x86: fix early NUMA-id access
[linux-2.6/mini2440.git] / fs / binfmt_elf.c
blob786ee275ec0ad88711bdcc41666b4ea74c83c111
1 /*
2 * linux/fs/binfmt_elf.c
4 * These are the functions used to load ELF format executables as used
5 * on SVr4 machines. Information on the format may be found in the book
6 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
7 * Tools".
9 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/fs.h>
15 #include <linux/stat.h>
16 #include <linux/time.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/a.out.h>
20 #include <linux/errno.h>
21 #include <linux/signal.h>
22 #include <linux/binfmts.h>
23 #include <linux/string.h>
24 #include <linux/file.h>
25 #include <linux/fcntl.h>
26 #include <linux/ptrace.h>
27 #include <linux/slab.h>
28 #include <linux/shm.h>
29 #include <linux/personality.h>
30 #include <linux/elfcore.h>
31 #include <linux/init.h>
32 #include <linux/highuid.h>
33 #include <linux/smp.h>
34 #include <linux/compiler.h>
35 #include <linux/highmem.h>
36 #include <linux/pagemap.h>
37 #include <linux/security.h>
38 #include <linux/syscalls.h>
39 #include <linux/random.h>
40 #include <linux/elf.h>
41 #include <linux/utsname.h>
42 #include <asm/uaccess.h>
43 #include <asm/param.h>
44 #include <asm/page.h>
46 static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs);
47 static int load_elf_library(struct file *);
48 static unsigned long elf_map(struct file *, unsigned long, struct elf_phdr *,
49 int, int, unsigned long);
52 * If we don't support core dumping, then supply a NULL so we
53 * don't even try.
55 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
56 static int elf_core_dump(long signr, struct pt_regs *regs, struct file *file, unsigned long limit);
57 #else
58 #define elf_core_dump NULL
59 #endif
61 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
62 #define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE
63 #else
64 #define ELF_MIN_ALIGN PAGE_SIZE
65 #endif
67 #ifndef ELF_CORE_EFLAGS
68 #define ELF_CORE_EFLAGS 0
69 #endif
71 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
72 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
73 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
75 static struct linux_binfmt elf_format = {
76 .module = THIS_MODULE,
77 .load_binary = load_elf_binary,
78 .load_shlib = load_elf_library,
79 .core_dump = elf_core_dump,
80 .min_coredump = ELF_EXEC_PAGESIZE,
81 .hasvdso = 1
84 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
86 static int set_brk(unsigned long start, unsigned long end)
88 start = ELF_PAGEALIGN(start);
89 end = ELF_PAGEALIGN(end);
90 if (end > start) {
91 unsigned long addr;
92 down_write(&current->mm->mmap_sem);
93 addr = do_brk(start, end - start);
94 up_write(&current->mm->mmap_sem);
95 if (BAD_ADDR(addr))
96 return addr;
98 current->mm->start_brk = current->mm->brk = end;
99 return 0;
102 /* We need to explicitly zero any fractional pages
103 after the data section (i.e. bss). This would
104 contain the junk from the file that should not
105 be in memory
107 static int padzero(unsigned long elf_bss)
109 unsigned long nbyte;
111 nbyte = ELF_PAGEOFFSET(elf_bss);
112 if (nbyte) {
113 nbyte = ELF_MIN_ALIGN - nbyte;
114 if (clear_user((void __user *) elf_bss, nbyte))
115 return -EFAULT;
117 return 0;
120 /* Let's use some macros to make this stack manipulation a litle clearer */
121 #ifdef CONFIG_STACK_GROWSUP
122 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
123 #define STACK_ROUND(sp, items) \
124 ((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
125 #define STACK_ALLOC(sp, len) ({ \
126 elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
127 old_sp; })
128 #else
129 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
130 #define STACK_ROUND(sp, items) \
131 (((unsigned long) (sp - items)) &~ 15UL)
132 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
133 #endif
135 static int
136 create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec,
137 int interp_aout, unsigned long load_addr,
138 unsigned long interp_load_addr)
140 unsigned long p = bprm->p;
141 int argc = bprm->argc;
142 int envc = bprm->envc;
143 elf_addr_t __user *argv;
144 elf_addr_t __user *envp;
145 elf_addr_t __user *sp;
146 elf_addr_t __user *u_platform;
147 const char *k_platform = ELF_PLATFORM;
148 int items;
149 elf_addr_t *elf_info;
150 int ei_index = 0;
151 struct task_struct *tsk = current;
152 struct vm_area_struct *vma;
155 * In some cases (e.g. Hyper-Threading), we want to avoid L1
156 * evictions by the processes running on the same package. One
157 * thing we can do is to shuffle the initial stack for them.
160 p = arch_align_stack(p);
163 * If this architecture has a platform capability string, copy it
164 * to userspace. In some cases (Sparc), this info is impossible
165 * for userspace to get any other way, in others (i386) it is
166 * merely difficult.
168 u_platform = NULL;
169 if (k_platform) {
170 size_t len = strlen(k_platform) + 1;
172 u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
173 if (__copy_to_user(u_platform, k_platform, len))
174 return -EFAULT;
177 /* Create the ELF interpreter info */
178 elf_info = (elf_addr_t *)current->mm->saved_auxv;
179 /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
180 #define NEW_AUX_ENT(id, val) \
181 do { \
182 elf_info[ei_index++] = id; \
183 elf_info[ei_index++] = val; \
184 } while (0)
186 #ifdef ARCH_DLINFO
188 * ARCH_DLINFO must come first so PPC can do its special alignment of
189 * AUXV.
190 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
191 * ARCH_DLINFO changes
193 ARCH_DLINFO;
194 #endif
195 NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
196 NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
197 NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
198 NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
199 NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
200 NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
201 NEW_AUX_ENT(AT_BASE, interp_load_addr);
202 NEW_AUX_ENT(AT_FLAGS, 0);
203 NEW_AUX_ENT(AT_ENTRY, exec->e_entry);
204 NEW_AUX_ENT(AT_UID, tsk->uid);
205 NEW_AUX_ENT(AT_EUID, tsk->euid);
206 NEW_AUX_ENT(AT_GID, tsk->gid);
207 NEW_AUX_ENT(AT_EGID, tsk->egid);
208 NEW_AUX_ENT(AT_SECURE, security_bprm_secureexec(bprm));
209 if (k_platform) {
210 NEW_AUX_ENT(AT_PLATFORM,
211 (elf_addr_t)(unsigned long)u_platform);
213 if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) {
214 NEW_AUX_ENT(AT_EXECFD, bprm->interp_data);
216 #undef NEW_AUX_ENT
217 /* AT_NULL is zero; clear the rest too */
218 memset(&elf_info[ei_index], 0,
219 sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]);
221 /* And advance past the AT_NULL entry. */
222 ei_index += 2;
224 sp = STACK_ADD(p, ei_index);
226 items = (argc + 1) + (envc + 1);
227 if (interp_aout) {
228 items += 3; /* a.out interpreters require argv & envp too */
229 } else {
230 items += 1; /* ELF interpreters only put argc on the stack */
232 bprm->p = STACK_ROUND(sp, items);
234 /* Point sp at the lowest address on the stack */
235 #ifdef CONFIG_STACK_GROWSUP
236 sp = (elf_addr_t __user *)bprm->p - items - ei_index;
237 bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
238 #else
239 sp = (elf_addr_t __user *)bprm->p;
240 #endif
244 * Grow the stack manually; some architectures have a limit on how
245 * far ahead a user-space access may be in order to grow the stack.
247 vma = find_extend_vma(current->mm, bprm->p);
248 if (!vma)
249 return -EFAULT;
251 /* Now, let's put argc (and argv, envp if appropriate) on the stack */
252 if (__put_user(argc, sp++))
253 return -EFAULT;
254 if (interp_aout) {
255 argv = sp + 2;
256 envp = argv + argc + 1;
257 if (__put_user((elf_addr_t)(unsigned long)argv, sp++) ||
258 __put_user((elf_addr_t)(unsigned long)envp, sp++))
259 return -EFAULT;
260 } else {
261 argv = sp;
262 envp = argv + argc + 1;
265 /* Populate argv and envp */
266 p = current->mm->arg_end = current->mm->arg_start;
267 while (argc-- > 0) {
268 size_t len;
269 if (__put_user((elf_addr_t)p, argv++))
270 return -EFAULT;
271 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
272 if (!len || len > MAX_ARG_STRLEN)
273 return 0;
274 p += len;
276 if (__put_user(0, argv))
277 return -EFAULT;
278 current->mm->arg_end = current->mm->env_start = p;
279 while (envc-- > 0) {
280 size_t len;
281 if (__put_user((elf_addr_t)p, envp++))
282 return -EFAULT;
283 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
284 if (!len || len > MAX_ARG_STRLEN)
285 return 0;
286 p += len;
288 if (__put_user(0, envp))
289 return -EFAULT;
290 current->mm->env_end = p;
292 /* Put the elf_info on the stack in the right place. */
293 sp = (elf_addr_t __user *)envp + 1;
294 if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t)))
295 return -EFAULT;
296 return 0;
299 #ifndef elf_map
301 static unsigned long elf_map(struct file *filep, unsigned long addr,
302 struct elf_phdr *eppnt, int prot, int type,
303 unsigned long total_size)
305 unsigned long map_addr;
306 unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
307 unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
308 addr = ELF_PAGESTART(addr);
309 size = ELF_PAGEALIGN(size);
311 /* mmap() will return -EINVAL if given a zero size, but a
312 * segment with zero filesize is perfectly valid */
313 if (!size)
314 return addr;
316 down_write(&current->mm->mmap_sem);
318 * total_size is the size of the ELF (interpreter) image.
