
1721 iteration
= flash_bank_size
/ ICH_FLASH_SEG_SIZE_256
;
1724 sector_size
= ICH_FLASH_SEG_SIZE_4K
;
1725 iteration
= flash_bank_size
/ ICH_FLASH_SEG_SIZE_4K
;
1728 if (hw
->mac
.type
== e1000_ich9lan
) {
1729 sector_size
= ICH_FLASH_SEG_SIZE_8K
;
1730 iteration
= flash_bank_size
/ ICH_FLASH_SEG_SIZE_8K
;
1732 return -E1000_ERR_NVM
;
1736 sector_size
= ICH_FLASH_SEG_SIZE_64K
;
1737 iteration
= flash_bank_size
/ ICH_FLASH_SEG_SIZE_64K
;
1740 return -E1000_ERR_NVM
;
1743 /* Start with the base address, then add the sector offset. */
1744 flash_linear_addr
= hw
->nvm
.flash_base_addr
;
1745 flash_linear_addr
+= (bank
) ? (sector_size
* iteration
) : 0;
1747 for (j
= 0; j
< iteration
; j
++) {
1750 ret_val
= e1000_flash_cycle_init_ich8lan(hw
);
1755 * Write a value 11 (block Erase) in Flash
1756 * Cycle field in hw flash control
1758 hsflctl
.regval
= er16flash(ICH_FLASH_HSFCTL
);
1759 hsflctl
.hsf_ctrl
.flcycle
= ICH_CYCLE_ERASE
;
1760 ew16flash(ICH_FLASH_HSFCTL
, hsflctl
.regval
);
1763 * Write the last 24 bits of an index within the
1764 * block into Flash Linear address field in Flash
1767 flash_linear_addr
+= (j
* sector_size
);
1768 ew32flash(ICH_FLASH_FADDR
, flash_linear_addr
);
1770 ret_val
= e1000_flash_cycle_ich8lan(hw
,
1771 ICH_FLASH_ERASE_COMMAND_TIMEOUT
);
1776 * Check if FCERR is set to 1. If 1,
1777 * clear it and try the whole sequence
1778 * a few more times else Done
1780 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
1781 if (hsfsts
.hsf_status
.flcerr
== 1)
1782 /* repeat for some time before giving up */
1784 else if (hsfsts
.hsf_status
.flcdone
== 0)
1786 } while (++count
< ICH_FLASH_CYCLE_REPEAT_COUNT
);
1793 * e1000_valid_led_default_ich8lan - Set the default LED settings
1794 * @hw: pointer to the HW structure
1795 * @data: Pointer to the LED settings
1797 * Reads the LED default settings from the NVM to data. If the NVM LED
1798 * settings is all 0's or F's, set the LED default to a valid LED default
1801 static s32
e1000_valid_led_default_ich8lan(struct e1000_hw
*hw
, u16
*data
)
1805 ret_val
= e1000_read_nvm(hw
, NVM_ID_LED_SETTINGS
, 1, data
);
1807 hw_dbg(hw
, "NVM Read Error\n");
1811 if (*data
== ID_LED_RESERVED_0000
||
1812 *data
== ID_LED_RESERVED_FFFF
)
1813 *data
= ID_LED_DEFAULT_ICH8LAN
;
1819 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
1820 * @hw: pointer to the HW structure
1822 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
1823 * register, so the the bus width is hard coded.
1825 static s32
e1000_get_bus_info_ich8lan(struct e1000_hw
*hw
)
1827 struct e1000_bus_info
*bus
= &hw
->bus
;
1830 ret_val
= e1000e_get_bus_info_pcie(hw
);
1833 * ICH devices are "PCI Express"-ish. They have
1834 * a configuration space, but do not contain
1835 * PCI Express Capability registers, so bus width
1836 * must be hardcoded.
1838 if (bus
->width
== e1000_bus_width_unknown
)
1839 bus
->width
= e1000_bus_width_pcie_x1
;
1845 * e1000_reset_hw_ich8lan - Reset the hardware
1846 * @hw: pointer to the HW structure
1848 * Does a full reset of the hardware which includes a reset of the PHY and
1851 static s32
e1000_reset_hw_ich8lan(struct e1000_hw
*hw
)
1857 * Prevent the PCI-E bus from sticking if there is no TLP connection
1858 * on the last TLP read/write transaction when MAC is reset.
