leds: Add WM8350 LED driver
[linux-2.6/mini2440.git] / kernel / posix-timers.c
blob887c63787de6634b9d46ddcdbb386d5d3ffe5250
1 /*
2 * linux/kernel/posix-timers.c
5 * 2002-10-15 Posix Clocks & timers
6 * by George Anzinger george@mvista.com
8 * Copyright (C) 2002 2003 by MontaVista Software.
10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11 * Copyright (C) 2004 Boris Hu
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or (at
16 * your option) any later version.
18 * This program is distributed in the hope that it will be useful, but
19 * WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * General Public License for more details.
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
30 /* These are all the functions necessary to implement
31 * POSIX clocks & timers
33 #include <linux/mm.h>
34 #include <linux/interrupt.h>
35 #include <linux/slab.h>
36 #include <linux/time.h>
37 #include <linux/mutex.h>
39 #include <asm/uaccess.h>
40 #include <linux/list.h>
41 #include <linux/init.h>
42 #include <linux/compiler.h>
43 #include <linux/idr.h>
44 #include <linux/posix-timers.h>
45 #include <linux/syscalls.h>
46 #include <linux/wait.h>
47 #include <linux/workqueue.h>
48 #include <linux/module.h>
51 * Management arrays for POSIX timers. Timers are kept in slab memory
52 * Timer ids are allocated by an external routine that keeps track of the
53 * id and the timer. The external interface is:
55 * void *idr_find(struct idr *idp, int id); to find timer_id <id>
56 * int idr_get_new(struct idr *idp, void *ptr); to get a new id and
57 * related it to <ptr>
58 * void idr_remove(struct idr *idp, int id); to release <id>
59 * void idr_init(struct idr *idp); to initialize <idp>
60 * which we supply.
61 * The idr_get_new *may* call slab for more memory so it must not be
62 * called under a spin lock. Likewise idr_remore may release memory
63 * (but it may be ok to do this under a lock...).
64 * idr_find is just a memory look up and is quite fast. A -1 return
65 * indicates that the requested id does not exist.
69 * Lets keep our timers in a slab cache :-)
71 static struct kmem_cache *posix_timers_cache;
72 static struct idr posix_timers_id;
73 static DEFINE_SPINLOCK(idr_lock);
76 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
77 * SIGEV values. Here we put out an error if this assumption fails.
79 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
80 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
81 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
82 #endif
86 * The timer ID is turned into a timer address by idr_find().
87 * Verifying a valid ID consists of:
89 * a) checking that idr_find() returns other than -1.
90 * b) checking that the timer id matches the one in the timer itself.
91 * c) that the timer owner is in the callers thread group.
95 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
96 * to implement others. This structure defines the various
97 * clocks and allows the possibility of adding others. We
98 * provide an interface to add clocks to the table and expect
99 * the "arch" code to add at least one clock that is high
100 * resolution. Here we define the standard CLOCK_REALTIME as a
101 * 1/HZ resolution clock.
103 * RESOLUTION: Clock resolution is used to round up timer and interval
104 * times, NOT to report clock times, which are reported with as
105 * much resolution as the system can muster. In some cases this
106 * resolution may depend on the underlying clock hardware and
107 * may not be quantifiable until run time, and only then is the
108 * necessary code is written. The standard says we should say
109 * something about this issue in the documentation...
111 * FUNCTIONS: The CLOCKs structure defines possible functions to handle
112 * various clock functions. For clocks that use the standard
113 * system timer code these entries should be NULL. This will
114 * allow dispatch without the overhead of indirect function
115 * calls. CLOCKS that depend on other sources (e.g. WWV or GPS)
116 * must supply functions here, even if the function just returns
117 * ENOSYS. The standard POSIX timer management code assumes the
118 * following: 1.) The k_itimer struct (sched.h) is used for the
119 * timer. 2.) The list, it_lock, it_clock, it_id and it_pid
120 * fields are not modified by timer code.
122 * At this time all functions EXCEPT clock_nanosleep can be
123 * redirected by the CLOCKS structure. Clock_nanosleep is in
124 * there, but the code ignores it.
126 * Permissions: It is assumed that the clock_settime() function defined
127 * for each clock will take care of permission checks. Some
128 * clocks may be set able by any user (i.e. local process
129 * clocks) others not. Currently the only set able clock we
130 * have is CLOCK_REALTIME and its high res counter part, both of
131 * which we beg off on and pass to do_sys_settimeofday().