319 * The _first_ mmap needs to know the full size, otherwise
320 * randomization might put this image into an overlapping
321 * position with the ELF binary image. (since size < total_size)
322 * So we first map the 'big' image - and unmap the remainder at
323 * the end. (which unmap is needed for ELF images with holes.)
325 if (total_size) {
326 total_size = ELF_PAGEALIGN(total_size);
327 map_addr = do_mmap(filep, addr, total_size, prot, type, off);
328 if (!BAD_ADDR(map_addr))
329 do_munmap(current->mm, map_addr+size, total_size-size);
330 } else
331 map_addr = do_mmap(filep, addr, size, prot, type, off);
333 up_write(&current->mm->mmap_sem);
334 return(map_addr);
337 #endif /* !elf_map */
339 static unsigned long total_mapping_size(struct elf_phdr *cmds, int nr)
341 int i, first_idx = -1, last_idx = -1;
343 for (i = 0; i < nr; i++) {
344 if (cmds[i].p_type == PT_LOAD) {
345 last_idx = i;
346 if (first_idx == -1)
347 first_idx = i;
350 if (first_idx == -1)
351 return 0;
353 return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
354 ELF_PAGESTART(cmds[first_idx].p_vaddr);
358 /* This is much more generalized than the library routine read function,
359 so we keep this separate. Technically the library read function
360 is only provided so that we can read a.out libraries that have
361 an ELF header */
363 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
364 struct file *interpreter, unsigned long *interp_map_addr,
365 unsigned long no_base)
367 struct elf_phdr *elf_phdata;
368 struct elf_phdr *eppnt;
369 unsigned long load_addr = 0;
370 int load_addr_set = 0;
371 unsigned long last_bss = 0, elf_bss = 0;
372 unsigned long error = ~0UL;
373 unsigned long total_size;
374 int retval, i, size;
376 /* First of all, some simple consistency checks */
377 if (interp_elf_ex->e_type != ET_EXEC &&
378 interp_elf_ex->e_type != ET_DYN)
379 goto out;
380 if (!elf_check_arch(interp_elf_ex))
381 goto out;
382 if (!interpreter->f_op || !interpreter->f_op->mmap)
383 goto out;
386 * If the size of this structure has changed, then punt, since
387 * we will be doing the wrong thing.
389 if (interp_elf_ex->e_phentsize != sizeof(struct elf_phdr))
390 goto out;
391 if (interp_elf_ex->e_phnum < 1 ||
392 interp_elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr))
393 goto out;
395 /* Now read in all of the header information */
396 size = sizeof(struct elf_phdr) * interp_elf_ex->e_phnum;
397 if (size > ELF_MIN_ALIGN)
398 goto out;
399 elf_phdata = kmalloc(size, GFP_KERNEL);
400 if (!elf_phdata)
401 goto out;
403 retval = kernel_read(interpreter, interp_elf_ex->e_phoff,
404 (char *)elf_phdata,size);
405 error = -EIO;
406 if (retval != size) {
407 if (retval < 0)
408 error = retval;
409 goto out_close;
412 total_size = total_mapping_size(elf_phdata, interp_elf_ex->e_phnum);
413 if (!total_size) {
414 error = -EINVAL;
415 goto out_close;
418 eppnt = elf_phdata;
419 for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
420 if (eppnt->p_type == PT_LOAD) {
421 int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
422 int elf_prot = 0;
423 unsigned long vaddr = 0;
424 unsigned long k, map_addr;
426 if (eppnt->p_flags & PF_R)
427 elf_prot = PROT_READ;
428 if (eppnt->p_flags & PF_W)
429 elf_prot |= PROT_WRITE;
430 if (eppnt->p_flags & PF_X)
431 elf_prot |= PROT_EXEC;
432 vaddr = eppnt->p_vaddr;
433 if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
434 elf_type |= MAP_FIXED;
435 else if (no_base && interp_elf_ex->e_type == ET_DYN)
436 load_addr = -vaddr;
438 map_addr = elf_map(interpreter, load_addr + vaddr,
439 eppnt, elf_prot, elf_type, total_size);
440 total_size = 0;
441 if (!*interp_map_addr)
442 *interp_map_addr = map_addr;
443 error = map_addr;
444 if (BAD_ADDR(map_addr))
445 goto out_close;
447 if (!load_addr_set &&
448 interp_elf_ex->e_type == ET_DYN) {
449 load_addr = map_addr - ELF_PAGESTART(vaddr);
450 load_addr_set = 1;
454 * Check to see if the section's size will overflow the
455 * allowed task size. Note that p_filesz must always be
456 * <= p_memsize so it's only necessary to check p_memsz.
458 k = load_addr + eppnt->p_vaddr;
459 if (BAD_ADDR(k) ||
460 eppnt->p_filesz > eppnt->p_memsz ||
461 eppnt->p_memsz > TASK_SIZE ||
462 TASK_SIZE - eppnt->p_memsz < k) {
463 error = -ENOMEM;
464 goto out_close;
468 * Find the end of the file mapping for this phdr, and
469 * keep track of the largest address we see for this.
471 k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
472 if (k > elf_bss)
473 elf_bss = k;
476 * Do the same thing for the memory mapping - between
477 * elf_bss and last_bss is the bss section.
479 k = load_addr + eppnt->p_memsz + eppnt->p_vaddr;
480 if (k > last_bss)
481 last_bss = k;
486 * Now fill out the bss section. First pad the last page up
487 * to the page boundary, and then perform a mmap to make sure
488 * that there are zero-mapped pages up to and including the
489 * last bss page.
491 if (padzero(elf_bss)) {
492 error = -EFAULT;
493 goto out_close;
496 /* What we have mapped so far */
497 elf_bss = ELF_PAGESTART(elf_bss + ELF_MIN_ALIGN - 1);
499 /* Map the last of the bss segment */
500 if (last_bss > elf_bss) {
501 down_write(&current->mm->mmap_sem);
502 error = do_brk(elf_bss, last_bss - elf_bss);
503 up_write(&current->mm->mmap_sem);
504 if (BAD_ADDR(error))
505 goto out_close;
508 error = load_addr;
510 out_close:
511 kfree(elf_phdata);
512 out:
513 return error;
516 static unsigned long load_aout_interp(struct exec *interp_ex,
517 struct file *interpreter)
519 unsigned long text_data, elf_entry = ~0UL;
520 char __user * addr;
521 loff_t offset;
523 current->mm->end_code = interp_ex->a_text;
524 text_data = interp_ex->a_text + interp_ex->a_data;
525 current->mm->end_data = text_data;
526 current->mm->brk = interp_ex->a_bss + text_data;
528 switch (N_MAGIC(*interp_ex)) {
529 case OMAGIC:
530 offset = 32;
531 addr = (char __user *)0;
532 break;
533 case ZMAGIC:
534 case QMAGIC:
535 offset = N_TXTOFF(*interp_ex);
536 addr = (char __user *)N_TXTADDR(*interp_ex);
537 break;
538 default:
539 goto out;
542 down_write(&current->mm->mmap_sem);
543 do_brk(0, text_data);
544 up_write(&current->mm->mmap_sem);
545 if (!interpreter->f_op || !interpreter->f_op->read)
546 goto out;
547 if (interpreter->f_op->read(interpreter, addr, text_data, &offset) < 0)
548 goto out;
549 flush_icache_range((unsigned long)addr,
550 (unsigned long)addr + text_data);
552 down_write(&current->mm->mmap_sem);
553 do_brk(ELF_PAGESTART(text_data + ELF_MIN_ALIGN - 1),
554 interp_ex->a_bss);
555 up_write(&current->mm->mmap_sem);
556 elf_entry = interp_ex->a_entry;
558 out:
559 return elf_entry;
563 * These are the functions used to load ELF style executables and shared
564 * libraries. There is no binary dependent code anywhere else.
