[PATCH] x86: implement always-locked bit ops, for memory shared with an SMP hypervisor
[linux-2.6/mini2440.git] / mm / page_alloc.c
blob51070b6d593f9b71d12a05d7246a5323b44ea3f3
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/bootmem.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/suspend.h>
27 #include <linux/pagevec.h>
28 #include <linux/blkdev.h>
29 #include <linux/slab.h>
30 #include <linux/notifier.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/memory_hotplug.h>
36 #include <linux/nodemask.h>
37 #include <linux/vmalloc.h>
38 #include <linux/mempolicy.h>
39 #include <linux/stop_machine.h>
41 #include <asm/tlbflush.h>
42 #include <asm/div64.h>
43 #include "internal.h"
46 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
47 * initializer cleaner
49 nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
50 EXPORT_SYMBOL(node_online_map);
51 nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
52 EXPORT_SYMBOL(node_possible_map);
53 unsigned long totalram_pages __read_mostly;
54 unsigned long totalreserve_pages __read_mostly;
55 long nr_swap_pages;
56 int percpu_pagelist_fraction;
58 static void __free_pages_ok(struct page *page, unsigned int order);
61 * results with 256, 32 in the lowmem_reserve sysctl:
62 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
63 * 1G machine -> (16M dma, 784M normal, 224M high)
64 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
65 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
66 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
68 * TBD: should special case ZONE_DMA32 machines here - in those we normally
69 * don't need any ZONE_NORMAL reservation
71 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
72 256,
73 #ifdef CONFIG_ZONE_DMA32
74 256,
75 #endif
76 #ifdef CONFIG_HIGHMEM
78 #endif
81 EXPORT_SYMBOL(totalram_pages);
84 * Used by page_zone() to look up the address of the struct zone whose
85 * id is encoded in the upper bits of page->flags
87 struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
88 EXPORT_SYMBOL(zone_table);
90 static char *zone_names[MAX_NR_ZONES] = {
91 "DMA",
92 #ifdef CONFIG_ZONE_DMA32
93 "DMA32",
94 #endif
95 "Normal",
96 #ifdef CONFIG_HIGHMEM
97 "HighMem"
98 #endif
101 int min_free_kbytes = 1024;
103 unsigned long __meminitdata nr_kernel_pages;
104 unsigned long __meminitdata nr_all_pages;
106 #ifdef CONFIG_DEBUG_VM
107 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
109 int ret = 0;
110 unsigned seq;
111 unsigned long pfn = page_to_pfn(page);
113 do {
114 seq = zone_span_seqbegin(zone);
115 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
116 ret = 1;
117 else if (pfn < zone->zone_start_pfn)
118 ret = 1;
119 } while (zone_span_seqretry(zone, seq));
121 return ret;
124 static int page_is_consistent(struct zone *zone, struct page *page)
126 #ifdef CONFIG_HOLES_IN_ZONE
127 if (!pfn_valid(page_to_pfn(page)))
128 return 0;
129 #endif
130 if (zone != page_zone(page))
131 return 0;
133 return 1;
136 * Temporary debugging check for pages not lying within a given zone.
138 static int bad_range(struct zone *zone, struct page *page)
140 if (page_outside_zone_boundaries(zone, page))
141 return 1;
142 if (!page_is_consistent(zone, page))
143 return 1;
145 return 0;
147 #else
148 static inline int bad_range(struct zone *zone, struct page *page)
150 return 0;
152 #endif
154 static void bad_page(struct page *page)
156 printk(KERN_EMERG "Bad page state in process '%s'\n"
157 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
158 KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
159 KERN_EMERG "Backtrace:\n",
160 current->comm, page, (int)(2*sizeof(unsigned long)),
161 (unsigned long)page->flags, page->mapping,
162 page_mapcount(page), page_count(page));
163 dump_stack();
164 page->flags &= ~(1 << PG_lru |
165 1 << PG_private |
166 1 << PG_locked |
167 1 << PG_active |
168 1 << PG_dirty |
169 1 << PG_reclaim |
170 1 << PG_slab |
171 1 << PG_swapcache |
172 1 << PG_writeback |
173 1 << PG_buddy );
174 set_page_count(page, 0);
175 reset_page_mapcount(page);
176 page->mapping = NULL;
177 add_taint(TAINT_BAD_PAGE);
181 * Higher-order pages are called "compound pages". They are structured thusly:
183 * The first PAGE_SIZE page is called the "head page".
185 * The remaining PAGE_SIZE pages are called "tail pages".
187 * All pages have PG_compound set. All pages have their ->private pointing at
188 * the head page (even the head page has this).
190 * The first tail page's ->lru.next holds the address of the compound page's
191 * put_page() function. Its ->lru.prev holds the order of allocation.
192 * This usage means that zero-order pages may not be compound.
195 static void free_compound_page(struct page *page)
197 __free_pages_ok(page, (unsigned long)page[1].lru.prev);
200 static void prep_compound_page(struct page *page, unsigned long order)
202 int i;
203 int nr_pages = 1 << order;
205 page[1].lru.next = (void *)free_compound_page; /* set dtor */
206 page[1].lru.prev = (void *)order;
207 for (i = 0; i < nr_pages; i++) {
208 struct page *p = page + i;
210 __SetPageCompound(p);
211 set_page_private(p, (unsigned long)page);
215 static void destroy_compound_page(struct page *page, unsigned long order)
217 int i;
218 int nr_pages = 1 << order;
220 if (unlikely((unsigned long)page[1].lru.prev != order))
221 bad_page(page);
223 for (i = 0; i < nr_pages; i++) {
224 struct page *p = page + i;
226 if (unlikely(!PageCompound(p) |
227 (page_private(p) != (unsigned long)page)))
228 bad_page(page);
229 __ClearPageCompound(p);
233 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
235 int i;
237 VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
239 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
240 * and __GFP_HIGHMEM from hard or soft interrupt context.
242 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
243 for (i = 0; i < (1 << order); i++)
244 clear_highpage(page + i);
248 * function for dealing with page's order in buddy system.
249 * zone->lock is already acquired when we use these.
250 * So, we don't need atomic page->flags operations here.
252 static inline unsigned long page_order(struct page *page)
254 return page_private(page);
257 static inline void set_page_order(struct page *page, int order)
259 set_page_private(page, order);
260 __SetPageBuddy(page);
263 static inline void rmv_page_order(struct page *page)
265 __ClearPageBuddy(page);
266 set_page_private(page, 0);
270 * Locate the struct page for both the matching buddy in our
271 * pair (buddy1) and the combined O(n+1) page they form (page).
273 * 1) Any buddy B1 will have an order O twin B2 which satisfies
274 * the following equation:
275 * B2 = B1 ^ (1 << O)
276 * For example, if the starting buddy (buddy2) is #8 its order
277 * 1 buddy is #10:
278 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
280 * 2) Any buddy B will have an order O+1 parent P which
281 * satisfies the following equation:
282 * P = B & ~(1 << O)
284 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
286 static inline struct page *
287 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
289 unsigned long buddy_idx = page_idx ^ (1 << order);
291 return page + (buddy_idx - page_idx);
294 static inline unsigned long
295 __find_combined_index(unsigned long page_idx, unsigned int order)
297 return (page_idx & ~(1 << order));
301 * This function checks whether a page is free && is the buddy
302 * we can do coalesce a page and its buddy if
303 * (a) the buddy is not in a hole &&
304 * (b) the buddy is in the buddy system &&
305 * (c) a page and its buddy have the same order &&
306 * (d) a page and its buddy are in the same zone.
308 * For recording whether a page is in the buddy system, we use PG_buddy.
309 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
311 * For recording page's order, we use page_private(page).
313 static inline int page_is_buddy(struct page *page, struct page *buddy,
314 int order)
316 #ifdef CONFIG_HOLES_IN_ZONE
317 if (!pfn_valid(page_to_pfn(buddy)))
318 return 0;
319 #endif
321 if (page_zone_id(page) != page_zone_id(buddy))
322 return 0;
324 if (PageBuddy(buddy) && page_order(buddy) == order) {
325 BUG_ON(page_count(buddy) != 0);
326 return 1;
328 return 0;
332 * Freeing function for a buddy system allocator.
334 * The concept of a buddy system is to maintain direct-mapped table
335 * (containing bit values) for memory blocks of various "orders".
336 * The bottom level table contains the map for the smallest allocatable
337 * units of memory (here, pages), and each level above it describes
338 * pairs of units from the levels below, hence, "buddies".