134 static struct k_clock posix_clocks[MAX_CLOCKS];
137 * These ones are defined below.
139 static int common_nsleep(const clockid_t, int flags, struct timespec *t,
140 struct timespec __user *rmtp);
141 static void common_timer_get(struct k_itimer *, struct itimerspec *);
142 static int common_timer_set(struct k_itimer *, int,
143 struct itimerspec *, struct itimerspec *);
144 static int common_timer_del(struct k_itimer *timer);
146 static enum hrtimer_restart posix_timer_fn(struct hrtimer *data);
148 static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags);
150 static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
152 spin_unlock_irqrestore(&timr->it_lock, flags);
156 * Call the k_clock hook function if non-null, or the default function.
158 #define CLOCK_DISPATCH(clock, call, arglist) \
159 ((clock) < 0 ? posix_cpu_##call arglist : \
160 (posix_clocks[clock].call != NULL \
161 ? (*posix_clocks[clock].call) arglist : common_##call arglist))
164 * Default clock hook functions when the struct k_clock passed
165 * to register_posix_clock leaves a function pointer null.
167 * The function common_CALL is the default implementation for
168 * the function pointer CALL in struct k_clock.
171 static inline int common_clock_getres(const clockid_t which_clock,
172 struct timespec *tp)
174 tp->tv_sec = 0;
175 tp->tv_nsec = posix_clocks[which_clock].res;
176 return 0;
180 * Get real time for posix timers
182 static int common_clock_get(clockid_t which_clock, struct timespec *tp)
184 ktime_get_real_ts(tp);
185 return 0;
188 static inline int common_clock_set(const clockid_t which_clock,
189 struct timespec *tp)
191 return do_sys_settimeofday(tp, NULL);
194 static int common_timer_create(struct k_itimer *new_timer)
196 hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
197 return 0;
200 static int no_timer_create(struct k_itimer *new_timer)
202 return -EOPNOTSUPP;
206 * Return nonzero if we know a priori this clockid_t value is bogus.
208 static inline int invalid_clockid(const clockid_t which_clock)
210 if (which_clock < 0) /* CPU clock, posix_cpu_* will check it */
211 return 0;
212 if ((unsigned) which_clock >= MAX_CLOCKS)
213 return 1;
214 if (posix_clocks[which_clock].clock_getres != NULL)
215 return 0;
216 if (posix_clocks[which_clock].res != 0)
217 return 0;
218 return 1;
222 * Get monotonic time for posix timers
224 static int posix_ktime_get_ts(clockid_t which_clock, struct timespec *tp)
226 ktime_get_ts(tp);
227 return 0;
231 * Get monotonic time for posix timers
233 static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec *tp)
235 getrawmonotonic(tp);
236 return 0;
240 * Initialize everything, well, just everything in Posix clocks/timers ;)
242 static __init int init_posix_timers(void)
244 struct k_clock clock_realtime = {
245 .clock_getres = hrtimer_get_res,
247 struct k_clock clock_monotonic = {
248 .clock_getres = hrtimer_get_res,
249 .clock_get = posix_ktime_get_ts,
250 .clock_set = do_posix_clock_nosettime,
252 struct k_clock clock_monotonic_raw = {
253 .clock_getres = hrtimer_get_res,
254 .clock_get = posix_get_monotonic_raw,
255 .clock_set = do_posix_clock_nosettime,
256 .timer_create = no_timer_create,
259 register_posix_clock(CLOCK_REALTIME, &clock_realtime);
260 register_posix_clock(CLOCK_MONOTONIC, &clock_monotonic);
261 register_posix_clock(CLOCK_MONOTONIC_RAW, &clock_monotonic_raw);
263 posix_timers_cache = kmem_cache_create("posix_timers_cache",
264 sizeof (struct k_itimer), 0, SLAB_PANIC,
265 NULL);
266 idr_init(&posix_timers_id);
267 return 0;
270 __initcall(init_posix_timers);
272 static void schedule_next_timer(struct k_itimer *timr)
274 struct hrtimer *timer = &timr->it.real.timer;
276 if (timr->it.real.interval.tv64 == 0)
277 return;
279 timr->it_overrun += (unsigned int) hrtimer_forward(timer,
280 timer->base->get_time(),
281 timr->it.real.interval);
283 timr->it_overrun_last = timr->it_overrun;
284 timr->it_overrun = -1;
285 ++timr->it_requeue_pending;
286 hrtimer_restart(timer);
290 * This function is exported for use by the signal deliver code. It is
291 * called just prior to the info block being released and passes that
292 * block to us. It's function is to update the overrun entry AND to
293 * restart the timer. It should only be called if the timer is to be
294 * restarted (i.e. we have flagged this in the sys_private entry of the
295 * info block).