567 #define INTERPRETER_NONE 0
568 #define INTERPRETER_AOUT 1
569 #define INTERPRETER_ELF 2
571 #ifndef STACK_RND_MASK
572 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */
573 #endif
575 static unsigned long randomize_stack_top(unsigned long stack_top)
577 unsigned int random_variable = 0;
579 if ((current->flags & PF_RANDOMIZE) &&
580 !(current->personality & ADDR_NO_RANDOMIZE)) {
581 random_variable = get_random_int() & STACK_RND_MASK;
582 random_variable <<= PAGE_SHIFT;
584 #ifdef CONFIG_STACK_GROWSUP
585 return PAGE_ALIGN(stack_top) + random_variable;
586 #else
587 return PAGE_ALIGN(stack_top) - random_variable;
588 #endif
591 static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs)
593 struct file *interpreter = NULL; /* to shut gcc up */
594 unsigned long load_addr = 0, load_bias = 0;
595 int load_addr_set = 0;
596 char * elf_interpreter = NULL;
597 unsigned int interpreter_type = INTERPRETER_NONE;
598 unsigned char ibcs2_interpreter = 0;
599 unsigned long error;
600 struct elf_phdr *elf_ppnt, *elf_phdata;
601 unsigned long elf_bss, elf_brk;
602 int elf_exec_fileno;
603 int retval, i;
604 unsigned int size;
605 unsigned long elf_entry;
606 unsigned long interp_load_addr = 0;
607 unsigned long start_code, end_code, start_data, end_data;
608 unsigned long reloc_func_desc = 0;
609 char passed_fileno[6];
610 struct files_struct *files;
611 int executable_stack = EXSTACK_DEFAULT;
612 unsigned long def_flags = 0;
613 struct {
614 struct elfhdr elf_ex;
615 struct elfhdr interp_elf_ex;
616 struct exec interp_ex;
617 } *loc;
619 loc = kmalloc(sizeof(*loc), GFP_KERNEL);
620 if (!loc) {
621 retval = -ENOMEM;
622 goto out_ret;
625 /* Get the exec-header */
626 loc->elf_ex = *((struct elfhdr *)bprm->buf);
628 retval = -ENOEXEC;
629 /* First of all, some simple consistency checks */
630 if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
631 goto out;
633 if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)
634 goto out;
635 if (!elf_check_arch(&loc->elf_ex))
636 goto out;
637 if (!bprm->file->f_op||!bprm->file->f_op->mmap)
638 goto out;
640 /* Now read in all of the header information */
641 if (loc->elf_ex.e_phentsize != sizeof(struct elf_phdr))
642 goto out;
643 if (loc->elf_ex.e_phnum < 1 ||
644 loc->elf_ex.e_phnum > 65536U / sizeof(struct elf_phdr))
645 goto out;
646 size = loc->elf_ex.e_phnum * sizeof(struct elf_phdr);
647 retval = -ENOMEM;
648 elf_phdata = kmalloc(size, GFP_KERNEL);
649 if (!elf_phdata)
650 goto out;
652 retval = kernel_read(bprm->file, loc->elf_ex.e_phoff,
653 (char *)elf_phdata, size);
654 if (retval != size) {
655 if (retval >= 0)
656 retval = -EIO;
657 goto out_free_ph;
660 files = current->files; /* Refcounted so ok */
661 retval = unshare_files();
662 if (retval < 0)
663 goto out_free_ph;
664 if (files == current->files) {
665 put_files_struct(files);
666 files = NULL;
669 /* exec will make our files private anyway, but for the a.out
670 loader stuff we need to do it earlier */
671 retval = get_unused_fd();
672 if (retval < 0)
673 goto out_free_fh;
674 get_file(bprm->file);
675 fd_install(elf_exec_fileno = retval, bprm->file);
677 elf_ppnt = elf_phdata;
678 elf_bss = 0;
679 elf_brk = 0;
681 start_code = ~0UL;
682 end_code = 0;
683 start_data = 0;
684 end_data = 0;
686 for (i = 0; i < loc->elf_ex.e_phnum; i++) {
687 if (elf_ppnt->p_type == PT_INTERP) {
688 /* This is the program interpreter used for
689 * shared libraries - for now assume that this
690 * is an a.out format binary
692 retval = -ENOEXEC;
693 if (elf_ppnt->p_filesz > PATH_MAX ||
694 elf_ppnt->p_filesz < 2)
695 goto out_free_file;
697 retval = -ENOMEM;
698 elf_interpreter = kmalloc(elf_ppnt->p_filesz,
699 GFP_KERNEL);
700 if (!elf_interpreter)
701 goto out_free_file;
703 retval = kernel_read(bprm->file, elf_ppnt->p_offset,
704 elf_interpreter,
705 elf_ppnt->p_filesz);
706 if (retval != elf_ppnt->p_filesz) {
707 if (retval >= 0)
708 retval = -EIO;
709 goto out_free_interp;
711 /* make sure path is NULL terminated */
712 retval = -ENOEXEC;
713 if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
714 goto out_free_interp;
716 /* If the program interpreter is one of these two,
717 * then assume an iBCS2 image. Otherwise assume
718 * a native linux image.
720 if (strcmp(elf_interpreter,"/usr/lib/libc.so.1") == 0 ||
721 strcmp(elf_interpreter,"/usr/lib/ld.so.1") == 0)
722 ibcs2_interpreter = 1;
725 * The early SET_PERSONALITY here is so that the lookup
726 * for the interpreter happens in the namespace of the
727 * to-be-execed image. SET_PERSONALITY can select an
728 * alternate root.
730 * However, SET_PERSONALITY is NOT allowed to switch
731 * this task into the new images's memory mapping
732 * policy - that is, TASK_SIZE must still evaluate to
733 * that which is appropriate to the execing application.
734 * This is because exit_mmap() needs to have TASK_SIZE
735 * evaluate to the size of the old image.
737 * So if (say) a 64-bit application is execing a 32-bit
738 * application it is the architecture's responsibility
739 * to defer changing the value of TASK_SIZE until the
740 * switch really is going to happen - do this in
741 * flush_thread(). - akpm
743 SET_PERSONALITY(loc->elf_ex, ibcs2_interpreter);
745 interpreter = open_exec(elf_interpreter);
746 retval = PTR_ERR(interpreter);
747 if (IS_ERR(interpreter))
748 goto out_free_interp;
751 * If the binary is not readable then enforce
752 * mm->dumpable = 0 regardless of the interpreter's
753 * permissions.
