powerpc/4xx: Add missing USB and i2c devices to Canyonlands
[linux-2.6/mini2440.git] / drivers / acpi / processor_idle.c
blob7bc22a471fe36c384647c5adff2bd3eaf10dd930
1 /*
2 * processor_idle - idle state submodule to the ACPI processor driver
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8 * - Added processor hotplug support
9 * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10 * - Added support for C3 on SMP
12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or (at
17 * your option) any later version.
19 * This program is distributed in the hope that it will be useful, but
20 * WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22 * General Public License for more details.
24 * You should have received a copy of the GNU General Public License along
25 * with this program; if not, write to the Free Software Foundation, Inc.,
26 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
28 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h> /* need_resched() */
41 #include <linux/pm_qos_params.h>
42 #include <linux/clockchips.h>
43 #include <linux/cpuidle.h>
44 #include <linux/irqflags.h>
47 * Include the apic definitions for x86 to have the APIC timer related defines
48 * available also for UP (on SMP it gets magically included via linux/smp.h).
49 * asm/acpi.h is not an option, as it would require more include magic. Also
50 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
52 #ifdef CONFIG_X86
53 #include <asm/apic.h>
54 #endif
56 #include <asm/io.h>
57 #include <asm/uaccess.h>
59 #include <acpi/acpi_bus.h>
60 #include <acpi/processor.h>
61 #include <asm/processor.h>
63 #define ACPI_PROCESSOR_CLASS "processor"
64 #define _COMPONENT ACPI_PROCESSOR_COMPONENT
65 ACPI_MODULE_NAME("processor_idle");
66 #define ACPI_PROCESSOR_FILE_POWER "power"
67 #define US_TO_PM_TIMER_TICKS(t) ((t * (PM_TIMER_FREQUENCY/1000)) / 1000)
68 #define PM_TIMER_TICK_NS (1000000000ULL/PM_TIMER_FREQUENCY)
69 #define C2_OVERHEAD 1 /* 1us */
70 #define C3_OVERHEAD 1 /* 1us */
71 #define PM_TIMER_TICKS_TO_US(p) (((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
73 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
74 module_param(max_cstate, uint, 0000);
75 static unsigned int nocst __read_mostly;
76 module_param(nocst, uint, 0000);
78 static unsigned int latency_factor __read_mostly = 2;
79 module_param(latency_factor, uint, 0644);
82 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
83 * For now disable this. Probably a bug somewhere else.
85 * To skip this limit, boot/load with a large max_cstate limit.
87 static int set_max_cstate(const struct dmi_system_id *id)
89 if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
90 return 0;
92 printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
93 " Override with \"processor.max_cstate=%d\"\n", id->ident,
94 (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
96 max_cstate = (long)id->driver_data;
98 return 0;
101 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
102 callers to only run once -AK */
103 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
104 { set_max_cstate, "IBM ThinkPad R40e", {
105 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
106 DMI_MATCH(DMI_BIOS_VERSION,"1SET70WW")}, (void *)1},
107 { set_max_cstate, "IBM ThinkPad R40e", {
108 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
109 DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW")}, (void *)1},
110 { set_max_cstate, "IBM ThinkPad R40e", {
111 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
112 DMI_MATCH(DMI_BIOS_VERSION,"1SET43WW") }, (void*)1},
113 { set_max_cstate, "IBM ThinkPad R40e", {
114 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
115 DMI_MATCH(DMI_BIOS_VERSION,"1SET45WW") }, (void*)1},
116 { set_max_cstate, "IBM ThinkPad R40e", {
117 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
118 DMI_MATCH(DMI_BIOS_VERSION,"1SET47WW") }, (void*)1},
119 { set_max_cstate, "IBM ThinkPad R40e", {
120 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
121 DMI_MATCH(DMI_BIOS_VERSION,"1SET50WW") }, (void*)1},
122 { set_max_cstate, "IBM ThinkPad R40e", {
123 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
124 DMI_MATCH(DMI_BIOS_VERSION,"1SET52WW") }, (void*)1},
125 { set_max_cstate, "IBM ThinkPad R40e", {
126 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
127 DMI_MATCH(DMI_BIOS_VERSION,"1SET55WW") }, (void*)1},
128 { set_max_cstate, "IBM ThinkPad R40e", {
129 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
130 DMI_MATCH(DMI_BIOS_VERSION,"1SET56WW") }, (void*)1},
131 { set_max_cstate, "IBM ThinkPad R40e", {
132 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
