2 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_types.h"
23 #include "xfs_trans.h"
24 #include "xfs_buf_item.h"
27 #include "xfs_dmapi.h"
28 #include "xfs_mount.h"
29 #include "xfs_trans_priv.h"
30 #include "xfs_extfree_item.h"
33 kmem_zone_t
*xfs_efi_zone
;
34 kmem_zone_t
*xfs_efd_zone
;
36 STATIC
void xfs_efi_item_unlock(xfs_efi_log_item_t
*);
39 xfs_efi_item_free(xfs_efi_log_item_t
*efip
)
41 int nexts
= efip
->efi_format
.efi_nextents
;
43 if (nexts
> XFS_EFI_MAX_FAST_EXTENTS
) {
46 kmem_zone_free(xfs_efi_zone
, efip
);
51 * This returns the number of iovecs needed to log the given efi item.
52 * We only need 1 iovec for an efi item. It just logs the efi_log_format
57 xfs_efi_item_size(xfs_efi_log_item_t
*efip
)
63 * This is called to fill in the vector of log iovecs for the
64 * given efi log item. We use only 1 iovec, and we point that
65 * at the efi_log_format structure embedded in the efi item.
66 * It is at this point that we assert that all of the extent
67 * slots in the efi item have been filled.
70 xfs_efi_item_format(xfs_efi_log_item_t
*efip
,
71 xfs_log_iovec_t
*log_vector
)
75 ASSERT(efip
->efi_next_extent
== efip
->efi_format
.efi_nextents
);
77 efip
->efi_format
.efi_type
= XFS_LI_EFI
;
79 size
= sizeof(xfs_efi_log_format_t
);
80 size
+= (efip
->efi_format
.efi_nextents
- 1) * sizeof(xfs_extent_t
);
81 efip
->efi_format
.efi_size
= 1;
83 log_vector
->i_addr
= (xfs_caddr_t
)&(efip
->efi_format
);
84 log_vector
->i_len
= size
;
85 XLOG_VEC_SET_TYPE(log_vector
, XLOG_REG_TYPE_EFI_FORMAT
);
86 ASSERT(size
>= sizeof(xfs_efi_log_format_t
));
91 * Pinning has no meaning for an efi item, so just return.
95 xfs_efi_item_pin(xfs_efi_log_item_t
*efip
)
102 * While EFIs cannot really be pinned, the unpin operation is the
103 * last place at which the EFI is manipulated during a transaction.
104 * Here we coordinate with xfs_efi_cancel() to determine who gets to
109 xfs_efi_item_unpin(xfs_efi_log_item_t
*efip
, int stale
)
113 mp
= efip
->efi_item
.li_mountp
;
114 spin_lock(&mp
->m_ail_lock
);
115 if (efip
->efi_flags
& XFS_EFI_CANCELED
) {
117 * xfs_trans_delete_ail() drops the AIL lock.
119 xfs_trans_delete_ail(mp
, (xfs_log_item_t
*)efip
);
120 xfs_efi_item_free(efip
);
122 efip
->efi_flags
|= XFS_EFI_COMMITTED
;
123 spin_unlock(&mp
->m_ail_lock
);
128 * like unpin only we have to also clear the xaction descriptor
129 * pointing the log item if we free the item. This routine duplicates
130 * unpin because efi_flags is protected by the AIL lock. Freeing
131 * the descriptor and then calling unpin would force us to drop the AIL
132 * lock which would open up a race condition.
135 xfs_efi_item_unpin_remove(xfs_efi_log_item_t
*efip
, xfs_trans_t
*tp
)
138 xfs_log_item_desc_t
*lidp
;
140 mp
= efip
->efi_item
.li_mountp
;
141 spin_lock(&mp
->m_ail_lock
);
142 if (efip
->efi_flags
& XFS_EFI_CANCELED
) {
144 * free the xaction descriptor pointing to this item
146 lidp
= xfs_trans_find_item(tp
, (xfs_log_item_t
*) efip
);
147 xfs_trans_free_item(tp
, lidp
);
149 * pull the item off the AIL.