297 * To protect aginst the timer going away while the interrupt is queued,
298 * we require that the it_requeue_pending flag be set.
300 void do_schedule_next_timer(struct siginfo *info)
302 struct k_itimer *timr;
303 unsigned long flags;
305 timr = lock_timer(info->si_tid, &flags);
307 if (timr && timr->it_requeue_pending == info->si_sys_private) {
308 if (timr->it_clock < 0)
309 posix_cpu_timer_schedule(timr);
310 else
311 schedule_next_timer(timr);
313 info->si_overrun += timr->it_overrun_last;
316 if (timr)
317 unlock_timer(timr, flags);
320 int posix_timer_event(struct k_itimer *timr, int si_private)
322 struct task_struct *task;
323 int shared, ret = -1;
325 * FIXME: if ->sigq is queued we can race with
326 * dequeue_signal()->do_schedule_next_timer().
328 * If dequeue_signal() sees the "right" value of
329 * si_sys_private it calls do_schedule_next_timer().
330 * We re-queue ->sigq and drop ->it_lock().
331 * do_schedule_next_timer() locks the timer
332 * and re-schedules it while ->sigq is pending.
333 * Not really bad, but not that we want.
335 timr->sigq->info.si_sys_private = si_private;
337 rcu_read_lock();
338 task = pid_task(timr->it_pid, PIDTYPE_PID);
339 if (task) {
340 shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID);
341 ret = send_sigqueue(timr->sigq, task, shared);
343 rcu_read_unlock();
344 /* If we failed to send the signal the timer stops. */
345 return ret > 0;
347 EXPORT_SYMBOL_GPL(posix_timer_event);
350 * This function gets called when a POSIX.1b interval timer expires. It
351 * is used as a callback from the kernel internal timer. The
352 * run_timer_list code ALWAYS calls with interrupts on.
354 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
356 static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
358 struct k_itimer *timr;
359 unsigned long flags;
360 int si_private = 0;
361 enum hrtimer_restart ret = HRTIMER_NORESTART;
363 timr = container_of(timer, struct k_itimer, it.real.timer);
364 spin_lock_irqsave(&timr->it_lock, flags);
366 if (timr->it.real.interval.tv64 != 0)
367 si_private = ++timr->it_requeue_pending;
369 if (posix_timer_event(timr, si_private)) {
371 * signal was not sent because of sig_ignor
372 * we will not get a call back to restart it AND
373 * it should be restarted.
375 if (timr->it.real.interval.tv64 != 0) {
376 ktime_t now = hrtimer_cb_get_time(timer);
379 * FIXME: What we really want, is to stop this
380 * timer completely and restart it in case the
381 * SIG_IGN is removed. This is a non trivial
382 * change which involves sighand locking
383 * (sigh !), which we don't want to do late in
384 * the release cycle.
386 * For now we just let timers with an interval
387 * less than a jiffie expire every jiffie to
388 * avoid softirq starvation in case of SIG_IGN
389 * and a very small interval, which would put
390 * the timer right back on the softirq pending
391 * list. By moving now ahead of time we trick
392 * hrtimer_forward() to expire the timer
393 * later, while we still maintain the overrun
394 * accuracy, but have some inconsistency in
395 * the timer_gettime() case. This is at least
396 * better than a starved softirq. A more
397 * complex fix which solves also another related
398 * inconsistency is already in the pipeline.