133 DMI_MATCH(DMI_BIOS_VERSION,"1SET59WW") }, (void*)1},
134 { set_max_cstate, "IBM ThinkPad R40e", {
135 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
136 DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW") }, (void*)1},
137 { set_max_cstate, "IBM ThinkPad R40e", {
138 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
139 DMI_MATCH(DMI_BIOS_VERSION,"1SET61WW") }, (void*)1},
140 { set_max_cstate, "IBM ThinkPad R40e", {
141 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
142 DMI_MATCH(DMI_BIOS_VERSION,"1SET62WW") }, (void*)1},
143 { set_max_cstate, "IBM ThinkPad R40e", {
144 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
145 DMI_MATCH(DMI_BIOS_VERSION,"1SET64WW") }, (void*)1},
146 { set_max_cstate, "IBM ThinkPad R40e", {
147 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
148 DMI_MATCH(DMI_BIOS_VERSION,"1SET65WW") }, (void*)1},
149 { set_max_cstate, "IBM ThinkPad R40e", {
150 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
151 DMI_MATCH(DMI_BIOS_VERSION,"1SET68WW") }, (void*)1},
152 { set_max_cstate, "Medion 41700", {
153 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
154 DMI_MATCH(DMI_BIOS_VERSION,"R01-A1J")}, (void *)1},
155 { set_max_cstate, "Clevo 5600D", {
156 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
157 DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
158 (void *)2},
162 static inline u32 ticks_elapsed(u32 t1, u32 t2)
164 if (t2 >= t1)
165 return (t2 - t1);
166 else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER))
167 return (((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
168 else
169 return ((0xFFFFFFFF - t1) + t2);
172 static inline u32 ticks_elapsed_in_us(u32 t1, u32 t2)
174 if (t2 >= t1)
175 return PM_TIMER_TICKS_TO_US(t2 - t1);
176 else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER))
177 return PM_TIMER_TICKS_TO_US(((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
178 else
179 return PM_TIMER_TICKS_TO_US((0xFFFFFFFF - t1) + t2);
183 * Callers should disable interrupts before the call and enable
184 * interrupts after return.
186 static void acpi_safe_halt(void)
188 current_thread_info()->status &= ~TS_POLLING;
190 * TS_POLLING-cleared state must be visible before we
191 * test NEED_RESCHED:
193 smp_mb();
194 if (!need_resched()) {
195 safe_halt();
196 local_irq_disable();
198 current_thread_info()->status |= TS_POLLING;
201 #ifdef ARCH_APICTIMER_STOPS_ON_C3
204 * Some BIOS implementations switch to C3 in the published C2 state.
205 * This seems to be a common problem on AMD boxen, but other vendors
206 * are affected too. We pick the most conservative approach: we assume
207 * that the local APIC stops in both C2 and C3.
209 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
210 struct acpi_processor_cx *cx)
212 struct acpi_processor_power *pwr = &pr->power;
213 u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
216 * Check, if one of the previous states already marked the lapic
217 * unstable
219 if (pwr->timer_broadcast_on_state < state)
220 return;
222 if (cx->type >= type)
223 pr->power.timer_broadcast_on_state = state;
226 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr)
228 unsigned long reason;
230 reason = pr->power.timer_broadcast_on_state < INT_MAX ?
231 CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
233 clockevents_notify(reason, &pr->id);
236 /* Power(C) State timer broadcast control */
237 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
238 struct acpi_processor_cx *cx,
239 int broadcast)
241 int state = cx - pr->power.states;
243 if (state >= pr->power.timer_broadcast_on_state) {
244 unsigned long reason;
246 reason = broadcast ? CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
247 CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
248 clockevents_notify(reason, &pr->id);
252 #else
254 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
255 struct acpi_processor_cx *cstate) { }
256 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr) { }
257 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
258 struct acpi_processor_cx *cx,
259 int broadcast)
263 #endif
266 * Suspend / resume control
268 static int acpi_idle_suspend;
270 int acpi_processor_suspend(struct acpi_device * device, pm_message_t state)
272 acpi_idle_suspend = 1;
273 return 0;
276 int acpi_processor_resume(struct acpi_device * device)
278 acpi_idle_suspend = 0;
279 return 0;
282 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
283 static int tsc_halts_in_c(int state)
285 switch (boot_cpu_data.x86_vendor) {
286 case X86_VENDOR_AMD:
287 case X86_VENDOR_INTEL:
289 * AMD Fam10h TSC will tick in all
290 * C/P/S0/S1 states when this bit is set.