1860 ret_val
= e1000e_disable_pcie_master(hw
);
1862 hw_dbg(hw
, "PCI-E Master disable polling has failed.\n");
1865 hw_dbg(hw
, "Masking off all interrupts\n");
1866 ew32(IMC
, 0xffffffff);
1869 * Disable the Transmit and Receive units. Then delay to allow
1870 * any pending transactions to complete before we hit the MAC
1871 * with the global reset.
1874 ew32(TCTL
, E1000_TCTL_PSP
);
1879 /* Workaround for ICH8 bit corruption issue in FIFO memory */
1880 if (hw
->mac
.type
== e1000_ich8lan
) {
1881 /* Set Tx and Rx buffer allocation to 8k apiece. */
1882 ew32(PBA
, E1000_PBA_8K
);
1883 /* Set Packet Buffer Size to 16k. */
1884 ew32(PBS
, E1000_PBS_16K
);
1889 if (!e1000_check_reset_block(hw
)) {
1891 * PHY HW reset requires MAC CORE reset at the same
1892 * time to make sure the interface between MAC and the
1893 * external PHY is reset.
1895 ctrl
|= E1000_CTRL_PHY_RST
;
1897 ret_val
= e1000_acquire_swflag_ich8lan(hw
);
1898 hw_dbg(hw
, "Issuing a global reset to ich8lan\n");
1899 ew32(CTRL
, (ctrl
| E1000_CTRL_RST
));
1902 /* release the swflag because it is not reset by hardware reset */
1903 e1000_release_swflag_ich8lan(hw
);
1905 ret_val
= e1000e_get_auto_rd_done(hw
);
1908 * When auto config read does not complete, do not
1909 * return with an error. This can happen in situations
1910 * where there is no eeprom and prevents getting link.
1912 hw_dbg(hw
, "Auto Read Done did not complete\n");
1915 ew32(IMC
, 0xffffffff);
1918 kab
= er32(KABGTXD
);
1919 kab
|= E1000_KABGTXD_BGSQLBIAS
;
1926 * e1000_init_hw_ich8lan - Initialize the hardware
1927 * @hw: pointer to the HW structure
1929 * Prepares the hardware for transmit and receive by doing the following:
1930 * - initialize hardware bits
1931 * - initialize LED identification
1932 * - setup receive address registers
1933 * - setup flow control
1934 * - setup transmit descriptors
1935 * - clear statistics
1937 static s32
e1000_init_hw_ich8lan(struct e1000_hw
*hw
)
1939 struct e1000_mac_info
*mac
= &hw
->mac
;
1940 u32 ctrl_ext
, txdctl
, snoop
;
1944 e1000_initialize_hw_bits_ich8lan(hw
);
1946 /* Initialize identification LED */
1947 ret_val
= e1000e_id_led_init(hw
);
1949 hw_dbg(hw
, "Error initializing identification LED\n");
1953 /* Setup the receive address. */
1954 e1000e_init_rx_addrs(hw
, mac
->rar_entry_count
);
1956 /* Zero out the Multicast HASH table */
1957 hw_dbg(hw
, "Zeroing the MTA\n");
1958 for (i
= 0; i
< mac
->mta_reg_count
; i
++)
1959 E1000_WRITE_REG_ARRAY(hw
, E1000_MTA
, i
, 0);
1961 /* Setup link and flow control */
1962 ret_val
= e1000_setup_link_ich8lan(hw
);
1964 /* Set the transmit descriptor write-back policy for both queues */
1965 txdctl
= er32(TXDCTL(0));
1966 txdctl
= (txdctl
& ~E1000_TXDCTL_WTHRESH
) |
1967 E1000_TXDCTL_FULL_TX_DESC_WB
;
1968 txdctl
= (txdctl
& ~E1000_TXDCTL_PTHRESH
) |
1969 E1000_TXDCTL_MAX_TX_DESC_PREFETCH
;
1970 ew32(TXDCTL(0), txdctl
);
1971 txdctl
= er32(TXDCTL(1));
1972 txdctl
= (txdctl
& ~E1000_TXDCTL_WTHRESH
) |
1973 E1000_TXDCTL_FULL_TX_DESC_WB
;
1974 txdctl
= (txdctl
& ~E1000_TXDCTL_PTHRESH
) |
1975 E1000_TXDCTL_MAX_TX_DESC_PREFETCH
;
1976 ew32(TXDCTL(1), txdctl
);
1979 * ICH8 has opposite polarity of no_snoop bits.