339 * At a high level, all that happens here is marking the table entry
340 * at the bottom level available, and propagating the changes upward
341 * as necessary, plus some accounting needed to play nicely with other
342 * parts of the VM system.
343 * At each level, we keep a list of pages, which are heads of continuous
344 * free pages of length of (1 << order) and marked with PG_buddy. Page's
345 * order is recorded in page_private(page) field.
346 * So when we are allocating or freeing one, we can derive the state of the
347 * other. That is, if we allocate a small block, and both were
348 * free, the remainder of the region must be split into blocks.
349 * If a block is freed, and its buddy is also free, then this
350 * triggers coalescing into a block of larger size.
352 * -- wli
355 static inline void __free_one_page(struct page *page,
356 struct zone *zone, unsigned int order)
358 unsigned long page_idx;
359 int order_size = 1 << order;
361 if (unlikely(PageCompound(page)))
362 destroy_compound_page(page, order);
364 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
366 VM_BUG_ON(page_idx & (order_size - 1));
367 VM_BUG_ON(bad_range(zone, page));
369 zone->free_pages += order_size;
370 while (order < MAX_ORDER-1) {
371 unsigned long combined_idx;
372 struct free_area *area;
373 struct page *buddy;
375 buddy = __page_find_buddy(page, page_idx, order);
376 if (!page_is_buddy(page, buddy, order))
377 break; /* Move the buddy up one level. */
379 list_del(&buddy->lru);
380 area = zone->free_area + order;
381 area->nr_free--;
382 rmv_page_order(buddy);
383 combined_idx = __find_combined_index(page_idx, order);
384 page = page + (combined_idx - page_idx);
385 page_idx = combined_idx;
386 order++;
388 set_page_order(page, order);
389 list_add(&page->lru, &zone->free_area[order].free_list);
390 zone->free_area[order].nr_free++;
393 static inline int free_pages_check(struct page *page)
395 if (unlikely(page_mapcount(page) |
396 (page->mapping != NULL) |
397 (page_count(page) != 0) |
398 (page->flags & (
399 1 << PG_lru |
400 1 << PG_private |
401 1 << PG_locked |
402 1 << PG_active |
403 1 << PG_reclaim |
404 1 << PG_slab |
405 1 << PG_swapcache |
406 1 << PG_writeback |
407 1 << PG_reserved |
408 1 << PG_buddy ))))
409 bad_page(page);
410 if (PageDirty(page))
411 __ClearPageDirty(page);
413 * For now, we report if PG_reserved was found set, but do not
414 * clear it, and do not free the page. But we shall soon need
415 * to do more, for when the ZERO_PAGE count wraps negative.
417 return PageReserved(page);
421 * Frees a list of pages.
422 * Assumes all pages on list are in same zone, and of same order.
423 * count is the number of pages to free.
425 * If the zone was previously in an "all pages pinned" state then look to
426 * see if this freeing clears that state.
428 * And clear the zone's pages_scanned counter, to hold off the "all pages are
429 * pinned" detection logic.
431 static void free_pages_bulk(struct zone *zone, int count,
432 struct list_head *list, int order)
434 spin_lock(&zone->lock);
435 zone->all_unreclaimable = 0;
436 zone->pages_scanned = 0;
437 while (count--) {
438 struct page *page;
440 VM_BUG_ON(list_empty(list));
441 page = list_entry(list->prev, struct page, lru);
442 /* have to delete it as __free_one_page list manipulates */
443 list_del(&page->lru);
444 __free_one_page(page, zone, order);
446 spin_unlock(&zone->lock);
449 static void free_one_page(struct zone *zone, struct page *page, int order)
451 spin_lock(&zone->lock);
452 zone->all_unreclaimable = 0;
453 zone->pages_scanned = 0;
454 __free_one_page(page, zone ,order);
455 spin_unlock(&zone->lock);
458 static void __free_pages_ok(struct page *page, unsigned int order)
460 unsigned long flags;
461 int i;
462 int reserved = 0;
464 arch_free_page(page, order);
465 if (!PageHighMem(page))
466 debug_check_no_locks_freed(page_address(page),
467 PAGE_SIZE<<order);
469 for (i = 0 ; i < (1 << order) ; ++i)
470 reserved += free_pages_check(page + i);
471 if (reserved)
472 return;
474 kernel_map_pages(page, 1 << order, 0);
475 local_irq_save(flags);
476 __count_vm_events(PGFREE, 1 << order);
477 free_one_page(page_zone(page), page, order);
478 local_irq_restore(flags);
482 * permit the bootmem allocator to evade page validation on high-order frees
484 void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
486 if (order == 0) {
487 __ClearPageReserved(page);
488 set_page_count(page, 0);
489 set_page_refcounted(page);
490 __free_page(page);
491 } else {
492 int loop;
494 prefetchw(page);
495 for (loop = 0; loop < BITS_PER_LONG; loop++) {
496 struct page *p = &page[loop];
498 if (loop + 1 < BITS_PER_LONG)
499 prefetchw(p + 1);
500 __ClearPageReserved(p);
501 set_page_count(p, 0);
504 set_page_refcounted(page);
505 __free_pages(page, order);
511 * The order of subdivision here is critical for the IO subsystem.
512 * Please do not alter this order without good reasons and regression
513 * testing. Specifically, as large blocks of memory are subdivided,
514 * the order in which smaller blocks are delivered depends on the order
515 * they're subdivided in this function. This is the primary factor
516 * influencing the order in which pages are delivered to the IO
517 * subsystem according to empirical testing, and this is also justified
518 * by considering the behavior of a buddy system containing a single
519 * large block of memory acted on by a series of small allocations.
520 * This behavior is a critical factor in sglist merging's success.
522 * -- wli
524 static inline void expand(struct zone *zone, struct page *page,
525 int low, int high, struct free_area *area)
527 unsigned long size = 1 << high;
529 while (high > low) {
530 area--;
531 high--;
532 size >>= 1;
533 VM_BUG_ON(bad_range(zone, &page[size]));
534 list_add(&page[size].lru, &area->free_list);
535 area->nr_free++;
536 set_page_order(&page[size], high);
541 * This page is about to be returned from the page allocator
543 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
545 if (unlikely(page_mapcount(page) |
546 (page->mapping != NULL) |
547 (page_count(page) != 0) |
548 (page->flags & (
549 1 << PG_lru |
550 1 << PG_private |
551 1 << PG_locked |
552 1 << PG_active |
553 1 << PG_dirty |
554 1 << PG_reclaim |
555 1 << PG_slab |
556 1 << PG_swapcache |
557 1 << PG_writeback |
558 1 << PG_reserved |
559 1 << PG_buddy ))))
560 bad_page(page);
563 * For now, we report if PG_reserved was found set, but do not
564 * clear it, and do not allocate the page: as a safety net.
566 if (PageReserved(page))
567 return 1;
569 page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
570 1 << PG_referenced | 1 << PG_arch_1 |
571 1 << PG_checked | 1 << PG_mappedtodisk);
572 set_page_private(page, 0);
573 set_page_refcounted(page);
574 kernel_map_pages(page, 1 << order, 1);
576 if (gfp_flags & __GFP_ZERO)
577 prep_zero_page(page, order, gfp_flags);
579 if (order && (gfp_flags & __GFP_COMP))
580 prep_compound_page(page, order);
582 return 0;
586 * Do the hard work of removing an element from the buddy allocator.
587 * Call me with the zone->lock already held.
589 static struct page *__rmqueue(struct zone *zone, unsigned int order)
591 struct free_area * area;
592 unsigned int current_order;
593 struct page *page;
595 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
596 area = zone->free_area + current_order;
597 if (list_empty(&area->free_list))
598 continue;
600 page = list_entry(area->free_list.next, struct page, lru);
601 list_del(&page->lru);
602 rmv_page_order(page);
603 area->nr_free--;
604 zone->free_pages -= 1UL << order;
605 expand(zone, page, order, current_order, area);
606 return page;
609 return NULL;
613 * Obtain a specified number of elements from the buddy allocator, all under
614 * a single hold of the lock, for efficiency. Add them to the supplied list.
615 * Returns the number of new pages which were placed at *list.
617 static int rmqueue_bulk(struct zone *zone, unsigned int order,
618 unsigned long count, struct list_head *list)
620 int i;
622 spin_lock(&zone->lock);
623 for (i = 0; i < count; ++i) {
624 struct page *page = __rmqueue(zone, order);
625 if (unlikely(page == NULL))
626 break;
627 list_add_tail(&page->lru, list);
629 spin_unlock(&zone->lock);
630 return i;
633 #ifdef CONFIG_NUMA
635 * Called from the slab reaper to drain pagesets on a particular node that
636 * belongs to the currently executing processor.