755 if (file_permission(interpreter, MAY_READ) < 0)
756 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
758 retval = kernel_read(interpreter, 0, bprm->buf,
759 BINPRM_BUF_SIZE);
760 if (retval != BINPRM_BUF_SIZE) {
761 if (retval >= 0)
762 retval = -EIO;
763 goto out_free_dentry;
766 /* Get the exec headers */
767 loc->interp_ex = *((struct exec *)bprm->buf);
768 loc->interp_elf_ex = *((struct elfhdr *)bprm->buf);
769 break;
771 elf_ppnt++;
774 elf_ppnt = elf_phdata;
775 for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++)
776 if (elf_ppnt->p_type == PT_GNU_STACK) {
777 if (elf_ppnt->p_flags & PF_X)
778 executable_stack = EXSTACK_ENABLE_X;
779 else
780 executable_stack = EXSTACK_DISABLE_X;
781 break;
784 /* Some simple consistency checks for the interpreter */
785 if (elf_interpreter) {
786 static int warn;
787 interpreter_type = INTERPRETER_ELF | INTERPRETER_AOUT;
789 /* Now figure out which format our binary is */
790 if ((N_MAGIC(loc->interp_ex) != OMAGIC) &&
791 (N_MAGIC(loc->interp_ex) != ZMAGIC) &&
792 (N_MAGIC(loc->interp_ex) != QMAGIC))
793 interpreter_type = INTERPRETER_ELF;
795 if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
796 interpreter_type &= ~INTERPRETER_ELF;
798 if (interpreter_type == INTERPRETER_AOUT && warn < 10) {
799 printk(KERN_WARNING "a.out ELF interpreter %s is "
800 "deprecated and will not be supported "
801 "after Linux 2.6.25\n", elf_interpreter);
802 warn++;
805 retval = -ELIBBAD;
806 if (!interpreter_type)
807 goto out_free_dentry;
809 /* Make sure only one type was selected */
810 if ((interpreter_type & INTERPRETER_ELF) &&
811 interpreter_type != INTERPRETER_ELF) {
812 // FIXME - ratelimit this before re-enabling
813 // printk(KERN_WARNING "ELF: Ambiguous type, using ELF\n");
814 interpreter_type = INTERPRETER_ELF;
816 /* Verify the interpreter has a valid arch */
817 if ((interpreter_type == INTERPRETER_ELF) &&
818 !elf_check_arch(&loc->interp_elf_ex))
819 goto out_free_dentry;
820 } else {
821 /* Executables without an interpreter also need a personality */
822 SET_PERSONALITY(loc->elf_ex, ibcs2_interpreter);
825 /* OK, we are done with that, now set up the arg stuff,
826 and then start this sucker up */
827 if ((!bprm->sh_bang) && (interpreter_type == INTERPRETER_AOUT)) {
828 char *passed_p = passed_fileno;
829 sprintf(passed_fileno, "%d", elf_exec_fileno);
831 if (elf_interpreter) {
832 retval = copy_strings_kernel(1, &passed_p, bprm);
833 if (retval)
834 goto out_free_dentry;
835 bprm->argc++;
839 /* Flush all traces of the currently running executable */
840 retval = flush_old_exec(bprm);
841 if (retval)
842 goto out_free_dentry;
844 /* Discard our unneeded old files struct */
845 if (files) {
846 put_files_struct(files);
847 files = NULL;
850 /* OK, This is the point of no return */
851 current->flags &= ~PF_FORKNOEXEC;
852 current->mm->def_flags = def_flags;
854 /* Do this immediately, since STACK_TOP as used in setup_arg_pages
855 may depend on the personality. */
856 SET_PERSONALITY(loc->elf_ex, ibcs2_interpreter);
857 if (elf_read_implies_exec(loc->elf_ex, executable_stack))
858 current->personality |= READ_IMPLIES_EXEC;
860 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
861 current->flags |= PF_RANDOMIZE;
862 arch_pick_mmap_layout(current->mm);
864 /* Do this so that we can load the interpreter, if need be. We will
865 change some of these later */
866 current->mm->free_area_cache = current->mm->mmap_base;
867 current->mm->cached_hole_size = 0;
868 retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
869 executable_stack);
870 if (retval < 0) {
871 send_sig(SIGKILL, current, 0);
872 goto out_free_dentry;
875 current->mm->start_stack = bprm->p;
877 /* Now we do a little grungy work by mmaping the ELF image into
878 the correct location in memory. */
879 for(i = 0, elf_ppnt = elf_phdata;
880 i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
881 int elf_prot = 0, elf_flags;
882 unsigned long k, vaddr;
884 if (elf_ppnt->p_type != PT_LOAD)
885 continue;
887 if (unlikely (elf_brk > elf_bss)) {
888 unsigned long nbyte;
890 /* There was a PT_LOAD segment with p_memsz > p_filesz
891 before this one. Map anonymous pages, if needed,
892 and clear the area. */
893 retval = set_brk (elf_bss + load_bias,
894 elf_brk + load_bias);
895 if (retval) {
896 send_sig(SIGKILL, current, 0);
897 goto out_free_dentry;
899 nbyte = ELF_PAGEOFFSET(elf_bss);
900 if (nbyte) {
901 nbyte = ELF_MIN_ALIGN - nbyte;
902 if (nbyte > elf_brk - elf_bss)
903 nbyte = elf_brk - elf_bss;
904 if (clear_user((void __user *)elf_bss +
905 load_bias, nbyte)) {
907 * This bss-zeroing can fail if the ELF
908 * file specifies odd protections. So
909 * we don't check the return value
915 if (elf_ppnt->p_flags & PF_R)
916 elf_prot |= PROT_READ;
917 if (elf_ppnt->p_flags & PF_W)
918 elf_prot |= PROT_WRITE;
919 if (elf_ppnt->p_flags & PF_X)
920 elf_prot |= PROT_EXEC;
922 elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
924 vaddr = elf_ppnt->p_vaddr;
925 if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) {
926 elf_flags |= MAP_FIXED;
927 } else if (loc->elf_ex.e_type == ET_DYN) {
928 /* Try and get dynamic programs out of the way of the
929 * default mmap base, as well as whatever program they
930 * might try to exec. This is because the brk will
931 * follow the loader, and is not movable. */
932 #ifdef CONFIG_X86
933 load_bias = 0;
934 #else
935 load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr);
936 #endif
939 error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
940 elf_prot, elf_flags, 0);
941 if (BAD_ADDR(error)) {
942 send_sig(SIGKILL, current, 0);
943 retval = IS_ERR((void *)error) ?
944 PTR_ERR((void*)error) : -EINVAL;
945 goto out_free_dentry;
948 if (!load_addr_set) {
949 load_addr_set = 1;
950 load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
951 if (loc->elf_ex.e_type == ET_DYN) {
952 load_bias += error -
953 ELF_PAGESTART(load_bias + vaddr);
954 load_addr += load_bias;
955 reloc_func_desc = load_bias;
958 k = elf_ppnt->p_vaddr;
959 if (k < start_code)
960 start_code = k;
961 if (start_data < k)
962 start_data = k;
965 * Check to see if the section's size will overflow the
966 * allowed task size. Note that p_filesz must always be
967 * <= p_memsz so it is only necessary to check p_memsz.
969 if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
970 elf_ppnt->p_memsz > TASK_SIZE ||
971 TASK_SIZE - elf_ppnt->p_memsz < k) {
972 /* set_brk can never work. Avoid overflows. */
973 send_sig(SIGKILL, current, 0);
974 retval = -EINVAL;
975 goto out_free_dentry;
978 k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
980 if (k > elf_bss)
981 elf_bss = k;
982 if ((elf_ppnt->p_flags & PF_X) && end_code < k)
983 end_code = k;
984 if (end_data < k)
985 end_data = k;
986 k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
987 if (k > elf_brk)
988 elf_brk = k;
991 loc->elf_ex.e_entry += load_bias;
992 elf_bss += load_bias;
993 elf_brk += load_bias;
994 start_code += load_bias;
995 end_code += load_bias;
996 start_data += load_bias;
997 end_data += load_bias;
999 /* Calling set_brk effectively mmaps the pages that we need
1000 * for the bss and break sections. We must do this before
1001 * mapping in the interpreter, to make sure it doesn't wind
1002 * up getting placed where the bss needs to go.
1004 retval = set_brk(elf_bss, elf_brk);
1005 if (retval) {
1006 send_sig(SIGKILL, current, 0);
1007 goto out_free_dentry;
1009 if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
1010 send_sig(SIGSEGV, current, 0);
1011 retval = -EFAULT; /* Nobody gets to see this, but.. */
1012 goto out_free_dentry;
1015 if (elf_interpreter) {
1016 if (interpreter_type == INTERPRETER_AOUT) {
1017 elf_entry = load_aout_interp(&loc->interp_ex,
1018 interpreter);
1019 } else {
1020 unsigned long uninitialized_var(interp_map_addr);
1022 elf_entry = load_elf_interp(&loc->interp_elf_ex,
1023 interpreter,
1024 &interp_map_addr,
1025 load_bias);
1026 if (!IS_ERR((void *)elf_entry)) {
1028 * load_elf_interp() returns relocation
1029 * adjustment
1031 interp_load_addr = elf_entry;
1032 elf_entry += loc->interp_elf_ex.e_entry;
1035 if (BAD_ADDR(elf_entry)) {
1036 force_sig(SIGSEGV, current);
1037 retval = IS_ERR((void *)elf_entry) ?
1038 (int)elf_entry : -EINVAL;
1039 goto out_free_dentry;
1041 reloc_func_desc = interp_load_addr;
1043 allow_write_access(interpreter);
1044 fput(interpreter);
1045 kfree(elf_interpreter);
1046 } else {
1047 elf_entry = loc->elf_ex.e_entry;
1048 if (BAD_ADDR(elf_entry)) {
1049 force_sig(SIGSEGV, current);
1050 retval = -EINVAL;
1051 goto out_free_dentry;
1055 kfree(elf_phdata);
1057 if (interpreter_type != INTERPRETER_AOUT)
1058 sys_close(elf_exec_fileno);
1060 set_binfmt(&elf_format);
1062 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
1063 retval = arch_setup_additional_pages(bprm, executable_stack);
1064 if (retval < 0) {
1065 send_sig(SIGKILL, current, 0);
1066 goto out;
1068 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
1070 compute_creds(bprm);
1071 current->flags &= ~PF_FORKNOEXEC;
1072 retval = create_elf_tables(bprm, &loc->elf_ex,
1073 (interpreter_type == INTERPRETER_AOUT),
1074 load_addr, interp_load_addr);
1075 if (retval < 0) {
1076 send_sig(SIGKILL, current, 0);
1077 goto out;
1079 /* N.B. passed_fileno might not be initialized? */
1080 if (interpreter_type == INTERPRETER_AOUT)
1081 current->mm->arg_start += strlen(passed_fileno) + 1;
1082 current->mm->end_code = end_code;
1083 current->mm->start_code = start_code;
1084 current->mm->start_data = start_data;
1085 current->mm->end_data = end_data;
1086 current->mm->start_stack = bprm->p;
1088 #ifdef arch_randomize_brk
1089 if (current->flags & PF_RANDOMIZE)
1090 current->mm->brk = current->mm->start_brk =
1091 arch_randomize_brk(current->mm);
1092 #endif
1094 if (current->personality & MMAP_PAGE_ZERO) {
1095 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
1096 and some applications "depend" upon this behavior.
