4 * Copyright (C) 1994-1999 Linus Torvalds
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include <linux/mm_inline.h> /* for page_is_file_cache() */
40 * FIXME: remove all knowledge of the buffer layer from the core VM
42 #include <linux/buffer_head.h> /* for generic_osync_inode */
48 * Shared mappings implemented 30.11.1994. It's not fully working yet,
51 * Shared mappings now work. 15.8.1995 Bruno.
53 * finished 'unifying' the page and buffer cache and SMP-threaded the
54 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
56 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
62 * ->i_mmap_lock (vmtruncate)
63 * ->private_lock (__free_pte->__set_page_dirty_buffers)
64 * ->swap_lock (exclusive_swap_page, others)
65 * ->mapping->tree_lock
68 * ->i_mmap_lock (truncate->unmap_mapping_range)
72 * ->page_table_lock or pte_lock (various, mainly in memory.c)
73 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
76 * ->lock_page (access_process_vm)
78 * ->i_mutex (generic_file_buffered_write)
79 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
82 * ->i_alloc_sem (various)
85 * ->sb_lock (fs/fs-writeback.c)
86 * ->mapping->tree_lock (__sync_single_inode)
89 * ->anon_vma.lock (vma_adjust)
92 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
94 * ->page_table_lock or pte_lock
95 * ->swap_lock (try_to_unmap_one)
96 * ->private_lock (try_to_unmap_one)
97 * ->tree_lock (try_to_unmap_one)
98 * ->zone.lru_lock (follow_page->mark_page_accessed)
99 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
100 * ->private_lock (page_remove_rmap->set_page_dirty)
101 * ->tree_lock (page_remove_rmap->set_page_dirty)
102 * ->inode_lock (page_remove_rmap->set_page_dirty)
103 * ->inode_lock (zap_pte_range->set_page_dirty)
104 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
107 * ->dcache_lock (proc_pid_lookup)
111 * Remove a page from the page cache and free it. Caller has to make
112 * sure the page is locked and that nobody else uses it - or that usage
113 * is safe. The caller must hold the mapping's tree_lock.
115 void __remove_from_page_cache(struct page
*page
)
117 struct address_space
*mapping
= page
->mapping
;
119 radix_tree_delete(&mapping
->page_tree
, page
->index
);
120 page
->mapping
= NULL
;
122 __dec_zone_page_state(page
, NR_FILE_PAGES
);
123 BUG_ON(page_mapped(page
));
124 mem_cgroup_uncharge_cache_page(page
);
127 * Some filesystems seem to re-dirty the page even after
128 * the VM has canceled the dirty bit (eg ext3 journaling).
130 * Fix it up by doing a final dirty accounting check after
131 * having removed the page entirely.
133 if (PageDirty(page
) && mapping_cap_account_dirty(mapping
)) {
134 dec_zone_page_state(page
, NR_FILE_DIRTY
);
135 dec_bdi_stat(mapping
->backing_dev_info
, BDI_RECLAIMABLE
);
139 void remove_from_page_cache(struct page
*page
)
141 struct address_space
*mapping
= page
->mapping
;
143 BUG_ON(!PageLocked(page
));
145 spin_lock_irq(&mapping
->tree_lock
);
146 __remove_from_page_cache(page
);
147 spin_unlock_irq(&mapping
->tree_lock
);
150 static int sync_page(void *word
)
152 struct address_space
*mapping
;
155 page
= container_of((unsigned long *)word
, struct page
, flags
);
158 * page_mapping() is being called without PG_locked held.
159 * Some knowledge of the state and use of the page is used to
160 * reduce the requirements down to a memory barrier.
161 * The danger here is of a stale page_mapping() return value
162 * indicating a struct address_space different from the one it's
163 * associated with when it is associated with one.
164 * After smp_mb(), it's either the correct page_mapping() for
165 * the page, or an old page_mapping() and the page's own
166 * page_mapping() has gone NULL.
167 * The ->sync_page() address_space operation must tolerate
168 * page_mapping() going NULL. By an amazing coincidence,
169 * this comes about because none of the users of the page
170 * in the ->sync_page() methods make essential use of the
171 * page_mapping(), merely passing the page down to the backing
172 * device's unplug functions when it's non-NULL, which in turn
173 * ignore it for all cases but swap, where only page_private(page) is
174 * of interest. When page_mapping() does go NULL, the entire
175 * call stack gracefully ignores the page and returns.
179 mapping
= page_mapping(page
);
180 if (mapping
&& mapping
->a_ops
&& mapping
->a_ops
->sync_page
)
181 mapping
->a_ops
->sync_page(page
);
186 static int sync_page_killable(void *word
)
189 return fatal_signal_pending(current
) ? -EINTR
: 0;
193 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
194 * @mapping: address space structure to write
195 * @start: offset in bytes where the range starts
196 * @end: offset in bytes where the range ends (inclusive)
197 * @sync_mode: enable synchronous operation
199 * Start writeback against all of a mapping's dirty pages that lie
200 * within the byte offsets <start, end> inclusive.
202 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
203 * opposed to a regular memory cleansing writeback. The difference between
204 * these two operations is that if a dirty page/buffer is encountered, it must
205 * be waited upon, and not just skipped over.
207 int __filemap_fdatawrite_range(struct address_space
*mapping
, loff_t start
,
208 loff_t end
, int sync_mode
)
211 struct writeback_control wbc
= {
212 .sync_mode
= sync_mode
,
213 .nr_to_write
= LONG_MAX
,
214 .range_start
= start
,
218 if (!mapping_cap_writeback_dirty(mapping
))
221 ret
= do_writepages(mapping
, &wbc
);
225 static inline int __filemap_fdatawrite(struct address_space
*mapping
,
228 return __filemap_fdatawrite_range(mapping
, 0, LLONG_MAX
, sync_mode
);
231 int filemap_fdatawrite(struct address_space
*mapping
)
233 return __filemap_fdatawrite(mapping
, WB_SYNC_ALL
);
235 EXPORT_SYMBOL(filemap_fdatawrite
);
237 int filemap_fdatawrite_range(struct address_space
*mapping
, loff_t start
,
240 return __filemap_fdatawrite_range(mapping
, start
, end
, WB_SYNC_ALL
);
242 EXPORT_SYMBOL(filemap_fdatawrite_range
);
245 * filemap_flush - mostly a non-blocking flush
246 * @mapping: target address_space
248 * This is a mostly non-blocking flush. Not suitable for data-integrity
249 * purposes - I/O may not be started against all dirty pages.
251 int filemap_flush(struct address_space
*mapping
)
253 return __filemap_fdatawrite(mapping
, WB_SYNC_NONE
);
255 EXPORT_SYMBOL(filemap_flush
);
258 * wait_on_page_writeback_range - wait for writeback to complete
259 * @mapping: target address_space
260 * @start: beginning page index
261 * @end: ending page index
263 * Wait for writeback to complete against pages indexed by start->end
266 int wait_on_page_writeback_range(struct address_space
*mapping
,
267 pgoff_t start
, pgoff_t end
)
277 pagevec_init(&pvec
, 0);
279 while ((index
<= end
) &&
280 (nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
281 PAGECACHE_TAG_WRITEBACK
,
282 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1)) != 0) {
285 for (i
= 0; i
< nr_pages
; i
++) {
286 struct page
*page
= pvec
.pages
[i
];
288 /* until radix tree lookup accepts end_index */
289 if (page
->index
> end
)
292 wait_on_page_writeback(page
);
296 pagevec_release(&pvec
);
300 /* Check for outstanding write errors */
301 if (test_and_clear_bit(AS_ENOSPC
, &mapping
->flags
))
303 if (test_and_clear_bit(AS_EIO
, &mapping
->flags
))
310 * sync_page_range - write and wait on all pages in the passed range
311 * @inode: target inode
312 * @mapping: target address_space
313 * @pos: beginning offset in pages to write
314 * @count: number of bytes to write
316 * Write and wait upon all the pages in the passed range. This is a "data
317 * integrity" operation. It waits upon in-flight writeout before starting and
318 * waiting upon new writeout. If there was an IO error, return it.
320 * We need to re-take i_mutex during the generic_osync_inode list walk because
321 * it is otherwise livelockable.