400 #ifdef CONFIG_HIGH_RES_TIMERS
402 ktime_t kj = ktime_set(0, NSEC_PER_SEC / HZ);
404 if (timr->it.real.interval.tv64 < kj.tv64)
405 now = ktime_add(now, kj);
407 #endif
408 timr->it_overrun += (unsigned int)
409 hrtimer_forward(timer, now,
410 timr->it.real.interval);
411 ret = HRTIMER_RESTART;
412 ++timr->it_requeue_pending;
416 unlock_timer(timr, flags);
417 return ret;
420 static struct pid *good_sigevent(sigevent_t * event)
422 struct task_struct *rtn = current->group_leader;
424 if ((event->sigev_notify & SIGEV_THREAD_ID ) &&
425 (!(rtn = find_task_by_vpid(event->sigev_notify_thread_id)) ||
426 !same_thread_group(rtn, current) ||
427 (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL))
428 return NULL;
430 if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) &&
431 ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX)))
432 return NULL;
434 return task_pid(rtn);
437 void register_posix_clock(const clockid_t clock_id, struct k_clock *new_clock)
439 if ((unsigned) clock_id >= MAX_CLOCKS) {
440 printk("POSIX clock register failed for clock_id %d\n",
441 clock_id);
442 return;
445 posix_clocks[clock_id] = *new_clock;
447 EXPORT_SYMBOL_GPL(register_posix_clock);
449 static struct k_itimer * alloc_posix_timer(void)
451 struct k_itimer *tmr;
452 tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
453 if (!tmr)
454 return tmr;
455 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
456 kmem_cache_free(posix_timers_cache, tmr);
457 return NULL;
459 memset(&tmr->sigq->info, 0, sizeof(siginfo_t));
460 return tmr;
463 #define IT_ID_SET 1
464 #define IT_ID_NOT_SET 0
465 static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
467 if (it_id_set) {
468 unsigned long flags;
469 spin_lock_irqsave(&idr_lock, flags);
470 idr_remove(&posix_timers_id, tmr->it_id);
471 spin_unlock_irqrestore(&idr_lock, flags);
473 put_pid(tmr->it_pid);
474 sigqueue_free(tmr->sigq);
475 kmem_cache_free(posix_timers_cache, tmr);
478 /* Create a POSIX.1b interval timer. */
480 asmlinkage long
481 sys_timer_create(const clockid_t which_clock,
482 struct sigevent __user *timer_event_spec,
483 timer_t __user * created_timer_id)
485 struct k_itimer *new_timer;
486 int error, new_timer_id;
487 sigevent_t event;
488 int it_id_set = IT_ID_NOT_SET;
490 if (invalid_clockid(which_clock))
491 return -EINVAL;
493 new_timer = alloc_posix_timer();
494 if (unlikely(!new_timer))
495 return -EAGAIN;
497 spin_lock_init(&new_timer->it_lock);
498 retry:
499 if (unlikely(!idr_pre_get(&posix_timers_id, GFP_KERNEL))) {
500 error = -EAGAIN;
501 goto out;
503 spin_lock_irq(&idr_lock);
504 error = idr_get_new(&posix_timers_id, new_timer, &new_timer_id);
505 spin_unlock_irq(&idr_lock);
506 if (error) {
507 if (error == -EAGAIN)
508 goto retry;
510 * Weird looking, but we return EAGAIN if the IDR is
511 * full (proper POSIX return value for this)
513 error = -EAGAIN;
514 goto out;
517 it_id_set = IT_ID_SET;
518 new_timer->it_id = (timer_t) new_timer_id;
519 new_timer->it_clock = which_clock;
520 new_timer->it_overrun = -1;
521 error = CLOCK_DISPATCH(which_clock, timer_create, (new_timer));
522 if (error)
523 goto out;
526 * return the timer_id now. The next step is hard to
527 * back out if there is an error.
529 if (copy_to_user(created_timer_id,
530 &new_timer_id, sizeof (new_timer_id))) {
531 error = -EFAULT;
532 goto out;
534 if (timer_event_spec) {
535 if (copy_from_user(&event, timer_event_spec, sizeof (event))) {
536 error = -EFAULT;
537 goto out;
539 rcu_read_lock();
540 new_timer->it_pid = get_pid(good_sigevent(&event));
541 rcu_read_unlock();
542 if (!new_timer->it_pid) {
543 error = -EINVAL;
544 goto out;
546 } else {
547 event.sigev_notify = SIGEV_SIGNAL;
548 event.sigev_signo = SIGALRM;
549 event.sigev_value.sival_int = new_timer->it_id;
550 new_timer->it_pid = get_pid(task_tgid(current));
553 new_timer->it_sigev_notify = event.sigev_notify;
554 new_timer->sigq->info.si_signo = event.sigev_signo;
555 new_timer->sigq->info.si_value = event.sigev_value;
556 new_timer->sigq->info.si_tid = new_timer->it_id;
557 new_timer->sigq->info.si_code = SI_TIMER;
559 spin_lock_irq(&current->sighand->siglock);
560 new_timer->it_signal = current->signal;
561 list_add(&new_timer->list, &current->signal->posix_timers);
562 spin_unlock_irq(&current->sighand->siglock);
564 return 0;
566 * In the case of the timer belonging to another task, after
567 * the task is unlocked, the timer is owned by the other task
568 * and may cease to exist at any time. Don't use or modify
569 * new_timer after the unlock call.