1097 Since we do not have the power to recompile these, we
1098 emulate the SVr4 behavior. Sigh. */
1099 down_write(&current->mm->mmap_sem);
1100 error = do_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
1101 MAP_FIXED | MAP_PRIVATE, 0);
1102 up_write(&current->mm->mmap_sem);
1105 #ifdef ELF_PLAT_INIT
1107 * The ABI may specify that certain registers be set up in special
1108 * ways (on i386 %edx is the address of a DT_FINI function, for
1109 * example. In addition, it may also specify (eg, PowerPC64 ELF)
1110 * that the e_entry field is the address of the function descriptor
1111 * for the startup routine, rather than the address of the startup
1112 * routine itself. This macro performs whatever initialization to
1113 * the regs structure is required as well as any relocations to the
1114 * function descriptor entries when executing dynamically links apps.
1116 ELF_PLAT_INIT(regs, reloc_func_desc);
1117 #endif
1119 start_thread(regs, elf_entry, bprm->p);
1120 if (unlikely(current->ptrace & PT_PTRACED)) {
1121 if (current->ptrace & PT_TRACE_EXEC)
1122 ptrace_notify ((PTRACE_EVENT_EXEC << 8) | SIGTRAP);
1123 else
1124 send_sig(SIGTRAP, current, 0);
1126 retval = 0;
1127 out:
1128 kfree(loc);
1129 out_ret:
1130 return retval;
1132 /* error cleanup */
1133 out_free_dentry:
1134 allow_write_access(interpreter);
1135 if (interpreter)
1136 fput(interpreter);
1137 out_free_interp:
1138 kfree(elf_interpreter);
1139 out_free_file:
1140 sys_close(elf_exec_fileno);
1141 out_free_fh:
1142 if (files)
1143 reset_files_struct(current, files);
1144 out_free_ph:
1145 kfree(elf_phdata);
1146 goto out;
1149 /* This is really simpleminded and specialized - we are loading an
1150 a.out library that is given an ELF header. */
1151 static int load_elf_library(struct file *file)
1153 struct elf_phdr *elf_phdata;
1154 struct elf_phdr *eppnt;
1155 unsigned long elf_bss, bss, len;
1156 int retval, error, i, j;
1157 struct elfhdr elf_ex;
1159 error = -ENOEXEC;
1160 retval = kernel_read(file, 0, (char *)&elf_ex, sizeof(elf_ex));
1161 if (retval != sizeof(elf_ex))
1162 goto out;
1164 if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1165 goto out;
1167 /* First of all, some simple consistency checks */
1168 if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1169 !elf_check_arch(&elf_ex) || !file->f_op || !file->f_op->mmap)
1170 goto out;
1172 /* Now read in all of the header information */
1174 j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1175 /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1177 error = -ENOMEM;
1178 elf_phdata = kmalloc(j, GFP_KERNEL);
1179 if (!elf_phdata)
1180 goto out;
1182 eppnt = elf_phdata;
1183 error = -ENOEXEC;
1184 retval = kernel_read(file, elf_ex.e_phoff, (char *)eppnt, j);
1185 if (retval != j)
1186 goto out_free_ph;
1188 for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1189 if ((eppnt + i)->p_type == PT_LOAD)
1190 j++;
1191 if (j != 1)
1192 goto out_free_ph;
1194 while (eppnt->p_type != PT_LOAD)
1195 eppnt++;
1197 /* Now use mmap to map the library into memory. */
1198 down_write(&current->mm->mmap_sem);
1199 error = do_mmap(file,
1200 ELF_PAGESTART(eppnt->p_vaddr),
1201 (eppnt->p_filesz +
1202 ELF_PAGEOFFSET(eppnt->p_vaddr)),
1203 PROT_READ | PROT_WRITE | PROT_EXEC,
1204 MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE,
1205 (eppnt->p_offset -
1206 ELF_PAGEOFFSET(eppnt->p_vaddr)));
1207 up_write(&current->mm->mmap_sem);
1208 if (error != ELF_PAGESTART(eppnt->p_vaddr))
1209 goto out_free_ph;
1211 elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1212 if (padzero(elf_bss)) {
1213 error = -EFAULT;
1214 goto out_free_ph;
1217 len = ELF_PAGESTART(eppnt->p_filesz + eppnt->p_vaddr +
1218 ELF_MIN_ALIGN - 1);
1219 bss = eppnt->p_memsz + eppnt->p_vaddr;
1220 if (bss > len) {
1221 down_write(&current->mm->mmap_sem);
1222 do_brk(len, bss - len);
1223 up_write(&current->mm->mmap_sem);
1225 error = 0;
1227 out_free_ph:
1228 kfree(elf_phdata);
1229 out:
1230 return error;
1234 * Note that some platforms still use traditional core dumps and not
1235 * the ELF core dump. Each platform can select it as appropriate.
1237 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
1240 * ELF core dumper
1242 * Modelled on fs/exec.c:aout_core_dump()
1243 * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1246 * These are the only things you should do on a core-file: use only these
1247 * functions to write out all the necessary info.
1249 static int dump_write(struct file *file, const void *addr, int nr)
1251 return file->f_op->write(file, addr, nr, &file->f_pos) == nr;
1254 static int dump_seek(struct file *file, loff_t off)
1256 if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
1257 if (file->f_op->llseek(file, off, SEEK_CUR) < 0)
1258 return 0;
1259 } else {
1260 char *buf = (char *)get_zeroed_page(GFP_KERNEL);
1261 if (!buf)
1262 return 0;
1263 while (off > 0) {
1264 unsigned long n = off;
1265 if (n > PAGE_SIZE)
1266 n = PAGE_SIZE;
1267 if (!dump_write(file, buf, n))
1268 return 0;
1269 off -= n;
1271 free_page((unsigned long)buf);
1273 return 1;
1277 * Decide what to dump of a segment, part, all or none.
1279 static unsigned long vma_dump_size(struct vm_area_struct *vma,
1280 unsigned long mm_flags)
1282 /* The vma can be set up to tell us the answer directly. */
1283 if (vma->vm_flags & VM_ALWAYSDUMP)
1284 goto whole;
1286 /* Do not dump I/O mapped devices or special mappings */
1287 if (vma->vm_flags & (VM_IO | VM_RESERVED))
1288 return 0;
1290 #define FILTER(type) (mm_flags & (1UL << MMF_DUMP_##type))
1292 /* By default, dump shared memory if mapped from an anonymous file. */
1293 if (vma->vm_flags & VM_SHARED) {
1294 if (vma->vm_file->f_path.dentry->d_inode->i_nlink == 0 ?
1295 FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1296 goto whole;
1297 return 0;
1300 /* Dump segments that have been written to. */
1301 if (vma->anon_vma && FILTER(ANON_PRIVATE))
1302 goto whole;
1303 if (vma->vm_file == NULL)
1304 return 0;
1306 if (FILTER(MAPPED_PRIVATE))
1307 goto whole;
1310 * If this looks like the beginning of a DSO or executable mapping,
1311 * check for an ELF header. If we find one, dump the first page to
1312 * aid in determining what was mapped here.
1314 if (FILTER(ELF_HEADERS) && vma->vm_file != NULL && vma->vm_pgoff == 0) {
1315 u32 __user *header = (u32 __user *) vma->vm_start;
1316 u32 word;
1318 * Doing it this way gets the constant folded by GCC.