323 int sync_page_range(struct inode
*inode
, struct address_space
*mapping
,
324 loff_t pos
, loff_t count
)
326 pgoff_t start
= pos
>> PAGE_CACHE_SHIFT
;
327 pgoff_t end
= (pos
+ count
- 1) >> PAGE_CACHE_SHIFT
;
330 if (!mapping_cap_writeback_dirty(mapping
) || !count
)
332 ret
= filemap_fdatawrite_range(mapping
, pos
, pos
+ count
- 1);
334 mutex_lock(&inode
->i_mutex
);
335 ret
= generic_osync_inode(inode
, mapping
, OSYNC_METADATA
);
336 mutex_unlock(&inode
->i_mutex
);
339 ret
= wait_on_page_writeback_range(mapping
, start
, end
);
342 EXPORT_SYMBOL(sync_page_range
);
345 * sync_page_range_nolock - write & wait on all pages in the passed range without locking
346 * @inode: target inode
347 * @mapping: target address_space
348 * @pos: beginning offset in pages to write
349 * @count: number of bytes to write
351 * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
352 * as it forces O_SYNC writers to different parts of the same file
353 * to be serialised right until io completion.
355 int sync_page_range_nolock(struct inode
*inode
, struct address_space
*mapping
,
356 loff_t pos
, loff_t count
)
358 pgoff_t start
= pos
>> PAGE_CACHE_SHIFT
;
359 pgoff_t end
= (pos
+ count
- 1) >> PAGE_CACHE_SHIFT
;
362 if (!mapping_cap_writeback_dirty(mapping
) || !count
)
364 ret
= filemap_fdatawrite_range(mapping
, pos
, pos
+ count
- 1);
366 ret
= generic_osync_inode(inode
, mapping
, OSYNC_METADATA
);
368 ret
= wait_on_page_writeback_range(mapping
, start
, end
);
371 EXPORT_SYMBOL(sync_page_range_nolock
);
374 * filemap_fdatawait - wait for all under-writeback pages to complete
375 * @mapping: address space structure to wait for
377 * Walk the list of under-writeback pages of the given address space
378 * and wait for all of them.
380 int filemap_fdatawait(struct address_space
*mapping
)
382 loff_t i_size
= i_size_read(mapping
->host
);
387 return wait_on_page_writeback_range(mapping
, 0,
388 (i_size
- 1) >> PAGE_CACHE_SHIFT
);
390 EXPORT_SYMBOL(filemap_fdatawait
);
392 int filemap_write_and_wait(struct address_space
*mapping
)
396 if (mapping
->nrpages
) {
397 err
= filemap_fdatawrite(mapping
);
399 * Even if the above returned error, the pages may be
400 * written partially (e.g. -ENOSPC), so we wait for it.
401 * But the -EIO is special case, it may indicate the worst
402 * thing (e.g. bug) happened, so we avoid waiting for it.
405 int err2
= filemap_fdatawait(mapping
);
412 EXPORT_SYMBOL(filemap_write_and_wait
);
415 * filemap_write_and_wait_range - write out & wait on a file range
416 * @mapping: the address_space for the pages
417 * @lstart: offset in bytes where the range starts
418 * @lend: offset in bytes where the range ends (inclusive)
420 * Write out and wait upon file offsets lstart->lend, inclusive.
422 * Note that `lend' is inclusive (describes the last byte to be written) so
423 * that this function can be used to write to the very end-of-file (end = -1).
425 int filemap_write_and_wait_range(struct address_space
*mapping
,
426 loff_t lstart
, loff_t lend
)
430 if (mapping
->nrpages
) {
431 err
= __filemap_fdatawrite_range(mapping
, lstart
, lend
,
433 /* See comment of filemap_write_and_wait() */
435 int err2
= wait_on_page_writeback_range(mapping
,
436 lstart
>> PAGE_CACHE_SHIFT
,
437 lend
>> PAGE_CACHE_SHIFT
);
446 * add_to_page_cache_locked - add a locked page to the pagecache
448 * @mapping: the page's address_space
449 * @offset: page index
450 * @gfp_mask: page allocation mode
452 * This function is used to add a page to the pagecache. It must be locked.
453 * This function does not add the page to the LRU. The caller must do that.
455 int add_to_page_cache_locked(struct page
*page
, struct address_space
*mapping
,
456 pgoff_t offset
, gfp_t gfp_mask
)
460 VM_BUG_ON(!PageLocked(page
));
462 error
= mem_cgroup_cache_charge(page
, current
->mm
,
463 gfp_mask
& GFP_RECLAIM_MASK
);
467 error
= radix_tree_preload(gfp_mask
& ~__GFP_HIGHMEM
);
469 page_cache_get(page
);
470 page
->mapping
= mapping
;
471 page
->index
= offset
;
473 spin_lock_irq(&mapping
->tree_lock
);
474 error
= radix_tree_insert(&mapping
->page_tree
, offset
, page
);
475 if (likely(!error
)) {
477 __inc_zone_page_state(page
, NR_FILE_PAGES
);
479 page
->mapping
= NULL
;
480 mem_cgroup_uncharge_cache_page(page
);
481 page_cache_release(page
);
484 spin_unlock_irq(&mapping
->tree_lock
);
485 radix_tree_preload_end();
487 mem_cgroup_uncharge_cache_page(page
);
491 EXPORT_SYMBOL(add_to_page_cache_locked
);
493 int add_to_page_cache_lru(struct page
*page
, struct address_space
*mapping
,
494 pgoff_t offset
, gfp_t gfp_mask
)
499 * Splice_read and readahead add shmem/tmpfs pages into the page cache
500 * before shmem_readpage has a chance to mark them as SwapBacked: they
501 * need to go on the active_anon lru below, and mem_cgroup_cache_charge
502 * (called in add_to_page_cache) needs to know where they're going too.
504 if (mapping_cap_swap_backed(mapping
))
505 SetPageSwapBacked(page
);
507 ret
= add_to_page_cache(page
, mapping
, offset
, gfp_mask
);
509 if (page_is_file_cache(page
))
510 lru_cache_add_file(page
);
512 lru_cache_add_active_anon(page
);
518 struct page
*__page_cache_alloc(gfp_t gfp
)
520 if (cpuset_do_page_mem_spread()) {
521 int n
= cpuset_mem_spread_node();
522 return alloc_pages_node(n
, gfp
, 0);
524 return alloc_pages(gfp
, 0);
526 EXPORT_SYMBOL(__page_cache_alloc
);
529 static int __sleep_on_page_lock(void *word
)
536 * In order to wait for pages to become available there must be
537 * waitqueues associated with pages. By using a hash table of
538 * waitqueues where the bucket discipline is to maintain all
539 * waiters on the same queue and wake all when any of the pages
540 * become available, and for the woken contexts to check to be
541 * sure the appropriate page became available, this saves space
542 * at a cost of "thundering herd" phenomena during rare hash
545 static wait_queue_head_t
*page_waitqueue(struct page
*page
)
547 const struct zone
*zone
= page_zone(page
);
549 return &zone
->wait_table
[hash_ptr(page
, zone
->wait_table_bits
)];
552 static inline void wake_up_page(struct page
*page
, int bit
)
554 __wake_up_bit(page_waitqueue(page
), &page
->flags
, bit
);
557 void wait_on_page_bit(struct page
*page
, int bit_nr
)
559 DEFINE_WAIT_BIT(wait
, &page
->flags
, bit_nr
);
561 if (test_bit(bit_nr
, &page
->flags
))
562 __wait_on_bit(page_waitqueue(page
), &wait
, sync_page
,
563 TASK_UNINTERRUPTIBLE
);
565 EXPORT_SYMBOL(wait_on_page_bit
);
568 * unlock_page - unlock a locked page
571 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
572 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
573 * mechananism between PageLocked pages and PageWriteback pages is shared.
574 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
576 * The mb is necessary to enforce ordering between the clear_bit and the read
577 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
579 void unlock_page(struct page
*page
)
581 VM_BUG_ON(!PageLocked(page
));
582 clear_bit_unlock(PG_locked
, &page
->flags
);
583 smp_mb__after_clear_bit();
584 wake_up_page(page
, PG_locked
);
586 EXPORT_SYMBOL(unlock_page
);
589 * end_page_writeback - end writeback against a page
592 void end_page_writeback(struct page
*page
)
594 if (TestClearPageReclaim(page
))
595 rotate_reclaimable_page(page
);
597 if (!test_clear_page_writeback(page
))
600 smp_mb__after_clear_bit();
601 wake_up_page(page
, PG_writeback
);
603 EXPORT_SYMBOL(end_page_writeback
);
606 * __lock_page - get a lock on the page, assuming we need to sleep to get it
607 * @page: the page to lock
609 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
610 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
611 * chances are that on the second loop, the block layer's plug list is empty,
612 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
614 void __lock_page(struct page
*page
)
616 DEFINE_WAIT_BIT(wait
, &page
->flags
, PG_locked
);
618 __wait_on_bit_lock(page_waitqueue(page
), &wait
, sync_page
,
619 TASK_UNINTERRUPTIBLE
);
621 EXPORT_SYMBOL(__lock_page
);
623 int __lock_page_killable(struct page
*page
)
625 DEFINE_WAIT_BIT(wait
, &page
->flags
, PG_locked
);
627 return __wait_on_bit_lock(page_waitqueue(page
), &wait
,
628 sync_page_killable
, TASK_KILLABLE
);
632 * __lock_page_nosync - get a lock on the page, without calling sync_page()
633 * @page: the page to lock
635 * Variant of lock_page that does not require the caller to hold a reference
636 * on the page's mapping.