1980 * By default, we should use snoop behavior.
1982 if (mac
->type
== e1000_ich8lan
)
1983 snoop
= PCIE_ICH8_SNOOP_ALL
;
1985 snoop
= (u32
) ~(PCIE_NO_SNOOP_ALL
);
1986 e1000e_set_pcie_no_snoop(hw
, snoop
);
1988 ctrl_ext
= er32(CTRL_EXT
);
1989 ctrl_ext
|= E1000_CTRL_EXT_RO_DIS
;
1990 ew32(CTRL_EXT
, ctrl_ext
);
1993 * Clear all of the statistics registers (clear on read). It is
1994 * important that we do this after we have tried to establish link
1995 * because the symbol error count will increment wildly if there
1998 e1000_clear_hw_cntrs_ich8lan(hw
);
2003 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
2004 * @hw: pointer to the HW structure
2006 * Sets/Clears required hardware bits necessary for correctly setting up the
2007 * hardware for transmit and receive.
2009 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw
*hw
)
2013 /* Extended Device Control */
2014 reg
= er32(CTRL_EXT
);
2016 ew32(CTRL_EXT
, reg
);
2018 /* Transmit Descriptor Control 0 */
2019 reg
= er32(TXDCTL(0));
2021 ew32(TXDCTL(0), reg
);
2023 /* Transmit Descriptor Control 1 */
2024 reg
= er32(TXDCTL(1));
2026 ew32(TXDCTL(1), reg
);
2028 /* Transmit Arbitration Control 0 */
2029 reg
= er32(TARC(0));
2030 if (hw
->mac
.type
== e1000_ich8lan
)
2031 reg
|= (1 << 28) | (1 << 29);
2032 reg
|= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
2035 /* Transmit Arbitration Control 1 */
2036 reg
= er32(TARC(1));
2037 if (er32(TCTL
) & E1000_TCTL_MULR
)
2041 reg
|= (1 << 24) | (1 << 26) | (1 << 30);
2045 if (hw
->mac
.type
== e1000_ich8lan
) {
2053 * e1000_setup_link_ich8lan - Setup flow control and link settings
2054 * @hw: pointer to the HW structure
2056 * Determines which flow control settings to use, then configures flow
2057 * control. Calls the appropriate media-specific link configuration
2058 * function. Assuming the adapter has a valid link partner, a valid link
2059 * should be established. Assumes the hardware has previously been reset
2060 * and the transmitter and receiver are not enabled.
2062 static s32
e1000_setup_link_ich8lan(struct e1000_hw
*hw
)
2066 if (e1000_check_reset_block(hw
))
2070 * ICH parts do not have a word in the NVM to determine
2071 * the default flow control setting, so we explicitly
2074 if (hw
->fc
.requested_mode
== e1000_fc_default
)
2075 hw
->fc
.requested_mode
= e1000_fc_full
;
2078 * Save off the requested flow control mode for use later. Depending
2079 * on the link partner's capabilities, we may or may not use this mode.
2081 hw
->fc
.current_mode
= hw
->fc
.requested_mode
;
2083 hw_dbg(hw
, "After fix-ups FlowControl is now = %x\n",
2084 hw
->fc
.current_mode
);
2086 /* Continue to configure the copper link. */
2087 ret_val
= e1000_setup_copper_link_ich8lan(hw
);
2091 ew32(FCTTV
, hw
->fc
.pause_time
);
2093 return e1000e_set_fc_watermarks(hw
);
2097 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
2098 * @hw: pointer to the HW structure
2100 * Configures the kumeran interface to the PHY to wait the appropriate time
2101 * when polling the PHY, then call the generic setup_copper_link to finish
2102 * configuring the copper link.