571 out:
572 release_posix_timer(new_timer, it_id_set);
573 return error;
577 * Locking issues: We need to protect the result of the id look up until
578 * we get the timer locked down so it is not deleted under us. The
579 * removal is done under the idr spinlock so we use that here to bridge
580 * the find to the timer lock. To avoid a dead lock, the timer id MUST
581 * be release with out holding the timer lock.
583 static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags)
585 struct k_itimer *timr;
587 * Watch out here. We do a irqsave on the idr_lock and pass the
588 * flags part over to the timer lock. Must not let interrupts in
589 * while we are moving the lock.
591 spin_lock_irqsave(&idr_lock, *flags);
592 timr = idr_find(&posix_timers_id, (int)timer_id);
593 if (timr) {
594 spin_lock(&timr->it_lock);
595 if (timr->it_signal == current->signal) {
596 spin_unlock(&idr_lock);
597 return timr;
599 spin_unlock(&timr->it_lock);
601 spin_unlock_irqrestore(&idr_lock, *flags);
603 return NULL;
607 * Get the time remaining on a POSIX.1b interval timer. This function
608 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
609 * mess with irq.
611 * We have a couple of messes to clean up here. First there is the case
612 * of a timer that has a requeue pending. These timers should appear to
613 * be in the timer list with an expiry as if we were to requeue them
614 * now.
616 * The second issue is the SIGEV_NONE timer which may be active but is
617 * not really ever put in the timer list (to save system resources).
618 * This timer may be expired, and if so, we will do it here. Otherwise
619 * it is the same as a requeue pending timer WRT to what we should
620 * report.
622 static void
623 common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
625 ktime_t now, remaining, iv;
626 struct hrtimer *timer = &timr->it.real.timer;
628 memset(cur_setting, 0, sizeof(struct itimerspec));
630 iv = timr->it.real.interval;
632 /* interval timer ? */
633 if (iv.tv64)
634 cur_setting->it_interval = ktime_to_timespec(iv);
635 else if (!hrtimer_active(timer) &&
636 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
637 return;
639 now = timer->base->get_time();
642 * When a requeue is pending or this is a SIGEV_NONE
643 * timer move the expiry time forward by intervals, so
644 * expiry is > now.
646 if (iv.tv64 && (timr->it_requeue_pending & REQUEUE_PENDING ||
647 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE))
648 timr->it_overrun += (unsigned int) hrtimer_forward(timer, now, iv);
650 remaining = ktime_sub(hrtimer_get_expires(timer), now);
651 /* Return 0 only, when the timer is expired and not pending */
652 if (remaining.tv64 <= 0) {
654 * A single shot SIGEV_NONE timer must return 0, when
655 * it is expired !
657 if ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
658 cur_setting->it_value.tv_nsec = 1;
659 } else
660 cur_setting->it_value = ktime_to_timespec(remaining);
663 /* Get the time remaining on a POSIX.1b interval timer. */
664 asmlinkage long
665 sys_timer_gettime(timer_t timer_id, struct itimerspec __user *setting)
667 struct k_itimer *timr;
668 struct itimerspec cur_setting;
669 unsigned long flags;
671 timr = lock_timer(timer_id, &flags);
672 if (!timr)
673 return -EINVAL;
675 CLOCK_DISPATCH(timr->it_clock, timer_get, (timr, &cur_setting));
677 unlock_timer(timr, flags);
679 if (copy_to_user(setting, &cur_setting, sizeof (cur_setting)))
680 return -EFAULT;
682 return 0;
686 * Get the number of overruns of a POSIX.1b interval timer. This is to
687 * be the overrun of the timer last delivered. At the same time we are
688 * accumulating overruns on the next timer. The overrun is frozen when
689 * the signal is delivered, either at the notify time (if the info block
690 * is not queued) or at the actual delivery time (as we are informed by
691 * the call back to do_schedule_next_timer(). So all we need to do is
692 * to pick up the frozen overrun.