292 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
293 return 0;
295 /*FALL THROUGH*/
296 default:
297 return state > ACPI_STATE_C1;
300 #endif
302 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
305 if (!pr)
306 return -EINVAL;
308 if (!pr->pblk)
309 return -ENODEV;
311 /* if info is obtained from pblk/fadt, type equals state */
312 pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
313 pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
315 #ifndef CONFIG_HOTPLUG_CPU
317 * Check for P_LVL2_UP flag before entering C2 and above on
318 * an SMP system.
320 if ((num_online_cpus() > 1) &&
321 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
322 return -ENODEV;
323 #endif
325 /* determine C2 and C3 address from pblk */
326 pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
327 pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
329 /* determine latencies from FADT */
330 pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
331 pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
333 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
334 "lvl2[0x%08x] lvl3[0x%08x]\n",
335 pr->power.states[ACPI_STATE_C2].address,
336 pr->power.states[ACPI_STATE_C3].address));
338 return 0;
341 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
343 if (!pr->power.states[ACPI_STATE_C1].valid) {
344 /* set the first C-State to C1 */
345 /* all processors need to support C1 */
346 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
347 pr->power.states[ACPI_STATE_C1].valid = 1;
348 pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
350 /* the C0 state only exists as a filler in our array */
351 pr->power.states[ACPI_STATE_C0].valid = 1;
352 return 0;
355 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
357 acpi_status status = 0;
358 acpi_integer count;
359 int current_count;
360 int i;
361 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
362 union acpi_object *cst;
365 if (nocst)
366 return -ENODEV;
368 current_count = 0;
370 status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
371 if (ACPI_FAILURE(status)) {
372 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
373 return -ENODEV;
376 cst = buffer.pointer;
378 /* There must be at least 2 elements */
379 if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
380 printk(KERN_ERR PREFIX "not enough elements in _CST\n");
381 status = -EFAULT;
382 goto end;
385 count = cst->package.elements[0].integer.value;
387 /* Validate number of power states. */
388 if (count < 1 || count != cst->package.count - 1) {
389 printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
390 status = -EFAULT;
391 goto end;
394 /* Tell driver that at least _CST is supported. */
395 pr->flags.has_cst = 1;
397 for (i = 1; i <= count; i++) {
398 union acpi_object *element;
399 union acpi_object *obj;
400 struct acpi_power_register *reg;
401 struct acpi_processor_cx cx;
403 memset(&cx, 0, sizeof(cx));
405 element = &(cst->package.elements[i]);
406 if (element->type != ACPI_TYPE_PACKAGE)
407 continue;
409 if (element->package.count != 4)
410 continue;
412 obj = &(element->package.elements[0]);
414 if (obj->type != ACPI_TYPE_BUFFER)
415 continue;
417 reg = (struct acpi_power_register *)obj->buffer.pointer;
419 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
420 (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
421 continue;
423 /* There should be an easy way to extract an integer... */
424 obj = &(element->package.elements[1]);
425 if (obj->type != ACPI_TYPE_INTEGER)
426 continue;
428 cx.type = obj->integer.value;
430 * Some buggy BIOSes won't list C1 in _CST -
431 * Let acpi_processor_get_power_info_default() handle them later
433 if (i == 1 && cx.type != ACPI_STATE_C1)
434 current_count++;
436 cx.address = reg->address;
437 cx.index = current_count + 1;
439 cx.entry_method = ACPI_CSTATE_SYSTEMIO;
440 if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
441 if (acpi_processor_ffh_cstate_probe
442 (pr->id, &cx, reg) == 0) {
443 cx.entry_method = ACPI_CSTATE_FFH;
444 } else if (cx.type == ACPI_STATE_C1) {
446 * C1 is a special case where FIXED_HARDWARE
447 * can be handled in non-MWAIT way as well.
448 * In that case, save this _CST entry info.
449 * Otherwise, ignore this info and continue.