2104 static s32
e1000_setup_copper_link_ich8lan(struct e1000_hw
*hw
)
2111 ctrl
|= E1000_CTRL_SLU
;
2112 ctrl
&= ~(E1000_CTRL_FRCSPD
| E1000_CTRL_FRCDPX
);
2116 * Set the mac to wait the maximum time between each iteration
2117 * and increase the max iterations when polling the phy;
2118 * this fixes erroneous timeouts at 10Mbps.
2120 ret_val
= e1000e_write_kmrn_reg(hw
, GG82563_REG(0x34, 4), 0xFFFF);
2123 ret_val
= e1000e_read_kmrn_reg(hw
, GG82563_REG(0x34, 9), ®_data
);
2127 ret_val
= e1000e_write_kmrn_reg(hw
, GG82563_REG(0x34, 9), reg_data
);
2131 if (hw
->phy
.type
== e1000_phy_igp_3
) {
2132 ret_val
= e1000e_copper_link_setup_igp(hw
);
2135 } else if (hw
->phy
.type
== e1000_phy_bm
) {
2136 ret_val
= e1000e_copper_link_setup_m88(hw
);
2141 if (hw
->phy
.type
== e1000_phy_ife
) {
2142 ret_val
= e1e_rphy(hw
, IFE_PHY_MDIX_CONTROL
, ®_data
);
2146 reg_data
&= ~IFE_PMC_AUTO_MDIX
;
2148 switch (hw
->phy
.mdix
) {
2150 reg_data
&= ~IFE_PMC_FORCE_MDIX
;
2153 reg_data
|= IFE_PMC_FORCE_MDIX
;
2157 reg_data
|= IFE_PMC_AUTO_MDIX
;
2160 ret_val
= e1e_wphy(hw
, IFE_PHY_MDIX_CONTROL
, reg_data
);
2164 return e1000e_setup_copper_link(hw
);
2168 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
2169 * @hw: pointer to the HW structure
2170 * @speed: pointer to store current link speed
2171 * @duplex: pointer to store the current link duplex
2173 * Calls the generic get_speed_and_duplex to retrieve the current link
2174 * information and then calls the Kumeran lock loss workaround for links at
2177 static s32
e1000_get_link_up_info_ich8lan(struct e1000_hw
*hw
, u16
*speed
,
2182 ret_val
= e1000e_get_speed_and_duplex_copper(hw
, speed
, duplex
);
2186 if ((hw
->mac
.type
== e1000_ich8lan
) &&
2187 (hw
->phy
.type
== e1000_phy_igp_3
) &&
2188 (*speed
== SPEED_1000
)) {
2189 ret_val
= e1000_kmrn_lock_loss_workaround_ich8lan(hw
);
2196 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
2197 * @hw: pointer to the HW structure
2199 * Work-around for 82566 Kumeran PCS lock loss:
2200 * On link status change (i.e. PCI reset, speed change) and link is up and
2202 * 0) if workaround is optionally disabled do nothing
2203 * 1) wait 1ms for Kumeran link to come up
2204 * 2) check Kumeran Diagnostic register PCS lock loss bit
2205 * 3) if not set the link is locked (all is good), otherwise...
2207 * 5) repeat up to 10 times
2208 * Note: this is only called for IGP3 copper when speed is 1gb.
2210 static s32
e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw
*hw
)
2212 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
2218 if (!dev_spec
->kmrn_lock_loss_workaround_enabled
)
2222 * Make sure link is up before proceeding. If not just return.
2223 * Attempting this while link is negotiating fouled up link
2226 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
2230 for (i
= 0; i
< 10; i
++) {
2231 /* read once to clear */
2232 ret_val
= e1e_rphy(hw
, IGP3_KMRN_DIAG
, &data
);
2235 /* and again to get new status */
2236 ret_val
= e1e_rphy(hw
, IGP3_KMRN_DIAG
, &data
);
2240 /* check for PCS lock */
2241 if (!(data
& IGP3_KMRN_DIAG_PCS_LOCK_LOSS
))
2244 /* Issue PHY reset */
2245 e1000_phy_hw_reset(hw
);
2248 /* Disable GigE link negotiation */
2249 phy_ctrl
= er32(PHY_CTRL
);
2250 phy_ctrl
|= (E1000_PHY_CTRL_GBE_DISABLE
|
2251 E1000_PHY_CTRL_NOND0A_GBE_DISABLE
);
2252 ew32(PHY_CTRL
, phy_ctrl
);
2255 * Call gig speed drop workaround on Gig disable before accessing
2258 e1000e_gig_downshift_workaround_ich8lan(hw
);
2260 /* unable to acquire PCS lock */
2261 return -E1000_ERR_PHY
;
2265 * e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
2266 * @hw: pointer to the HW structure
2267 * @state: boolean value used to set the current Kumeran workaround state
2269 * If ICH8, set the current Kumeran workaround state (enabled - TRUE
2270 * /disabled - FALSE).