150 * xfs_trans_delete_ail() drops the AIL lock.
152 xfs_trans_delete_ail(mp
, (xfs_log_item_t
*)efip
);
153 xfs_efi_item_free(efip
);
155 efip
->efi_flags
|= XFS_EFI_COMMITTED
;
156 spin_unlock(&mp
->m_ail_lock
);
161 * Efi items have no locking or pushing. However, since EFIs are
162 * pulled from the AIL when their corresponding EFDs are committed
163 * to disk, their situation is very similar to being pinned. Return
164 * XFS_ITEM_PINNED so that the caller will eventually flush the log.
165 * This should help in getting the EFI out of the AIL.
169 xfs_efi_item_trylock(xfs_efi_log_item_t
*efip
)
171 return XFS_ITEM_PINNED
;
175 * Efi items have no locking, so just return.
179 xfs_efi_item_unlock(xfs_efi_log_item_t
*efip
)
181 if (efip
->efi_item
.li_flags
& XFS_LI_ABORTED
)
182 xfs_efi_item_free(efip
);
187 * The EFI is logged only once and cannot be moved in the log, so
188 * simply return the lsn at which it's been logged. The canceled
189 * flag is not paid any attention here. Checking for that is delayed
190 * until the EFI is unpinned.
194 xfs_efi_item_committed(xfs_efi_log_item_t
*efip
, xfs_lsn_t lsn
)
200 * There isn't much you can do to push on an efi item. It is simply
201 * stuck waiting for all of its corresponding efd items to be
206 xfs_efi_item_push(xfs_efi_log_item_t
*efip
)
212 * The EFI dependency tracking op doesn't do squat. It can't because
213 * it doesn't know where the free extent is coming from. The dependency
214 * tracking has to be handled by the "enclosing" metadata object. For
215 * example, for inodes, the inode is locked throughout the extent freeing
216 * so the dependency should be recorded there.
220 xfs_efi_item_committing(xfs_efi_log_item_t
*efip
, xfs_lsn_t lsn
)
226 * This is the ops vector shared by all efi log items.
228 static struct xfs_item_ops xfs_efi_item_ops
= {
229 .iop_size
= (uint(*)(xfs_log_item_t
*))xfs_efi_item_size
,
230 .iop_format
= (void(*)(xfs_log_item_t
*, xfs_log_iovec_t
*))
232 .iop_pin
= (void(*)(xfs_log_item_t
*))xfs_efi_item_pin
,
233 .iop_unpin
= (void(*)(xfs_log_item_t
*, int))xfs_efi_item_unpin
,
234 .iop_unpin_remove
= (void(*)(xfs_log_item_t
*, xfs_trans_t
*))
235 xfs_efi_item_unpin_remove
,
236 .iop_trylock
= (uint(*)(xfs_log_item_t
*))xfs_efi_item_trylock
,
237 .iop_unlock
= (void(*)(xfs_log_item_t
*))xfs_efi_item_unlock
,
238 .iop_committed
= (xfs_lsn_t(*)(xfs_log_item_t
*, xfs_lsn_t
))
239 xfs_efi_item_committed
,
240 .iop_push
= (void(*)(xfs_log_item_t
*))xfs_efi_item_push
,
242 .iop_committing
= (void(*)(xfs_log_item_t
*, xfs_lsn_t
))
243 xfs_efi_item_committing
248 * Allocate and initialize an efi item with the given number of extents.