638 void __lock_page_nosync(struct page
*page
)
640 DEFINE_WAIT_BIT(wait
, &page
->flags
, PG_locked
);
641 __wait_on_bit_lock(page_waitqueue(page
), &wait
, __sleep_on_page_lock
,
642 TASK_UNINTERRUPTIBLE
);
646 * find_get_page - find and get a page reference
647 * @mapping: the address_space to search
648 * @offset: the page index
650 * Is there a pagecache struct page at the given (mapping, offset) tuple?
651 * If yes, increment its refcount and return it; if no, return NULL.
653 struct page
*find_get_page(struct address_space
*mapping
, pgoff_t offset
)
661 pagep
= radix_tree_lookup_slot(&mapping
->page_tree
, offset
);
663 page
= radix_tree_deref_slot(pagep
);
664 if (unlikely(!page
|| page
== RADIX_TREE_RETRY
))
667 if (!page_cache_get_speculative(page
))
671 * Has the page moved?
672 * This is part of the lockless pagecache protocol. See
673 * include/linux/pagemap.h for details.
675 if (unlikely(page
!= *pagep
)) {
676 page_cache_release(page
);
684 EXPORT_SYMBOL(find_get_page
);
687 * find_lock_page - locate, pin and lock a pagecache page
688 * @mapping: the address_space to search
689 * @offset: the page index
691 * Locates the desired pagecache page, locks it, increments its reference
692 * count and returns its address.
694 * Returns zero if the page was not present. find_lock_page() may sleep.
696 struct page
*find_lock_page(struct address_space
*mapping
, pgoff_t offset
)
701 page
= find_get_page(mapping
, offset
);
704 /* Has the page been truncated? */
705 if (unlikely(page
->mapping
!= mapping
)) {
707 page_cache_release(page
);
710 VM_BUG_ON(page
->index
!= offset
);
714 EXPORT_SYMBOL(find_lock_page
);
717 * find_or_create_page - locate or add a pagecache page
718 * @mapping: the page's address_space
719 * @index: the page's index into the mapping
720 * @gfp_mask: page allocation mode
722 * Locates a page in the pagecache. If the page is not present, a new page
723 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
724 * LRU list. The returned page is locked and has its reference count
727 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
730 * find_or_create_page() returns the desired page's address, or zero on
733 struct page
*find_or_create_page(struct address_space
*mapping
,
734 pgoff_t index
, gfp_t gfp_mask
)
739 page
= find_lock_page(mapping
, index
);
741 page
= __page_cache_alloc(gfp_mask
);
745 * We want a regular kernel memory (not highmem or DMA etc)
746 * allocation for the radix tree nodes, but we need to honour
747 * the context-specific requirements the caller has asked for.
748 * GFP_RECLAIM_MASK collects those requirements.
750 err
= add_to_page_cache_lru(page
, mapping
, index
,
751 (gfp_mask
& GFP_RECLAIM_MASK
));
753 page_cache_release(page
);
761 EXPORT_SYMBOL(find_or_create_page
);
764 * find_get_pages - gang pagecache lookup
765 * @mapping: The address_space to search
766 * @start: The starting page index
767 * @nr_pages: The maximum number of pages
768 * @pages: Where the resulting pages are placed
770 * find_get_pages() will search for and return a group of up to
771 * @nr_pages pages in the mapping. The pages are placed at @pages.
772 * find_get_pages() takes a reference against the returned pages.
774 * The search returns a group of mapping-contiguous pages with ascending
775 * indexes. There may be holes in the indices due to not-present pages.
777 * find_get_pages() returns the number of pages which were found.
779 unsigned find_get_pages(struct address_space
*mapping
, pgoff_t start
,
780 unsigned int nr_pages
, struct page
**pages
)
784 unsigned int nr_found
;
788 nr_found
= radix_tree_gang_lookup_slot(&mapping
->page_tree
,
789 (void ***)pages
, start
, nr_pages
);
791 for (i
= 0; i
< nr_found
; i
++) {
794 page
= radix_tree_deref_slot((void **)pages
[i
]);
798 * this can only trigger if nr_found == 1, making livelock
801 if (unlikely(page
== RADIX_TREE_RETRY
))
804 if (!page_cache_get_speculative(page
))
807 /* Has the page moved? */
808 if (unlikely(page
!= *((void **)pages
[i
]))) {
809 page_cache_release(page
);
821 * find_get_pages_contig - gang contiguous pagecache lookup
822 * @mapping: The address_space to search
823 * @index: The starting page index
824 * @nr_pages: The maximum number of pages
825 * @pages: Where the resulting pages are placed
827 * find_get_pages_contig() works exactly like find_get_pages(), except
828 * that the returned number of pages are guaranteed to be contiguous.
830 * find_get_pages_contig() returns the number of pages which were found.
832 unsigned find_get_pages_contig(struct address_space
*mapping
, pgoff_t index
,
833 unsigned int nr_pages
, struct page
**pages
)
837 unsigned int nr_found
;
841 nr_found
= radix_tree_gang_lookup_slot(&mapping
->page_tree
,
842 (void ***)pages
, index
, nr_pages
);
844 for (i
= 0; i
< nr_found
; i
++) {
847 page
= radix_tree_deref_slot((void **)pages
[i
]);
851 * this can only trigger if nr_found == 1, making livelock
854 if (unlikely(page
== RADIX_TREE_RETRY
))
857 if (page
->mapping
== NULL
|| page
->index
!= index
)
860 if (!page_cache_get_speculative(page
))
863 /* Has the page moved? */
864 if (unlikely(page
!= *((void **)pages
[i
]))) {
865 page_cache_release(page
);
876 EXPORT_SYMBOL(find_get_pages_contig
);
879 * find_get_pages_tag - find and return pages that match @tag
880 * @mapping: the address_space to search
881 * @index: the starting page index
882 * @tag: the tag index
883 * @nr_pages: the maximum number of pages
884 * @pages: where the resulting pages are placed
886 * Like find_get_pages, except we only return pages which are tagged with
887 * @tag. We update @index to index the next page for the traversal.
889 unsigned find_get_pages_tag(struct address_space
*mapping
, pgoff_t
*index
,
890 int tag
, unsigned int nr_pages
, struct page
**pages
)
894 unsigned int nr_found
;
898 nr_found
= radix_tree_gang_lookup_tag_slot(&mapping
->page_tree
,
899 (void ***)pages
, *index
, nr_pages
, tag
);
901 for (i
= 0; i
< nr_found
; i
++) {
904 page
= radix_tree_deref_slot((void **)pages
[i
]);
908 * this can only trigger if nr_found == 1, making livelock
911 if (unlikely(page
== RADIX_TREE_RETRY
))
914 if (!page_cache_get_speculative(page
))
917 /* Has the page moved? */
918 if (unlikely(page
!= *((void **)pages
[i
]))) {
919 page_cache_release(page
);
929 *index
= pages
[ret
- 1]->index
+ 1;
933 EXPORT_SYMBOL(find_get_pages_tag
);
936 * grab_cache_page_nowait - returns locked page at given index in given cache
937 * @mapping: target address_space
938 * @index: the page index
940 * Same as grab_cache_page(), but do not wait if the page is unavailable.
941 * This is intended for speculative data generators, where the data can
942 * be regenerated if the page couldn't be grabbed. This routine should
943 * be safe to call while holding the lock for another page.
945 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
946 * and deadlock against the caller's locked page.
949 grab_cache_page_nowait(struct address_space
*mapping
, pgoff_t index
)
951 struct page
*page
= find_get_page(mapping
, index
);
954 if (trylock_page(page
))
956 page_cache_release(page
);
959 page
= __page_cache_alloc(mapping_gfp_mask(mapping
) & ~__GFP_FS
);
960 if (page
&& add_to_page_cache_lru(page
, mapping
, index
, GFP_NOFS
)) {
961 page_cache_release(page
);
966 EXPORT_SYMBOL(grab_cache_page_nowait
);
969 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
970 * a _large_ part of the i/o request. Imagine the worst scenario:
972 * ---R__________________________________________B__________
973 * ^ reading here ^ bad block(assume 4k)
975 * read(R) => miss => readahead(R...B) => media error => frustrating retries
976 * => failing the whole request => read(R) => read(R+1) =>
977 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
978 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
979 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
981 * It is going insane. Fix it by quickly scaling down the readahead size.