637 * Note that this function must be called with the thread pinned to
638 * a single processor.
640 void drain_node_pages(int nodeid)
642 int i;
643 enum zone_type z;
644 unsigned long flags;
646 for (z = 0; z < MAX_NR_ZONES; z++) {
647 struct zone *zone = NODE_DATA(nodeid)->node_zones + z;
648 struct per_cpu_pageset *pset;
650 if (!populated_zone(zone))
651 continue;
653 pset = zone_pcp(zone, smp_processor_id());
654 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
655 struct per_cpu_pages *pcp;
657 pcp = &pset->pcp[i];
658 if (pcp->count) {
659 local_irq_save(flags);
660 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
661 pcp->count = 0;
662 local_irq_restore(flags);
667 #endif
669 #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
670 static void __drain_pages(unsigned int cpu)
672 unsigned long flags;
673 struct zone *zone;
674 int i;
676 for_each_zone(zone) {
677 struct per_cpu_pageset *pset;
679 pset = zone_pcp(zone, cpu);
680 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
681 struct per_cpu_pages *pcp;
683 pcp = &pset->pcp[i];
684 local_irq_save(flags);
685 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
686 pcp->count = 0;
687 local_irq_restore(flags);
691 #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
693 #ifdef CONFIG_PM
695 void mark_free_pages(struct zone *zone)
697 unsigned long zone_pfn, flags;
698 int order;
699 struct list_head *curr;
701 if (!zone->spanned_pages)
702 return;
704 spin_lock_irqsave(&zone->lock, flags);
705 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
706 ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
708 for (order = MAX_ORDER - 1; order >= 0; --order)
709 list_for_each(curr, &zone->free_area[order].free_list) {
710 unsigned long start_pfn, i;
712 start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
714 for (i=0; i < (1<<order); i++)
715 SetPageNosaveFree(pfn_to_page(start_pfn+i));
717 spin_unlock_irqrestore(&zone->lock, flags);
721 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
723 void drain_local_pages(void)
725 unsigned long flags;
727 local_irq_save(flags);
728 __drain_pages(smp_processor_id());
729 local_irq_restore(flags);
731 #endif /* CONFIG_PM */
734 * Free a 0-order page
736 static void fastcall free_hot_cold_page(struct page *page, int cold)
738 struct zone *zone = page_zone(page);
739 struct per_cpu_pages *pcp;
740 unsigned long flags;
742 arch_free_page(page, 0);
744 if (PageAnon(page))
745 page->mapping = NULL;
746 if (free_pages_check(page))
747 return;
749 kernel_map_pages(page, 1, 0);
751 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
752 local_irq_save(flags);
753 __count_vm_event(PGFREE);
754 list_add(&page->lru, &pcp->list);
755 pcp->count++;
756 if (pcp->count >= pcp->high) {
757 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
758 pcp->count -= pcp->batch;
760 local_irq_restore(flags);
761 put_cpu();
764 void fastcall free_hot_page(struct page *page)
766 free_hot_cold_page(page, 0);
769 void fastcall free_cold_page(struct page *page)
771 free_hot_cold_page(page, 1);
775 * split_page takes a non-compound higher-order page, and splits it into
776 * n (1<<order) sub-pages: page[0..n]
777 * Each sub-page must be freed individually.
779 * Note: this is probably too low level an operation for use in drivers.
780 * Please consult with lkml before using this in your driver.
782 void split_page(struct page *page, unsigned int order)
784 int i;
786 VM_BUG_ON(PageCompound(page));
787 VM_BUG_ON(!page_count(page));
788 for (i = 1; i < (1 << order); i++)
789 set_page_refcounted(page + i);
793 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
794 * we cheat by calling it from here, in the order > 0 path. Saves a branch
795 * or two.
797 static struct page *buffered_rmqueue(struct zonelist *zonelist,
798 struct zone *zone, int order, gfp_t gfp_flags)
800 unsigned long flags;
801 struct page *page;
802 int cold = !!(gfp_flags & __GFP_COLD);
803 int cpu;
805 again:
806 cpu = get_cpu();
807 if (likely(order == 0)) {
808 struct per_cpu_pages *pcp;
810 pcp = &zone_pcp(zone, cpu)->pcp[cold];
811 local_irq_save(flags);
812 if (!pcp->count) {
813 pcp->count += rmqueue_bulk(zone, 0,
814 pcp->batch, &pcp->list);
815 if (unlikely(!pcp->count))
816 goto failed;
818 page = list_entry(pcp->list.next, struct page, lru);
819 list_del(&page->lru);
820 pcp->count--;
821 } else {
822 spin_lock_irqsave(&zone->lock, flags);
823 page = __rmqueue(zone, order);
824 spin_unlock(&zone->lock);
825 if (!page)
826 goto failed;
829 __count_zone_vm_events(PGALLOC, zone, 1 << order);
830 zone_statistics(zonelist, zone);
831 local_irq_restore(flags);
832 put_cpu();
834 VM_BUG_ON(bad_range(zone, page));
835 if (prep_new_page(page, order, gfp_flags))
836 goto again;
837 return page;
839 failed:
840 local_irq_restore(flags);
841 put_cpu();
842 return NULL;
845 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
846 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
847 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
848 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
849 #define ALLOC_HARDER 0x10 /* try to alloc harder */
850 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
851 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
854 * Return 1 if free pages are above 'mark'. This takes into account the order
855 * of the allocation.
857 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
858 int classzone_idx, int alloc_flags)
860 /* free_pages my go negative - that's OK */
861 long min = mark, free_pages = z->free_pages - (1 << order) + 1;
862 int o;
864 if (alloc_flags & ALLOC_HIGH)
865 min -= min / 2;
866 if (alloc_flags & ALLOC_HARDER)
867 min -= min / 4;
869 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
870 return 0;
871 for (o = 0; o < order; o++) {
872 /* At the next order, this order's pages become unavailable */
873 free_pages -= z->free_area[o].nr_free << o;
875 /* Require fewer higher order pages to be free */
876 min >>= 1;
878 if (free_pages <= min)
879 return 0;
881 return 1;
885 * get_page_from_freeliest goes through the zonelist trying to allocate
886 * a page.
888 static struct page *
889 get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
890 struct zonelist *zonelist, int alloc_flags)
892 struct zone **z = zonelist->zones;
893 struct page *page = NULL;
894 int classzone_idx = zone_idx(*z);
895 struct zone *zone;
898 * Go through the zonelist once, looking for a zone with enough free.
899 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
901 do {
902 zone = *z;
903 if (unlikely((gfp_mask & __GFP_THISNODE) &&
904 zone->zone_pgdat != zonelist->zones[0]->zone_pgdat))
905 break;
906 if ((alloc_flags & ALLOC_CPUSET) &&
907 !cpuset_zone_allowed(zone, gfp_mask))
908 continue;
910 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
911 unsigned long mark;
912 if (alloc_flags & ALLOC_WMARK_MIN)
913 mark = zone->pages_min;
914 else if (alloc_flags & ALLOC_WMARK_LOW)
915 mark = zone->pages_low;
916 else
917 mark = zone->pages_high;
918 if (!zone_watermark_ok(zone , order, mark,
919 classzone_idx, alloc_flags))
920 if (!zone_reclaim_mode ||
921 !zone_reclaim(zone, gfp_mask, order))
922 continue;
925 page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
926 if (page) {
927 break;
929 } while (*(++z) != NULL);
930 return page;
934 * This is the 'heart' of the zoned buddy allocator.
936 struct page * fastcall
937 __alloc_pages(gfp_t gfp_mask, unsigned int order,
938 struct zonelist *zonelist)
940 const gfp_t wait = gfp_mask & __GFP_WAIT;
941 struct zone **z;
942 struct page *page;
943 struct reclaim_state reclaim_state;
944 struct task_struct *p = current;
945 int do_retry;
946 int alloc_flags;
947 int did_some_progress;
949 might_sleep_if(wait);
951 restart:
952 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
954 if (unlikely(*z == NULL)) {
955 /* Should this ever happen?? */
956 return NULL;
959 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
960 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
961 if (page)
962 goto got_pg;
964 do {
965 wakeup_kswapd(*z, order);
966 } while (*(++z));
969 * OK, we're below the kswapd watermark and have kicked background
970 * reclaim. Now things get more complex, so set up alloc_flags according
971 * to how we want to proceed.