1320 union {
1321 u32 cmp;
1322 char elfmag[SELFMAG];
1323 } magic;
1324 BUILD_BUG_ON(SELFMAG != sizeof word);
1325 magic.elfmag[EI_MAG0] = ELFMAG0;
1326 magic.elfmag[EI_MAG1] = ELFMAG1;
1327 magic.elfmag[EI_MAG2] = ELFMAG2;
1328 magic.elfmag[EI_MAG3] = ELFMAG3;
1329 if (get_user(word, header) == 0 && word == magic.cmp)
1330 return PAGE_SIZE;
1333 #undef FILTER
1335 return 0;
1337 whole:
1338 return vma->vm_end - vma->vm_start;
1341 /* An ELF note in memory */
1342 struct memelfnote
1344 const char *name;
1345 int type;
1346 unsigned int datasz;
1347 void *data;
1350 static int notesize(struct memelfnote *en)
1352 int sz;
1354 sz = sizeof(struct elf_note);
1355 sz += roundup(strlen(en->name) + 1, 4);
1356 sz += roundup(en->datasz, 4);
1358 return sz;
1361 #define DUMP_WRITE(addr, nr, foffset) \
1362 do { if (!dump_write(file, (addr), (nr))) return 0; *foffset += (nr); } while(0)
1364 static int alignfile(struct file *file, loff_t *foffset)
1366 static const char buf[4] = { 0, };
1367 DUMP_WRITE(buf, roundup(*foffset, 4) - *foffset, foffset);
1368 return 1;
1371 static int writenote(struct memelfnote *men, struct file *file,
1372 loff_t *foffset)
1374 struct elf_note en;
1375 en.n_namesz = strlen(men->name) + 1;
1376 en.n_descsz = men->datasz;
1377 en.n_type = men->type;
1379 DUMP_WRITE(&en, sizeof(en), foffset);
1380 DUMP_WRITE(men->name, en.n_namesz, foffset);
1381 if (!alignfile(file, foffset))
1382 return 0;
1383 DUMP_WRITE(men->data, men->datasz, foffset);
1384 if (!alignfile(file, foffset))
1385 return 0;
1387 return 1;
1389 #undef DUMP_WRITE
1391 #define DUMP_WRITE(addr, nr) \
1392 if ((size += (nr)) > limit || !dump_write(file, (addr), (nr))) \
1393 goto end_coredump;
1394 #define DUMP_SEEK(off) \
1395 if (!dump_seek(file, (off))) \
1396 goto end_coredump;
1398 static void fill_elf_header(struct elfhdr *elf, int segs,
1399 u16 machine, u32 flags, u8 osabi)
1401 memcpy(elf->e_ident, ELFMAG, SELFMAG);
1402 elf->e_ident[EI_CLASS] = ELF_CLASS;
1403 elf->e_ident[EI_DATA] = ELF_DATA;
1404 elf->e_ident[EI_VERSION] = EV_CURRENT;
1405 elf->e_ident[EI_OSABI] = ELF_OSABI;
1406 memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD);
1408 elf->e_type = ET_CORE;
1409 elf->e_machine = machine;
1410 elf->e_version = EV_CURRENT;
1411 elf->e_entry = 0;
1412 elf->e_phoff = sizeof(struct elfhdr);
1413 elf->e_shoff = 0;
1414 elf->e_flags = flags;
1415 elf->e_ehsize = sizeof(struct elfhdr);
1416 elf->e_phentsize = sizeof(struct elf_phdr);
1417 elf->e_phnum = segs;
1418 elf->e_shentsize = 0;
1419 elf->e_shnum = 0;
1420 elf->e_shstrndx = 0;
1421 return;
1424 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1426 phdr->p_type = PT_NOTE;
1427 phdr->p_offset = offset;
1428 phdr->p_vaddr = 0;
1429 phdr->p_paddr = 0;
1430 phdr->p_filesz = sz;
1431 phdr->p_memsz = 0;
1432 phdr->p_flags = 0;
1433 phdr->p_align = 0;
1434 return;
1437 static void fill_note(struct memelfnote *note, const char *name, int type,
1438 unsigned int sz, void *data)
1440 note->name = name;
1441 note->type = type;
1442 note->datasz = sz;
1443 note->data = data;
1444 return;
1448 * fill up all the fields in prstatus from the given task struct, except
1449 * registers which need to be filled up separately.
1451 static void fill_prstatus(struct elf_prstatus *prstatus,
1452 struct task_struct *p, long signr)
1454 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1455 prstatus->pr_sigpend = p->pending.signal.sig[0];
1456 prstatus->pr_sighold = p->blocked.sig[0];
1457 prstatus->pr_pid = task_pid_vnr(p);
1458 prstatus->pr_ppid = task_pid_vnr(p->real_parent);
1459 prstatus->pr_pgrp = task_pgrp_vnr(p);
1460 prstatus->pr_sid = task_session_vnr(p);
1461 if (thread_group_leader(p)) {
1463 * This is the record for the group leader. Add in the
1464 * cumulative times of previous dead threads. This total
1465 * won't include the time of each live thread whose state
1466 * is included in the core dump. The final total reported
1467 * to our parent process when it calls wait4 will include
1468 * those sums as well as the little bit more time it takes
1469 * this and each other thread to finish dying after the
1470 * core dump synchronization phase.
1472 cputime_to_timeval(cputime_add(p->utime, p->signal->utime),
1473 &prstatus->pr_utime);
1474 cputime_to_timeval(cputime_add(p->stime, p->signal->stime),
1475 &prstatus->pr_stime);
1476 } else {
1477 cputime_to_timeval(p->utime, &prstatus->pr_utime);
1478 cputime_to_timeval(p->stime, &prstatus->pr_stime);
1480 cputime_to_timeval(p->signal->cutime, &prstatus->pr_cutime);
1481 cputime_to_timeval(p->signal->cstime, &prstatus->pr_cstime);
1484 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1485 struct mm_struct *mm)
1487 unsigned int i, len;
1489 /* first copy the parameters from user space */
1490 memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1492 len = mm->arg_end - mm->arg_start;
1493 if (len >= ELF_PRARGSZ)
1494 len = ELF_PRARGSZ-1;
1495 if (copy_from_user(&psinfo->pr_psargs,
1496 (const char __user *)mm->arg_start, len))
1497 return -EFAULT;
1498 for(i = 0; i < len; i++)
1499 if (psinfo->pr_psargs[i] == 0)
1500 psinfo->pr_psargs[i] = ' ';
1501 psinfo->pr_psargs[len] = 0;
1503 psinfo->pr_pid = task_pid_vnr(p);
1504 psinfo->pr_ppid = task_pid_vnr(p->real_parent);
1505 psinfo->pr_pgrp = task_pgrp_vnr(p);
1506 psinfo->pr_sid = task_session_vnr(p);
1508 i = p->state ? ffz(~p->state) + 1 : 0;
1509 psinfo->pr_state = i;
1510 psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1511 psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1512 psinfo->pr_nice = task_nice(p);
1513 psinfo->pr_flag = p->flags;
1514 SET_UID(psinfo->pr_uid, p->uid);
1515 SET_GID(psinfo->pr_gid, p->gid);
1516 strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1518 return 0;
1521 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1523 elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1524 int i = 0;
1526 i += 2;
1527 while (auxv[i - 2] != AT_NULL);
1528 fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1531 #ifdef CORE_DUMP_USE_REGSET
1532 #include <linux/regset.h>
1534 struct elf_thread_core_info {
1535 struct elf_thread_core_info *next;
1536 struct task_struct *task;
1537 struct elf_prstatus prstatus;
1538 struct memelfnote notes[0];
1541 struct elf_note_info {
1542 struct elf_thread_core_info *thread;
1543 struct memelfnote psinfo;
1544 struct memelfnote auxv;
1545 size_t size;
1546 int thread_notes;
1549 static int fill_thread_core_info(struct elf_thread_core_info *t,
1550 const struct user_regset_view *view,
1551 long signr, size_t *total)
1553 unsigned int i;
1556 * NT_PRSTATUS is the one special case, because the regset data
1557 * goes into the pr_reg field inside the note contents, rather
1558 * than being the whole note contents. We fill the reset in here.
1559 * We assume that regset 0 is NT_PRSTATUS.
1561 fill_prstatus(&t->prstatus, t->task, signr);
1562 (void) view->regsets[0].get(t->task, &view->regsets[0],
1563 0, sizeof(t->prstatus.pr_reg),
1564 &t->prstatus.pr_reg, NULL);
1566 fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1567 sizeof(t->prstatus), &t->prstatus);
1568 *total += notesize(&t->notes[0]);
1571 * Each other regset might generate a note too. For each regset
1572 * that has no core_note_type or is inactive, we leave t->notes[i]
1573 * all zero and we'll know to skip writing it later.
1575 for (i = 1; i < view->n; ++i) {
1576 const struct user_regset *regset = &view->regsets[i];
1577 if (regset->core_note_type &&
1578 (!regset->active || regset->active(t->task, regset))) {
1579 int ret;
1580 size_t size = regset->n * regset->size;
1581 void *data = kmalloc(size, GFP_KERNEL);
1582 if (unlikely(!data))
1583 return 0;
1584 ret = regset->get(t->task, regset,
1585 0, size, data, NULL);
1586 if (unlikely(ret))
1587 kfree(data);
1588 else {
1589 if (regset->core_note_type != NT_PRFPREG)
1590 fill_note(&t->notes[i], "LINUX",
1591 regset->core_note_type,
1592 size, data);
1593 else {
1594 t->prstatus.pr_fpvalid = 1;
1595 fill_note(&t->notes[i], "CORE",
1596 NT_PRFPREG, size, data);
1598 *total += notesize(&t->notes[i]);
1603 return 1;
1606 static int fill_note_info(struct elfhdr *elf, int phdrs,
1607 struct elf_note_info *info,
1608 long signr, struct pt_regs *regs)
1610 struct task_struct *dump_task = current;
1611 const struct user_regset_view *view = task_user_regset_view(dump_task);
1612 struct elf_thread_core_info *t;
1613 struct elf_prpsinfo *psinfo;
1614 struct task_struct *g, *p;
1615 unsigned int i;
1617 info->size = 0;
1618 info->thread = NULL;
1620 psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1621 fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1623 if (psinfo == NULL)
1624 return 0;
1627 * Figure out how many notes we're going to need for each thread.