2272 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw
*hw
,
2275 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
2277 if (hw
->mac
.type
!= e1000_ich8lan
) {
2278 hw_dbg(hw
, "Workaround applies to ICH8 only.\n");
2282 dev_spec
->kmrn_lock_loss_workaround_enabled
= state
;
2286 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
2287 * @hw: pointer to the HW structure
2289 * Workaround for 82566 power-down on D3 entry:
2290 * 1) disable gigabit link
2291 * 2) write VR power-down enable
2293 * Continue if successful, else issue LCD reset and repeat
2295 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw
*hw
)
2301 if (hw
->phy
.type
!= e1000_phy_igp_3
)
2304 /* Try the workaround twice (if needed) */
2307 reg
= er32(PHY_CTRL
);
2308 reg
|= (E1000_PHY_CTRL_GBE_DISABLE
|
2309 E1000_PHY_CTRL_NOND0A_GBE_DISABLE
);
2310 ew32(PHY_CTRL
, reg
);
2313 * Call gig speed drop workaround on Gig disable before
2314 * accessing any PHY registers
2316 if (hw
->mac
.type
== e1000_ich8lan
)
2317 e1000e_gig_downshift_workaround_ich8lan(hw
);
2319 /* Write VR power-down enable */
2320 e1e_rphy(hw
, IGP3_VR_CTRL
, &data
);
2321 data
&= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK
;
2322 e1e_wphy(hw
, IGP3_VR_CTRL
, data
| IGP3_VR_CTRL_MODE_SHUTDOWN
);
2324 /* Read it back and test */
2325 e1e_rphy(hw
, IGP3_VR_CTRL
, &data
);
2326 data
&= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK
;
2327 if ((data
== IGP3_VR_CTRL_MODE_SHUTDOWN
) || retry
)
2330 /* Issue PHY reset and repeat at most one more time */
2332 ew32(CTRL
, reg
| E1000_CTRL_PHY_RST
);
2338 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
2339 * @hw: pointer to the HW structure
2341 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
2342 * LPLU, Gig disable, MDIC PHY reset):
2343 * 1) Set Kumeran Near-end loopback
2344 * 2) Clear Kumeran Near-end loopback
2345 * Should only be called for ICH8[m] devices with IGP_3 Phy.
2347 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw
*hw
)
2352 if ((hw
->mac
.type
!= e1000_ich8lan
) ||
2353 (hw
->phy
.type
!= e1000_phy_igp_3
))
2356 ret_val
= e1000e_read_kmrn_reg(hw
, E1000_KMRNCTRLSTA_DIAG_OFFSET
,
2360 reg_data
|= E1000_KMRNCTRLSTA_DIAG_NELPBK
;
2361 ret_val
= e1000e_write_kmrn_reg(hw
, E1000_KMRNCTRLSTA_DIAG_OFFSET
,
2365 reg_data
&= ~E1000_KMRNCTRLSTA_DIAG_NELPBK
;
2366 ret_val
= e1000e_write_kmrn_reg(hw
, E1000_KMRNCTRLSTA_DIAG_OFFSET
,
2371 * e1000e_disable_gig_wol_ich8lan - disable gig during WoL
2372 * @hw: pointer to the HW structure
2374 * During S0 to Sx transition, it is possible the link remains at gig
2375 * instead of negotiating to a lower speed. Before going to Sx, set
2376 * 'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
2379 * Should only be called for ICH9 and ICH10 devices.