251 xfs_efi_init(xfs_mount_t
*mp
,
255 xfs_efi_log_item_t
*efip
;
258 ASSERT(nextents
> 0);
259 if (nextents
> XFS_EFI_MAX_FAST_EXTENTS
) {
260 size
= (uint
)(sizeof(xfs_efi_log_item_t
) +
261 ((nextents
- 1) * sizeof(xfs_extent_t
)));
262 efip
= (xfs_efi_log_item_t
*)kmem_zalloc(size
, KM_SLEEP
);
264 efip
= (xfs_efi_log_item_t
*)kmem_zone_zalloc(xfs_efi_zone
,
268 efip
->efi_item
.li_type
= XFS_LI_EFI
;
269 efip
->efi_item
.li_ops
= &xfs_efi_item_ops
;
270 efip
->efi_item
.li_mountp
= mp
;
271 efip
->efi_format
.efi_nextents
= nextents
;
272 efip
->efi_format
.efi_id
= (__psint_t
)(void*)efip
;
278 * Copy an EFI format buffer from the given buf, and into the destination
279 * EFI format structure.
280 * The given buffer can be in 32 bit or 64 bit form (which has different padding),
281 * one of which will be the native format for this kernel.
282 * It will handle the conversion of formats if necessary.
285 xfs_efi_copy_format(xfs_log_iovec_t
*buf
, xfs_efi_log_format_t
*dst_efi_fmt
)
287 xfs_efi_log_format_t
*src_efi_fmt
= (xfs_efi_log_format_t
*)buf
->i_addr
;
289 uint len
= sizeof(xfs_efi_log_format_t
) +
290 (src_efi_fmt
->efi_nextents
- 1) * sizeof(xfs_extent_t
);
291 uint len32
= sizeof(xfs_efi_log_format_32_t
) +
292 (src_efi_fmt
->efi_nextents
- 1) * sizeof(xfs_extent_32_t
);
293 uint len64
= sizeof(xfs_efi_log_format_64_t
) +
294 (src_efi_fmt
->efi_nextents
- 1) * sizeof(xfs_extent_64_t
);
296 if (buf
->i_len
== len
) {
297 memcpy((char *)dst_efi_fmt
, (char*)src_efi_fmt
, len
);
299 } else if (buf
->i_len
== len32
) {
300 xfs_efi_log_format_32_t
*src_efi_fmt_32
=
301 (xfs_efi_log_format_32_t
*)buf
->i_addr
;
303 dst_efi_fmt
->efi_type
= src_efi_fmt_32
->efi_type
;
304 dst_efi_fmt
->efi_size
= src_efi_fmt_32
->efi_size
;
305 dst_efi_fmt
->efi_nextents
= src_efi_fmt_32
->efi_nextents
;
306 dst_efi_fmt
->efi_id
= src_efi_fmt_32
->efi_id
;
307 for (i
= 0; i
< dst_efi_fmt
->efi_nextents
; i
++) {
308 dst_efi_fmt
->efi_extents
[i
].ext_start
=
309 src_efi_fmt_32
->efi_extents
[i
].ext_start
;
310 dst_efi_fmt
->efi_extents
[i
].ext_len
=
311 src_efi_fmt_32
->efi_extents
[i
].ext_len
;
314 } else if (buf
->i_len
== len64
) {
315 xfs_efi_log_format_64_t
*src_efi_fmt_64
=
316 (xfs_efi_log_format_64_t
*)buf
->i_addr
;
318 dst_efi_fmt
->efi_type
= src_efi_fmt_64
->efi_type
;
319 dst_efi_fmt
->efi_size
= src_efi_fmt_64
->efi_size
;
320 dst_efi_fmt
->efi_nextents
= src_efi_fmt_64
->efi_nextents
;
321 dst_efi_fmt
->efi_id
= src_efi_fmt_64
->efi_id
;
322 for (i
= 0; i
< dst_efi_fmt
->efi_nextents
; i
++) {
323 dst_efi_fmt
->efi_extents
[i
].ext_start
=
324 src_efi_fmt_64
->efi_extents
[i
].ext_start
;
325 dst_efi_fmt
->efi_extents
[i
].ext_len
=
326 src_efi_fmt_64
->efi_extents
[i
].ext_len
;
334 * This is called by the efd item code below to release references to
335 * the given efi item. Each efd calls this with the number of
336 * extents that it has logged, and when the sum of these reaches
337 * the total number of extents logged by this efi item we can free
340 * Freeing the efi item requires that we remove it from the AIL.