451 cx.entry_method = ACPI_CSTATE_HALT;
452 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
453 } else {
454 continue;
456 if (cx.type == ACPI_STATE_C1 &&
457 (idle_halt || idle_nomwait)) {
459 * In most cases the C1 space_id obtained from
460 * _CST object is FIXED_HARDWARE access mode.
461 * But when the option of idle=halt is added,
462 * the entry_method type should be changed from
463 * CSTATE_FFH to CSTATE_HALT.
464 * When the option of idle=nomwait is added,
465 * the C1 entry_method type should be
466 * CSTATE_HALT.
468 cx.entry_method = ACPI_CSTATE_HALT;
469 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
471 } else {
472 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
473 cx.address);
476 if (cx.type == ACPI_STATE_C1) {
477 cx.valid = 1;
480 obj = &(element->package.elements[2]);
481 if (obj->type != ACPI_TYPE_INTEGER)
482 continue;
484 cx.latency = obj->integer.value;
486 obj = &(element->package.elements[3]);
487 if (obj->type != ACPI_TYPE_INTEGER)
488 continue;
490 cx.power = obj->integer.value;
492 current_count++;
493 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
496 * We support total ACPI_PROCESSOR_MAX_POWER - 1
497 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
499 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
500 printk(KERN_WARNING
501 "Limiting number of power states to max (%d)\n",
502 ACPI_PROCESSOR_MAX_POWER);
503 printk(KERN_WARNING
504 "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
505 break;
509 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
510 current_count));
512 /* Validate number of power states discovered */
513 if (current_count < 2)
514 status = -EFAULT;
516 end:
517 kfree(buffer.pointer);
519 return status;
522 static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
525 if (!cx->address)
526 return;
529 * C2 latency must be less than or equal to 100
530 * microseconds.
532 else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
533 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
534 "latency too large [%d]\n", cx->latency));
535 return;
539 * Otherwise we've met all of our C2 requirements.
540 * Normalize the C2 latency to expidite policy
542 cx->valid = 1;
544 cx->latency_ticks = cx->latency;
546 return;
549 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
550 struct acpi_processor_cx *cx)
552 static int bm_check_flag;
555 if (!cx->address)
556 return;
559 * C3 latency must be less than or equal to 1000
560 * microseconds.
562 else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
563 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
564 "latency too large [%d]\n", cx->latency));
565 return;
569 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
570 * DMA transfers are used by any ISA device to avoid livelock.
571 * Note that we could disable Type-F DMA (as recommended by
572 * the erratum), but this is known to disrupt certain ISA
573 * devices thus we take the conservative approach.
575 else if (errata.piix4.fdma) {
576 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
577 "C3 not supported on PIIX4 with Type-F DMA\n"));
578 return;
581 /* All the logic here assumes flags.bm_check is same across all CPUs */
582 if (!bm_check_flag) {
583 /* Determine whether bm_check is needed based on CPU */
584 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
585 bm_check_flag = pr->flags.bm_check;
586 } else {
587 pr->flags.bm_check = bm_check_flag;
590 if (pr->flags.bm_check) {
591 if (!pr->flags.bm_control) {
592 if (pr->flags.has_cst != 1) {
593 /* bus mastering control is necessary */
594 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
595 "C3 support requires BM control\n"));
596 return;
597 } else {
598 /* Here we enter C3 without bus mastering */
599 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
600 "C3 support without BM control\n"));
603 } else {
605 * WBINVD should be set in fadt, for C3 state to be
606 * supported on when bm_check is not required.
608 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
609 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
610 "Cache invalidation should work properly"
611 " for C3 to be enabled on SMP systems\n"));
612 return;
617 * Otherwise we've met all of our C3 requirements.
618 * Normalize the C3 latency to expidite policy. Enable
619 * checking of bus mastering status (bm_check) so we can
620 * use this in our C3 policy
622 cx->valid = 1;
624 cx->latency_ticks = cx->latency;
626 * On older chipsets, BM_RLD needs to be set
627 * in order for Bus Master activity to wake the
628 * system from C3. Newer chipsets handle DMA
629 * during C3 automatically and BM_RLD is a NOP.
630 * In either case, the proper way to
631 * handle BM_RLD is to set it and leave it set.