983 static void shrink_readahead_size_eio(struct file
*filp
,
984 struct file_ra_state
*ra
)
993 * do_generic_file_read - generic file read routine
994 * @filp: the file to read
995 * @ppos: current file position
996 * @desc: read_descriptor
997 * @actor: read method
999 * This is a generic file read routine, and uses the
1000 * mapping->a_ops->readpage() function for the actual low-level stuff.
1002 * This is really ugly. But the goto's actually try to clarify some
1003 * of the logic when it comes to error handling etc.
1005 static void do_generic_file_read(struct file
*filp
, loff_t
*ppos
,
1006 read_descriptor_t
*desc
, read_actor_t actor
)
1008 struct address_space
*mapping
= filp
->f_mapping
;
1009 struct inode
*inode
= mapping
->host
;
1010 struct file_ra_state
*ra
= &filp
->f_ra
;
1014 unsigned long offset
; /* offset into pagecache page */
1015 unsigned int prev_offset
;
1018 index
= *ppos
>> PAGE_CACHE_SHIFT
;
1019 prev_index
= ra
->prev_pos
>> PAGE_CACHE_SHIFT
;
1020 prev_offset
= ra
->prev_pos
& (PAGE_CACHE_SIZE
-1);
1021 last_index
= (*ppos
+ desc
->count
+ PAGE_CACHE_SIZE
-1) >> PAGE_CACHE_SHIFT
;
1022 offset
= *ppos
& ~PAGE_CACHE_MASK
;
1028 unsigned long nr
, ret
;
1032 page
= find_get_page(mapping
, index
);
1034 page_cache_sync_readahead(mapping
,
1036 index
, last_index
- index
);
1037 page
= find_get_page(mapping
, index
);
1038 if (unlikely(page
== NULL
))
1039 goto no_cached_page
;
1041 if (PageReadahead(page
)) {
1042 page_cache_async_readahead(mapping
,
1044 index
, last_index
- index
);
1046 if (!PageUptodate(page
)) {
1047 if (inode
->i_blkbits
== PAGE_CACHE_SHIFT
||
1048 !mapping
->a_ops
->is_partially_uptodate
)
1049 goto page_not_up_to_date
;
1050 if (!trylock_page(page
))
1051 goto page_not_up_to_date
;
1052 if (!mapping
->a_ops
->is_partially_uptodate(page
,
1054 goto page_not_up_to_date_locked
;
1059 * i_size must be checked after we know the page is Uptodate.
1061 * Checking i_size after the check allows us to calculate
1062 * the correct value for "nr", which means the zero-filled
1063 * part of the page is not copied back to userspace (unless
1064 * another truncate extends the file - this is desired though).
1067 isize
= i_size_read(inode
);
1068 end_index
= (isize
- 1) >> PAGE_CACHE_SHIFT
;
1069 if (unlikely(!isize
|| index
> end_index
)) {
1070 page_cache_release(page
);
1074 /* nr is the maximum number of bytes to copy from this page */
1075 nr
= PAGE_CACHE_SIZE
;
1076 if (index
== end_index
) {
1077 nr
= ((isize
- 1) & ~PAGE_CACHE_MASK
) + 1;
1079 page_cache_release(page
);
1085 /* If users can be writing to this page using arbitrary
1086 * virtual addresses, take care about potential aliasing
1087 * before reading the page on the kernel side.
1089 if (mapping_writably_mapped(mapping
))
1090 flush_dcache_page(page
);
1093 * When a sequential read accesses a page several times,
1094 * only mark it as accessed the first time.
1096 if (prev_index
!= index
|| offset
!= prev_offset
)
1097 mark_page_accessed(page
);
1101 * Ok, we have the page, and it's up-to-date, so
1102 * now we can copy it to user space...
1104 * The actor routine returns how many bytes were actually used..
1105 * NOTE! This may not be the same as how much of a user buffer
1106 * we filled up (we may be padding etc), so we can only update
1107 * "pos" here (the actor routine has to update the user buffer
1108 * pointers and the remaining count).
1110 ret
= actor(desc
, page
, offset
, nr
);
1112 index
+= offset
>> PAGE_CACHE_SHIFT
;
1113 offset
&= ~PAGE_CACHE_MASK
;
1114 prev_offset
= offset
;
1116 page_cache_release(page
);
1117 if (ret
== nr
&& desc
->count
)
1121 page_not_up_to_date
:
1122 /* Get exclusive access to the page ... */
1123 error
= lock_page_killable(page
);
1124 if (unlikely(error
))
1125 goto readpage_error
;
1127 page_not_up_to_date_locked
:
1128 /* Did it get truncated before we got the lock? */
1129 if (!page
->mapping
) {
1131 page_cache_release(page
);
1135 /* Did somebody else fill it already? */
1136 if (PageUptodate(page
)) {
1142 /* Start the actual read. The read will unlock the page. */
1143 error
= mapping
->a_ops
->readpage(filp
, page
);
1145 if (unlikely(error
)) {
1146 if (error
== AOP_TRUNCATED_PAGE
) {
1147 page_cache_release(page
);
1150 goto readpage_error
;
1153 if (!PageUptodate(page
)) {
1154 error
= lock_page_killable(page
);
1155 if (unlikely(error
))
1156 goto readpage_error
;
1157 if (!PageUptodate(page
)) {
1158 if (page
->mapping
== NULL
) {
1160 * invalidate_inode_pages got it
1163 page_cache_release(page
);
1167 shrink_readahead_size_eio(filp
, ra
);
1169 goto readpage_error
;
1177 /* UHHUH! A synchronous read error occurred. Report it */
1178 desc
->error
= error
;
1179 page_cache_release(page
);
1184 * Ok, it wasn't cached, so we need to create a new
1187 page
= page_cache_alloc_cold(mapping
);
1189 desc
->error
= -ENOMEM
;
1192 error
= add_to_page_cache_lru(page
, mapping
,
1195 page_cache_release(page
);
1196 if (error
== -EEXIST
)
1198 desc
->error
= error
;
1205 ra
->prev_pos
= prev_index
;
1206 ra
->prev_pos
<<= PAGE_CACHE_SHIFT
;
1207 ra
->prev_pos
|= prev_offset
;
1209 *ppos
= ((loff_t
)index
<< PAGE_CACHE_SHIFT
) + offset
;
1210 file_accessed(filp
);
1213 int file_read_actor(read_descriptor_t
*desc
, struct page
*page
,
1214 unsigned long offset
, unsigned long size
)
1217 unsigned long left
, count
= desc
->count
;
1223 * Faults on the destination of a read are common, so do it before
1226 if (!fault_in_pages_writeable(desc
->arg
.buf
, size
)) {
1227 kaddr
= kmap_atomic(page
, KM_USER0
);
1228 left
= __copy_to_user_inatomic(desc
->arg
.buf
,
1229 kaddr
+ offset
, size
);
1230 kunmap_atomic(kaddr
, KM_USER0
);
1235 /* Do it the slow way */
1237 left
= __copy_to_user(desc
->arg
.buf
, kaddr
+ offset
, size
);
1242 desc
->error
= -EFAULT
;
1245 desc
->count
= count
- size
;
1246 desc
->written
+= size
;
1247 desc
->arg
.buf
+= size
;
1252 * Performs necessary checks before doing a write
1253 * @iov: io vector request
1254 * @nr_segs: number of segments in the iovec
1255 * @count: number of bytes to write
1256 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1258 * Adjust number of segments and amount of bytes to write (nr_segs should be
1259 * properly initialized first). Returns appropriate error code that caller
1260 * should return or zero in case that write should be allowed.
1262 int generic_segment_checks(const struct iovec
*iov
,
1263 unsigned long *nr_segs
, size_t *count
, int access_flags
)
1267 for (seg
= 0; seg
< *nr_segs
; seg
++) {
1268 const struct iovec
*iv
= &iov
[seg
];
1271 * If any segment has a negative length, or the cumulative
1272 * length ever wraps negative then return -EINVAL.
1275 if (unlikely((ssize_t
)(cnt
|iv
->iov_len
) < 0))
1277 if (access_ok(access_flags
, iv
->iov_base
, iv
->iov_len
))
1282 cnt
-= iv
->iov_len
; /* This segment is no good */
1288 EXPORT_SYMBOL(generic_segment_checks
);
1291 * generic_file_aio_read - generic filesystem read routine
1292 * @iocb: kernel I/O control block
1293 * @iov: io vector request
1294 * @nr_segs: number of segments in the iovec
1295 * @pos: current file position
1297 * This is the "read()" routine for all filesystems
1298 * that can use the page cache directly.