341 * We'll use the AIL lock to protect our counters as well as
342 * the removal from the AIL.
345 xfs_efi_release(xfs_efi_log_item_t
*efip
,
351 mp
= efip
->efi_item
.li_mountp
;
352 ASSERT(efip
->efi_next_extent
> 0);
353 ASSERT(efip
->efi_flags
& XFS_EFI_COMMITTED
);
355 spin_lock(&mp
->m_ail_lock
);
356 ASSERT(efip
->efi_next_extent
>= nextents
);
357 efip
->efi_next_extent
-= nextents
;
358 extents_left
= efip
->efi_next_extent
;
359 if (extents_left
== 0) {
361 * xfs_trans_delete_ail() drops the AIL lock.
363 xfs_trans_delete_ail(mp
, (xfs_log_item_t
*)efip
);
364 xfs_efi_item_free(efip
);
366 spin_unlock(&mp
->m_ail_lock
);
371 xfs_efd_item_free(xfs_efd_log_item_t
*efdp
)
373 int nexts
= efdp
->efd_format
.efd_nextents
;
375 if (nexts
> XFS_EFD_MAX_FAST_EXTENTS
) {
378 kmem_zone_free(xfs_efd_zone
, efdp
);
383 * This returns the number of iovecs needed to log the given efd item.
384 * We only need 1 iovec for an efd item. It just logs the efd_log_format
389 xfs_efd_item_size(xfs_efd_log_item_t
*efdp
)
395 * This is called to fill in the vector of log iovecs for the
396 * given efd log item. We use only 1 iovec, and we point that
397 * at the efd_log_format structure embedded in the efd item.
398 * It is at this point that we assert that all of the extent
399 * slots in the efd item have been filled.
402 xfs_efd_item_format(xfs_efd_log_item_t
*efdp
,
403 xfs_log_iovec_t
*log_vector
)
407 ASSERT(efdp
->efd_next_extent
== efdp
->efd_format
.efd_nextents
);
409 efdp
->efd_format
.efd_type
= XFS_LI_EFD
;
411 size
= sizeof(xfs_efd_log_format_t
);
412 size
+= (efdp
->efd_format
.efd_nextents
- 1) * sizeof(xfs_extent_t
);
413 efdp
->efd_format
.efd_size
= 1;
415 log_vector
->i_addr
= (xfs_caddr_t
)&(efdp
->efd_format
);
416 log_vector
->i_len
= size
;
417 XLOG_VEC_SET_TYPE(log_vector
, XLOG_REG_TYPE_EFD_FORMAT
);
418 ASSERT(size
>= sizeof(xfs_efd_log_format_t
));
423 * Pinning has no meaning for an efd item, so just return.
427 xfs_efd_item_pin(xfs_efd_log_item_t
*efdp
)
434 * Since pinning has no meaning for an efd item, unpinning does
439 xfs_efd_item_unpin(xfs_efd_log_item_t
*efdp
, int stale
)
446 xfs_efd_item_unpin_remove(xfs_efd_log_item_t
*efdp
, xfs_trans_t
*tp
)
452 * Efd items have no locking, so just return success.
456 xfs_efd_item_trylock(xfs_efd_log_item_t
*efdp
)
458 return XFS_ITEM_LOCKED
;
462 * Efd items have no locking or pushing, so return failure
463 * so that the caller doesn't bother with us.
