[PATCH] x86: implement always-locked bit ops, for memory shared with an SMP hypervisor
[linux-2.6/mini2440.git] / net / ipv4 / tcp_minisocks.c
blob0163d98269074c40507b173b3f99837ef503954f
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Version: $Id: tcp_minisocks.c,v 1.15 2002/02/01 22:01:04 davem Exp $
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
23 #include <linux/mm.h>
24 #include <linux/module.h>
25 #include <linux/sysctl.h>
26 #include <linux/workqueue.h>
27 #include <net/tcp.h>
28 #include <net/inet_common.h>
29 #include <net/xfrm.h>
31 #ifdef CONFIG_SYSCTL
32 #define SYNC_INIT 0 /* let the user enable it */
33 #else
34 #define SYNC_INIT 1
35 #endif
37 int sysctl_tcp_syncookies __read_mostly = SYNC_INIT;
38 int sysctl_tcp_abort_on_overflow __read_mostly;
40 struct inet_timewait_death_row tcp_death_row = {
41 .sysctl_max_tw_buckets = NR_FILE * 2,
42 .period = TCP_TIMEWAIT_LEN / INET_TWDR_TWKILL_SLOTS,
43 .death_lock = __SPIN_LOCK_UNLOCKED(tcp_death_row.death_lock),
44 .hashinfo = &tcp_hashinfo,
45 .tw_timer = TIMER_INITIALIZER(inet_twdr_hangman, 0,
46 (unsigned long)&tcp_death_row),
47 .twkill_work = __WORK_INITIALIZER(tcp_death_row.twkill_work,
48 inet_twdr_twkill_work,
49 &tcp_death_row),
50 /* Short-time timewait calendar */
52 .twcal_hand = -1,
53 .twcal_timer = TIMER_INITIALIZER(inet_twdr_twcal_tick, 0,
54 (unsigned long)&tcp_death_row),
57 EXPORT_SYMBOL_GPL(tcp_death_row);
59 static __inline__ int tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
61 if (seq == s_win)
62 return 1;
63 if (after(end_seq, s_win) && before(seq, e_win))
64 return 1;
65 return (seq == e_win && seq == end_seq);
68 /*
69 * * Main purpose of TIME-WAIT state is to close connection gracefully,
70 * when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
71 * (and, probably, tail of data) and one or more our ACKs are lost.
72 * * What is TIME-WAIT timeout? It is associated with maximal packet
73 * lifetime in the internet, which results in wrong conclusion, that
74 * it is set to catch "old duplicate segments" wandering out of their path.
75 * It is not quite correct. This timeout is calculated so that it exceeds
76 * maximal retransmission timeout enough to allow to lose one (or more)
77 * segments sent by peer and our ACKs. This time may be calculated from RTO.
78 * * When TIME-WAIT socket receives RST, it means that another end
79 * finally closed and we are allowed to kill TIME-WAIT too.
80 * * Second purpose of TIME-WAIT is catching old duplicate segments.
81 * Well, certainly it is pure paranoia, but if we load TIME-WAIT
82 * with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
83 * * If we invented some more clever way to catch duplicates
84 * (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
86 * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
87 * When you compare it to RFCs, please, read section SEGMENT ARRIVES
88 * from the very beginning.
90 * NOTE. With recycling (and later with fin-wait-2) TW bucket
91 * is _not_ stateless. It means, that strictly speaking we must
92 * spinlock it. I do not want! Well, probability of misbehaviour
93 * is ridiculously low and, seems, we could use some mb() tricks
94 * to avoid misread sequence numbers, states etc. --ANK
96 enum tcp_tw_status
97 tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
98 const struct tcphdr *th)
100 struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
101 struct tcp_options_received tmp_opt;
102 int paws_reject = 0;
104 tmp_opt.saw_tstamp = 0;
105 if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
106 tcp_parse_options(skb, &tmp_opt, 0);
108 if (tmp_opt.saw_tstamp) {
109 tmp_opt.ts_recent = tcptw->tw_ts_recent;
110 tmp_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
111 paws_reject = tcp_paws_check(&tmp_opt, th->rst);
115 if (tw->tw_substate == TCP_FIN_WAIT2) {
116 /* Just repeat all the checks of tcp_rcv_state_process() */
118 /* Out of window, send ACK */
119 if (paws_reject ||
120 !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
121 tcptw->tw_rcv_nxt,
122 tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
123 return TCP_TW_ACK;
125 if (th->rst)
126 goto kill;
128 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
129 goto kill_with_rst;
131 /* Dup ACK? */
132 if (!after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
133 TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
134 inet_twsk_put(tw);
135 return TCP_TW_SUCCESS;
138 /* New data or FIN. If new data arrive after half-duplex close,
139 * reset.