1301 generic_file_aio_read(struct kiocb
*iocb
, const struct iovec
*iov
,
1302 unsigned long nr_segs
, loff_t pos
)
1304 struct file
*filp
= iocb
->ki_filp
;
1308 loff_t
*ppos
= &iocb
->ki_pos
;
1311 retval
= generic_segment_checks(iov
, &nr_segs
, &count
, VERIFY_WRITE
);
1315 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1316 if (filp
->f_flags
& O_DIRECT
) {
1318 struct address_space
*mapping
;
1319 struct inode
*inode
;
1321 mapping
= filp
->f_mapping
;
1322 inode
= mapping
->host
;
1324 goto out
; /* skip atime */
1325 size
= i_size_read(inode
);
1327 retval
= filemap_write_and_wait_range(mapping
, pos
,
1328 pos
+ iov_length(iov
, nr_segs
) - 1);
1330 retval
= mapping
->a_ops
->direct_IO(READ
, iocb
,
1334 *ppos
= pos
+ retval
;
1336 file_accessed(filp
);
1342 for (seg
= 0; seg
< nr_segs
; seg
++) {
1343 read_descriptor_t desc
;
1346 desc
.arg
.buf
= iov
[seg
].iov_base
;
1347 desc
.count
= iov
[seg
].iov_len
;
1348 if (desc
.count
== 0)
1351 do_generic_file_read(filp
, ppos
, &desc
, file_read_actor
);
1352 retval
+= desc
.written
;
1354 retval
= retval
?: desc
.error
;
1363 EXPORT_SYMBOL(generic_file_aio_read
);
1366 do_readahead(struct address_space
*mapping
, struct file
*filp
,
1367 pgoff_t index
, unsigned long nr
)
1369 if (!mapping
|| !mapping
->a_ops
|| !mapping
->a_ops
->readpage
)
1372 force_page_cache_readahead(mapping
, filp
, index
,
1373 max_sane_readahead(nr
));
1377 SYSCALL_DEFINE(readahead
)(int fd
, loff_t offset
, size_t count
)
1385 if (file
->f_mode
& FMODE_READ
) {
1386 struct address_space
*mapping
= file
->f_mapping
;
1387 pgoff_t start
= offset
>> PAGE_CACHE_SHIFT
;
1388 pgoff_t end
= (offset
+ count
- 1) >> PAGE_CACHE_SHIFT
;
1389 unsigned long len
= end
- start
+ 1;
1390 ret
= do_readahead(mapping
, file
, start
, len
);
1396 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1397 asmlinkage
long SyS_readahead(long fd
, loff_t offset
, long count
)
1399 return SYSC_readahead((int) fd
, offset
, (size_t) count
);
1401 SYSCALL_ALIAS(sys_readahead
, SyS_readahead
);
1406 * page_cache_read - adds requested page to the page cache if not already there
1407 * @file: file to read
1408 * @offset: page index
1410 * This adds the requested page to the page cache if it isn't already there,
1411 * and schedules an I/O to read in its contents from disk.
1413 static int page_cache_read(struct file
*file
, pgoff_t offset
)
1415 struct address_space
*mapping
= file
->f_mapping
;
1420 page
= page_cache_alloc_cold(mapping
);
1424 ret
= add_to_page_cache_lru(page
, mapping
, offset
, GFP_KERNEL
);
1426 ret
= mapping
->a_ops
->readpage(file
, page
);
1427 else if (ret
== -EEXIST
)
1428 ret
= 0; /* losing race to add is OK */
1430 page_cache_release(page
);
1432 } while (ret
== AOP_TRUNCATED_PAGE
);
1437 #define MMAP_LOTSAMISS (100)
1440 * filemap_fault - read in file data for page fault handling
1441 * @vma: vma in which the fault was taken
1442 * @vmf: struct vm_fault containing details of the fault
1444 * filemap_fault() is invoked via the vma operations vector for a
1445 * mapped memory region to read in file data during a page fault.
1447 * The goto's are kind of ugly, but this streamlines the normal case of having
1448 * it in the page cache, and handles the special cases reasonably without
1449 * having a lot of duplicated code.
1451 int filemap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1454 struct file
*file
= vma
->vm_file
;
1455 struct address_space
*mapping
= file
->f_mapping
;
1456 struct file_ra_state
*ra
= &file
->f_ra
;
1457 struct inode
*inode
= mapping
->host
;
1460 int did_readaround
= 0;
1463 size
= (i_size_read(inode
) + PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1464 if (vmf
->pgoff
>= size
)
1465 return VM_FAULT_SIGBUS
;
1467 /* If we don't want any read-ahead, don't bother */
1468 if (VM_RandomReadHint(vma
))
1469 goto no_cached_page
;
1472 * Do we have something in the page cache already?
1475 page
= find_lock_page(mapping
, vmf
->pgoff
);
1477 * For sequential accesses, we use the generic readahead logic.
1479 if (VM_SequentialReadHint(vma
)) {
1481 page_cache_sync_readahead(mapping
, ra
, file
,
1483 page
= find_lock_page(mapping
, vmf
->pgoff
);
1485 goto no_cached_page
;
1487 if (PageReadahead(page
)) {
1488 page_cache_async_readahead(mapping
, ra
, file
, page
,
1494 unsigned long ra_pages
;
1499 * Do we miss much more than hit in this file? If so,
1500 * stop bothering with read-ahead. It will only hurt.
1502 if (ra
->mmap_miss
> MMAP_LOTSAMISS
)
1503 goto no_cached_page
;
1506 * To keep the pgmajfault counter straight, we need to
1507 * check did_readaround, as this is an inner loop.
1509 if (!did_readaround
) {
1510 ret
= VM_FAULT_MAJOR
;
1511 count_vm_event(PGMAJFAULT
);
1514 ra_pages
= max_sane_readahead(file
->f_ra
.ra_pages
);
1518 if (vmf
->pgoff
> ra_pages
/ 2)
1519 start
= vmf
->pgoff
- ra_pages
/ 2;
1520 do_page_cache_readahead(mapping
, file
, start
, ra_pages
);
1522 page
= find_lock_page(mapping
, vmf
->pgoff
);
1524 goto no_cached_page
;
1527 if (!did_readaround
)
1531 * We have a locked page in the page cache, now we need to check
1532 * that it's up-to-date. If not, it is going to be due to an error.
1534 if (unlikely(!PageUptodate(page
)))
1535 goto page_not_uptodate
;
1537 /* Must recheck i_size under page lock */
1538 size
= (i_size_read(inode
) + PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1539 if (unlikely(vmf
->pgoff
>= size
)) {
1541 page_cache_release(page
);
1542 return VM_FAULT_SIGBUS
;
1546 * Found the page and have a reference on it.
1548 ra
->prev_pos
= (loff_t
)page
->index
<< PAGE_CACHE_SHIFT
;
1550 return ret
| VM_FAULT_LOCKED
;
1554 * We're only likely to ever get here if MADV_RANDOM is in
1557 error
= page_cache_read(file
, vmf
->pgoff
);
1560 * The page we want has now been added to the page cache.
1561 * In the unlikely event that someone removed it in the
1562 * meantime, we'll just come back here and read it again.
1568 * An error return from page_cache_read can result if the
1569 * system is low on memory, or a problem occurs while trying
1572 if (error
== -ENOMEM
)
1573 return VM_FAULT_OOM
;
1574 return VM_FAULT_SIGBUS
;
1578 if (!did_readaround
) {
1579 ret
= VM_FAULT_MAJOR
;
1580 count_vm_event(PGMAJFAULT
);
1584 * Umm, take care of errors if the page isn't up-to-date.
1585 * Try to re-read it _once_. We do this synchronously,
1586 * because there really aren't any performance issues here
1587 * and we need to check for errors.
1589 ClearPageError(page
);
1590 error
= mapping
->a_ops
->readpage(file
, page
);
1592 wait_on_page_locked(page
);
1593 if (!PageUptodate(page
))
1596 page_cache_release(page
);
1598 if (!error
|| error
== AOP_TRUNCATED_PAGE
)
1601 /* Things didn't work out. Return zero to tell the mm layer so. */
1602 shrink_readahead_size_eio(file
, ra
);
1603 return VM_FAULT_SIGBUS
;
1605 EXPORT_SYMBOL(filemap_fault
);
1607 struct vm_operations_struct generic_file_vm_ops
= {
1608 .fault
= filemap_fault
,
1611 /* This is used for a general mmap of a disk file */
1613 int generic_file_mmap(struct file
* file
, struct vm_area_struct
* vma
)
1615 struct address_space
*mapping
= file
->f_mapping
;
1617 if (!mapping
->a_ops
->readpage
)
1619 file_accessed(file
);
1620 vma
->vm_ops
= &generic_file_vm_ops
;
1621 vma
->vm_flags
|= VM_CAN_NONLINEAR
;
1626 * This is for filesystems which do not implement ->writepage.