2381 void e1000e_disable_gig_wol_ich8lan(struct e1000_hw
*hw
)
2385 if ((hw
->mac
.type
== e1000_ich10lan
) ||
2386 (hw
->mac
.type
== e1000_ich9lan
)) {
2387 phy_ctrl
= er32(PHY_CTRL
);
2388 phy_ctrl
|= E1000_PHY_CTRL_D0A_LPLU
|
2389 E1000_PHY_CTRL_GBE_DISABLE
;
2390 ew32(PHY_CTRL
, phy_ctrl
);
2397 * e1000_cleanup_led_ich8lan - Restore the default LED operation
2398 * @hw: pointer to the HW structure
2400 * Return the LED back to the default configuration.
2402 static s32
e1000_cleanup_led_ich8lan(struct e1000_hw
*hw
)
2404 if (hw
->phy
.type
== e1000_phy_ife
)
2405 return e1e_wphy(hw
, IFE_PHY_SPECIAL_CONTROL_LED
, 0);
2407 ew32(LEDCTL
, hw
->mac
.ledctl_default
);
2412 * e1000_led_on_ich8lan - Turn LEDs on
2413 * @hw: pointer to the HW structure
2417 static s32
e1000_led_on_ich8lan(struct e1000_hw
*hw
)
2419 if (hw
->phy
.type
== e1000_phy_ife
)
2420 return e1e_wphy(hw
, IFE_PHY_SPECIAL_CONTROL_LED
,
2421 (IFE_PSCL_PROBE_MODE
| IFE_PSCL_PROBE_LEDS_ON
));
2423 ew32(LEDCTL
, hw
->mac
.ledctl_mode2
);
2428 * e1000_led_off_ich8lan - Turn LEDs off
2429 * @hw: pointer to the HW structure
2431 * Turn off the LEDs.
2433 static s32
e1000_led_off_ich8lan(struct e1000_hw
*hw
)
2435 if (hw
->phy
.type
== e1000_phy_ife
)
2436 return e1e_wphy(hw
, IFE_PHY_SPECIAL_CONTROL_LED
,
2437 (IFE_PSCL_PROBE_MODE
| IFE_PSCL_PROBE_LEDS_OFF
));
2439 ew32(LEDCTL
, hw
->mac
.ledctl_mode1
);
2444 * e1000_get_cfg_done_ich8lan - Read config done bit
2445 * @hw: pointer to the HW structure
2447 * Read the management control register for the config done bit for
2448 * completion status. NOTE: silicon which is EEPROM-less will fail trying
2449 * to read the config done bit, so an error is *ONLY* logged and returns
2450 * E1000_SUCCESS. If we were to return with error, EEPROM-less silicon
2451 * would not be able to be reset or change link.
2453 static s32
e1000_get_cfg_done_ich8lan(struct e1000_hw
*hw
)
2457 e1000e_get_cfg_done(hw
);
2459 /* If EEPROM is not marked present, init the IGP 3 PHY manually */
2460 if (hw
->mac
.type
!= e1000_ich10lan
) {
2461 if (((er32(EECD
) & E1000_EECD_PRES
) == 0) &&
2462 (hw
->phy
.type
== e1000_phy_igp_3
)) {
2463 e1000e_phy_init_script_igp3(hw
);
2466 if (e1000_valid_nvm_bank_detect_ich8lan(hw
, &bank
)) {
2467 /* Maybe we should do a basic PHY config */
2468 hw_dbg(hw
, "EEPROM not present\n");
2469 return -E1000_ERR_CONFIG
;
2477 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
2478 * @hw: pointer to the HW structure
2480 * Clears hardware counters specific to the silicon family and calls
2481 * clear_hw_cntrs_generic to clear all general purpose counters.