633 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
635 return;
638 static int acpi_processor_power_verify(struct acpi_processor *pr)
640 unsigned int i;
641 unsigned int working = 0;
643 pr->power.timer_broadcast_on_state = INT_MAX;
645 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
646 struct acpi_processor_cx *cx = &pr->power.states[i];
648 switch (cx->type) {
649 case ACPI_STATE_C1:
650 cx->valid = 1;
651 break;
653 case ACPI_STATE_C2:
654 acpi_processor_power_verify_c2(cx);
655 if (cx->valid)
656 acpi_timer_check_state(i, pr, cx);
657 break;
659 case ACPI_STATE_C3:
660 acpi_processor_power_verify_c3(pr, cx);
661 if (cx->valid)
662 acpi_timer_check_state(i, pr, cx);
663 break;
666 if (cx->valid)
667 working++;
670 acpi_propagate_timer_broadcast(pr);
672 return (working);
675 static int acpi_processor_get_power_info(struct acpi_processor *pr)
677 unsigned int i;
678 int result;
681 /* NOTE: the idle thread may not be running while calling
682 * this function */
684 /* Zero initialize all the C-states info. */
685 memset(pr->power.states, 0, sizeof(pr->power.states));
687 result = acpi_processor_get_power_info_cst(pr);
688 if (result == -ENODEV)
689 result = acpi_processor_get_power_info_fadt(pr);
691 if (result)
692 return result;
694 acpi_processor_get_power_info_default(pr);
696 pr->power.count = acpi_processor_power_verify(pr);
699 * if one state of type C2 or C3 is available, mark this
700 * CPU as being "idle manageable"
702 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
703 if (pr->power.states[i].valid) {
704 pr->power.count = i;
705 if (pr->power.states[i].type >= ACPI_STATE_C2)
706 pr->flags.power = 1;
710 return 0;
713 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
715 struct acpi_processor *pr = seq->private;
716 unsigned int i;
719 if (!pr)
720 goto end;
722 seq_printf(seq, "active state: C%zd\n"
723 "max_cstate: C%d\n"
724 "bus master activity: %08x\n"
725 "maximum allowed latency: %d usec\n",
726 pr->power.state ? pr->power.state - pr->power.states : 0,
727 max_cstate, (unsigned)pr->power.bm_activity,
728 pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY));
730 seq_puts(seq, "states:\n");
732 for (i = 1; i <= pr->power.count; i++) {
733 seq_printf(seq, " %cC%d: ",
734 (&pr->power.states[i] ==
735 pr->power.state ? '*' : ' '), i);
737 if (!pr->power.states[i].valid) {
738 seq_puts(seq, "<not supported>\n");
739 continue;
742 switch (pr->power.states[i].type) {
743 case ACPI_STATE_C1:
744 seq_printf(seq, "type[C1] ");
745 break;
746 case ACPI_STATE_C2:
747 seq_printf(seq, "type[C2] ");
748 break;
749 case ACPI_STATE_C3:
750 seq_printf(seq, "type[C3] ");
751 break;
752 default:
753 seq_printf(seq, "type[--] ");
754 break;
757 if (pr->power.states[i].promotion.state)
758 seq_printf(seq, "promotion[C%zd] ",
759 (pr->power.states[i].promotion.state -
760 pr->power.states));
761 else
762 seq_puts(seq, "promotion[--] ");
764 if (pr->power.states[i].demotion.state)
765 seq_printf(seq, "demotion[C%zd] ",
766 (pr->power.states[i].demotion.state -
767 pr->power.states));
768 else
769 seq_puts(seq, "demotion[--] ");
771 seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n",
772 pr->power.states[i].latency,
773 pr->power.states[i].usage,
774 (unsigned long long)pr->power.states[i].time);
777 end:
778 return 0;
781 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
783 return single_open(file, acpi_processor_power_seq_show,
784 PDE(inode)->data);
787 static const struct file_operations acpi_processor_power_fops = {
788 .owner = THIS_MODULE,
789 .open = acpi_processor_power_open_fs,
790 .read = seq_read,
791 .llseek = seq_lseek,
792 .release = single_release,
797 * acpi_idle_bm_check - checks if bus master activity was detected
799 static int acpi_idle_bm_check(void)
801 u32 bm_status = 0;
803 acpi_get_register_unlocked(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
804 if (bm_status)
805 acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
807 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
808 * the true state of bus mastering activity; forcing us to
809 * manually check the BMIDEA bit of each IDE channel.