1628 int generic_file_readonly_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1630 if ((vma
->vm_flags
& VM_SHARED
) && (vma
->vm_flags
& VM_MAYWRITE
))
1632 return generic_file_mmap(file
, vma
);
1635 int generic_file_mmap(struct file
* file
, struct vm_area_struct
* vma
)
1639 int generic_file_readonly_mmap(struct file
* file
, struct vm_area_struct
* vma
)
1643 #endif /* CONFIG_MMU */
1645 EXPORT_SYMBOL(generic_file_mmap
);
1646 EXPORT_SYMBOL(generic_file_readonly_mmap
);
1648 static struct page
*__read_cache_page(struct address_space
*mapping
,
1650 int (*filler
)(void *,struct page
*),
1656 page
= find_get_page(mapping
, index
);
1658 page
= page_cache_alloc_cold(mapping
);
1660 return ERR_PTR(-ENOMEM
);
1661 err
= add_to_page_cache_lru(page
, mapping
, index
, GFP_KERNEL
);
1662 if (unlikely(err
)) {
1663 page_cache_release(page
);
1666 /* Presumably ENOMEM for radix tree node */
1667 return ERR_PTR(err
);
1669 err
= filler(data
, page
);
1671 page_cache_release(page
);
1672 page
= ERR_PTR(err
);
1679 * read_cache_page_async - read into page cache, fill it if needed
1680 * @mapping: the page's address_space
1681 * @index: the page index
1682 * @filler: function to perform the read
1683 * @data: destination for read data
1685 * Same as read_cache_page, but don't wait for page to become unlocked
1686 * after submitting it to the filler.
1688 * Read into the page cache. If a page already exists, and PageUptodate() is
1689 * not set, try to fill the page but don't wait for it to become unlocked.
1691 * If the page does not get brought uptodate, return -EIO.
1693 struct page
*read_cache_page_async(struct address_space
*mapping
,
1695 int (*filler
)(void *,struct page
*),
1702 page
= __read_cache_page(mapping
, index
, filler
, data
);
1705 if (PageUptodate(page
))
1709 if (!page
->mapping
) {
1711 page_cache_release(page
);
1714 if (PageUptodate(page
)) {
1718 err
= filler(data
, page
);
1720 page_cache_release(page
);
1721 return ERR_PTR(err
);
1724 mark_page_accessed(page
);
1727 EXPORT_SYMBOL(read_cache_page_async
);
1730 * read_cache_page - read into page cache, fill it if needed
1731 * @mapping: the page's address_space
1732 * @index: the page index
1733 * @filler: function to perform the read
1734 * @data: destination for read data
1736 * Read into the page cache. If a page already exists, and PageUptodate() is
1737 * not set, try to fill the page then wait for it to become unlocked.
1739 * If the page does not get brought uptodate, return -EIO.
1741 struct page
*read_cache_page(struct address_space
*mapping
,
1743 int (*filler
)(void *,struct page
*),
1748 page
= read_cache_page_async(mapping
, index
, filler
, data
);
1751 wait_on_page_locked(page
);
1752 if (!PageUptodate(page
)) {
1753 page_cache_release(page
);
1754 page
= ERR_PTR(-EIO
);
1759 EXPORT_SYMBOL(read_cache_page
);
1762 * The logic we want is
1764 * if suid or (sgid and xgrp)
1767 int should_remove_suid(struct dentry
*dentry
)
1769 mode_t mode
= dentry
->d_inode
->i_mode
;
1772 /* suid always must be killed */
1773 if (unlikely(mode
& S_ISUID
))
1774 kill
= ATTR_KILL_SUID
;
1777 * sgid without any exec bits is just a mandatory locking mark; leave
1778 * it alone. If some exec bits are set, it's a real sgid; kill it.
1780 if (unlikely((mode
& S_ISGID
) && (mode
& S_IXGRP
)))
1781 kill
|= ATTR_KILL_SGID
;
1783 if (unlikely(kill
&& !capable(CAP_FSETID
) && S_ISREG(mode
)))
1788 EXPORT_SYMBOL(should_remove_suid
);
1790 static int __remove_suid(struct dentry
*dentry
, int kill
)
1792 struct iattr newattrs
;
1794 newattrs
.ia_valid
= ATTR_FORCE
| kill
;
1795 return notify_change(dentry
, &newattrs
);
1798 int file_remove_suid(struct file
*file
)
1800 struct dentry
*dentry
= file
->f_path
.dentry
;
1801 int killsuid
= should_remove_suid(dentry
);
1802 int killpriv
= security_inode_need_killpriv(dentry
);
1808 error
= security_inode_killpriv(dentry
);
1809 if (!error
&& killsuid
)
1810 error
= __remove_suid(dentry
, killsuid
);
1814 EXPORT_SYMBOL(file_remove_suid
);
1816 static size_t __iovec_copy_from_user_inatomic(char *vaddr
,
1817 const struct iovec
*iov
, size_t base
, size_t bytes
)
1819 size_t copied
= 0, left
= 0;
1822 char __user
*buf
= iov
->iov_base
+ base
;
1823 int copy
= min(bytes
, iov
->iov_len
- base
);
1826 left
= __copy_from_user_inatomic_nocache(vaddr
, buf
, copy
);
1835 return copied
- left
;
1839 * Copy as much as we can into the page and return the number of bytes which
1840 * were sucessfully copied. If a fault is encountered then return the number of
1841 * bytes which were copied.
1843 size_t iov_iter_copy_from_user_atomic(struct page
*page
,
1844 struct iov_iter
*i
, unsigned long offset
, size_t bytes
)
1849 BUG_ON(!in_atomic());
1850 kaddr
= kmap_atomic(page
, KM_USER0
);
1851 if (likely(i
->nr_segs
== 1)) {
1853 char __user
*buf
= i
->iov
->iov_base
+ i
->iov_offset
;
1854 left
= __copy_from_user_inatomic_nocache(kaddr
+ offset
,
1856 copied
= bytes
- left
;
1858 copied
= __iovec_copy_from_user_inatomic(kaddr
+ offset
,
1859 i
->iov
, i
->iov_offset
, bytes
);
1861 kunmap_atomic(kaddr
, KM_USER0
);
1865 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic
);
1868 * This has the same sideeffects and return value as
1869 * iov_iter_copy_from_user_atomic().
1870 * The difference is that it attempts to resolve faults.
1871 * Page must not be locked.
1873 size_t iov_iter_copy_from_user(struct page
*page
,
1874 struct iov_iter
*i
, unsigned long offset
, size_t bytes
)
1880 if (likely(i
->nr_segs
== 1)) {
1882 char __user
*buf
= i
->iov
->iov_base
+ i
->iov_offset
;
1883 left
= __copy_from_user_nocache(kaddr
+ offset
, buf
, bytes
);
1884 copied
= bytes
- left
;
1886 copied
= __iovec_copy_from_user_inatomic(kaddr
+ offset
,
1887 i
->iov
, i
->iov_offset
, bytes
);
1892 EXPORT_SYMBOL(iov_iter_copy_from_user
);
1894 void iov_iter_advance(struct iov_iter
*i
, size_t bytes
)
1896 BUG_ON(i
->count
< bytes
);
1898 if (likely(i
->nr_segs
== 1)) {
1899 i
->iov_offset
+= bytes
;
1902 const struct iovec
*iov
= i
->iov
;
1903 size_t base
= i
->iov_offset
;
1906 * The !iov->iov_len check ensures we skip over unlikely
1907 * zero-length segments (without overruning the iovec).
1909 while (bytes
|| unlikely(i
->count
&& !iov
->iov_len
)) {
1912 copy
= min(bytes
, iov
->iov_len
- base
);
1913 BUG_ON(!i
->count
|| i
->count
< copy
);
1917 if (iov
->iov_len
== base
) {
1923 i
->iov_offset
= base
;
1926 EXPORT_SYMBOL(iov_iter_advance
);
1929 * Fault in the first iovec of the given iov_iter, to a maximum length
1930 * of bytes. Returns 0 on success, or non-zero if the memory could not be
1931 * accessed (ie. because it is an invalid address).
1933 * writev-intensive code may want this to prefault several iovecs -- that
1934 * would be possible (callers must not rely on the fact that _only_ the
1935 * first iovec will be faulted with the current implementation).