973 * The caller may dip into page reserves a bit more if the caller
974 * cannot run direct reclaim, or if the caller has realtime scheduling
975 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
976 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
978 alloc_flags = ALLOC_WMARK_MIN;
979 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
980 alloc_flags |= ALLOC_HARDER;
981 if (gfp_mask & __GFP_HIGH)
982 alloc_flags |= ALLOC_HIGH;
983 if (wait)
984 alloc_flags |= ALLOC_CPUSET;
987 * Go through the zonelist again. Let __GFP_HIGH and allocations
988 * coming from realtime tasks go deeper into reserves.
990 * This is the last chance, in general, before the goto nopage.
991 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
992 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
994 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
995 if (page)
996 goto got_pg;
998 /* This allocation should allow future memory freeing. */
1000 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1001 && !in_interrupt()) {
1002 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1003 nofail_alloc:
1004 /* go through the zonelist yet again, ignoring mins */
1005 page = get_page_from_freelist(gfp_mask, order,
1006 zonelist, ALLOC_NO_WATERMARKS);
1007 if (page)
1008 goto got_pg;
1009 if (gfp_mask & __GFP_NOFAIL) {
1010 blk_congestion_wait(WRITE, HZ/50);
1011 goto nofail_alloc;
1014 goto nopage;
1017 /* Atomic allocations - we can't balance anything */
1018 if (!wait)
1019 goto nopage;
1021 rebalance:
1022 cond_resched();
1024 /* We now go into synchronous reclaim */
1025 cpuset_memory_pressure_bump();
1026 p->flags |= PF_MEMALLOC;
1027 reclaim_state.reclaimed_slab = 0;
1028 p->reclaim_state = &reclaim_state;
1030 did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
1032 p->reclaim_state = NULL;
1033 p->flags &= ~PF_MEMALLOC;
1035 cond_resched();
1037 if (likely(did_some_progress)) {
1038 page = get_page_from_freelist(gfp_mask, order,
1039 zonelist, alloc_flags);
1040 if (page)
1041 goto got_pg;
1042 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1044 * Go through the zonelist yet one more time, keep
1045 * very high watermark here, this is only to catch
1046 * a parallel oom killing, we must fail if we're still
1047 * under heavy pressure.
1049 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1050 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1051 if (page)
1052 goto got_pg;
1054 out_of_memory(zonelist, gfp_mask, order);
1055 goto restart;
1059 * Don't let big-order allocations loop unless the caller explicitly
1060 * requests that. Wait for some write requests to complete then retry.
1062 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1063 * <= 3, but that may not be true in other implementations.
1065 do_retry = 0;
1066 if (!(gfp_mask & __GFP_NORETRY)) {
1067 if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1068 do_retry = 1;
1069 if (gfp_mask & __GFP_NOFAIL)
1070 do_retry = 1;
1072 if (do_retry) {
1073 blk_congestion_wait(WRITE, HZ/50);
1074 goto rebalance;
1077 nopage:
1078 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1079 printk(KERN_WARNING "%s: page allocation failure."
1080 " order:%d, mode:0x%x\n",
1081 p->comm, order, gfp_mask);
1082 dump_stack();
1083 show_mem();
1085 got_pg:
1086 return page;
1089 EXPORT_SYMBOL(__alloc_pages);
1092 * Common helper functions.
1094 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1096 struct page * page;
1097 page = alloc_pages(gfp_mask, order);
1098 if (!page)
1099 return 0;
1100 return (unsigned long) page_address(page);
1103 EXPORT_SYMBOL(__get_free_pages);
1105 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1107 struct page * page;
1110 * get_zeroed_page() returns a 32-bit address, which cannot represent
1111 * a highmem page
1113 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1115 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1116 if (page)
1117 return (unsigned long) page_address(page);
1118 return 0;
1121 EXPORT_SYMBOL(get_zeroed_page);
1123 void __pagevec_free(struct pagevec *pvec)
1125 int i = pagevec_count(pvec);
1127 while (--i >= 0)
1128 free_hot_cold_page(pvec->pages[i], pvec->cold);
1131 fastcall void __free_pages(struct page *page, unsigned int order)
1133 if (put_page_testzero(page)) {
1134 if (order == 0)
1135 free_hot_page(page);
1136 else
1137 __free_pages_ok(page, order);
1141 EXPORT_SYMBOL(__free_pages);
1143 fastcall void free_pages(unsigned long addr, unsigned int order)
1145 if (addr != 0) {
1146 VM_BUG_ON(!virt_addr_valid((void *)addr));
1147 __free_pages(virt_to_page((void *)addr), order);
1151 EXPORT_SYMBOL(free_pages);
1154 * Total amount of free (allocatable) RAM:
1156 unsigned int nr_free_pages(void)
1158 unsigned int sum = 0;
1159 struct zone *zone;
1161 for_each_zone(zone)
1162 sum += zone->free_pages;
1164 return sum;
1167 EXPORT_SYMBOL(nr_free_pages);
1169 #ifdef CONFIG_NUMA
1170 unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1172 unsigned int sum = 0;
1173 enum zone_type i;
1175 for (i = 0; i < MAX_NR_ZONES; i++)
1176 sum += pgdat->node_zones[i].free_pages;
1178 return sum;
1180 #endif
1182 static unsigned int nr_free_zone_pages(int offset)
1184 /* Just pick one node, since fallback list is circular */
1185 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1186 unsigned int sum = 0;
1188 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1189 struct zone **zonep = zonelist->zones;
1190 struct zone *zone;
1192 for (zone = *zonep++; zone; zone = *zonep++) {
1193 unsigned long size = zone->present_pages;
1194 unsigned long high = zone->pages_high;
1195 if (size > high)
1196 sum += size - high;
1199 return sum;
1203 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1205 unsigned int nr_free_buffer_pages(void)
1207 return nr_free_zone_pages(gfp_zone(GFP_USER));
1211 * Amount of free RAM allocatable within all zones
1213 unsigned int nr_free_pagecache_pages(void)
1215 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1217 #ifdef CONFIG_NUMA
1218 static void show_node(struct zone *zone)
1220 printk("Node %ld ", zone_to_nid(zone));
1222 #else
1223 #define show_node(zone) do { } while (0)
1224 #endif
1226 void si_meminfo(struct sysinfo *val)
1228 val->totalram = totalram_pages;
1229 val->sharedram = 0;
1230 val->freeram = nr_free_pages();
1231 val->bufferram = nr_blockdev_pages();
1232 val->totalhigh = totalhigh_pages;
1233 val->freehigh = nr_free_highpages();
1234 val->mem_unit = PAGE_SIZE;
1237 EXPORT_SYMBOL(si_meminfo);
1239 #ifdef CONFIG_NUMA
1240 void si_meminfo_node(struct sysinfo *val, int nid)
1242 pg_data_t *pgdat = NODE_DATA(nid);
1244 val->totalram = pgdat->node_present_pages;
1245 val->freeram = nr_free_pages_pgdat(pgdat);
1246 #ifdef CONFIG_HIGHMEM
1247 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1248 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1249 #else
1250 val->totalhigh = 0;
1251 val->freehigh = 0;
1252 #endif
1253 val->mem_unit = PAGE_SIZE;
1255 #endif
1257 #define K(x) ((x) << (PAGE_SHIFT-10))
1260 * Show free area list (used inside shift_scroll-lock stuff)
1261 * We also calculate the percentage fragmentation. We do this by counting the
1262 * memory on each free list with the exception of the first item on the list.