467 xfs_efd_item_unlock(xfs_efd_log_item_t
*efdp
)
469 if (efdp
->efd_item
.li_flags
& XFS_LI_ABORTED
)
470 xfs_efd_item_free(efdp
);
475 * When the efd item is committed to disk, all we need to do
476 * is delete our reference to our partner efi item and then
477 * free ourselves. Since we're freeing ourselves we must
478 * return -1 to keep the transaction code from further referencing
483 xfs_efd_item_committed(xfs_efd_log_item_t
*efdp
, xfs_lsn_t lsn
)
486 * If we got a log I/O error, it's always the case that the LR with the
487 * EFI got unpinned and freed before the EFD got aborted.
489 if ((efdp
->efd_item
.li_flags
& XFS_LI_ABORTED
) == 0)
490 xfs_efi_release(efdp
->efd_efip
, efdp
->efd_format
.efd_nextents
);
492 xfs_efd_item_free(efdp
);
493 return (xfs_lsn_t
)-1;
497 * There isn't much you can do to push on an efd item. It is simply
498 * stuck waiting for the log to be flushed to disk.
502 xfs_efd_item_push(xfs_efd_log_item_t
*efdp
)
508 * The EFD dependency tracking op doesn't do squat. It can't because
509 * it doesn't know where the free extent is coming from. The dependency
510 * tracking has to be handled by the "enclosing" metadata object. For
511 * example, for inodes, the inode is locked throughout the extent freeing
512 * so the dependency should be recorded there.
516 xfs_efd_item_committing(xfs_efd_log_item_t
*efip
, xfs_lsn_t lsn
)
522 * This is the ops vector shared by all efd log items.
524 static struct xfs_item_ops xfs_efd_item_ops
= {
525 .iop_size
= (uint(*)(xfs_log_item_t
*))xfs_efd_item_size
,
526 .iop_format
= (void(*)(xfs_log_item_t
*, xfs_log_iovec_t
*))
528 .iop_pin
= (void(*)(xfs_log_item_t
*))xfs_efd_item_pin
,
529 .iop_unpin
= (void(*)(xfs_log_item_t
*, int))xfs_efd_item_unpin
,
530 .iop_unpin_remove
= (void(*)(xfs_log_item_t
*, xfs_trans_t
*))
531 xfs_efd_item_unpin_remove
,
532 .iop_trylock
= (uint(*)(xfs_log_item_t
*))xfs_efd_item_trylock
,
533 .iop_unlock
= (void(*)(xfs_log_item_t
*))xfs_efd_item_unlock
,
534 .iop_committed
= (xfs_lsn_t(*)(xfs_log_item_t
*, xfs_lsn_t
))
535 xfs_efd_item_committed
,
536 .iop_push
= (void(*)(xfs_log_item_t
*))xfs_efd_item_push
,
538 .iop_committing
= (void(*)(xfs_log_item_t
*, xfs_lsn_t
))
539 xfs_efd_item_committing
544 * Allocate and initialize an efd item with the given number of extents.
547 xfs_efd_init(xfs_mount_t
*mp
,
548 xfs_efi_log_item_t
*efip
,
552 xfs_efd_log_item_t
*efdp
;
555 ASSERT(nextents
> 0);
556 if (nextents
> XFS_EFD_MAX_FAST_EXTENTS
) {
557 size
= (uint
)(sizeof(xfs_efd_log_item_t
) +
558 ((nextents
- 1) * sizeof(xfs_extent_t
)));
559 efdp
= (xfs_efd_log_item_t
*)kmem_zalloc(size
, KM_SLEEP
);
561 efdp
= (xfs_efd_log_item_t
*)kmem_zone_zalloc(xfs_efd_zone
,
565 efdp
->efd_item
.li_type
= XFS_LI_EFD
;
566 efdp
->efd_item
.li_ops
= &xfs_efd_item_ops
;
567 efdp
->efd_item
.li_mountp
= mp
;
568 efdp
->efd_efip
= efip
;
569 efdp
->efd_format
.efd_nextents
= nextents
;
570 efdp
->efd_format
.efd_efi_id
= efip
->efi_format
.efi_id
;