1629 info->thread_notes = 0;
1630 for (i = 0; i < view->n; ++i)
1631 if (view->regsets[i].core_note_type != 0)
1632 ++info->thread_notes;
1635 * Sanity check. We rely on regset 0 being in NT_PRSTATUS,
1636 * since it is our one special case.
1638 if (unlikely(info->thread_notes == 0) ||
1639 unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1640 WARN_ON(1);
1641 return 0;
1645 * Initialize the ELF file header.
1647 fill_elf_header(elf, phdrs,
1648 view->e_machine, view->e_flags, view->ei_osabi);
1651 * Allocate a structure for each thread.
1653 rcu_read_lock();
1654 do_each_thread(g, p)
1655 if (p->mm == dump_task->mm) {
1656 t = kzalloc(offsetof(struct elf_thread_core_info,
1657 notes[info->thread_notes]),
1658 GFP_ATOMIC);
1659 if (unlikely(!t)) {
1660 rcu_read_unlock();
1661 return 0;
1663 t->task = p;
1664 if (p == dump_task || !info->thread) {
1665 t->next = info->thread;
1666 info->thread = t;
1667 } else {
1669 * Make sure to keep the original task at
1670 * the head of the list.
1672 t->next = info->thread->next;
1673 info->thread->next = t;
1676 while_each_thread(g, p);
1677 rcu_read_unlock();
1680 * Now fill in each thread's information.
1682 for (t = info->thread; t != NULL; t = t->next)
1683 if (!fill_thread_core_info(t, view, signr, &info->size))
1684 return 0;
1687 * Fill in the two process-wide notes.
1689 fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1690 info->size += notesize(&info->psinfo);
1692 fill_auxv_note(&info->auxv, current->mm);
1693 info->size += notesize(&info->auxv);
1695 return 1;
1698 static size_t get_note_info_size(struct elf_note_info *info)
1700 return info->size;
1704 * Write all the notes for each thread. When writing the first thread, the
1705 * process-wide notes are interleaved after the first thread-specific note.
1707 static int write_note_info(struct elf_note_info *info,
1708 struct file *file, loff_t *foffset)
1710 bool first = 1;
1711 struct elf_thread_core_info *t = info->thread;
1713 do {
1714 int i;
1716 if (!writenote(&t->notes[0], file, foffset))
1717 return 0;
1719 if (first && !writenote(&info->psinfo, file, foffset))
1720 return 0;
1721 if (first && !writenote(&info->auxv, file, foffset))
1722 return 0;
1724 for (i = 1; i < info->thread_notes; ++i)
1725 if (t->notes[i].data &&
1726 !writenote(&t->notes[i], file, foffset))
1727 return 0;
1729 first = 0;
1730 t = t->next;
1731 } while (t);
1733 return 1;
1736 static void free_note_info(struct elf_note_info *info)
1738 struct elf_thread_core_info *threads = info->thread;
1739 while (threads) {
1740 unsigned int i;
1741 struct elf_thread_core_info *t = threads;
1742 threads = t->next;
1743 WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1744 for (i = 1; i < info->thread_notes; ++i)
1745 kfree(t->notes[i].data);
1746 kfree(t);
1748 kfree(info->psinfo.data);
1751 #else
1753 /* Here is the structure in which status of each thread is captured. */
1754 struct elf_thread_status
1756 struct list_head list;
1757 struct elf_prstatus prstatus; /* NT_PRSTATUS */
1758 elf_fpregset_t fpu; /* NT_PRFPREG */
1759 struct task_struct *thread;
1760 #ifdef ELF_CORE_COPY_XFPREGS
1761 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
1762 #endif
1763 struct memelfnote notes[3];
1764 int num_notes;
1768 * In order to add the specific thread information for the elf file format,
1769 * we need to keep a linked list of every threads pr_status and then create
1770 * a single section for them in the final core file.
1772 static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1774 int sz = 0;
1775 struct task_struct *p = t->thread;
1776 t->num_notes = 0;
1778 fill_prstatus(&t->prstatus, p, signr);
1779 elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
1781 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1782 &(t->prstatus));
1783 t->num_notes++;
1784 sz += notesize(&t->notes[0]);
1786 if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
1787 &t->fpu))) {
1788 fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
1789 &(t->fpu));
1790 t->num_notes++;
1791 sz += notesize(&t->notes[1]);
1794 #ifdef ELF_CORE_COPY_XFPREGS
1795 if (elf_core_copy_task_xfpregs(p, &t->xfpu)) {
1796 fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE,
1797 sizeof(t->xfpu), &t->xfpu);
1798 t->num_notes++;
1799 sz += notesize(&t->notes[2]);
1801 #endif
1802 return sz;
1805 struct elf_note_info {
1806 struct memelfnote *notes;
1807 struct elf_prstatus *prstatus; /* NT_PRSTATUS */
1808 struct elf_prpsinfo *psinfo; /* NT_PRPSINFO */
1809 struct list_head thread_list;
1810 elf_fpregset_t *fpu;
1811 #ifdef ELF_CORE_COPY_XFPREGS
1812 elf_fpxregset_t *xfpu;
1813 #endif
1814 int thread_status_size;
1815 int numnote;
1818 static int fill_note_info(struct elfhdr *elf, int phdrs,
1819 struct elf_note_info *info,
1820 long signr, struct pt_regs *regs)
1822 #define NUM_NOTES 6
1823 struct list_head *t;
1824 struct task_struct *g, *p;
1826 info->notes = NULL;
1827 info->prstatus = NULL;
1828 info->psinfo = NULL;
1829 info->fpu = NULL;
1830 #ifdef ELF_CORE_COPY_XFPREGS
1831 info->xfpu = NULL;
1832 #endif
1833 INIT_LIST_HEAD(&info->thread_list);
1835 info->notes = kmalloc(NUM_NOTES * sizeof(struct memelfnote),
1836 GFP_KERNEL);
1837 if (!info->notes)
1838 return 0;
1839 info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
1840 if (!info->psinfo)
1841 return 0;
1842 info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
1843 if (!info->prstatus)
1844 return 0;
1845 info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
1846 if (!info->fpu)
1847 return 0;
1848 #ifdef ELF_CORE_COPY_XFPREGS
1849 info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL);
1850 if (!info->xfpu)
1851 return 0;
1852 #endif
1854 info->thread_status_size = 0;
1855 if (signr) {
1856 struct elf_thread_status *tmp;
1857 rcu_read_lock();
1858 do_each_thread(g, p)
1859 if (current->mm == p->mm && current != p) {
1860 tmp = kzalloc(sizeof(*tmp), GFP_ATOMIC);
1861 if (!tmp) {
1862 rcu_read_unlock();
1863 return 0;
1865 tmp->thread = p;
1866 list_add(&tmp->list, &info->thread_list);
1868 while_each_thread(g, p);
1869 rcu_read_unlock();
1870 list_for_each(t, &info->thread_list) {
1871 struct elf_thread_status *tmp;
1872 int sz;
1874 tmp = list_entry(t, struct elf_thread_status, list);
1875 sz = elf_dump_thread_status(signr, tmp);
1876 info->thread_status_size += sz;
1879 /* now collect the dump for the current */
1880 memset(info->prstatus, 0, sizeof(*info->prstatus));
1881 fill_prstatus(info->prstatus, current, signr);
1882 elf_core_copy_regs(&info->prstatus->pr_reg, regs);
1884 /* Set up header */
1885 fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS, ELF_OSABI);
1888 * Set up the notes in similar form to SVR4 core dumps made
1889 * with info from their /proc.