1264 void show_free_areas(void)
1266 int cpu, temperature;
1267 unsigned long active;
1268 unsigned long inactive;
1269 unsigned long free;
1270 struct zone *zone;
1272 for_each_zone(zone) {
1273 show_node(zone);
1274 printk("%s per-cpu:", zone->name);
1276 if (!populated_zone(zone)) {
1277 printk(" empty\n");
1278 continue;
1279 } else
1280 printk("\n");
1282 for_each_online_cpu(cpu) {
1283 struct per_cpu_pageset *pageset;
1285 pageset = zone_pcp(zone, cpu);
1287 for (temperature = 0; temperature < 2; temperature++)
1288 printk("cpu %d %s: high %d, batch %d used:%d\n",
1289 cpu,
1290 temperature ? "cold" : "hot",
1291 pageset->pcp[temperature].high,
1292 pageset->pcp[temperature].batch,
1293 pageset->pcp[temperature].count);
1297 get_zone_counts(&active, &inactive, &free);
1299 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1300 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1301 active,
1302 inactive,
1303 global_page_state(NR_FILE_DIRTY),
1304 global_page_state(NR_WRITEBACK),
1305 global_page_state(NR_UNSTABLE_NFS),
1306 nr_free_pages(),
1307 global_page_state(NR_SLAB_RECLAIMABLE) +
1308 global_page_state(NR_SLAB_UNRECLAIMABLE),
1309 global_page_state(NR_FILE_MAPPED),
1310 global_page_state(NR_PAGETABLE));
1312 for_each_zone(zone) {
1313 int i;
1315 show_node(zone);
1316 printk("%s"
1317 " free:%lukB"
1318 " min:%lukB"
1319 " low:%lukB"
1320 " high:%lukB"
1321 " active:%lukB"
1322 " inactive:%lukB"
1323 " present:%lukB"
1324 " pages_scanned:%lu"
1325 " all_unreclaimable? %s"
1326 "\n",
1327 zone->name,
1328 K(zone->free_pages),
1329 K(zone->pages_min),
1330 K(zone->pages_low),
1331 K(zone->pages_high),
1332 K(zone->nr_active),
1333 K(zone->nr_inactive),
1334 K(zone->present_pages),
1335 zone->pages_scanned,
1336 (zone->all_unreclaimable ? "yes" : "no")
1338 printk("lowmem_reserve[]:");
1339 for (i = 0; i < MAX_NR_ZONES; i++)
1340 printk(" %lu", zone->lowmem_reserve[i]);
1341 printk("\n");
1344 for_each_zone(zone) {
1345 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1347 show_node(zone);
1348 printk("%s: ", zone->name);
1349 if (!populated_zone(zone)) {
1350 printk("empty\n");
1351 continue;
1354 spin_lock_irqsave(&zone->lock, flags);
1355 for (order = 0; order < MAX_ORDER; order++) {
1356 nr[order] = zone->free_area[order].nr_free;
1357 total += nr[order] << order;
1359 spin_unlock_irqrestore(&zone->lock, flags);
1360 for (order = 0; order < MAX_ORDER; order++)
1361 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1362 printk("= %lukB\n", K(total));
1365 show_swap_cache_info();
1369 * Builds allocation fallback zone lists.
1371 * Add all populated zones of a node to the zonelist.
1373 static int __meminit build_zonelists_node(pg_data_t *pgdat,
1374 struct zonelist *zonelist, int nr_zones, enum zone_type zone_type)
1376 struct zone *zone;
1378 BUG_ON(zone_type >= MAX_NR_ZONES);
1379 zone_type++;
1381 do {
1382 zone_type--;
1383 zone = pgdat->node_zones + zone_type;
1384 if (populated_zone(zone)) {
1385 zonelist->zones[nr_zones++] = zone;
1386 check_highest_zone(zone_type);
1389 } while (zone_type);
1390 return nr_zones;
1393 #ifdef CONFIG_NUMA
1394 #define MAX_NODE_LOAD (num_online_nodes())
1395 static int __meminitdata node_load[MAX_NUMNODES];
1397 * find_next_best_node - find the next node that should appear in a given node's fallback list
1398 * @node: node whose fallback list we're appending
1399 * @used_node_mask: nodemask_t of already used nodes
1401 * We use a number of factors to determine which is the next node that should
1402 * appear on a given node's fallback list. The node should not have appeared
1403 * already in @node's fallback list, and it should be the next closest node
1404 * according to the distance array (which contains arbitrary distance values
1405 * from each node to each node in the system), and should also prefer nodes
1406 * with no CPUs, since presumably they'll have very little allocation pressure
1407 * on them otherwise.
1408 * It returns -1 if no node is found.
1410 static int __meminit find_next_best_node(int node, nodemask_t *used_node_mask)
1412 int n, val;
1413 int min_val = INT_MAX;
1414 int best_node = -1;
1416 /* Use the local node if we haven't already */
1417 if (!node_isset(node, *used_node_mask)) {
1418 node_set(node, *used_node_mask);
1419 return node;
1422 for_each_online_node(n) {
1423 cpumask_t tmp;
1425 /* Don't want a node to appear more than once */
1426 if (node_isset(n, *used_node_mask))
1427 continue;
1429 /* Use the distance array to find the distance */
1430 val = node_distance(node, n);
1432 /* Penalize nodes under us ("prefer the next node") */
1433 val += (n < node);
1435 /* Give preference to headless and unused nodes */
1436 tmp = node_to_cpumask(n);
1437 if (!cpus_empty(tmp))
1438 val += PENALTY_FOR_NODE_WITH_CPUS;
1440 /* Slight preference for less loaded node */
1441 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1442 val += node_load[n];
1444 if (val < min_val) {
1445 min_val = val;
1446 best_node = n;
1450 if (best_node >= 0)
1451 node_set(best_node, *used_node_mask);
1453 return best_node;
1456 static void __meminit build_zonelists(pg_data_t *pgdat)
1458 int j, node, local_node;
1459 enum zone_type i;
1460 int prev_node, load;
1461 struct zonelist *zonelist;
1462 nodemask_t used_mask;
1464 /* initialize zonelists */
1465 for (i = 0; i < MAX_NR_ZONES; i++) {
1466 zonelist = pgdat->node_zonelists + i;
1467 zonelist->zones[0] = NULL;
1470 /* NUMA-aware ordering of nodes */
1471 local_node = pgdat->node_id;
1472 load = num_online_nodes();
1473 prev_node = local_node;
1474 nodes_clear(used_mask);
1475 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1476 int distance = node_distance(local_node, node);
1479 * If another node is sufficiently far away then it is better
1480 * to reclaim pages in a zone before going off node.
1482 if (distance > RECLAIM_DISTANCE)
1483 zone_reclaim_mode = 1;
1486 * We don't want to pressure a particular node.
1487 * So adding penalty to the first node in same
1488 * distance group to make it round-robin.
1491 if (distance != node_distance(local_node, prev_node))
1492 node_load[node] += load;
1493 prev_node = node;
1494 load--;
1495 for (i = 0; i < MAX_NR_ZONES; i++) {
1496 zonelist = pgdat->node_zonelists + i;
1497 for (j = 0; zonelist->zones[j] != NULL; j++);
1499 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1500 zonelist->zones[j] = NULL;
1505 #else /* CONFIG_NUMA */
1507 static void __meminit build_zonelists(pg_data_t *pgdat)
1509 int node, local_node;
1510 enum zone_type i,j;
1512 local_node = pgdat->node_id;
1513 for (i = 0; i < MAX_NR_ZONES; i++) {
1514 struct zonelist *zonelist;
1516 zonelist = pgdat->node_zonelists + i;
1518 j = build_zonelists_node(pgdat, zonelist, 0, i);
1520 * Now we build the zonelist so that it contains the zones
1521 * of all the other nodes.
1522 * We don't want to pressure a particular node, so when
1523 * building the zones for node N, we make sure that the
1524 * zones coming right after the local ones are those from
1525 * node N+1 (modulo N)
1527 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1528 if (!node_online(node))
1529 continue;
1530 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1532 for (node = 0; node < local_node; node++) {
1533 if (!node_online(node))
1534 continue;
1535 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1538 zonelist->zones[j] = NULL;
1542 #endif /* CONFIG_NUMA */
1544 /* return values int ....just for stop_machine_run() */
1545 static int __meminit __build_all_zonelists(void *dummy)
1547 int nid;
1548 for_each_online_node(nid)
1549 build_zonelists(NODE_DATA(nid));
1550 return 0;
1553 void __meminit build_all_zonelists(void)
1555 if (system_state == SYSTEM_BOOTING) {
1556 __build_all_zonelists(0);
1557 cpuset_init_current_mems_allowed();
1558 } else {
1559 /* we have to stop all cpus to guaranntee there is no user
1560 of zonelist */
1561 stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
1562 /* cpuset refresh routine should be here */
1564 vm_total_pages = nr_free_pagecache_pages();
1565 printk("Built %i zonelists. Total pages: %ld\n",
1566 num_online_nodes(), vm_total_pages);
1570 * Helper functions to size the waitqueue hash table.
1571 * Essentially these want to choose hash table sizes sufficiently
1572 * large so that collisions trying to wait on pages are rare.
1573 * But in fact, the number of active page waitqueues on typical
1574 * systems is ridiculously low, less than 200. So this is even
1575 * conservative, even though it seems large.
1577 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1578 * waitqueues, i.e. the size of the waitq table given the number of pages.