811 else if (errata.piix4.bmisx) {
812 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
813 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
814 bm_status = 1;
816 return bm_status;
820 * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
821 * @cx: cstate data
823 * Caller disables interrupt before call and enables interrupt after return.
825 static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
827 /* Don't trace irqs off for idle */
828 stop_critical_timings();
829 if (cx->entry_method == ACPI_CSTATE_FFH) {
830 /* Call into architectural FFH based C-state */
831 acpi_processor_ffh_cstate_enter(cx);
832 } else if (cx->entry_method == ACPI_CSTATE_HALT) {
833 acpi_safe_halt();
834 } else {
835 int unused;
836 /* IO port based C-state */
837 inb(cx->address);
838 /* Dummy wait op - must do something useless after P_LVL2 read
839 because chipsets cannot guarantee that STPCLK# signal
840 gets asserted in time to freeze execution properly. */
841 unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
843 start_critical_timings();
847 * acpi_idle_enter_c1 - enters an ACPI C1 state-type
848 * @dev: the target CPU
849 * @state: the state data
851 * This is equivalent to the HALT instruction.
853 static int acpi_idle_enter_c1(struct cpuidle_device *dev,
854 struct cpuidle_state *state)
856 u32 t1, t2;
857 struct acpi_processor *pr;
858 struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
860 pr = __get_cpu_var(processors);
862 if (unlikely(!pr))
863 return 0;
865 local_irq_disable();
867 /* Do not access any ACPI IO ports in suspend path */
868 if (acpi_idle_suspend) {
869 acpi_safe_halt();
870 local_irq_enable();
871 return 0;
874 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
875 acpi_idle_do_entry(cx);
876 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
878 local_irq_enable();
879 cx->usage++;
881 return ticks_elapsed_in_us(t1, t2);
885 * acpi_idle_enter_simple - enters an ACPI state without BM handling
886 * @dev: the target CPU
887 * @state: the state data
889 static int acpi_idle_enter_simple(struct cpuidle_device *dev,
890 struct cpuidle_state *state)
892 struct acpi_processor *pr;
893 struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
894 u32 t1, t2;
895 int sleep_ticks = 0;
897 pr = __get_cpu_var(processors);
899 if (unlikely(!pr))
900 return 0;
902 if (acpi_idle_suspend)
903 return(acpi_idle_enter_c1(dev, state));
905 local_irq_disable();
906 current_thread_info()->status &= ~TS_POLLING;
908 * TS_POLLING-cleared state must be visible before we test
909 * NEED_RESCHED:
911 smp_mb();
913 if (unlikely(need_resched())) {
914 current_thread_info()->status |= TS_POLLING;
915 local_irq_enable();
916 return 0;
920 * Must be done before busmaster disable as we might need to
921 * access HPET !
923 acpi_state_timer_broadcast(pr, cx, 1);
925 if (cx->type == ACPI_STATE_C3)
926 ACPI_FLUSH_CPU_CACHE();
928 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
929 /* Tell the scheduler that we are going deep-idle: */
930 sched_clock_idle_sleep_event();
931 acpi_idle_do_entry(cx);
932 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
934 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
935 /* TSC could halt in idle, so notify users */
936 if (tsc_halts_in_c(cx->type))
937 mark_tsc_unstable("TSC halts in idle");;
938 #endif
939 sleep_ticks = ticks_elapsed(t1, t2);
941 /* Tell the scheduler how much we idled: */
942 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
944 local_irq_enable();
945 current_thread_info()->status |= TS_POLLING;
947 cx->usage++;
949 acpi_state_timer_broadcast(pr, cx, 0);
950 cx->time += sleep_ticks;
951 return ticks_elapsed_in_us(t1, t2);
954 static int c3_cpu_count;
955 static DEFINE_SPINLOCK(c3_lock);
958 * acpi_idle_enter_bm - enters C3 with proper BM handling
959 * @dev: the target CPU
960 * @state: the state data
962 * If BM is detected, the deepest non-C3 idle state is entered instead.