2483 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw
*hw
)
2487 e1000e_clear_hw_cntrs_base(hw
);
2489 temp
= er32(ALGNERRC
);
2490 temp
= er32(RXERRC
);
2492 temp
= er32(CEXTERR
);
2494 temp
= er32(TSCTFC
);
2496 temp
= er32(MGTPRC
);
2497 temp
= er32(MGTPDC
);
2498 temp
= er32(MGTPTC
);
2501 temp
= er32(ICRXOC
);
2505 static struct e1000_mac_operations ich8_mac_ops
= {
2506 .check_mng_mode
= e1000_check_mng_mode_ich8lan
,
2507 .check_for_link
= e1000e_check_for_copper_link
,
2508 .cleanup_led
= e1000_cleanup_led_ich8lan
,
2509 .clear_hw_cntrs
= e1000_clear_hw_cntrs_ich8lan
,
2510 .get_bus_info
= e1000_get_bus_info_ich8lan
,
2511 .get_link_up_info
= e1000_get_link_up_info_ich8lan
,
2512 .led_on
= e1000_led_on_ich8lan
,
2513 .led_off
= e1000_led_off_ich8lan
,
2514 .update_mc_addr_list
= e1000e_update_mc_addr_list_generic
,
2515 .reset_hw
= e1000_reset_hw_ich8lan
,
2516 .init_hw
= e1000_init_hw_ich8lan
,
2517 .setup_link
= e1000_setup_link_ich8lan
,
2518 .setup_physical_interface
= e1000_setup_copper_link_ich8lan
,
2521 static struct e1000_phy_operations ich8_phy_ops
= {
2522 .acquire_phy
= e1000_acquire_swflag_ich8lan
,
2523 .check_reset_block
= e1000_check_reset_block_ich8lan
,
2525 .force_speed_duplex
= e1000_phy_force_speed_duplex_ich8lan
,
2526 .get_cfg_done
= e1000_get_cfg_done_ich8lan
,
2527 .get_cable_length
= e1000e_get_cable_length_igp_2
,
2528 .get_phy_info
= e1000_get_phy_info_ich8lan
,
2529 .read_phy_reg
= e1000e_read_phy_reg_igp
,
2530 .release_phy
= e1000_release_swflag_ich8lan
,
2531 .reset_phy
= e1000_phy_hw_reset_ich8lan
,
2532 .set_d0_lplu_state
= e1000_set_d0_lplu_state_ich8lan
,
2533 .set_d3_lplu_state
= e1000_set_d3_lplu_state_ich8lan
,
2534 .write_phy_reg
= e1000e_write_phy_reg_igp
,
2537 static struct e1000_nvm_operations ich8_nvm_ops
= {
2538 .acquire_nvm
= e1000_acquire_swflag_ich8lan
,
2539 .read_nvm
= e1000_read_nvm_ich8lan
,
2540 .release_nvm
= e1000_release_swflag_ich8lan
,
2541 .update_nvm
= e1000_update_nvm_checksum_ich8lan
,
2542 .valid_led_default
= e1000_valid_led_default_ich8lan
,
2543 .validate_nvm
= e1000_validate_nvm_checksum_ich8lan
,
2544 .write_nvm
= e1000_write_nvm_ich8lan
,
2547 struct e1000_info e1000_ich8_info
= {
2548 .mac
= e1000_ich8lan
,
2549 .flags
= FLAG_HAS_WOL
2551 | FLAG_RX_CSUM_ENABLED
2552 | FLAG_HAS_CTRLEXT_ON_LOAD
2557 .get_variants
= e1000_get_variants_ich8lan
,
2558 .mac_ops
= &ich8_mac_ops
,
2559 .phy_ops
= &ich8_phy_ops
,
2560 .nvm_ops
= &ich8_nvm_ops
,
2563 struct e1000_info e1000_ich9_info
= {
2564 .mac
= e1000_ich9lan
,
2565 .flags
= FLAG_HAS_JUMBO_FRAMES
2568 | FLAG_RX_CSUM_ENABLED
2569 | FLAG_HAS_CTRLEXT_ON_LOAD
2575 .get_variants
= e1000_get_variants_ich8lan
,
2576 .mac_ops
= &ich8_mac_ops
,
2577 .phy_ops
= &ich8_phy_ops
,
2578 .nvm_ops
= &ich8_nvm_ops
,
2581 struct e1000_info e1000_ich10_info
= {
2582 .mac
= e1000_ich10lan
,
2583 .flags
= FLAG_HAS_JUMBO_FRAMES
2586 | FLAG_RX_CSUM_ENABLED
2587 | FLAG_HAS_CTRLEXT_ON_LOAD
2593 .get_variants
= e1000_get_variants_ich8lan
,
2594 .mac_ops
= &ich8_mac_ops
,
2595 .phy_ops
= &ich8_phy_ops
,
2596 .nvm_ops
= &ich8_nvm_ops
,