1937 int iov_iter_fault_in_readable(struct iov_iter
*i
, size_t bytes
)
1939 char __user
*buf
= i
->iov
->iov_base
+ i
->iov_offset
;
1940 bytes
= min(bytes
, i
->iov
->iov_len
- i
->iov_offset
);
1941 return fault_in_pages_readable(buf
, bytes
);
1943 EXPORT_SYMBOL(iov_iter_fault_in_readable
);
1946 * Return the count of just the current iov_iter segment.
1948 size_t iov_iter_single_seg_count(struct iov_iter
*i
)
1950 const struct iovec
*iov
= i
->iov
;
1951 if (i
->nr_segs
== 1)
1954 return min(i
->count
, iov
->iov_len
- i
->iov_offset
);
1956 EXPORT_SYMBOL(iov_iter_single_seg_count
);
1959 * Performs necessary checks before doing a write
1961 * Can adjust writing position or amount of bytes to write.
1962 * Returns appropriate error code that caller should return or
1963 * zero in case that write should be allowed.
1965 inline int generic_write_checks(struct file
*file
, loff_t
*pos
, size_t *count
, int isblk
)
1967 struct inode
*inode
= file
->f_mapping
->host
;
1968 unsigned long limit
= current
->signal
->rlim
[RLIMIT_FSIZE
].rlim_cur
;
1970 if (unlikely(*pos
< 0))
1974 /* FIXME: this is for backwards compatibility with 2.4 */
1975 if (file
->f_flags
& O_APPEND
)
1976 *pos
= i_size_read(inode
);
1978 if (limit
!= RLIM_INFINITY
) {
1979 if (*pos
>= limit
) {
1980 send_sig(SIGXFSZ
, current
, 0);
1983 if (*count
> limit
- (typeof(limit
))*pos
) {
1984 *count
= limit
- (typeof(limit
))*pos
;
1992 if (unlikely(*pos
+ *count
> MAX_NON_LFS
&&
1993 !(file
->f_flags
& O_LARGEFILE
))) {
1994 if (*pos
>= MAX_NON_LFS
) {
1997 if (*count
> MAX_NON_LFS
- (unsigned long)*pos
) {
1998 *count
= MAX_NON_LFS
- (unsigned long)*pos
;
2003 * Are we about to exceed the fs block limit ?
2005 * If we have written data it becomes a short write. If we have
2006 * exceeded without writing data we send a signal and return EFBIG.
2007 * Linus frestrict idea will clean these up nicely..
2009 if (likely(!isblk
)) {
2010 if (unlikely(*pos
>= inode
->i_sb
->s_maxbytes
)) {
2011 if (*count
|| *pos
> inode
->i_sb
->s_maxbytes
) {
2014 /* zero-length writes at ->s_maxbytes are OK */
2017 if (unlikely(*pos
+ *count
> inode
->i_sb
->s_maxbytes
))
2018 *count
= inode
->i_sb
->s_maxbytes
- *pos
;
2022 if (bdev_read_only(I_BDEV(inode
)))
2024 isize
= i_size_read(inode
);
2025 if (*pos
>= isize
) {
2026 if (*count
|| *pos
> isize
)
2030 if (*pos
+ *count
> isize
)
2031 *count
= isize
- *pos
;
2038 EXPORT_SYMBOL(generic_write_checks
);
2040 int pagecache_write_begin(struct file
*file
, struct address_space
*mapping
,
2041 loff_t pos
, unsigned len
, unsigned flags
,
2042 struct page
**pagep
, void **fsdata
)
2044 const struct address_space_operations
*aops
= mapping
->a_ops
;
2046 return aops
->write_begin(file
, mapping
, pos
, len
, flags
,
2049 EXPORT_SYMBOL(pagecache_write_begin
);
2051 int pagecache_write_end(struct file
*file
, struct address_space
*mapping
,
2052 loff_t pos
, unsigned len
, unsigned copied
,
2053 struct page
*page
, void *fsdata
)
2055 const struct address_space_operations
*aops
= mapping
->a_ops
;
2057 mark_page_accessed(page
);
2058 return aops
->write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
2060 EXPORT_SYMBOL(pagecache_write_end
);
2063 generic_file_direct_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2064 unsigned long *nr_segs
, loff_t pos
, loff_t
*ppos
,
2065 size_t count
, size_t ocount
)
2067 struct file
*file
= iocb
->ki_filp
;
2068 struct address_space
*mapping
= file
->f_mapping
;
2069 struct inode
*inode
= mapping
->host
;
2074 if (count
!= ocount
)
2075 *nr_segs
= iov_shorten((struct iovec
*)iov
, *nr_segs
, count
);
2077 write_len
= iov_length(iov
, *nr_segs
);
2078 end
= (pos
+ write_len
- 1) >> PAGE_CACHE_SHIFT
;
2080 written
= filemap_write_and_wait_range(mapping
, pos
, pos
+ write_len
- 1);
2085 * After a write we want buffered reads to be sure to go to disk to get
2086 * the new data. We invalidate clean cached page from the region we're
2087 * about to write. We do this *before* the write so that we can return
2088 * without clobbering -EIOCBQUEUED from ->direct_IO().
2090 if (mapping
->nrpages
) {
2091 written
= invalidate_inode_pages2_range(mapping
,
2092 pos
>> PAGE_CACHE_SHIFT
, end
);
2094 * If a page can not be invalidated, return 0 to fall back
2095 * to buffered write.
2098 if (written
== -EBUSY
)
2104 written
= mapping
->a_ops
->direct_IO(WRITE
, iocb
, iov
, pos
, *nr_segs
);
2107 * Finally, try again to invalidate clean pages which might have been
2108 * cached by non-direct readahead, or faulted in by get_user_pages()
2109 * if the source of the write was an mmap'ed region of the file
2110 * we're writing. Either one is a pretty crazy thing to do,
2111 * so we don't support it 100%. If this invalidation
2112 * fails, tough, the write still worked...
2114 if (mapping
->nrpages
) {
2115 invalidate_inode_pages2_range(mapping
,
2116 pos
>> PAGE_CACHE_SHIFT
, end
);
2120 loff_t end
= pos
+ written
;
2121 if (end
> i_size_read(inode
) && !S_ISBLK(inode
->i_mode
)) {
2122 i_size_write(inode
, end
);
2123 mark_inode_dirty(inode
);
2129 * Sync the fs metadata but not the minor inode changes and
2130 * of course not the data as we did direct DMA for the IO.
2131 * i_mutex is held, which protects generic_osync_inode() from
2132 * livelocking. AIO O_DIRECT ops attempt to sync metadata here.
2135 if ((written
>= 0 || written
== -EIOCBQUEUED
) &&
2136 ((file
->f_flags
& O_SYNC
) || IS_SYNC(inode
))) {
2137 int err
= generic_osync_inode(inode
, mapping
, OSYNC_METADATA
);
2143 EXPORT_SYMBOL(generic_file_direct_write
);
2146 * Find or create a page at the given pagecache position. Return the locked
2147 * page. This function is specifically for buffered writes.
2149 struct page
*grab_cache_page_write_begin(struct address_space
*mapping
,
2150 pgoff_t index
, unsigned flags
)
2154 gfp_t gfp_notmask
= 0;
2155 if (flags
& AOP_FLAG_NOFS
)
2156 gfp_notmask
= __GFP_FS
;
2158 page
= find_lock_page(mapping
, index
);
2162 page
= __page_cache_alloc(mapping_gfp_mask(mapping
) & ~gfp_notmask
);
2165 status
= add_to_page_cache_lru(page
, mapping
, index
,
2166 GFP_KERNEL
& ~gfp_notmask
);
2167 if (unlikely(status
)) {
2168 page_cache_release(page
);
2169 if (status
== -EEXIST
)
2175 EXPORT_SYMBOL(grab_cache_page_write_begin
);
2177 static ssize_t
generic_perform_write(struct file
*file
,
2178 struct iov_iter
*i
, loff_t pos
)
2180 struct address_space
*mapping
= file
->f_mapping
;
2181 const struct address_space_operations
*a_ops
= mapping
->a_ops
;
2183 ssize_t written
= 0;
2184 unsigned int flags
= 0;
2187 * Copies from kernel address space cannot fail (NFSD is a big user).
2189 if (segment_eq(get_fs(), KERNEL_DS
))
2190 flags
|= AOP_FLAG_UNINTERRUPTIBLE
;
2194 pgoff_t index
; /* Pagecache index for current page */
2195 unsigned long offset
; /* Offset into pagecache page */
2196 unsigned long bytes
; /* Bytes to write to page */
2197 size_t copied
; /* Bytes copied from user */
2200 offset
= (pos
& (PAGE_CACHE_SIZE
- 1));
2201 index
= pos
>> PAGE_CACHE_SHIFT
;
2202 bytes
= min_t(unsigned long, PAGE_CACHE_SIZE
- offset
,
2208 * Bring in the user page that we will copy from _first_.