964 static int acpi_idle_enter_bm(struct cpuidle_device *dev,
965 struct cpuidle_state *state)
967 struct acpi_processor *pr;
968 struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
969 u32 t1, t2;
970 int sleep_ticks = 0;
972 pr = __get_cpu_var(processors);
974 if (unlikely(!pr))
975 return 0;
977 if (acpi_idle_suspend)
978 return(acpi_idle_enter_c1(dev, state));
980 if (acpi_idle_bm_check()) {
981 if (dev->safe_state) {
982 dev->last_state = dev->safe_state;
983 return dev->safe_state->enter(dev, dev->safe_state);
984 } else {
985 local_irq_disable();
986 acpi_safe_halt();
987 local_irq_enable();
988 return 0;
992 local_irq_disable();
993 current_thread_info()->status &= ~TS_POLLING;
995 * TS_POLLING-cleared state must be visible before we test
996 * NEED_RESCHED:
998 smp_mb();
1000 if (unlikely(need_resched())) {
1001 current_thread_info()->status |= TS_POLLING;
1002 local_irq_enable();
1003 return 0;
1006 acpi_unlazy_tlb(smp_processor_id());
1008 /* Tell the scheduler that we are going deep-idle: */
1009 sched_clock_idle_sleep_event();
1011 * Must be done before busmaster disable as we might need to
1012 * access HPET !
1014 acpi_state_timer_broadcast(pr, cx, 1);
1017 * disable bus master
1018 * bm_check implies we need ARB_DIS
1019 * !bm_check implies we need cache flush
1020 * bm_control implies whether we can do ARB_DIS
1022 * That leaves a case where bm_check is set and bm_control is
1023 * not set. In that case we cannot do much, we enter C3
1024 * without doing anything.
1026 if (pr->flags.bm_check && pr->flags.bm_control) {
1027 spin_lock(&c3_lock);
1028 c3_cpu_count++;
1029 /* Disable bus master arbitration when all CPUs are in C3 */
1030 if (c3_cpu_count == num_online_cpus())
1031 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1);
1032 spin_unlock(&c3_lock);
1033 } else if (!pr->flags.bm_check) {
1034 ACPI_FLUSH_CPU_CACHE();
1037 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1038 acpi_idle_do_entry(cx);
1039 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1041 /* Re-enable bus master arbitration */
1042 if (pr->flags.bm_check && pr->flags.bm_control) {
1043 spin_lock(&c3_lock);
1044 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0);
1045 c3_cpu_count--;
1046 spin_unlock(&c3_lock);
1049 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
1050 /* TSC could halt in idle, so notify users */
1051 if (tsc_halts_in_c(ACPI_STATE_C3))
1052 mark_tsc_unstable("TSC halts in idle");
1053 #endif
1054 sleep_ticks = ticks_elapsed(t1, t2);
1055 /* Tell the scheduler how much we idled: */
1056 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
1058 local_irq_enable();
1059 current_thread_info()->status |= TS_POLLING;
1061 cx->usage++;
1063 acpi_state_timer_broadcast(pr, cx, 0);
1064 cx->time += sleep_ticks;
1065 return ticks_elapsed_in_us(t1, t2);
1068 struct cpuidle_driver acpi_idle_driver = {
1069 .name = "acpi_idle",
1070 .owner = THIS_MODULE,
1074 * acpi_processor_setup_cpuidle - prepares and configures CPUIDLE
1075 * @pr: the ACPI processor
1077 static int acpi_processor_setup_cpuidle(struct acpi_processor *pr)
1079 int i, count = CPUIDLE_DRIVER_STATE_START;
1080 struct acpi_processor_cx *cx;
1081 struct cpuidle_state *state;
1082 struct cpuidle_device *dev = &pr->power.dev;
1084 if (!pr->flags.power_setup_done)
1085 return -EINVAL;
1087 if (pr->flags.power == 0) {
1088 return -EINVAL;
1091 dev->cpu = pr->id;
1092 for (i = 0; i < CPUIDLE_STATE_MAX; i++) {
1093 dev->states[i].name[0] = '\0';
1094 dev->states[i].desc[0] = '\0';
1097 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
1098 cx = &pr->power.states[i];
1099 state = &dev->states[count];
1101 if (!cx->valid)
1102 continue;
1104 #ifdef CONFIG_HOTPLUG_CPU
1105 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
1106 !pr->flags.has_cst &&
1107 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
1108 continue;
1109 #endif
1110 cpuidle_set_statedata(state, cx);
1112 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
1113 strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
1114 state->exit_latency = cx->latency;
1115 state->target_residency = cx->latency * latency_factor;
1116 state->power_usage = cx->power;
1118 state->flags = 0;
1119 switch (cx->type) {
1120 case ACPI_STATE_C1:
1121 state->flags |= CPUIDLE_FLAG_SHALLOW;
1122 if (cx->entry_method == ACPI_CSTATE_FFH)
1123 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1125 state->enter = acpi_idle_enter_c1;
1126 dev->safe_state = state;
1127 break;
1129 case ACPI_STATE_C2:
1130 state->flags |= CPUIDLE_FLAG_BALANCED;
1131 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1132 state->enter = acpi_idle_enter_simple;
1133 dev->safe_state = state;
1134 break;
1136 case ACPI_STATE_C3:
1137 state->flags |= CPUIDLE_FLAG_DEEP;
1138 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1139 state->flags |= CPUIDLE_FLAG_CHECK_BM;
1140 state->enter = pr->flags.bm_check ?