694 asmlinkage long
695 sys_timer_getoverrun(timer_t timer_id)
697 struct k_itimer *timr;
698 int overrun;
699 unsigned long flags;
701 timr = lock_timer(timer_id, &flags);
702 if (!timr)
703 return -EINVAL;
705 overrun = timr->it_overrun_last;
706 unlock_timer(timr, flags);
708 return overrun;
711 /* Set a POSIX.1b interval timer. */
712 /* timr->it_lock is taken. */
713 static int
714 common_timer_set(struct k_itimer *timr, int flags,
715 struct itimerspec *new_setting, struct itimerspec *old_setting)
717 struct hrtimer *timer = &timr->it.real.timer;
718 enum hrtimer_mode mode;
720 if (old_setting)
721 common_timer_get(timr, old_setting);
723 /* disable the timer */
724 timr->it.real.interval.tv64 = 0;
726 * careful here. If smp we could be in the "fire" routine which will
727 * be spinning as we hold the lock. But this is ONLY an SMP issue.
729 if (hrtimer_try_to_cancel(timer) < 0)
730 return TIMER_RETRY;
732 timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
733 ~REQUEUE_PENDING;
734 timr->it_overrun_last = 0;
736 /* switch off the timer when it_value is zero */
737 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
738 return 0;
740 mode = flags & TIMER_ABSTIME ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
741 hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
742 timr->it.real.timer.function = posix_timer_fn;
744 hrtimer_set_expires(timer, timespec_to_ktime(new_setting->it_value));
746 /* Convert interval */
747 timr->it.real.interval = timespec_to_ktime(new_setting->it_interval);
749 /* SIGEV_NONE timers are not queued ! See common_timer_get */
750 if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) {
751 /* Setup correct expiry time for relative timers */
752 if (mode == HRTIMER_MODE_REL) {
753 hrtimer_add_expires(timer, timer->base->get_time());
755 return 0;
758 hrtimer_start_expires(timer, mode);
759 return 0;
762 /* Set a POSIX.1b interval timer */
763 asmlinkage long
764 sys_timer_settime(timer_t timer_id, int flags,
765 const struct itimerspec __user *new_setting,
766 struct itimerspec __user *old_setting)
768 struct k_itimer *timr;
769 struct itimerspec new_spec, old_spec;
770 int error = 0;
771 unsigned long flag;
772 struct itimerspec *rtn = old_setting ? &old_spec : NULL;
774 if (!new_setting)
775 return -EINVAL;
777 if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
778 return -EFAULT;
780 if (!timespec_valid(&new_spec.it_interval) ||
781 !timespec_valid(&new_spec.it_value))
782 return -EINVAL;
783 retry:
784 timr = lock_timer(timer_id, &flag);
785 if (!timr)
786 return -EINVAL;
788 error = CLOCK_DISPATCH(timr->it_clock, timer_set,
789 (timr, flags, &new_spec, rtn));
791 unlock_timer(timr, flag);
792 if (error == TIMER_RETRY) {
793 rtn = NULL; // We already got the old time...
794 goto retry;
797 if (old_setting && !error &&
798 copy_to_user(old_setting, &old_spec, sizeof (old_spec)))
799 error = -EFAULT;
801 return error;
804 static inline int common_timer_del(struct k_itimer *timer)
806 timer->it.real.interval.tv64 = 0;
808 if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0)
809 return TIMER_RETRY;
810 return 0;
813 static inline int timer_delete_hook(struct k_itimer *timer)
815 return CLOCK_DISPATCH(timer->it_clock, timer_del, (timer));
818 /* Delete a POSIX.1b interval timer. */
819 asmlinkage long
820 sys_timer_delete(timer_t timer_id)
822 struct k_itimer *timer;
823 unsigned long flags;
825 retry_delete:
826 timer = lock_timer(timer_id, &flags);
827 if (!timer)
828 return -EINVAL;
830 if (timer_delete_hook(timer) == TIMER_RETRY) {
831 unlock_timer(timer, flags);
832 goto retry_delete;
835 spin_lock(&current->sighand->siglock);
836 list_del(&timer->list);
837 spin_unlock(&current->sighand->siglock);
839 * This keeps any tasks waiting on the spin lock from thinking
840 * they got something (see the lock code above).