1892 fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
1893 sizeof(*info->prstatus), info->prstatus);
1894 fill_psinfo(info->psinfo, current->group_leader, current->mm);
1895 fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
1896 sizeof(*info->psinfo), info->psinfo);
1898 info->numnote = 2;
1900 fill_auxv_note(&info->notes[info->numnote++], current->mm);
1902 /* Try to dump the FPU. */
1903 info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
1904 info->fpu);
1905 if (info->prstatus->pr_fpvalid)
1906 fill_note(info->notes + info->numnote++,
1907 "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
1908 #ifdef ELF_CORE_COPY_XFPREGS
1909 if (elf_core_copy_task_xfpregs(current, info->xfpu))
1910 fill_note(info->notes + info->numnote++,
1911 "LINUX", ELF_CORE_XFPREG_TYPE,
1912 sizeof(*info->xfpu), info->xfpu);
1913 #endif
1915 return 1;
1917 #undef NUM_NOTES
1920 static size_t get_note_info_size(struct elf_note_info *info)
1922 int sz = 0;
1923 int i;
1925 for (i = 0; i < info->numnote; i++)
1926 sz += notesize(info->notes + i);
1928 sz += info->thread_status_size;
1930 return sz;
1933 static int write_note_info(struct elf_note_info *info,
1934 struct file *file, loff_t *foffset)
1936 int i;
1937 struct list_head *t;
1939 for (i = 0; i < info->numnote; i++)
1940 if (!writenote(info->notes + i, file, foffset))
1941 return 0;
1943 /* write out the thread status notes section */
1944 list_for_each(t, &info->thread_list) {
1945 struct elf_thread_status *tmp =
1946 list_entry(t, struct elf_thread_status, list);
1948 for (i = 0; i < tmp->num_notes; i++)
1949 if (!writenote(&tmp->notes[i], file, foffset))
1950 return 0;
1953 return 1;
1956 static void free_note_info(struct elf_note_info *info)
1958 while (!list_empty(&info->thread_list)) {
1959 struct list_head *tmp = info->thread_list.next;
1960 list_del(tmp);
1961 kfree(list_entry(tmp, struct elf_thread_status, list));
1964 kfree(info->prstatus);
1965 kfree(info->psinfo);
1966 kfree(info->notes);
1967 kfree(info->fpu);
1968 #ifdef ELF_CORE_COPY_XFPREGS
1969 kfree(info->xfpu);
1970 #endif
1973 #endif
1975 static struct vm_area_struct *first_vma(struct task_struct *tsk,
1976 struct vm_area_struct *gate_vma)
1978 struct vm_area_struct *ret = tsk->mm->mmap;
1980 if (ret)
1981 return ret;
1982 return gate_vma;
1985 * Helper function for iterating across a vma list. It ensures that the caller
1986 * will visit `gate_vma' prior to terminating the search.
1988 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
1989 struct vm_area_struct *gate_vma)
1991 struct vm_area_struct *ret;
1993 ret = this_vma->vm_next;
1994 if (ret)
1995 return ret;
1996 if (this_vma == gate_vma)
1997 return NULL;
1998 return gate_vma;
2002 * Actual dumper
2004 * This is a two-pass process; first we find the offsets of the bits,
2005 * and then they are actually written out. If we run out of core limit
2006 * we just truncate.
2008 static int elf_core_dump(long signr, struct pt_regs *regs, struct file *file, unsigned long limit)
2010 int has_dumped = 0;
2011 mm_segment_t fs;
2012 int segs;
2013 size_t size = 0;
2014 struct vm_area_struct *vma, *gate_vma;
2015 struct elfhdr *elf = NULL;
2016 loff_t offset = 0, dataoff, foffset;
2017 unsigned long mm_flags;
2018 struct elf_note_info info;
2021 * We no longer stop all VM operations.
2023 * This is because those proceses that could possibly change map_count
2024 * or the mmap / vma pages are now blocked in do_exit on current
2025 * finishing this core dump.
2027 * Only ptrace can touch these memory addresses, but it doesn't change
2028 * the map_count or the pages allocated. So no possibility of crashing
2029 * exists while dumping the mm->vm_next areas to the core file.
2032 /* alloc memory for large data structures: too large to be on stack */
2033 elf = kmalloc(sizeof(*elf), GFP_KERNEL);
2034 if (!elf)
2035 goto cleanup;
2037 segs = current->mm->map_count;
2038 #ifdef ELF_CORE_EXTRA_PHDRS
2039 segs += ELF_CORE_EXTRA_PHDRS;
2040 #endif
2042 gate_vma = get_gate_vma(current);
2043 if (gate_vma != NULL)
2044 segs++;
2047 * Collect all the non-memory information about the process for the
2048 * notes. This also sets up the file header.
2050 if (!fill_note_info(elf, segs + 1, /* including notes section */
2051 &info, signr, regs))
2052 goto cleanup;
2054 has_dumped = 1;
2055 current->flags |= PF_DUMPCORE;
2057 fs = get_fs();
2058 set_fs(KERNEL_DS);
2060 DUMP_WRITE(elf, sizeof(*elf));
2061 offset += sizeof(*elf); /* Elf header */
2062 offset += (segs + 1) * sizeof(struct elf_phdr); /* Program headers */
2063 foffset = offset;
2065 /* Write notes phdr entry */
2067 struct elf_phdr phdr;
2068 size_t sz = get_note_info_size(&info);
2070 sz += elf_coredump_extra_notes_size();
2072 fill_elf_note_phdr(&phdr, sz, offset);
2073 offset += sz;
2074 DUMP_WRITE(&phdr, sizeof(phdr));
2077 dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2080 * We must use the same mm->flags while dumping core to avoid
2081 * inconsistency between the program headers and bodies, otherwise an
2082 * unusable core file can be generated.
2084 mm_flags = current->mm->flags;
2086 /* Write program headers for segments dump */
2087 for (vma = first_vma(current, gate_vma); vma != NULL;
2088 vma = next_vma(vma, gate_vma)) {
2089 struct elf_phdr phdr;
2091 phdr.p_type = PT_LOAD;
2092 phdr.p_offset = offset;
2093 phdr.p_vaddr = vma->vm_start;
2094 phdr.p_paddr = 0;
2095 phdr.p_filesz = vma_dump_size(vma, mm_flags);
2096 phdr.p_memsz = vma->vm_end - vma->vm_start;
2097 offset += phdr.p_filesz;
2098 phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
2099 if (vma->vm_flags & VM_WRITE)
2100 phdr.p_flags |= PF_W;
2101 if (vma->vm_flags & VM_EXEC)
2102 phdr.p_flags |= PF_X;
2103 phdr.p_align = ELF_EXEC_PAGESIZE;
2105 DUMP_WRITE(&phdr, sizeof(phdr));
2108 #ifdef ELF_CORE_WRITE_EXTRA_PHDRS
2109 ELF_CORE_WRITE_EXTRA_PHDRS;
2110 #endif
2112 /* write out the notes section */
2113 if (!write_note_info(&info, file, &foffset))
2114 goto end_coredump;
2116 if (elf_coredump_extra_notes_write(file, &foffset))
2117 goto end_coredump;
2119 /* Align to page */
2120 DUMP_SEEK(dataoff - foffset);
2122 for (vma = first_vma(current, gate_vma); vma != NULL;
2123 vma = next_vma(vma, gate_vma)) {
2124 unsigned long addr;
2125 unsigned long end;
2127 end = vma->vm_start + vma_dump_size(vma, mm_flags);
2129 for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) {
2130 struct page *page;
2131 struct vm_area_struct *vma;
2133 if (get_user_pages(current, current->mm, addr, 1, 0, 1,
2134 &page, &vma) <= 0) {
2135 DUMP_SEEK(PAGE_SIZE);
2136 } else {
2137 if (page == ZERO_PAGE(0)) {
2138 if (!dump_seek(file, PAGE_SIZE)) {
2139 page_cache_release(page);
2140 goto end_coredump;
2142 } else {
2143 void *kaddr;
2144 flush_cache_page(vma, addr,
2145 page_to_pfn(page));
2146 kaddr = kmap(page);
2147 if ((size += PAGE_SIZE) > limit ||
2148 !dump_write(file, kaddr,
2149 PAGE_SIZE)) {
2150 kunmap(page);
2151 page_cache_release(page);
2152 goto end_coredump;
2154 kunmap(page);
2156 page_cache_release(page);
2161 #ifdef ELF_CORE_WRITE_EXTRA_DATA
2162 ELF_CORE_WRITE_EXTRA_DATA;
2163 #endif
2165 end_coredump:
2166 set_fs(fs);
2168 cleanup:
2169 kfree(elf);
2170 free_note_info(&info);
2171 return has_dumped;
2174 #endif /* USE_ELF_CORE_DUMP */
2176 static int __init init_elf_binfmt(void)
2178 return register_binfmt(&elf_format);
2181 static void __exit exit_elf_binfmt(void)
2183 /* Remove the COFF and ELF loaders. */
2184 unregister_binfmt(&elf_format);
2187 core_initcall(init_elf_binfmt);
2188 module_exit(exit_elf_binfmt);
2189 MODULE_LICENSE("GPL");