2209 * Otherwise there's a nasty deadlock on copying from the
2210 * same page as we're writing to, without it being marked
2213 * Not only is this an optimisation, but it is also required
2214 * to check that the address is actually valid, when atomic
2215 * usercopies are used, below.
2217 if (unlikely(iov_iter_fault_in_readable(i
, bytes
))) {
2222 status
= a_ops
->write_begin(file
, mapping
, pos
, bytes
, flags
,
2224 if (unlikely(status
))
2227 pagefault_disable();
2228 copied
= iov_iter_copy_from_user_atomic(page
, i
, offset
, bytes
);
2230 flush_dcache_page(page
);
2232 status
= a_ops
->write_end(file
, mapping
, pos
, bytes
, copied
,
2234 if (unlikely(status
< 0))
2240 iov_iter_advance(i
, copied
);
2241 if (unlikely(copied
== 0)) {
2243 * If we were unable to copy any data at all, we must
2244 * fall back to a single segment length write.
2246 * If we didn't fallback here, we could livelock
2247 * because not all segments in the iov can be copied at
2248 * once without a pagefault.
2250 bytes
= min_t(unsigned long, PAGE_CACHE_SIZE
- offset
,
2251 iov_iter_single_seg_count(i
));
2257 balance_dirty_pages_ratelimited(mapping
);
2259 } while (iov_iter_count(i
));
2261 return written
? written
: status
;
2265 generic_file_buffered_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2266 unsigned long nr_segs
, loff_t pos
, loff_t
*ppos
,
2267 size_t count
, ssize_t written
)
2269 struct file
*file
= iocb
->ki_filp
;
2270 struct address_space
*mapping
= file
->f_mapping
;
2271 const struct address_space_operations
*a_ops
= mapping
->a_ops
;
2272 struct inode
*inode
= mapping
->host
;
2276 iov_iter_init(&i
, iov
, nr_segs
, count
, written
);
2277 status
= generic_perform_write(file
, &i
, pos
);
2279 if (likely(status
>= 0)) {
2281 *ppos
= pos
+ status
;
2284 * For now, when the user asks for O_SYNC, we'll actually give
2287 if (unlikely((file
->f_flags
& O_SYNC
) || IS_SYNC(inode
))) {
2288 if (!a_ops
->writepage
|| !is_sync_kiocb(iocb
))
2289 status
= generic_osync_inode(inode
, mapping
,
2290 OSYNC_METADATA
|OSYNC_DATA
);
2295 * If we get here for O_DIRECT writes then we must have fallen through
2296 * to buffered writes (block instantiation inside i_size). So we sync
2297 * the file data here, to try to honour O_DIRECT expectations.
2299 if (unlikely(file
->f_flags
& O_DIRECT
) && written
)
2300 status
= filemap_write_and_wait_range(mapping
,
2301 pos
, pos
+ written
- 1);
2303 return written
? written
: status
;
2305 EXPORT_SYMBOL(generic_file_buffered_write
);
2308 __generic_file_aio_write_nolock(struct kiocb
*iocb
, const struct iovec
*iov
,
2309 unsigned long nr_segs
, loff_t
*ppos
)
2311 struct file
*file
= iocb
->ki_filp
;
2312 struct address_space
* mapping
= file
->f_mapping
;
2313 size_t ocount
; /* original count */
2314 size_t count
; /* after file limit checks */
2315 struct inode
*inode
= mapping
->host
;
2321 err
= generic_segment_checks(iov
, &nr_segs
, &ocount
, VERIFY_READ
);
2328 vfs_check_frozen(inode
->i_sb
, SB_FREEZE_WRITE
);
2330 /* We can write back this queue in page reclaim */
2331 current
->backing_dev_info
= mapping
->backing_dev_info
;
2334 err
= generic_write_checks(file
, &pos
, &count
, S_ISBLK(inode
->i_mode
));
2341 err
= file_remove_suid(file
);
2345 file_update_time(file
);
2347 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2348 if (unlikely(file
->f_flags
& O_DIRECT
)) {
2350 ssize_t written_buffered
;
2352 written
= generic_file_direct_write(iocb
, iov
, &nr_segs
, pos
,
2353 ppos
, count
, ocount
);
2354 if (written
< 0 || written
== count
)
2357 * direct-io write to a hole: fall through to buffered I/O
2358 * for completing the rest of the request.
2362 written_buffered
= generic_file_buffered_write(iocb
, iov
,
2363 nr_segs
, pos
, ppos
, count
,
2366 * If generic_file_buffered_write() retuned a synchronous error
2367 * then we want to return the number of bytes which were
2368 * direct-written, or the error code if that was zero. Note
2369 * that this differs from normal direct-io semantics, which
2370 * will return -EFOO even if some bytes were written.
2372 if (written_buffered
< 0) {
2373 err
= written_buffered
;
2378 * We need to ensure that the page cache pages are written to
2379 * disk and invalidated to preserve the expected O_DIRECT
2382 endbyte
= pos
+ written_buffered
- written
- 1;
2383 err
= do_sync_mapping_range(file
->f_mapping
, pos
, endbyte
,
2384 SYNC_FILE_RANGE_WAIT_BEFORE
|
2385 SYNC_FILE_RANGE_WRITE
|
2386 SYNC_FILE_RANGE_WAIT_AFTER
);
2388 written
= written_buffered
;
2389 invalidate_mapping_pages(mapping
,
2390 pos
>> PAGE_CACHE_SHIFT
,
2391 endbyte
>> PAGE_CACHE_SHIFT
);
2394 * We don't know how much we wrote, so just return
2395 * the number of bytes which were direct-written
2399 written
= generic_file_buffered_write(iocb
, iov
, nr_segs
,
2400 pos
, ppos
, count
, written
);
2403 current
->backing_dev_info
= NULL
;
2404 return written
? written
: err
;
2407 ssize_t
generic_file_aio_write_nolock(struct kiocb
*iocb
,
2408 const struct iovec
*iov
, unsigned long nr_segs
, loff_t pos
)
2410 struct file
*file
= iocb
->ki_filp
;
2411 struct address_space
*mapping
= file
->f_mapping
;
2412 struct inode
*inode
= mapping
->host
;
2415 BUG_ON(iocb
->ki_pos
!= pos
);
2417 ret
= __generic_file_aio_write_nolock(iocb
, iov
, nr_segs
,
2420 if (ret
> 0 && ((file
->f_flags
& O_SYNC
) || IS_SYNC(inode
))) {
2423 err
= sync_page_range_nolock(inode
, mapping
, pos
, ret
);
2429 EXPORT_SYMBOL(generic_file_aio_write_nolock
);
2431 ssize_t
generic_file_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2432 unsigned long nr_segs
, loff_t pos
)
2434 struct file
*file
= iocb
->ki_filp
;
2435 struct address_space
*mapping
= file
->f_mapping
;
2436 struct inode
*inode
= mapping
->host
;
2439 BUG_ON(iocb
->ki_pos
!= pos
);
2441 mutex_lock(&inode
->i_mutex
);
2442 ret
= __generic_file_aio_write_nolock(iocb
, iov
, nr_segs
,
2444 mutex_unlock(&inode
->i_mutex
);
2446 if (ret
> 0 && ((file
->f_flags
& O_SYNC
) || IS_SYNC(inode
))) {
2449 err
= sync_page_range(inode
, mapping
, pos
, ret
);
2455 EXPORT_SYMBOL(generic_file_aio_write
);
2458 * try_to_release_page() - release old fs-specific metadata on a page
2460 * @page: the page which the kernel is trying to free
2461 * @gfp_mask: memory allocation flags (and I/O mode)
2463 * The address_space is to try to release any data against the page
2464 * (presumably at page->private). If the release was successful, return `1'.
2465 * Otherwise return zero.
2467 * The @gfp_mask argument specifies whether I/O may be performed to release
2468 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2471 int try_to_release_page(struct page
*page
, gfp_t gfp_mask
)
2473 struct address_space
* const mapping
= page
->mapping
;
2475 BUG_ON(!PageLocked(page
));
2476 if (PageWriteback(page
))
2479 if (mapping
&& mapping
->a_ops
->releasepage
)
2480 return mapping
->a_ops
->releasepage(page
, gfp_mask
);
2481 return try_to_free_buffers(page
);
2484 EXPORT_SYMBOL(try_to_release_page
);