1141 acpi_idle_enter_bm :
1142 acpi_idle_enter_simple;
1143 break;
1146 count++;
1147 if (count == CPUIDLE_STATE_MAX)
1148 break;
1151 dev->state_count = count;
1153 if (!count)
1154 return -EINVAL;
1156 return 0;
1159 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1161 int ret = 0;
1163 if (boot_option_idle_override)
1164 return 0;
1166 if (!pr)
1167 return -EINVAL;
1169 if (nocst) {
1170 return -ENODEV;
1173 if (!pr->flags.power_setup_done)
1174 return -ENODEV;
1176 cpuidle_pause_and_lock();
1177 cpuidle_disable_device(&pr->power.dev);
1178 acpi_processor_get_power_info(pr);
1179 if (pr->flags.power) {
1180 acpi_processor_setup_cpuidle(pr);
1181 ret = cpuidle_enable_device(&pr->power.dev);
1183 cpuidle_resume_and_unlock();
1185 return ret;
1188 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
1189 struct acpi_device *device)
1191 acpi_status status = 0;
1192 static int first_run;
1193 struct proc_dir_entry *entry = NULL;
1194 unsigned int i;
1196 if (boot_option_idle_override)
1197 return 0;
1199 if (!first_run) {
1200 if (idle_halt) {
1202 * When the boot option of "idle=halt" is added, halt
1203 * is used for CPU IDLE.
1204 * In such case C2/C3 is meaningless. So the max_cstate
1205 * is set to one.
1207 max_cstate = 1;
1209 dmi_check_system(processor_power_dmi_table);
1210 max_cstate = acpi_processor_cstate_check(max_cstate);
1211 if (max_cstate < ACPI_C_STATES_MAX)
1212 printk(KERN_NOTICE
1213 "ACPI: processor limited to max C-state %d\n",
1214 max_cstate);
1215 first_run++;
1218 if (!pr)
1219 return -EINVAL;
1221 if (acpi_gbl_FADT.cst_control && !nocst) {
1222 status =
1223 acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1224 if (ACPI_FAILURE(status)) {
1225 ACPI_EXCEPTION((AE_INFO, status,
1226 "Notifying BIOS of _CST ability failed"));
1230 acpi_processor_get_power_info(pr);
1231 pr->flags.power_setup_done = 1;
1234 * Install the idle handler if processor power management is supported.
1235 * Note that we use previously set idle handler will be used on
1236 * platforms that only support C1.
1238 if (pr->flags.power) {
1239 acpi_processor_setup_cpuidle(pr);
1240 if (cpuidle_register_device(&pr->power.dev))
1241 return -EIO;
1243 printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
1244 for (i = 1; i <= pr->power.count; i++)
1245 if (pr->power.states[i].valid)
1246 printk(" C%d[C%d]", i,
1247 pr->power.states[i].type);
1248 printk(")\n");
1251 /* 'power' [R] */
1252 entry = proc_create_data(ACPI_PROCESSOR_FILE_POWER,
1253 S_IRUGO, acpi_device_dir(device),
1254 &acpi_processor_power_fops,
1255 acpi_driver_data(device));
1256 if (!entry)
1257 return -EIO;
1258 return 0;
1261 int acpi_processor_power_exit(struct acpi_processor *pr,
1262 struct acpi_device *device)
1264 if (boot_option_idle_override)
1265 return 0;
1267 cpuidle_unregister_device(&pr->power.dev);
1268 pr->flags.power_setup_done = 0;
1270 if (acpi_device_dir(device))
1271 remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1272 acpi_device_dir(device));
1274 return 0;