842 timer->it_signal = NULL;
844 unlock_timer(timer, flags);
845 release_posix_timer(timer, IT_ID_SET);
846 return 0;
850 * return timer owned by the process, used by exit_itimers
852 static void itimer_delete(struct k_itimer *timer)
854 unsigned long flags;
856 retry_delete:
857 spin_lock_irqsave(&timer->it_lock, flags);
859 if (timer_delete_hook(timer) == TIMER_RETRY) {
860 unlock_timer(timer, flags);
861 goto retry_delete;
863 list_del(&timer->list);
865 * This keeps any tasks waiting on the spin lock from thinking
866 * they got something (see the lock code above).
868 timer->it_signal = NULL;
870 unlock_timer(timer, flags);
871 release_posix_timer(timer, IT_ID_SET);
875 * This is called by do_exit or de_thread, only when there are no more
876 * references to the shared signal_struct.
878 void exit_itimers(struct signal_struct *sig)
880 struct k_itimer *tmr;
882 while (!list_empty(&sig->posix_timers)) {
883 tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
884 itimer_delete(tmr);
888 /* Not available / possible... functions */
889 int do_posix_clock_nosettime(const clockid_t clockid, struct timespec *tp)
891 return -EINVAL;
893 EXPORT_SYMBOL_GPL(do_posix_clock_nosettime);
895 int do_posix_clock_nonanosleep(const clockid_t clock, int flags,
896 struct timespec *t, struct timespec __user *r)
898 #ifndef ENOTSUP
899 return -EOPNOTSUPP; /* aka ENOTSUP in userland for POSIX */
900 #else /* parisc does define it separately. */
901 return -ENOTSUP;
902 #endif
904 EXPORT_SYMBOL_GPL(do_posix_clock_nonanosleep);
906 asmlinkage long sys_clock_settime(const clockid_t which_clock,
907 const struct timespec __user *tp)
909 struct timespec new_tp;
911 if (invalid_clockid(which_clock))
912 return -EINVAL;
913 if (copy_from_user(&new_tp, tp, sizeof (*tp)))
914 return -EFAULT;
916 return CLOCK_DISPATCH(which_clock, clock_set, (which_clock, &new_tp));
919 asmlinkage long
920 sys_clock_gettime(const clockid_t which_clock, struct timespec __user *tp)
922 struct timespec kernel_tp;
923 int error;
925 if (invalid_clockid(which_clock))
926 return -EINVAL;
927 error = CLOCK_DISPATCH(which_clock, clock_get,
928 (which_clock, &kernel_tp));
929 if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp)))
930 error = -EFAULT;
932 return error;
936 asmlinkage long
937 sys_clock_getres(const clockid_t which_clock, struct timespec __user *tp)
939 struct timespec rtn_tp;
940 int error;
942 if (invalid_clockid(which_clock))
943 return -EINVAL;
945 error = CLOCK_DISPATCH(which_clock, clock_getres,
946 (which_clock, &rtn_tp));
948 if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp))) {
949 error = -EFAULT;
952 return error;
956 * nanosleep for monotonic and realtime clocks
958 static int common_nsleep(const clockid_t which_clock, int flags,
959 struct timespec *tsave, struct timespec __user *rmtp)
961 return hrtimer_nanosleep(tsave, rmtp, flags & TIMER_ABSTIME ?
962 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
963 which_clock);
966 asmlinkage long
967 sys_clock_nanosleep(const clockid_t which_clock, int flags,
968 const struct timespec __user *rqtp,
969 struct timespec __user *rmtp)
971 struct timespec t;
973 if (invalid_clockid(which_clock))
974 return -EINVAL;
976 if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
977 return -EFAULT;
979 if (!timespec_valid(&t))
980 return -EINVAL;
982 return CLOCK_DISPATCH(which_clock, nsleep,
983 (which_clock, flags, &t, rmtp));
987 * nanosleep_restart for monotonic and realtime clocks
989 static int common_nsleep_restart(struct restart_block *restart_block)
991 return hrtimer_nanosleep_restart(restart_block);
995 * This will restart clock_nanosleep. This is required only by
996 * compat_clock_nanosleep_restart for now.
998 long
999 clock_nanosleep_restart(struct restart_block *restart_block)
1001 clockid_t which_clock = restart_block->arg0;
1003 return CLOCK_DISPATCH(which_clock, nsleep_restart,
1004 (restart_block));