1580 #define PAGES_PER_WAITQUEUE 256
1582 #ifndef CONFIG_MEMORY_HOTPLUG
1583 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1585 unsigned long size = 1;
1587 pages /= PAGES_PER_WAITQUEUE;
1589 while (size < pages)
1590 size <<= 1;
1593 * Once we have dozens or even hundreds of threads sleeping
1594 * on IO we've got bigger problems than wait queue collision.
1595 * Limit the size of the wait table to a reasonable size.
1597 size = min(size, 4096UL);
1599 return max(size, 4UL);
1601 #else
1603 * A zone's size might be changed by hot-add, so it is not possible to determine
1604 * a suitable size for its wait_table. So we use the maximum size now.
1606 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
1608 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
1609 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
1610 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
1612 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
1613 * or more by the traditional way. (See above). It equals:
1615 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
1616 * ia64(16K page size) : = ( 8G + 4M)byte.
1617 * powerpc (64K page size) : = (32G +16M)byte.
1619 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1621 return 4096UL;
1623 #endif
1626 * This is an integer logarithm so that shifts can be used later
1627 * to extract the more random high bits from the multiplicative
1628 * hash function before the remainder is taken.
1630 static inline unsigned long wait_table_bits(unsigned long size)
1632 return ffz(~size);
1635 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1637 static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1638 unsigned long *zones_size, unsigned long *zholes_size)
1640 unsigned long realtotalpages, totalpages = 0;
1641 enum zone_type i;
1643 for (i = 0; i < MAX_NR_ZONES; i++)
1644 totalpages += zones_size[i];
1645 pgdat->node_spanned_pages = totalpages;
1647 realtotalpages = totalpages;
1648 if (zholes_size)
1649 for (i = 0; i < MAX_NR_ZONES; i++)
1650 realtotalpages -= zholes_size[i];
1651 pgdat->node_present_pages = realtotalpages;
1652 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1657 * Initially all pages are reserved - free ones are freed
1658 * up by free_all_bootmem() once the early boot process is
1659 * done. Non-atomic initialization, single-pass.
1661 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1662 unsigned long start_pfn)
1664 struct page *page;
1665 unsigned long end_pfn = start_pfn + size;
1666 unsigned long pfn;
1668 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1669 if (!early_pfn_valid(pfn))
1670 continue;
1671 page = pfn_to_page(pfn);
1672 set_page_links(page, zone, nid, pfn);
1673 init_page_count(page);
1674 reset_page_mapcount(page);
1675 SetPageReserved(page);
1676 INIT_LIST_HEAD(&page->lru);
1677 #ifdef WANT_PAGE_VIRTUAL
1678 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1679 if (!is_highmem_idx(zone))
1680 set_page_address(page, __va(pfn << PAGE_SHIFT));
1681 #endif
1685 void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1686 unsigned long size)
1688 int order;
1689 for (order = 0; order < MAX_ORDER ; order++) {
1690 INIT_LIST_HEAD(&zone->free_area[order].free_list);
1691 zone->free_area[order].nr_free = 0;
1695 #define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr)
1696 void zonetable_add(struct zone *zone, int nid, enum zone_type zid,
1697 unsigned long pfn, unsigned long size)
1699 unsigned long snum = pfn_to_section_nr(pfn);
1700 unsigned long end = pfn_to_section_nr(pfn + size);
1702 if (FLAGS_HAS_NODE)
1703 zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1704 else
1705 for (; snum <= end; snum++)
1706 zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1709 #ifndef __HAVE_ARCH_MEMMAP_INIT
1710 #define memmap_init(size, nid, zone, start_pfn) \
1711 memmap_init_zone((size), (nid), (zone), (start_pfn))
1712 #endif
1714 static int __cpuinit zone_batchsize(struct zone *zone)
1716 int batch;
1719 * The per-cpu-pages pools are set to around 1000th of the
1720 * size of the zone. But no more than 1/2 of a meg.
1722 * OK, so we don't know how big the cache is. So guess.
1724 batch = zone->present_pages / 1024;
1725 if (batch * PAGE_SIZE > 512 * 1024)
1726 batch = (512 * 1024) / PAGE_SIZE;
1727 batch /= 4; /* We effectively *= 4 below */
1728 if (batch < 1)
1729 batch = 1;
1732 * Clamp the batch to a 2^n - 1 value. Having a power
1733 * of 2 value was found to be more likely to have
1734 * suboptimal cache aliasing properties in some cases.
1736 * For example if 2 tasks are alternately allocating
1737 * batches of pages, one task can end up with a lot
1738 * of pages of one half of the possible page colors
1739 * and the other with pages of the other colors.
1741 batch = (1 << (fls(batch + batch/2)-1)) - 1;
1743 return batch;
1746 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1748 struct per_cpu_pages *pcp;
1750 memset(p, 0, sizeof(*p));
1752 pcp = &p->pcp[0]; /* hot */
1753 pcp->count = 0;
1754 pcp->high = 6 * batch;
1755 pcp->batch = max(1UL, 1 * batch);
1756 INIT_LIST_HEAD(&pcp->list);
1758 pcp = &p->pcp[1]; /* cold*/
1759 pcp->count = 0;
1760 pcp->high = 2 * batch;
1761 pcp->batch = max(1UL, batch/2);
1762 INIT_LIST_HEAD(&pcp->list);
1766 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
1767 * to the value high for the pageset p.
1770 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
1771 unsigned long high)
1773 struct per_cpu_pages *pcp;
1775 pcp = &p->pcp[0]; /* hot list */
1776 pcp->high = high;
1777 pcp->batch = max(1UL, high/4);
1778 if ((high/4) > (PAGE_SHIFT * 8))
1779 pcp->batch = PAGE_SHIFT * 8;
1783 #ifdef CONFIG_NUMA
1785 * Boot pageset table. One per cpu which is going to be used for all
1786 * zones and all nodes. The parameters will be set in such a way
1787 * that an item put on a list will immediately be handed over to
1788 * the buddy list. This is safe since pageset manipulation is done
1789 * with interrupts disabled.
1791 * Some NUMA counter updates may also be caught by the boot pagesets.
1793 * The boot_pagesets must be kept even after bootup is complete for
1794 * unused processors and/or zones. They do play a role for bootstrapping
1795 * hotplugged processors.
1797 * zoneinfo_show() and maybe other functions do
1798 * not check if the processor is online before following the pageset pointer.
1799 * Other parts of the kernel may not check if the zone is available.
1801 static struct per_cpu_pageset boot_pageset[NR_CPUS];
1804 * Dynamically allocate memory for the
1805 * per cpu pageset array in struct zone.
1807 static int __cpuinit process_zones(int cpu)
1809 struct zone *zone, *dzone;
1811 for_each_zone(zone) {
1813 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
1814 GFP_KERNEL, cpu_to_node(cpu));
1815 if (!zone_pcp(zone, cpu))
1816 goto bad;
1818 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
1820 if (percpu_pagelist_fraction)
1821 setup_pagelist_highmark(zone_pcp(zone, cpu),
1822 (zone->present_pages / percpu_pagelist_fraction));
1825 return 0;
1826 bad:
1827 for_each_zone(dzone) {
1828 if (dzone == zone)
1829 break;
1830 kfree(zone_pcp(dzone, cpu));
1831 zone_pcp(dzone, cpu) = NULL;
1833 return -ENOMEM;
1836 static inline void free_zone_pagesets(int cpu)
1838 struct zone *zone;
1840 for_each_zone(zone) {
1841 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1843 /* Free per_cpu_pageset if it is slab allocated */
1844 if (pset != &boot_pageset[cpu])
1845 kfree(pset);
1846 zone_pcp(zone, cpu) = NULL;
1850 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
1851 unsigned long action,
1852 void *hcpu)
1854 int cpu = (long)hcpu;
1855 int ret = NOTIFY_OK;
1857 switch (action) {
1858 case CPU_UP_PREPARE:
1859 if (process_zones(cpu))
1860 ret = NOTIFY_BAD;
1861 break;
1862 case CPU_UP_CANCELED:
1863 case CPU_DEAD:
1864 free_zone_pagesets(cpu);
1865 break;
1866 default:
1867 break;
1869 return ret;
1872 static struct notifier_block __cpuinitdata pageset_notifier =
1873 { &pageset_cpuup_callback, NULL, 0 };
1875 void __init setup_per_cpu_pageset(void)
1877 int err;
1879 /* Initialize per_cpu_pageset for cpu 0.