141 if (!th->fin ||
142 TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1) {
143 kill_with_rst:
144 inet_twsk_deschedule(tw, &tcp_death_row);
145 inet_twsk_put(tw);
146 return TCP_TW_RST;
149 /* FIN arrived, enter true time-wait state. */
150 tw->tw_substate = TCP_TIME_WAIT;
151 tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
152 if (tmp_opt.saw_tstamp) {
153 tcptw->tw_ts_recent_stamp = xtime.tv_sec;
154 tcptw->tw_ts_recent = tmp_opt.rcv_tsval;
157 /* I am shamed, but failed to make it more elegant.
158 * Yes, it is direct reference to IP, which is impossible
159 * to generalize to IPv6. Taking into account that IPv6
160 * do not understand recycling in any case, it not
161 * a big problem in practice. --ANK */
162 if (tw->tw_family == AF_INET &&
163 tcp_death_row.sysctl_tw_recycle && tcptw->tw_ts_recent_stamp &&
164 tcp_v4_tw_remember_stamp(tw))
165 inet_twsk_schedule(tw, &tcp_death_row, tw->tw_timeout,
166 TCP_TIMEWAIT_LEN);
167 else
168 inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
169 TCP_TIMEWAIT_LEN);
170 return TCP_TW_ACK;
174 * Now real TIME-WAIT state.
176 * RFC 1122:
177 * "When a connection is [...] on TIME-WAIT state [...]
178 * [a TCP] MAY accept a new SYN from the remote TCP to
179 * reopen the connection directly, if it:
181 * (1) assigns its initial sequence number for the new
182 * connection to be larger than the largest sequence
183 * number it used on the previous connection incarnation,
184 * and
186 * (2) returns to TIME-WAIT state if the SYN turns out
187 * to be an old duplicate".
190 if (!paws_reject &&
191 (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
192 (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
193 /* In window segment, it may be only reset or bare ack. */
195 if (th->rst) {
196 /* This is TIME_WAIT assassination, in two flavors.
197 * Oh well... nobody has a sufficient solution to this
198 * protocol bug yet.
200 if (sysctl_tcp_rfc1337 == 0) {
201 kill:
202 inet_twsk_deschedule(tw, &tcp_death_row);
203 inet_twsk_put(tw);
204 return TCP_TW_SUCCESS;
207 inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
208 TCP_TIMEWAIT_LEN);
210 if (tmp_opt.saw_tstamp) {
211 tcptw->tw_ts_recent = tmp_opt.rcv_tsval;
212 tcptw->tw_ts_recent_stamp = xtime.tv_sec;
215 inet_twsk_put(tw);
216 return TCP_TW_SUCCESS;
219 /* Out of window segment.
221 All the segments are ACKed immediately.
223 The only exception is new SYN. We accept it, if it is
224 not old duplicate and we are not in danger to be killed
225 by delayed old duplicates. RFC check is that it has
226 newer sequence number works at rates <40Mbit/sec.
227 However, if paws works, it is reliable AND even more,
228 we even may relax silly seq space cutoff.
230 RED-PEN: we violate main RFC requirement, if this SYN will appear
231 old duplicate (i.e. we receive RST in reply to SYN-ACK),
232 we must return socket to time-wait state. It is not good,
233 but not fatal yet.
236 if (th->syn && !th->rst && !th->ack && !paws_reject &&
237 (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
238 (tmp_opt.saw_tstamp &&
239 (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
240 u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
241 if (isn == 0)
242 isn++;
243 TCP_SKB_CB(skb)->when = isn;
244 return TCP_TW_SYN;
247 if (paws_reject)
248 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
250 if(!th->rst) {
251 /* In this case we must reset the TIMEWAIT timer.
253 * If it is ACKless SYN it may be both old duplicate
254 * and new good SYN with random sequence number <rcv_nxt.
255 * Do not reschedule in the last case.
257 if (paws_reject || th->ack)
258 inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
259 TCP_TIMEWAIT_LEN);
261 /* Send ACK. Note, we do not put the bucket,
262 * it will be released by caller.
264 return TCP_TW_ACK;
266 inet_twsk_put(tw);
267 return TCP_TW_SUCCESS;
271 * Move a socket to time-wait or dead fin-wait-2 state.
273 void tcp_time_wait(struct sock *sk, int state, int timeo)
275 struct inet_timewait_sock *tw = NULL;
276 const struct inet_connection_sock *icsk = inet_csk(sk);
277 const struct tcp_sock *tp = tcp_sk(sk);
278 int recycle_ok = 0;
280 if (tcp_death_row.sysctl_tw_recycle && tp->rx_opt.ts_recent_stamp)
281 recycle_ok = icsk->icsk_af_ops->remember_stamp(sk);
283 if (tcp_death_row.tw_count < tcp_death_row.sysctl_max_tw_buckets)
284 tw = inet_twsk_alloc(sk, state);
286 if (tw != NULL) {
287 struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
288 const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
290 tw->tw_rcv_wscale = tp->rx_opt.rcv_wscale;
291 tcptw->tw_rcv_nxt = tp->rcv_nxt;
292 tcptw->tw_snd_nxt = tp->snd_nxt;
293 tcptw->tw_rcv_wnd = tcp_receive_window(tp);
294 tcptw->tw_ts_recent = tp->rx_opt.ts_recent;
295 tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
297 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
298 if (tw->tw_family == PF_INET6) {
299 struct ipv6_pinfo *np = inet6_sk(sk);
300 struct inet6_timewait_sock *tw6;
302 tw->tw_ipv6_offset = inet6_tw_offset(sk->sk_prot);
303 tw6 = inet6_twsk((struct sock *)tw);
304 ipv6_addr_copy(&tw6->tw_v6_daddr, &np->daddr);
305 ipv6_addr_copy(&tw6->tw_v6_rcv_saddr, &np->rcv_saddr);
306 tw->tw_ipv6only = np->ipv6only;
308 #endif
309 /* Linkage updates. */
310 __inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
312 /* Get the TIME_WAIT timeout firing. */
313 if (timeo < rto)
314 timeo = rto;
316 if (recycle_ok) {
317 tw->tw_timeout = rto;
318 } else {
319 tw->tw_timeout = TCP_TIMEWAIT_LEN;
320 if (state == TCP_TIME_WAIT)
321 timeo = TCP_TIMEWAIT_LEN;
324 inet_twsk_schedule(tw, &tcp_death_row, timeo,
325 TCP_TIMEWAIT_LEN);
326 inet_twsk_put(tw);
327 } else {
328 /* Sorry, if we're out of memory, just CLOSE this
329 * socket up. We've got bigger problems than
330 * non-graceful socket closings.
332 if (net_ratelimit())
333 printk(KERN_INFO "TCP: time wait bucket table overflow\n");
336 tcp_update_metrics(sk);
337 tcp_done(sk);
340 /* This is not only more efficient than what we used to do, it eliminates
341 * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
343 * Actually, we could lots of memory writes here. tp of listening
344 * socket contains all necessary default parameters.
346 struct sock *tcp_create_openreq_child(struct sock *sk, struct request_sock *req, struct sk_buff *skb)
348 struct sock *newsk = inet_csk_clone(sk, req, GFP_ATOMIC);
350 if (newsk != NULL) {
351 const struct inet_request_sock *ireq = inet_rsk(req);
352 struct tcp_request_sock *treq = tcp_rsk(req);
353 struct inet_connection_sock *newicsk = inet_csk(sk);
354 struct tcp_sock *newtp;
356 /* Now setup tcp_sock */
357 newtp = tcp_sk(newsk);
358 newtp->pred_flags = 0;
359 newtp->rcv_nxt = treq->rcv_isn + 1;
360 newtp->snd_nxt = newtp->snd_una = newtp->snd_sml = treq->snt_isn + 1;
362 tcp_prequeue_init(newtp);
364 tcp_init_wl(newtp, treq->snt_isn, treq->rcv_isn);
366 newtp->srtt = 0;
367 newtp->mdev = TCP_TIMEOUT_INIT;
368 newicsk->icsk_rto = TCP_TIMEOUT_INIT;
370 newtp->packets_out = 0;
371 newtp->left_out = 0;
372 newtp->retrans_out = 0;
373 newtp->sacked_out = 0;
374 newtp->fackets_out = 0;
375 newtp->snd_ssthresh = 0x7fffffff;
377 /* So many TCP implementations out there (incorrectly) count the
378 * initial SYN frame in their delayed-ACK and congestion control
379 * algorithms that we must have the following bandaid to talk
380 * efficiently to them. -DaveM
382 newtp->snd_cwnd = 2;
383 newtp->snd_cwnd_cnt = 0;
384 newtp->bytes_acked = 0;
386 newtp->frto_counter = 0;
387 newtp->frto_highmark = 0;
389 newicsk->icsk_ca_ops = &tcp_init_congestion_ops;
391 tcp_set_ca_state(newsk, TCP_CA_Open);
392 tcp_init_xmit_timers(newsk);
393 skb_queue_head_init(&newtp->out_of_order_queue);
394 newtp->rcv_wup = treq->rcv_isn + 1;
395 newtp->write_seq = treq->snt_isn + 1;
396 newtp->pushed_seq = newtp->write_seq;
397 newtp->copied_seq = treq->rcv_isn + 1;
399 newtp->rx_opt.saw_tstamp = 0;
401 newtp->rx_opt.dsack = 0;
402 newtp->rx_opt.eff_sacks = 0;
404 newtp->rx_opt.num_sacks = 0;
405 newtp->urg_data = 0;
407 if (sock_flag(newsk, SOCK_KEEPOPEN))
408 inet_csk_reset_keepalive_timer(newsk,
409 keepalive_time_when(newtp));
411 newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
412 if((newtp->rx_opt.sack_ok = ireq->sack_ok) != 0) {
413 if (sysctl_tcp_fack)
414 newtp->rx_opt.sack_ok |= 2;
416 newtp->window_clamp = req->window_clamp;
417 newtp->rcv_ssthresh = req->rcv_wnd;
418 newtp->rcv_wnd = req->rcv_wnd;
419 newtp->rx_opt.wscale_ok = ireq->wscale_ok;
420 if (newtp->rx_opt.wscale_ok) {
421 newtp->rx_opt.snd_wscale = ireq->snd_wscale;
422 newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
423 } else {
424 newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
425 newtp->window_clamp = min(newtp->window_clamp, 65535U);
427 newtp->snd_wnd = ntohs(skb->h.th->window) << newtp->rx_opt.snd_wscale;
428 newtp->max_window = newtp->snd_wnd;
430 if (newtp->rx_opt.tstamp_ok) {
431 newtp->rx_opt.ts_recent = req->ts_recent;
432 newtp->rx_opt.ts_recent_stamp = xtime.tv_sec;
433 newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
434 } else {
435 newtp->rx_opt.ts_recent_stamp = 0;
436 newtp->tcp_header_len = sizeof(struct tcphdr);
438 if (skb->len >= TCP_MIN_RCVMSS+newtp->tcp_header_len)
439 newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
440 newtp->rx_opt.mss_clamp = req->mss;
441 TCP_ECN_openreq_child(newtp, req);
443 TCP_INC_STATS_BH(TCP_MIB_PASSIVEOPENS);
445 return newsk;
449 * Process an incoming packet for SYN_RECV sockets represented
450 * as a request_sock.
453 struct sock *tcp_check_req(struct sock *sk,struct sk_buff *skb,
454 struct request_sock *req,
455 struct request_sock **prev)
457 struct tcphdr *th = skb->h.th;
458 u32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
459 int paws_reject = 0;
460 struct tcp_options_received tmp_opt;
461 struct sock *child;
463 tmp_opt.saw_tstamp = 0;
464 if (th->doff > (sizeof(struct tcphdr)>>2)) {
465 tcp_parse_options(skb, &tmp_opt, 0);
467 if (tmp_opt.saw_tstamp) {
468 tmp_opt.ts_recent = req->ts_recent;
469 /* We do not store true stamp, but it is not required,
470 * it can be estimated (approximately)
471 * from another data.
473 tmp_opt.ts_recent_stamp = xtime.tv_sec - ((TCP_TIMEOUT_INIT/HZ)<<req->retrans);
474 paws_reject = tcp_paws_check(&tmp_opt, th->rst);
478 /* Check for pure retransmitted SYN. */
479 if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
480 flg == TCP_FLAG_SYN &&
481 !paws_reject) {
483 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
484 * this case on figure 6 and figure 8, but formal
485 * protocol description says NOTHING.
486 * To be more exact, it says that we should send ACK,
487 * because this segment (at least, if it has no data)
488 * is out of window.
490 * CONCLUSION: RFC793 (even with RFC1122) DOES NOT
491 * describe SYN-RECV state. All the description
492 * is wrong, we cannot believe to it and should
493 * rely only on common sense and implementation
494 * experience.
496 * Enforce "SYN-ACK" according to figure 8, figure 6
497 * of RFC793, fixed by RFC1122.
499 req->rsk_ops->rtx_syn_ack(sk, req, NULL);
500 return NULL;
503 /* Further reproduces section "SEGMENT ARRIVES"
504 for state SYN-RECEIVED of RFC793.
505 It is broken, however, it does not work only
506 when SYNs are crossed.
508 You would think that SYN crossing is impossible here, since
509 we should have a SYN_SENT socket (from connect()) on our end,
510 but this is not true if the crossed SYNs were sent to both
511 ends by a malicious third party. We must defend against this,
512 and to do that we first verify the ACK (as per RFC793, page
513 36) and reset if it is invalid. Is this a true full defense?
514 To convince ourselves, let us consider a way in which the ACK
515 test can still pass in this 'malicious crossed SYNs' case.
516 Malicious sender sends identical SYNs (and thus identical sequence
517 numbers) to both A and B:
519 A: gets SYN, seq=7
520 B: gets SYN, seq=7
522 By our good fortune, both A and B select the same initial
523 send sequence number of seven :-)
525 A: sends SYN|ACK, seq=7, ack_seq=8
526 B: sends SYN|ACK, seq=7, ack_seq=8
528 So we are now A eating this SYN|ACK, ACK test passes. So
529 does sequence test, SYN is truncated, and thus we consider
530 it a bare ACK.
532 If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
533 bare ACK. Otherwise, we create an established connection. Both
534 ends (listening sockets) accept the new incoming connection and try
535 to talk to each other. 8-)
537 Note: This case is both harmless, and rare. Possibility is about the
538 same as us discovering intelligent life on another plant tomorrow.
540 But generally, we should (RFC lies!) to accept ACK
541 from SYNACK both here and in tcp_rcv_state_process().
542 tcp_rcv_state_process() does not, hence, we do not too.
544 Note that the case is absolutely generic:
545 we cannot optimize anything here without
546 violating protocol. All the checks must be made
547 before attempt to create socket.
550 /* RFC793 page 36: "If the connection is in any non-synchronized state ...
551 * and the incoming segment acknowledges something not yet
552 * sent (the segment carries an unacceptable ACK) ...
553 * a reset is sent."
555 * Invalid ACK: reset will be sent by listening socket
557 if ((flg & TCP_FLAG_ACK) &&
558 (TCP_SKB_CB(skb)->ack_seq != tcp_rsk(req)->snt_isn + 1))
559 return sk;
561 /* Also, it would be not so bad idea to check rcv_tsecr, which
562 * is essentially ACK extension and too early or too late values
563 * should cause reset in unsynchronized states.
566 /* RFC793: "first check sequence number". */
568 if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
569 tcp_rsk(req)->rcv_isn + 1, tcp_rsk(req)->rcv_isn + 1 + req->rcv_wnd)) {
570 /* Out of window: send ACK and drop. */
571 if (!(flg & TCP_FLAG_RST))
572 req->rsk_ops->send_ack(skb, req);
573 if (paws_reject)
574 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
575 return NULL;
578 /* In sequence, PAWS is OK. */
580 if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_isn + 1))
581 req->ts_recent = tmp_opt.rcv_tsval;
583 if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
584 /* Truncate SYN, it is out of window starting
585 at tcp_rsk(req)->rcv_isn + 1. */
586 flg &= ~TCP_FLAG_SYN;
589 /* RFC793: "second check the RST bit" and
590 * "fourth, check the SYN bit"
592 if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
593 TCP_INC_STATS_BH(TCP_MIB_ATTEMPTFAILS);
594 goto embryonic_reset;
597 /* ACK sequence verified above, just make sure ACK is
598 * set. If ACK not set, just silently drop the packet.
600 if (!(flg & TCP_FLAG_ACK))
601 return NULL;
603 /* If TCP_DEFER_ACCEPT is set, drop bare ACK. */
604 if (inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
605 TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
606 inet_rsk(req)->acked = 1;
607 return NULL;
610 /* OK, ACK is valid, create big socket and
611 * feed this segment to it. It will repeat all
612 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
613 * ESTABLISHED STATE. If it will be dropped after
614 * socket is created, wait for troubles.
616 child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb,
617 req, NULL);
618 if (child == NULL)
619 goto listen_overflow;
621 inet_csk_reqsk_queue_unlink(sk, req, prev);
622 inet_csk_reqsk_queue_removed(sk, req);
624 inet_csk_reqsk_queue_add(sk, req, child);
625 return child;
627 listen_overflow:
628 if (!sysctl_tcp_abort_on_overflow) {
629 inet_rsk(req)->acked = 1;
630 return NULL;
633 embryonic_reset:
634 NET_INC_STATS_BH(LINUX_MIB_EMBRYONICRSTS);
635 if (!(flg & TCP_FLAG_RST))
636 req->rsk_ops->send_reset(skb);
638 inet_csk_reqsk_queue_drop(sk, req, prev);
639 return NULL;
643 * Queue segment on the new socket if the new socket is active,
644 * otherwise we just shortcircuit this and continue with
645 * the new socket.
648 int tcp_child_process(struct sock *parent, struct sock *child,
649 struct sk_buff *skb)
651 int ret = 0;
652 int state = child->sk_state;
654 if (!sock_owned_by_user(child)) {
655 ret = tcp_rcv_state_process(child, skb, skb->h.th, skb->len);
657 /* Wakeup parent, send SIGIO */
658 if (state == TCP_SYN_RECV && child->sk_state != state)
659 parent->sk_data_ready(parent, 0);
660 } else {
661 /* Alas, it is possible again, because we do lookup
662 * in main socket hash table and lock on listening
663 * socket does not protect us more.
665 sk_add_backlog(child, skb);
668 bh_unlock_sock(child);
669 sock_put(child);
670 return ret;
673 EXPORT_SYMBOL(tcp_check_req);
674 EXPORT_SYMBOL(tcp_child_process);
675 EXPORT_SYMBOL(tcp_create_openreq_child);
676 EXPORT_SYMBOL(tcp_timewait_state_process);