1880 * A cpuup callback will do this for every cpu
1881 * as it comes online
1883 err = process_zones(smp_processor_id());
1884 BUG_ON(err);
1885 register_cpu_notifier(&pageset_notifier);
1888 #endif
1890 static __meminit
1891 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
1893 int i;
1894 struct pglist_data *pgdat = zone->zone_pgdat;
1895 size_t alloc_size;
1898 * The per-page waitqueue mechanism uses hashed waitqueues
1899 * per zone.
1901 zone->wait_table_hash_nr_entries =
1902 wait_table_hash_nr_entries(zone_size_pages);
1903 zone->wait_table_bits =
1904 wait_table_bits(zone->wait_table_hash_nr_entries);
1905 alloc_size = zone->wait_table_hash_nr_entries
1906 * sizeof(wait_queue_head_t);
1908 if (system_state == SYSTEM_BOOTING) {
1909 zone->wait_table = (wait_queue_head_t *)
1910 alloc_bootmem_node(pgdat, alloc_size);
1911 } else {
1913 * This case means that a zone whose size was 0 gets new memory
1914 * via memory hot-add.
1915 * But it may be the case that a new node was hot-added. In
1916 * this case vmalloc() will not be able to use this new node's
1917 * memory - this wait_table must be initialized to use this new
1918 * node itself as well.
1919 * To use this new node's memory, further consideration will be
1920 * necessary.
1922 zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size);
1924 if (!zone->wait_table)
1925 return -ENOMEM;
1927 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
1928 init_waitqueue_head(zone->wait_table + i);
1930 return 0;
1933 static __meminit void zone_pcp_init(struct zone *zone)
1935 int cpu;
1936 unsigned long batch = zone_batchsize(zone);
1938 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1939 #ifdef CONFIG_NUMA
1940 /* Early boot. Slab allocator not functional yet */
1941 zone_pcp(zone, cpu) = &boot_pageset[cpu];
1942 setup_pageset(&boot_pageset[cpu],0);
1943 #else
1944 setup_pageset(zone_pcp(zone,cpu), batch);
1945 #endif
1947 if (zone->present_pages)
1948 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
1949 zone->name, zone->present_pages, batch);
1952 __meminit int init_currently_empty_zone(struct zone *zone,
1953 unsigned long zone_start_pfn,
1954 unsigned long size)
1956 struct pglist_data *pgdat = zone->zone_pgdat;
1957 int ret;
1958 ret = zone_wait_table_init(zone, size);
1959 if (ret)
1960 return ret;
1961 pgdat->nr_zones = zone_idx(zone) + 1;
1963 zone->zone_start_pfn = zone_start_pfn;
1965 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
1967 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
1969 return 0;
1973 * Set up the zone data structures:
1974 * - mark all pages reserved
1975 * - mark all memory queues empty
1976 * - clear the memory bitmaps
1978 static void __meminit free_area_init_core(struct pglist_data *pgdat,
1979 unsigned long *zones_size, unsigned long *zholes_size)
1981 enum zone_type j;
1982 int nid = pgdat->node_id;
1983 unsigned long zone_start_pfn = pgdat->node_start_pfn;
1984 int ret;
1986 pgdat_resize_init(pgdat);
1987 pgdat->nr_zones = 0;
1988 init_waitqueue_head(&pgdat->kswapd_wait);
1989 pgdat->kswapd_max_order = 0;
1991 for (j = 0; j < MAX_NR_ZONES; j++) {
1992 struct zone *zone = pgdat->node_zones + j;
1993 unsigned long size, realsize;
1995 realsize = size = zones_size[j];
1996 if (zholes_size)
1997 realsize -= zholes_size[j];
1999 if (!is_highmem_idx(j))
2000 nr_kernel_pages += realsize;
2001 nr_all_pages += realsize;
2003 zone->spanned_pages = size;
2004 zone->present_pages = realsize;
2005 #ifdef CONFIG_NUMA
2006 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
2007 / 100;
2008 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
2009 #endif
2010 zone->name = zone_names[j];
2011 spin_lock_init(&zone->lock);
2012 spin_lock_init(&zone->lru_lock);
2013 zone_seqlock_init(zone);
2014 zone->zone_pgdat = pgdat;
2015 zone->free_pages = 0;
2017 zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
2019 zone_pcp_init(zone);
2020 INIT_LIST_HEAD(&zone->active_list);
2021 INIT_LIST_HEAD(&zone->inactive_list);
2022 zone->nr_scan_active = 0;
2023 zone->nr_scan_inactive = 0;
2024 zone->nr_active = 0;
2025 zone->nr_inactive = 0;
2026 zap_zone_vm_stats(zone);
2027 atomic_set(&zone->reclaim_in_progress, 0);
2028 if (!size)
2029 continue;
2031 zonetable_add(zone, nid, j, zone_start_pfn, size);
2032 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
2033 BUG_ON(ret);
2034 zone_start_pfn += size;
2038 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2040 /* Skip empty nodes */
2041 if (!pgdat->node_spanned_pages)
2042 return;
2044 #ifdef CONFIG_FLAT_NODE_MEM_MAP
2045 /* ia64 gets its own node_mem_map, before this, without bootmem */
2046 if (!pgdat->node_mem_map) {
2047 unsigned long size, start, end;
2048 struct page *map;
2051 * The zone's endpoints aren't required to be MAX_ORDER
2052 * aligned but the node_mem_map endpoints must be in order
2053 * for the buddy allocator to function correctly.
2055 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
2056 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
2057 end = ALIGN(end, MAX_ORDER_NR_PAGES);
2058 size = (end - start) * sizeof(struct page);
2059 map = alloc_remap(pgdat->node_id, size);
2060 if (!map)
2061 map = alloc_bootmem_node(pgdat, size);
2062 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
2064 #ifdef CONFIG_FLATMEM
2066 * With no DISCONTIG, the global mem_map is just set as node 0's
2068 if (pgdat == NODE_DATA(0))
2069 mem_map = NODE_DATA(0)->node_mem_map;
2070 #endif
2071 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
2074 void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
2075 unsigned long *zones_size, unsigned long node_start_pfn,
2076 unsigned long *zholes_size)
2078 pgdat->node_id = nid;
2079 pgdat->node_start_pfn = node_start_pfn;
2080 calculate_zone_totalpages(pgdat, zones_size, zholes_size);
2082 alloc_node_mem_map(pgdat);
2084 free_area_init_core(pgdat, zones_size, zholes_size);
2087 #ifndef CONFIG_NEED_MULTIPLE_NODES
2088 static bootmem_data_t contig_bootmem_data;
2089 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2091 EXPORT_SYMBOL(contig_page_data);
2092 #endif
2094 void __init free_area_init(unsigned long *zones_size)
2096 free_area_init_node(0, NODE_DATA(0), zones_size,
2097 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2100 #ifdef CONFIG_HOTPLUG_CPU
2101 static int page_alloc_cpu_notify(struct notifier_block *self,
2102 unsigned long action, void *hcpu)
2104 int cpu = (unsigned long)hcpu;
2106 if (action == CPU_DEAD) {
2107 local_irq_disable();
2108 __drain_pages(cpu);
2109 vm_events_fold_cpu(cpu);
2110 local_irq_enable();
2111 refresh_cpu_vm_stats(cpu);
2113 return NOTIFY_OK;
2115 #endif /* CONFIG_HOTPLUG_CPU */
2117 void __init page_alloc_init(void)
2119 hotcpu_notifier(page_alloc_cpu_notify, 0);
2123 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
2124 * or min_free_kbytes changes.
2126 static void calculate_totalreserve_pages(void)
2128 struct pglist_data *pgdat;
2129 unsigned long reserve_pages = 0;
2130 enum zone_type i, j;
2132 for_each_online_pgdat(pgdat) {
2133 for (i = 0; i < MAX_NR_ZONES; i++) {
2134 struct zone *zone = pgdat->node_zones + i;
2135 unsigned long max = 0;
2137 /* Find valid and maximum lowmem_reserve in the zone */
2138 for (j = i; j < MAX_NR_ZONES; j++) {
2139 if (zone->lowmem_reserve[j] > max)
2140 max = zone->lowmem_reserve[j];
2143 /* we treat pages_high as reserved pages. */
2144 max += zone->pages_high;
2146 if (max > zone->present_pages)
2147 max = zone->present_pages;
2148 reserve_pages += max;
2151 totalreserve_pages = reserve_pages;
2155 * setup_per_zone_lowmem_reserve - called whenever
2156 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
2157 * has a correct pages reserved value, so an adequate number of
2158 * pages are left in the zone after a successful __alloc_pages().
2160 static void setup_per_zone_lowmem_reserve(void)
2162 struct pglist_data *pgdat;
2163 enum zone_type j, idx;
2165 for_each_online_pgdat(pgdat) {
2166 for (j = 0; j < MAX_NR_ZONES; j++) {
2167 struct zone *zone = pgdat->node_zones + j;
2168 unsigned long present_pages = zone->present_pages;
2170 zone->lowmem_reserve[j] = 0;
2172 idx = j;
2173 while (idx) {
2174 struct zone *lower_zone;
2176 idx--;
2178 if (sysctl_lowmem_reserve_ratio[idx] < 1)
2179 sysctl_lowmem_reserve_ratio[idx] = 1;
2181 lower_zone = pgdat->node_zones + idx;
2182 lower_zone->lowmem_reserve[j] = present_pages /
2183 sysctl_lowmem_reserve_ratio[idx];
2184 present_pages += lower_zone->present_pages;
2189 /* update totalreserve_pages */
2190 calculate_totalreserve_pages();
2194 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
2195 * that the pages_{min,low,high} values for each zone are set correctly
2196 * with respect to min_free_kbytes.
2198 void setup_per_zone_pages_min(void)
2200 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2201 unsigned long lowmem_pages = 0;
2202 struct zone *zone;
2203 unsigned long flags;
2205 /* Calculate total number of !ZONE_HIGHMEM pages */
2206 for_each_zone(zone) {
2207 if (!is_highmem(zone))
2208 lowmem_pages += zone->present_pages;
2211 for_each_zone(zone) {
2212 u64 tmp;
2214 spin_lock_irqsave(&zone->lru_lock, flags);
2215 tmp = (u64)pages_min * zone->present_pages;
2216 do_div(tmp, lowmem_pages);
2217 if (is_highmem(zone)) {
2219 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
2220 * need highmem pages, so cap pages_min to a small
2221 * value here.
2223 * The (pages_high-pages_low) and (pages_low-pages_min)
2224 * deltas controls asynch page reclaim, and so should
2225 * not be capped for highmem.
2227 int min_pages;
2229 min_pages = zone->present_pages / 1024;
2230 if (min_pages < SWAP_CLUSTER_MAX)
2231 min_pages = SWAP_CLUSTER_MAX;
2232 if (min_pages > 128)
2233 min_pages = 128;
2234 zone->pages_min = min_pages;
2235 } else {
2237 * If it's a lowmem zone, reserve a number of pages
2238 * proportionate to the zone's size.
2240 zone->pages_min = tmp;
2243 zone->pages_low = zone->pages_min + (tmp >> 2);
2244 zone->pages_high = zone->pages_min + (tmp >> 1);
2245 spin_unlock_irqrestore(&zone->lru_lock, flags);
2248 /* update totalreserve_pages */
2249 calculate_totalreserve_pages();
2253 * Initialise min_free_kbytes.
2255 * For small machines we want it small (128k min). For large machines
2256 * we want it large (64MB max). But it is not linear, because network
2257 * bandwidth does not increase linearly with machine size. We use
2259 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2260 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
2262 * which yields
2264 * 16MB: 512k
2265 * 32MB: 724k
2266 * 64MB: 1024k
2267 * 128MB: 1448k
2268 * 256MB: 2048k
2269 * 512MB: 2896k
2270 * 1024MB: 4096k
2271 * 2048MB: 5792k
2272 * 4096MB: 8192k
2273 * 8192MB: 11584k
2274 * 16384MB: 16384k
2276 static int __init init_per_zone_pages_min(void)
2278 unsigned long lowmem_kbytes;
2280 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2282 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2283 if (min_free_kbytes < 128)
2284 min_free_kbytes = 128;
2285 if (min_free_kbytes > 65536)
2286 min_free_kbytes = 65536;
2287 setup_per_zone_pages_min();
2288 setup_per_zone_lowmem_reserve();
2289 return 0;
2291 module_init(init_per_zone_pages_min)
2294 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2295 * that we can call two helper functions whenever min_free_kbytes
2296 * changes.
2298 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2299 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2301 proc_dointvec(table, write, file, buffer, length, ppos);
2302 setup_per_zone_pages_min();
2303 return 0;
2306 #ifdef CONFIG_NUMA
2307 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
2308 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2310 struct zone *zone;
2311 int rc;
2313 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2314 if (rc)
2315 return rc;
2317 for_each_zone(zone)
2318 zone->min_unmapped_pages = (zone->present_pages *
2319 sysctl_min_unmapped_ratio) / 100;
2320 return 0;
2323 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
2324 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2326 struct zone *zone;
2327 int rc;
2329 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2330 if (rc)
2331 return rc;
2333 for_each_zone(zone)
2334 zone->min_slab_pages = (zone->present_pages *
2335 sysctl_min_slab_ratio) / 100;
2336 return 0;
2338 #endif
2341 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2342 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2343 * whenever sysctl_lowmem_reserve_ratio changes.
2345 * The reserve ratio obviously has absolutely no relation with the
2346 * pages_min watermarks. The lowmem reserve ratio can only make sense
2347 * if in function of the boot time zone sizes.
2349 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2350 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2352 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2353 setup_per_zone_lowmem_reserve();
2354 return 0;
2358 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
2359 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
2360 * can have before it gets flushed back to buddy allocator.
2363 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
2364 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2366 struct zone *zone;
2367 unsigned int cpu;
2368 int ret;
2370 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2371 if (!write || (ret == -EINVAL))
2372 return ret;
2373 for_each_zone(zone) {
2374 for_each_online_cpu(cpu) {
2375 unsigned long high;
2376 high = zone->present_pages / percpu_pagelist_fraction;
2377 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
2380 return 0;
2383 int hashdist = HASHDIST_DEFAULT;
2385 #ifdef CONFIG_NUMA
2386 static int __init set_hashdist(char *str)
2388 if (!str)
2389 return 0;
2390 hashdist = simple_strtoul(str, &str, 0);
2391 return 1;
2393 __setup("hashdist=", set_hashdist);
2394 #endif
2397 * allocate a large system hash table from bootmem
2398 * - it is assumed that the hash table must contain an exact power-of-2
2399 * quantity of entries
2400 * - limit is the number of hash buckets, not the total allocation size
2402 void *__init alloc_large_system_hash(const char *tablename,
2403 unsigned long bucketsize,
2404 unsigned long numentries,
2405 int scale,
2406 int flags,
2407 unsigned int *_hash_shift,
2408 unsigned int *_hash_mask,
2409 unsigned long limit)
2411 unsigned long long max = limit;
2412 unsigned long log2qty, size;
2413 void *table = NULL;
2415 /* allow the kernel cmdline to have a say */
2416 if (!numentries) {
2417 /* round applicable memory size up to nearest megabyte */
2418 numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2419 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2420 numentries >>= 20 - PAGE_SHIFT;
2421 numentries <<= 20 - PAGE_SHIFT;
2423 /* limit to 1 bucket per 2^scale bytes of low memory */
2424 if (scale > PAGE_SHIFT)
2425 numentries >>= (scale - PAGE_SHIFT);
2426 else
2427 numentries <<= (PAGE_SHIFT - scale);
2429 numentries = roundup_pow_of_two(numentries);
2431 /* limit allocation size to 1/16 total memory by default */
2432 if (max == 0) {
2433 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2434 do_div(max, bucketsize);
2437 if (numentries > max)
2438 numentries = max;
2440 log2qty = long_log2(numentries);
2442 do {
2443 size = bucketsize << log2qty;
2444 if (flags & HASH_EARLY)
2445 table = alloc_bootmem(size);
2446 else if (hashdist)
2447 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2448 else {
2449 unsigned long order;
2450 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2452 table = (void*) __get_free_pages(GFP_ATOMIC, order);
2454 } while (!table && size > PAGE_SIZE && --log2qty);
2456 if (!table)
2457 panic("Failed to allocate %s hash table\n", tablename);
2459 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2460 tablename,
2461 (1U << log2qty),
2462 long_log2(size) - PAGE_SHIFT,
2463 size);
2465 if (_hash_shift)
2466 *_hash_shift = log2qty;
2467 if (_hash_mask)
2468 *_hash_mask = (1 << log2qty) - 1;
2470 return table;
2473 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
2474 struct page *pfn_to_page(unsigned long pfn)
2476 return __pfn_to_page(pfn);
2478 unsigned long page_to_pfn(struct page *page)
2480 return __page_to_pfn(page);
2482 EXPORT_SYMBOL(pfn_to_page);
2483 EXPORT_SYMBOL(page_to_pfn);
2484 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */