Linux 3.18-rc4
[linux-2.6/luiz-linux-2.6.git] / drivers / md / dm.c
blob58f3927fd7cc98dda4113571fab3e607842e15f3
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
6 */
8 #include "dm.h"
9 #include "dm-uevent.h"
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
23 #include <trace/events/block.h>
25 #define DM_MSG_PREFIX "core"
27 #ifdef CONFIG_PRINTK
29 * ratelimit state to be used in DMXXX_LIMIT().
31 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
32 DEFAULT_RATELIMIT_INTERVAL,
33 DEFAULT_RATELIMIT_BURST);
34 EXPORT_SYMBOL(dm_ratelimit_state);
35 #endif
38 * Cookies are numeric values sent with CHANGE and REMOVE
39 * uevents while resuming, removing or renaming the device.
41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
42 #define DM_COOKIE_LENGTH 24
44 static const char *_name = DM_NAME;
46 static unsigned int major = 0;
47 static unsigned int _major = 0;
49 static DEFINE_IDR(_minor_idr);
51 static DEFINE_SPINLOCK(_minor_lock);
53 static void do_deferred_remove(struct work_struct *w);
55 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
57 static struct workqueue_struct *deferred_remove_workqueue;
60 * For bio-based dm.
61 * One of these is allocated per bio.
63 struct dm_io {
64 struct mapped_device *md;
65 int error;
66 atomic_t io_count;
67 struct bio *bio;
68 unsigned long start_time;
69 spinlock_t endio_lock;
70 struct dm_stats_aux stats_aux;
74 * For request-based dm.
75 * One of these is allocated per request.
77 struct dm_rq_target_io {
78 struct mapped_device *md;
79 struct dm_target *ti;
80 struct request *orig, clone;
81 int error;
82 union map_info info;
86 * For request-based dm - the bio clones we allocate are embedded in these
87 * structs.
89 * We allocate these with bio_alloc_bioset, using the front_pad parameter when
90 * the bioset is created - this means the bio has to come at the end of the
91 * struct.
93 struct dm_rq_clone_bio_info {
94 struct bio *orig;
95 struct dm_rq_target_io *tio;
96 struct bio clone;
99 union map_info *dm_get_rq_mapinfo(struct request *rq)
101 if (rq && rq->end_io_data)
102 return &((struct dm_rq_target_io *)rq->end_io_data)->info;
103 return NULL;
105 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
107 #define MINOR_ALLOCED ((void *)-1)
110 * Bits for the md->flags field.
112 #define DMF_BLOCK_IO_FOR_SUSPEND 0
113 #define DMF_SUSPENDED 1
114 #define DMF_FROZEN 2
115 #define DMF_FREEING 3
116 #define DMF_DELETING 4
117 #define DMF_NOFLUSH_SUSPENDING 5
118 #define DMF_MERGE_IS_OPTIONAL 6
119 #define DMF_DEFERRED_REMOVE 7
122 * A dummy definition to make RCU happy.
123 * struct dm_table should never be dereferenced in this file.
125 struct dm_table {
126 int undefined__;
130 * Work processed by per-device workqueue.
132 struct mapped_device {
133 struct srcu_struct io_barrier;
134 struct mutex suspend_lock;
135 atomic_t holders;
136 atomic_t open_count;
139 * The current mapping.
140 * Use dm_get_live_table{_fast} or take suspend_lock for
141 * dereference.
143 struct dm_table *map;
145 struct list_head table_devices;
146 struct mutex table_devices_lock;
148 unsigned long flags;
150 struct request_queue *queue;
151 unsigned type;
152 /* Protect queue and type against concurrent access. */
153 struct mutex type_lock;
155 struct target_type *immutable_target_type;
157 struct gendisk *disk;
158 char name[16];
160 void *interface_ptr;
163 * A list of ios that arrived while we were suspended.
165 atomic_t pending[2];
166 wait_queue_head_t wait;
167 struct work_struct work;
168 struct bio_list deferred;
169 spinlock_t deferred_lock;
172 * Processing queue (flush)
174 struct workqueue_struct *wq;
177 * io objects are allocated from here.
179 mempool_t *io_pool;
181 struct bio_set *bs;
184 * Event handling.
186 atomic_t event_nr;
187 wait_queue_head_t eventq;
188 atomic_t uevent_seq;
189 struct list_head uevent_list;
190 spinlock_t uevent_lock; /* Protect access to uevent_list */
193 * freeze/thaw support require holding onto a super block
195 struct super_block *frozen_sb;
196 struct block_device *bdev;
198 /* forced geometry settings */
199 struct hd_geometry geometry;
201 /* kobject and completion */
202 struct dm_kobject_holder kobj_holder;
204 /* zero-length flush that will be cloned and submitted to targets */
205 struct bio flush_bio;
207 struct dm_stats stats;
211 * For mempools pre-allocation at the table loading time.
213 struct dm_md_mempools {
214 mempool_t *io_pool;
215 struct bio_set *bs;
218 struct table_device {
219 struct list_head list;
220 atomic_t count;
221 struct dm_dev dm_dev;
224 #define RESERVED_BIO_BASED_IOS 16
225 #define RESERVED_REQUEST_BASED_IOS 256
226 #define RESERVED_MAX_IOS 1024
227 static struct kmem_cache *_io_cache;
228 static struct kmem_cache *_rq_tio_cache;
231 * Bio-based DM's mempools' reserved IOs set by the user.
233 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
236 * Request-based DM's mempools' reserved IOs set by the user.
238 static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS;
240 static unsigned __dm_get_reserved_ios(unsigned *reserved_ios,
241 unsigned def, unsigned max)
243 unsigned ios = ACCESS_ONCE(*reserved_ios);
244 unsigned modified_ios = 0;
246 if (!ios)
247 modified_ios = def;
248 else if (ios > max)
249 modified_ios = max;
251 if (modified_ios) {
252 (void)cmpxchg(reserved_ios, ios, modified_ios);
253 ios = modified_ios;
256 return ios;
259 unsigned dm_get_reserved_bio_based_ios(void)
261 return __dm_get_reserved_ios(&reserved_bio_based_ios,
262 RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS);
264 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
266 unsigned dm_get_reserved_rq_based_ios(void)
268 return __dm_get_reserved_ios(&reserved_rq_based_ios,
269 RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS);
271 EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios);
273 static int __init local_init(void)
275 int r = -ENOMEM;
277 /* allocate a slab for the dm_ios */
278 _io_cache = KMEM_CACHE(dm_io, 0);
279 if (!_io_cache)
280 return r;
282 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
283 if (!_rq_tio_cache)
284 goto out_free_io_cache;
286 r = dm_uevent_init();
287 if (r)
288 goto out_free_rq_tio_cache;
290 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
291 if (!deferred_remove_workqueue) {
292 r = -ENOMEM;
293 goto out_uevent_exit;
296 _major = major;
297 r = register_blkdev(_major, _name);
298 if (r < 0)
299 goto out_free_workqueue;
301 if (!_major)
302 _major = r;
304 return 0;
306 out_free_workqueue:
307 destroy_workqueue(deferred_remove_workqueue);
308 out_uevent_exit:
309 dm_uevent_exit();
310 out_free_rq_tio_cache:
311 kmem_cache_destroy(_rq_tio_cache);
312 out_free_io_cache:
313 kmem_cache_destroy(_io_cache);
315 return r;
318 static void local_exit(void)
320 flush_scheduled_work();
321 destroy_workqueue(deferred_remove_workqueue);
323 kmem_cache_destroy(_rq_tio_cache);
324 kmem_cache_destroy(_io_cache);
325 unregister_blkdev(_major, _name);
326 dm_uevent_exit();
328 _major = 0;
330 DMINFO("cleaned up");
333 static int (*_inits[])(void) __initdata = {
334 local_init,
335 dm_target_init,
336 dm_linear_init,
337 dm_stripe_init,
338 dm_io_init,
339 dm_kcopyd_init,
340 dm_interface_init,
341 dm_statistics_init,
344 static void (*_exits[])(void) = {
345 local_exit,
346 dm_target_exit,
347 dm_linear_exit,
348 dm_stripe_exit,
349 dm_io_exit,
350 dm_kcopyd_exit,
351 dm_interface_exit,
352 dm_statistics_exit,
355 static int __init dm_init(void)
357 const int count = ARRAY_SIZE(_inits);
359 int r, i;
361 for (i = 0; i < count; i++) {
362 r = _inits[i]();
363 if (r)
364 goto bad;
367 return 0;
369 bad:
370 while (i--)
371 _exits[i]();
373 return r;
376 static void __exit dm_exit(void)
378 int i = ARRAY_SIZE(_exits);
380 while (i--)
381 _exits[i]();
384 * Should be empty by this point.
386 idr_destroy(&_minor_idr);
390 * Block device functions
392 int dm_deleting_md(struct mapped_device *md)
394 return test_bit(DMF_DELETING, &md->flags);
397 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
399 struct mapped_device *md;
401 spin_lock(&_minor_lock);
403 md = bdev->bd_disk->private_data;
404 if (!md)
405 goto out;
407 if (test_bit(DMF_FREEING, &md->flags) ||
408 dm_deleting_md(md)) {
409 md = NULL;
410 goto out;
413 dm_get(md);
414 atomic_inc(&md->open_count);
416 out:
417 spin_unlock(&_minor_lock);
419 return md ? 0 : -ENXIO;
422 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
424 struct mapped_device *md = disk->private_data;
426 spin_lock(&_minor_lock);
428 if (atomic_dec_and_test(&md->open_count) &&
429 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
430 queue_work(deferred_remove_workqueue, &deferred_remove_work);
432 dm_put(md);
434 spin_unlock(&_minor_lock);
437 int dm_open_count(struct mapped_device *md)
439 return atomic_read(&md->open_count);
443 * Guarantees nothing is using the device before it's deleted.
445 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
447 int r = 0;
449 spin_lock(&_minor_lock);
451 if (dm_open_count(md)) {
452 r = -EBUSY;
453 if (mark_deferred)
454 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
455 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
456 r = -EEXIST;
457 else
458 set_bit(DMF_DELETING, &md->flags);
460 spin_unlock(&_minor_lock);
462 return r;
465 int dm_cancel_deferred_remove(struct mapped_device *md)
467 int r = 0;
469 spin_lock(&_minor_lock);
471 if (test_bit(DMF_DELETING, &md->flags))
472 r = -EBUSY;
473 else
474 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
476 spin_unlock(&_minor_lock);
478 return r;
481 static void do_deferred_remove(struct work_struct *w)
483 dm_deferred_remove();
486 sector_t dm_get_size(struct mapped_device *md)
488 return get_capacity(md->disk);
491 struct request_queue *dm_get_md_queue(struct mapped_device *md)
493 return md->queue;
496 struct dm_stats *dm_get_stats(struct mapped_device *md)
498 return &md->stats;
501 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
503 struct mapped_device *md = bdev->bd_disk->private_data;
505 return dm_get_geometry(md, geo);
508 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
509 unsigned int cmd, unsigned long arg)
511 struct mapped_device *md = bdev->bd_disk->private_data;
512 int srcu_idx;
513 struct dm_table *map;
514 struct dm_target *tgt;
515 int r = -ENOTTY;
517 retry:
518 map = dm_get_live_table(md, &srcu_idx);
520 if (!map || !dm_table_get_size(map))
521 goto out;
523 /* We only support devices that have a single target */
524 if (dm_table_get_num_targets(map) != 1)
525 goto out;
527 tgt = dm_table_get_target(map, 0);
529 if (dm_suspended_md(md)) {
530 r = -EAGAIN;
531 goto out;
534 if (tgt->type->ioctl)
535 r = tgt->type->ioctl(tgt, cmd, arg);
537 out:
538 dm_put_live_table(md, srcu_idx);
540 if (r == -ENOTCONN) {
541 msleep(10);
542 goto retry;
545 return r;
548 static struct dm_io *alloc_io(struct mapped_device *md)
550 return mempool_alloc(md->io_pool, GFP_NOIO);
553 static void free_io(struct mapped_device *md, struct dm_io *io)
555 mempool_free(io, md->io_pool);
558 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
560 bio_put(&tio->clone);
563 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
564 gfp_t gfp_mask)
566 return mempool_alloc(md->io_pool, gfp_mask);
569 static void free_rq_tio(struct dm_rq_target_io *tio)
571 mempool_free(tio, tio->md->io_pool);
574 static int md_in_flight(struct mapped_device *md)
576 return atomic_read(&md->pending[READ]) +
577 atomic_read(&md->pending[WRITE]);
580 static void start_io_acct(struct dm_io *io)
582 struct mapped_device *md = io->md;
583 struct bio *bio = io->bio;
584 int cpu;
585 int rw = bio_data_dir(bio);
587 io->start_time = jiffies;
589 cpu = part_stat_lock();
590 part_round_stats(cpu, &dm_disk(md)->part0);
591 part_stat_unlock();
592 atomic_set(&dm_disk(md)->part0.in_flight[rw],
593 atomic_inc_return(&md->pending[rw]));
595 if (unlikely(dm_stats_used(&md->stats)))
596 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
597 bio_sectors(bio), false, 0, &io->stats_aux);
600 static void end_io_acct(struct dm_io *io)
602 struct mapped_device *md = io->md;
603 struct bio *bio = io->bio;
604 unsigned long duration = jiffies - io->start_time;
605 int pending, cpu;
606 int rw = bio_data_dir(bio);
608 cpu = part_stat_lock();
609 part_round_stats(cpu, &dm_disk(md)->part0);
610 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
611 part_stat_unlock();
613 if (unlikely(dm_stats_used(&md->stats)))
614 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
615 bio_sectors(bio), true, duration, &io->stats_aux);
618 * After this is decremented the bio must not be touched if it is
619 * a flush.
621 pending = atomic_dec_return(&md->pending[rw]);
622 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
623 pending += atomic_read(&md->pending[rw^0x1]);
625 /* nudge anyone waiting on suspend queue */
626 if (!pending)
627 wake_up(&md->wait);
631 * Add the bio to the list of deferred io.
633 static void queue_io(struct mapped_device *md, struct bio *bio)
635 unsigned long flags;
637 spin_lock_irqsave(&md->deferred_lock, flags);
638 bio_list_add(&md->deferred, bio);
639 spin_unlock_irqrestore(&md->deferred_lock, flags);
640 queue_work(md->wq, &md->work);
644 * Everyone (including functions in this file), should use this
645 * function to access the md->map field, and make sure they call
646 * dm_put_live_table() when finished.
648 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
650 *srcu_idx = srcu_read_lock(&md->io_barrier);
652 return srcu_dereference(md->map, &md->io_barrier);
655 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
657 srcu_read_unlock(&md->io_barrier, srcu_idx);
660 void dm_sync_table(struct mapped_device *md)
662 synchronize_srcu(&md->io_barrier);
663 synchronize_rcu_expedited();
667 * A fast alternative to dm_get_live_table/dm_put_live_table.
668 * The caller must not block between these two functions.
670 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
672 rcu_read_lock();
673 return rcu_dereference(md->map);
676 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
678 rcu_read_unlock();
682 * Open a table device so we can use it as a map destination.
684 static int open_table_device(struct table_device *td, dev_t dev,
685 struct mapped_device *md)
687 static char *_claim_ptr = "I belong to device-mapper";
688 struct block_device *bdev;
690 int r;
692 BUG_ON(td->dm_dev.bdev);
694 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
695 if (IS_ERR(bdev))
696 return PTR_ERR(bdev);
698 r = bd_link_disk_holder(bdev, dm_disk(md));
699 if (r) {
700 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
701 return r;
704 td->dm_dev.bdev = bdev;
705 return 0;
709 * Close a table device that we've been using.
711 static void close_table_device(struct table_device *td, struct mapped_device *md)
713 if (!td->dm_dev.bdev)
714 return;
716 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
717 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
718 td->dm_dev.bdev = NULL;
721 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
722 fmode_t mode) {
723 struct table_device *td;
725 list_for_each_entry(td, l, list)
726 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
727 return td;
729 return NULL;
732 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
733 struct dm_dev **result) {
734 int r;
735 struct table_device *td;
737 mutex_lock(&md->table_devices_lock);
738 td = find_table_device(&md->table_devices, dev, mode);
739 if (!td) {
740 td = kmalloc(sizeof(*td), GFP_KERNEL);
741 if (!td) {
742 mutex_unlock(&md->table_devices_lock);
743 return -ENOMEM;
746 td->dm_dev.mode = mode;
747 td->dm_dev.bdev = NULL;
749 if ((r = open_table_device(td, dev, md))) {
750 mutex_unlock(&md->table_devices_lock);
751 kfree(td);
752 return r;
755 format_dev_t(td->dm_dev.name, dev);
757 atomic_set(&td->count, 0);
758 list_add(&td->list, &md->table_devices);
760 atomic_inc(&td->count);
761 mutex_unlock(&md->table_devices_lock);
763 *result = &td->dm_dev;
764 return 0;
766 EXPORT_SYMBOL_GPL(dm_get_table_device);
768 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
770 struct table_device *td = container_of(d, struct table_device, dm_dev);
772 mutex_lock(&md->table_devices_lock);
773 if (atomic_dec_and_test(&td->count)) {
774 close_table_device(td, md);
775 list_del(&td->list);
776 kfree(td);
778 mutex_unlock(&md->table_devices_lock);
780 EXPORT_SYMBOL(dm_put_table_device);
782 static void free_table_devices(struct list_head *devices)
784 struct list_head *tmp, *next;
786 list_for_each_safe(tmp, next, devices) {
787 struct table_device *td = list_entry(tmp, struct table_device, list);
789 DMWARN("dm_destroy: %s still exists with %d references",
790 td->dm_dev.name, atomic_read(&td->count));
791 kfree(td);
796 * Get the geometry associated with a dm device
798 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
800 *geo = md->geometry;
802 return 0;
806 * Set the geometry of a device.
808 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
810 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
812 if (geo->start > sz) {
813 DMWARN("Start sector is beyond the geometry limits.");
814 return -EINVAL;
817 md->geometry = *geo;
819 return 0;
822 /*-----------------------------------------------------------------
823 * CRUD START:
824 * A more elegant soln is in the works that uses the queue
825 * merge fn, unfortunately there are a couple of changes to
826 * the block layer that I want to make for this. So in the
827 * interests of getting something for people to use I give
828 * you this clearly demarcated crap.
829 *---------------------------------------------------------------*/
831 static int __noflush_suspending(struct mapped_device *md)
833 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
837 * Decrements the number of outstanding ios that a bio has been
838 * cloned into, completing the original io if necc.
840 static void dec_pending(struct dm_io *io, int error)
842 unsigned long flags;
843 int io_error;
844 struct bio *bio;
845 struct mapped_device *md = io->md;
847 /* Push-back supersedes any I/O errors */
848 if (unlikely(error)) {
849 spin_lock_irqsave(&io->endio_lock, flags);
850 if (!(io->error > 0 && __noflush_suspending(md)))
851 io->error = error;
852 spin_unlock_irqrestore(&io->endio_lock, flags);
855 if (atomic_dec_and_test(&io->io_count)) {
856 if (io->error == DM_ENDIO_REQUEUE) {
858 * Target requested pushing back the I/O.
860 spin_lock_irqsave(&md->deferred_lock, flags);
861 if (__noflush_suspending(md))
862 bio_list_add_head(&md->deferred, io->bio);
863 else
864 /* noflush suspend was interrupted. */
865 io->error = -EIO;
866 spin_unlock_irqrestore(&md->deferred_lock, flags);
869 io_error = io->error;
870 bio = io->bio;
871 end_io_acct(io);
872 free_io(md, io);
874 if (io_error == DM_ENDIO_REQUEUE)
875 return;
877 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_iter.bi_size) {
879 * Preflush done for flush with data, reissue
880 * without REQ_FLUSH.
882 bio->bi_rw &= ~REQ_FLUSH;
883 queue_io(md, bio);
884 } else {
885 /* done with normal IO or empty flush */
886 trace_block_bio_complete(md->queue, bio, io_error);
887 bio_endio(bio, io_error);
892 static void disable_write_same(struct mapped_device *md)
894 struct queue_limits *limits = dm_get_queue_limits(md);
896 /* device doesn't really support WRITE SAME, disable it */
897 limits->max_write_same_sectors = 0;
900 static void clone_endio(struct bio *bio, int error)
902 int r = 0;
903 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
904 struct dm_io *io = tio->io;
905 struct mapped_device *md = tio->io->md;
906 dm_endio_fn endio = tio->ti->type->end_io;
908 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
909 error = -EIO;
911 if (endio) {
912 r = endio(tio->ti, bio, error);
913 if (r < 0 || r == DM_ENDIO_REQUEUE)
915 * error and requeue request are handled
916 * in dec_pending().
918 error = r;
919 else if (r == DM_ENDIO_INCOMPLETE)
920 /* The target will handle the io */
921 return;
922 else if (r) {
923 DMWARN("unimplemented target endio return value: %d", r);
924 BUG();
928 if (unlikely(r == -EREMOTEIO && (bio->bi_rw & REQ_WRITE_SAME) &&
929 !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors))
930 disable_write_same(md);
932 free_tio(md, tio);
933 dec_pending(io, error);
937 * Partial completion handling for request-based dm
939 static void end_clone_bio(struct bio *clone, int error)
941 struct dm_rq_clone_bio_info *info =
942 container_of(clone, struct dm_rq_clone_bio_info, clone);
943 struct dm_rq_target_io *tio = info->tio;
944 struct bio *bio = info->orig;
945 unsigned int nr_bytes = info->orig->bi_iter.bi_size;
947 bio_put(clone);
949 if (tio->error)
951 * An error has already been detected on the request.
952 * Once error occurred, just let clone->end_io() handle
953 * the remainder.
955 return;
956 else if (error) {
958 * Don't notice the error to the upper layer yet.
959 * The error handling decision is made by the target driver,
960 * when the request is completed.
962 tio->error = error;
963 return;
967 * I/O for the bio successfully completed.
968 * Notice the data completion to the upper layer.
972 * bios are processed from the head of the list.
973 * So the completing bio should always be rq->bio.
974 * If it's not, something wrong is happening.
976 if (tio->orig->bio != bio)
977 DMERR("bio completion is going in the middle of the request");
980 * Update the original request.
981 * Do not use blk_end_request() here, because it may complete
982 * the original request before the clone, and break the ordering.
984 blk_update_request(tio->orig, 0, nr_bytes);
988 * Don't touch any member of the md after calling this function because
989 * the md may be freed in dm_put() at the end of this function.
990 * Or do dm_get() before calling this function and dm_put() later.
992 static void rq_completed(struct mapped_device *md, int rw, int run_queue)
994 atomic_dec(&md->pending[rw]);
996 /* nudge anyone waiting on suspend queue */
997 if (!md_in_flight(md))
998 wake_up(&md->wait);
1001 * Run this off this callpath, as drivers could invoke end_io while
1002 * inside their request_fn (and holding the queue lock). Calling
1003 * back into ->request_fn() could deadlock attempting to grab the
1004 * queue lock again.
1006 if (run_queue)
1007 blk_run_queue_async(md->queue);
1010 * dm_put() must be at the end of this function. See the comment above
1012 dm_put(md);
1015 static void free_rq_clone(struct request *clone)
1017 struct dm_rq_target_io *tio = clone->end_io_data;
1019 blk_rq_unprep_clone(clone);
1020 free_rq_tio(tio);
1024 * Complete the clone and the original request.
1025 * Must be called without queue lock.
1027 static void dm_end_request(struct request *clone, int error)
1029 int rw = rq_data_dir(clone);
1030 struct dm_rq_target_io *tio = clone->end_io_data;
1031 struct mapped_device *md = tio->md;
1032 struct request *rq = tio->orig;
1034 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
1035 rq->errors = clone->errors;
1036 rq->resid_len = clone->resid_len;
1038 if (rq->sense)
1040 * We are using the sense buffer of the original
1041 * request.
1042 * So setting the length of the sense data is enough.
1044 rq->sense_len = clone->sense_len;
1047 free_rq_clone(clone);
1048 blk_end_request_all(rq, error);
1049 rq_completed(md, rw, true);
1052 static void dm_unprep_request(struct request *rq)
1054 struct request *clone = rq->special;
1056 rq->special = NULL;
1057 rq->cmd_flags &= ~REQ_DONTPREP;
1059 free_rq_clone(clone);
1063 * Requeue the original request of a clone.
1065 void dm_requeue_unmapped_request(struct request *clone)
1067 int rw = rq_data_dir(clone);
1068 struct dm_rq_target_io *tio = clone->end_io_data;
1069 struct mapped_device *md = tio->md;
1070 struct request *rq = tio->orig;
1071 struct request_queue *q = rq->q;
1072 unsigned long flags;
1074 dm_unprep_request(rq);
1076 spin_lock_irqsave(q->queue_lock, flags);
1077 blk_requeue_request(q, rq);
1078 spin_unlock_irqrestore(q->queue_lock, flags);
1080 rq_completed(md, rw, 0);
1082 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
1084 static void __stop_queue(struct request_queue *q)
1086 blk_stop_queue(q);
1089 static void stop_queue(struct request_queue *q)
1091 unsigned long flags;
1093 spin_lock_irqsave(q->queue_lock, flags);
1094 __stop_queue(q);
1095 spin_unlock_irqrestore(q->queue_lock, flags);
1098 static void __start_queue(struct request_queue *q)
1100 if (blk_queue_stopped(q))
1101 blk_start_queue(q);
1104 static void start_queue(struct request_queue *q)
1106 unsigned long flags;
1108 spin_lock_irqsave(q->queue_lock, flags);
1109 __start_queue(q);
1110 spin_unlock_irqrestore(q->queue_lock, flags);
1113 static void dm_done(struct request *clone, int error, bool mapped)
1115 int r = error;
1116 struct dm_rq_target_io *tio = clone->end_io_data;
1117 dm_request_endio_fn rq_end_io = NULL;
1119 if (tio->ti) {
1120 rq_end_io = tio->ti->type->rq_end_io;
1122 if (mapped && rq_end_io)
1123 r = rq_end_io(tio->ti, clone, error, &tio->info);
1126 if (unlikely(r == -EREMOTEIO && (clone->cmd_flags & REQ_WRITE_SAME) &&
1127 !clone->q->limits.max_write_same_sectors))
1128 disable_write_same(tio->md);
1130 if (r <= 0)
1131 /* The target wants to complete the I/O */
1132 dm_end_request(clone, r);
1133 else if (r == DM_ENDIO_INCOMPLETE)
1134 /* The target will handle the I/O */
1135 return;
1136 else if (r == DM_ENDIO_REQUEUE)
1137 /* The target wants to requeue the I/O */
1138 dm_requeue_unmapped_request(clone);
1139 else {
1140 DMWARN("unimplemented target endio return value: %d", r);
1141 BUG();
1146 * Request completion handler for request-based dm
1148 static void dm_softirq_done(struct request *rq)
1150 bool mapped = true;
1151 struct request *clone = rq->completion_data;
1152 struct dm_rq_target_io *tio = clone->end_io_data;
1154 if (rq->cmd_flags & REQ_FAILED)
1155 mapped = false;
1157 dm_done(clone, tio->error, mapped);
1161 * Complete the clone and the original request with the error status
1162 * through softirq context.
1164 static void dm_complete_request(struct request *clone, int error)
1166 struct dm_rq_target_io *tio = clone->end_io_data;
1167 struct request *rq = tio->orig;
1169 tio->error = error;
1170 rq->completion_data = clone;
1171 blk_complete_request(rq);
1175 * Complete the not-mapped clone and the original request with the error status
1176 * through softirq context.
1177 * Target's rq_end_io() function isn't called.
1178 * This may be used when the target's map_rq() function fails.
1180 void dm_kill_unmapped_request(struct request *clone, int error)
1182 struct dm_rq_target_io *tio = clone->end_io_data;
1183 struct request *rq = tio->orig;
1185 rq->cmd_flags |= REQ_FAILED;
1186 dm_complete_request(clone, error);
1188 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
1191 * Called with the queue lock held
1193 static void end_clone_request(struct request *clone, int error)
1196 * For just cleaning up the information of the queue in which
1197 * the clone was dispatched.
1198 * The clone is *NOT* freed actually here because it is alloced from
1199 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
1201 __blk_put_request(clone->q, clone);
1204 * Actual request completion is done in a softirq context which doesn't
1205 * hold the queue lock. Otherwise, deadlock could occur because:
1206 * - another request may be submitted by the upper level driver
1207 * of the stacking during the completion
1208 * - the submission which requires queue lock may be done
1209 * against this queue
1211 dm_complete_request(clone, error);
1215 * Return maximum size of I/O possible at the supplied sector up to the current
1216 * target boundary.
1218 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1220 sector_t target_offset = dm_target_offset(ti, sector);
1222 return ti->len - target_offset;
1225 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1227 sector_t len = max_io_len_target_boundary(sector, ti);
1228 sector_t offset, max_len;
1231 * Does the target need to split even further?
1233 if (ti->max_io_len) {
1234 offset = dm_target_offset(ti, sector);
1235 if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1236 max_len = sector_div(offset, ti->max_io_len);
1237 else
1238 max_len = offset & (ti->max_io_len - 1);
1239 max_len = ti->max_io_len - max_len;
1241 if (len > max_len)
1242 len = max_len;
1245 return len;
1248 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1250 if (len > UINT_MAX) {
1251 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1252 (unsigned long long)len, UINT_MAX);
1253 ti->error = "Maximum size of target IO is too large";
1254 return -EINVAL;
1257 ti->max_io_len = (uint32_t) len;
1259 return 0;
1261 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1264 * A target may call dm_accept_partial_bio only from the map routine. It is
1265 * allowed for all bio types except REQ_FLUSH.
1267 * dm_accept_partial_bio informs the dm that the target only wants to process
1268 * additional n_sectors sectors of the bio and the rest of the data should be
1269 * sent in a next bio.
1271 * A diagram that explains the arithmetics:
1272 * +--------------------+---------------+-------+
1273 * | 1 | 2 | 3 |
1274 * +--------------------+---------------+-------+
1276 * <-------------- *tio->len_ptr --------------->
1277 * <------- bi_size ------->
1278 * <-- n_sectors -->
1280 * Region 1 was already iterated over with bio_advance or similar function.
1281 * (it may be empty if the target doesn't use bio_advance)
1282 * Region 2 is the remaining bio size that the target wants to process.
1283 * (it may be empty if region 1 is non-empty, although there is no reason
1284 * to make it empty)
1285 * The target requires that region 3 is to be sent in the next bio.
1287 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1288 * the partially processed part (the sum of regions 1+2) must be the same for all
1289 * copies of the bio.
1291 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1293 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1294 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1295 BUG_ON(bio->bi_rw & REQ_FLUSH);
1296 BUG_ON(bi_size > *tio->len_ptr);
1297 BUG_ON(n_sectors > bi_size);
1298 *tio->len_ptr -= bi_size - n_sectors;
1299 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1301 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1303 static void __map_bio(struct dm_target_io *tio)
1305 int r;
1306 sector_t sector;
1307 struct mapped_device *md;
1308 struct bio *clone = &tio->clone;
1309 struct dm_target *ti = tio->ti;
1311 clone->bi_end_io = clone_endio;
1314 * Map the clone. If r == 0 we don't need to do
1315 * anything, the target has assumed ownership of
1316 * this io.
1318 atomic_inc(&tio->io->io_count);
1319 sector = clone->bi_iter.bi_sector;
1320 r = ti->type->map(ti, clone);
1321 if (r == DM_MAPIO_REMAPPED) {
1322 /* the bio has been remapped so dispatch it */
1324 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1325 tio->io->bio->bi_bdev->bd_dev, sector);
1327 generic_make_request(clone);
1328 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1329 /* error the io and bail out, or requeue it if needed */
1330 md = tio->io->md;
1331 dec_pending(tio->io, r);
1332 free_tio(md, tio);
1333 } else if (r) {
1334 DMWARN("unimplemented target map return value: %d", r);
1335 BUG();
1339 struct clone_info {
1340 struct mapped_device *md;
1341 struct dm_table *map;
1342 struct bio *bio;
1343 struct dm_io *io;
1344 sector_t sector;
1345 unsigned sector_count;
1348 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1350 bio->bi_iter.bi_sector = sector;
1351 bio->bi_iter.bi_size = to_bytes(len);
1355 * Creates a bio that consists of range of complete bvecs.
1357 static void clone_bio(struct dm_target_io *tio, struct bio *bio,
1358 sector_t sector, unsigned len)
1360 struct bio *clone = &tio->clone;
1362 __bio_clone_fast(clone, bio);
1364 if (bio_integrity(bio))
1365 bio_integrity_clone(clone, bio, GFP_NOIO);
1367 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1368 clone->bi_iter.bi_size = to_bytes(len);
1370 if (bio_integrity(bio))
1371 bio_integrity_trim(clone, 0, len);
1374 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1375 struct dm_target *ti,
1376 unsigned target_bio_nr)
1378 struct dm_target_io *tio;
1379 struct bio *clone;
1381 clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1382 tio = container_of(clone, struct dm_target_io, clone);
1384 tio->io = ci->io;
1385 tio->ti = ti;
1386 tio->target_bio_nr = target_bio_nr;
1388 return tio;
1391 static void __clone_and_map_simple_bio(struct clone_info *ci,
1392 struct dm_target *ti,
1393 unsigned target_bio_nr, unsigned *len)
1395 struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1396 struct bio *clone = &tio->clone;
1398 tio->len_ptr = len;
1400 __bio_clone_fast(clone, ci->bio);
1401 if (len)
1402 bio_setup_sector(clone, ci->sector, *len);
1404 __map_bio(tio);
1407 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1408 unsigned num_bios, unsigned *len)
1410 unsigned target_bio_nr;
1412 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1413 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1416 static int __send_empty_flush(struct clone_info *ci)
1418 unsigned target_nr = 0;
1419 struct dm_target *ti;
1421 BUG_ON(bio_has_data(ci->bio));
1422 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1423 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1425 return 0;
1428 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1429 sector_t sector, unsigned *len)
1431 struct bio *bio = ci->bio;
1432 struct dm_target_io *tio;
1433 unsigned target_bio_nr;
1434 unsigned num_target_bios = 1;
1437 * Does the target want to receive duplicate copies of the bio?
1439 if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1440 num_target_bios = ti->num_write_bios(ti, bio);
1442 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1443 tio = alloc_tio(ci, ti, target_bio_nr);
1444 tio->len_ptr = len;
1445 clone_bio(tio, bio, sector, *len);
1446 __map_bio(tio);
1450 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1452 static unsigned get_num_discard_bios(struct dm_target *ti)
1454 return ti->num_discard_bios;
1457 static unsigned get_num_write_same_bios(struct dm_target *ti)
1459 return ti->num_write_same_bios;
1462 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1464 static bool is_split_required_for_discard(struct dm_target *ti)
1466 return ti->split_discard_bios;
1469 static int __send_changing_extent_only(struct clone_info *ci,
1470 get_num_bios_fn get_num_bios,
1471 is_split_required_fn is_split_required)
1473 struct dm_target *ti;
1474 unsigned len;
1475 unsigned num_bios;
1477 do {
1478 ti = dm_table_find_target(ci->map, ci->sector);
1479 if (!dm_target_is_valid(ti))
1480 return -EIO;
1483 * Even though the device advertised support for this type of
1484 * request, that does not mean every target supports it, and
1485 * reconfiguration might also have changed that since the
1486 * check was performed.
1488 num_bios = get_num_bios ? get_num_bios(ti) : 0;
1489 if (!num_bios)
1490 return -EOPNOTSUPP;
1492 if (is_split_required && !is_split_required(ti))
1493 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1494 else
1495 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1497 __send_duplicate_bios(ci, ti, num_bios, &len);
1499 ci->sector += len;
1500 } while (ci->sector_count -= len);
1502 return 0;
1505 static int __send_discard(struct clone_info *ci)
1507 return __send_changing_extent_only(ci, get_num_discard_bios,
1508 is_split_required_for_discard);
1511 static int __send_write_same(struct clone_info *ci)
1513 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1517 * Select the correct strategy for processing a non-flush bio.
1519 static int __split_and_process_non_flush(struct clone_info *ci)
1521 struct bio *bio = ci->bio;
1522 struct dm_target *ti;
1523 unsigned len;
1525 if (unlikely(bio->bi_rw & REQ_DISCARD))
1526 return __send_discard(ci);
1527 else if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
1528 return __send_write_same(ci);
1530 ti = dm_table_find_target(ci->map, ci->sector);
1531 if (!dm_target_is_valid(ti))
1532 return -EIO;
1534 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1536 __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1538 ci->sector += len;
1539 ci->sector_count -= len;
1541 return 0;
1545 * Entry point to split a bio into clones and submit them to the targets.
1547 static void __split_and_process_bio(struct mapped_device *md,
1548 struct dm_table *map, struct bio *bio)
1550 struct clone_info ci;
1551 int error = 0;
1553 if (unlikely(!map)) {
1554 bio_io_error(bio);
1555 return;
1558 ci.map = map;
1559 ci.md = md;
1560 ci.io = alloc_io(md);
1561 ci.io->error = 0;
1562 atomic_set(&ci.io->io_count, 1);
1563 ci.io->bio = bio;
1564 ci.io->md = md;
1565 spin_lock_init(&ci.io->endio_lock);
1566 ci.sector = bio->bi_iter.bi_sector;
1568 start_io_acct(ci.io);
1570 if (bio->bi_rw & REQ_FLUSH) {
1571 ci.bio = &ci.md->flush_bio;
1572 ci.sector_count = 0;
1573 error = __send_empty_flush(&ci);
1574 /* dec_pending submits any data associated with flush */
1575 } else {
1576 ci.bio = bio;
1577 ci.sector_count = bio_sectors(bio);
1578 while (ci.sector_count && !error)
1579 error = __split_and_process_non_flush(&ci);
1582 /* drop the extra reference count */
1583 dec_pending(ci.io, error);
1585 /*-----------------------------------------------------------------
1586 * CRUD END
1587 *---------------------------------------------------------------*/
1589 static int dm_merge_bvec(struct request_queue *q,
1590 struct bvec_merge_data *bvm,
1591 struct bio_vec *biovec)
1593 struct mapped_device *md = q->queuedata;
1594 struct dm_table *map = dm_get_live_table_fast(md);
1595 struct dm_target *ti;
1596 sector_t max_sectors;
1597 int max_size = 0;
1599 if (unlikely(!map))
1600 goto out;
1602 ti = dm_table_find_target(map, bvm->bi_sector);
1603 if (!dm_target_is_valid(ti))
1604 goto out;
1607 * Find maximum amount of I/O that won't need splitting
1609 max_sectors = min(max_io_len(bvm->bi_sector, ti),
1610 (sector_t) BIO_MAX_SECTORS);
1611 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1612 if (max_size < 0)
1613 max_size = 0;
1616 * merge_bvec_fn() returns number of bytes
1617 * it can accept at this offset
1618 * max is precomputed maximal io size
1620 if (max_size && ti->type->merge)
1621 max_size = ti->type->merge(ti, bvm, biovec, max_size);
1623 * If the target doesn't support merge method and some of the devices
1624 * provided their merge_bvec method (we know this by looking at
1625 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1626 * entries. So always set max_size to 0, and the code below allows
1627 * just one page.
1629 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1630 max_size = 0;
1632 out:
1633 dm_put_live_table_fast(md);
1635 * Always allow an entire first page
1637 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1638 max_size = biovec->bv_len;
1640 return max_size;
1644 * The request function that just remaps the bio built up by
1645 * dm_merge_bvec.
1647 static void _dm_request(struct request_queue *q, struct bio *bio)
1649 int rw = bio_data_dir(bio);
1650 struct mapped_device *md = q->queuedata;
1651 int cpu;
1652 int srcu_idx;
1653 struct dm_table *map;
1655 map = dm_get_live_table(md, &srcu_idx);
1657 cpu = part_stat_lock();
1658 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1659 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1660 part_stat_unlock();
1662 /* if we're suspended, we have to queue this io for later */
1663 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1664 dm_put_live_table(md, srcu_idx);
1666 if (bio_rw(bio) != READA)
1667 queue_io(md, bio);
1668 else
1669 bio_io_error(bio);
1670 return;
1673 __split_and_process_bio(md, map, bio);
1674 dm_put_live_table(md, srcu_idx);
1675 return;
1678 int dm_request_based(struct mapped_device *md)
1680 return blk_queue_stackable(md->queue);
1683 static void dm_request(struct request_queue *q, struct bio *bio)
1685 struct mapped_device *md = q->queuedata;
1687 if (dm_request_based(md))
1688 blk_queue_bio(q, bio);
1689 else
1690 _dm_request(q, bio);
1693 void dm_dispatch_request(struct request *rq)
1695 int r;
1697 if (blk_queue_io_stat(rq->q))
1698 rq->cmd_flags |= REQ_IO_STAT;
1700 rq->start_time = jiffies;
1701 r = blk_insert_cloned_request(rq->q, rq);
1702 if (r)
1703 dm_complete_request(rq, r);
1705 EXPORT_SYMBOL_GPL(dm_dispatch_request);
1707 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1708 void *data)
1710 struct dm_rq_target_io *tio = data;
1711 struct dm_rq_clone_bio_info *info =
1712 container_of(bio, struct dm_rq_clone_bio_info, clone);
1714 info->orig = bio_orig;
1715 info->tio = tio;
1716 bio->bi_end_io = end_clone_bio;
1718 return 0;
1721 static int setup_clone(struct request *clone, struct request *rq,
1722 struct dm_rq_target_io *tio)
1724 int r;
1726 r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1727 dm_rq_bio_constructor, tio);
1728 if (r)
1729 return r;
1731 clone->cmd = rq->cmd;
1732 clone->cmd_len = rq->cmd_len;
1733 clone->sense = rq->sense;
1734 clone->end_io = end_clone_request;
1735 clone->end_io_data = tio;
1737 return 0;
1740 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1741 gfp_t gfp_mask)
1743 struct request *clone;
1744 struct dm_rq_target_io *tio;
1746 tio = alloc_rq_tio(md, gfp_mask);
1747 if (!tio)
1748 return NULL;
1750 tio->md = md;
1751 tio->ti = NULL;
1752 tio->orig = rq;
1753 tio->error = 0;
1754 memset(&tio->info, 0, sizeof(tio->info));
1756 clone = &tio->clone;
1757 if (setup_clone(clone, rq, tio)) {
1758 /* -ENOMEM */
1759 free_rq_tio(tio);
1760 return NULL;
1763 return clone;
1767 * Called with the queue lock held.
1769 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1771 struct mapped_device *md = q->queuedata;
1772 struct request *clone;
1774 if (unlikely(rq->special)) {
1775 DMWARN("Already has something in rq->special.");
1776 return BLKPREP_KILL;
1779 clone = clone_rq(rq, md, GFP_ATOMIC);
1780 if (!clone)
1781 return BLKPREP_DEFER;
1783 rq->special = clone;
1784 rq->cmd_flags |= REQ_DONTPREP;
1786 return BLKPREP_OK;
1790 * Returns:
1791 * 0 : the request has been processed (not requeued)
1792 * !0 : the request has been requeued
1794 static int map_request(struct dm_target *ti, struct request *clone,
1795 struct mapped_device *md)
1797 int r, requeued = 0;
1798 struct dm_rq_target_io *tio = clone->end_io_data;
1800 tio->ti = ti;
1801 r = ti->type->map_rq(ti, clone, &tio->info);
1802 switch (r) {
1803 case DM_MAPIO_SUBMITTED:
1804 /* The target has taken the I/O to submit by itself later */
1805 break;
1806 case DM_MAPIO_REMAPPED:
1807 /* The target has remapped the I/O so dispatch it */
1808 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1809 blk_rq_pos(tio->orig));
1810 dm_dispatch_request(clone);
1811 break;
1812 case DM_MAPIO_REQUEUE:
1813 /* The target wants to requeue the I/O */
1814 dm_requeue_unmapped_request(clone);
1815 requeued = 1;
1816 break;
1817 default:
1818 if (r > 0) {
1819 DMWARN("unimplemented target map return value: %d", r);
1820 BUG();
1823 /* The target wants to complete the I/O */
1824 dm_kill_unmapped_request(clone, r);
1825 break;
1828 return requeued;
1831 static struct request *dm_start_request(struct mapped_device *md, struct request *orig)
1833 struct request *clone;
1835 blk_start_request(orig);
1836 clone = orig->special;
1837 atomic_inc(&md->pending[rq_data_dir(clone)]);
1840 * Hold the md reference here for the in-flight I/O.
1841 * We can't rely on the reference count by device opener,
1842 * because the device may be closed during the request completion
1843 * when all bios are completed.
1844 * See the comment in rq_completed() too.
1846 dm_get(md);
1848 return clone;
1852 * q->request_fn for request-based dm.
1853 * Called with the queue lock held.
1855 static void dm_request_fn(struct request_queue *q)
1857 struct mapped_device *md = q->queuedata;
1858 int srcu_idx;
1859 struct dm_table *map = dm_get_live_table(md, &srcu_idx);
1860 struct dm_target *ti;
1861 struct request *rq, *clone;
1862 sector_t pos;
1865 * For suspend, check blk_queue_stopped() and increment
1866 * ->pending within a single queue_lock not to increment the
1867 * number of in-flight I/Os after the queue is stopped in
1868 * dm_suspend().
1870 while (!blk_queue_stopped(q)) {
1871 rq = blk_peek_request(q);
1872 if (!rq)
1873 goto delay_and_out;
1875 /* always use block 0 to find the target for flushes for now */
1876 pos = 0;
1877 if (!(rq->cmd_flags & REQ_FLUSH))
1878 pos = blk_rq_pos(rq);
1880 ti = dm_table_find_target(map, pos);
1881 if (!dm_target_is_valid(ti)) {
1883 * Must perform setup, that dm_done() requires,
1884 * before calling dm_kill_unmapped_request
1886 DMERR_LIMIT("request attempted access beyond the end of device");
1887 clone = dm_start_request(md, rq);
1888 dm_kill_unmapped_request(clone, -EIO);
1889 continue;
1892 if (ti->type->busy && ti->type->busy(ti))
1893 goto delay_and_out;
1895 clone = dm_start_request(md, rq);
1897 spin_unlock(q->queue_lock);
1898 if (map_request(ti, clone, md))
1899 goto requeued;
1901 BUG_ON(!irqs_disabled());
1902 spin_lock(q->queue_lock);
1905 goto out;
1907 requeued:
1908 BUG_ON(!irqs_disabled());
1909 spin_lock(q->queue_lock);
1911 delay_and_out:
1912 blk_delay_queue(q, HZ / 10);
1913 out:
1914 dm_put_live_table(md, srcu_idx);
1917 int dm_underlying_device_busy(struct request_queue *q)
1919 return blk_lld_busy(q);
1921 EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1923 static int dm_lld_busy(struct request_queue *q)
1925 int r;
1926 struct mapped_device *md = q->queuedata;
1927 struct dm_table *map = dm_get_live_table_fast(md);
1929 if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1930 r = 1;
1931 else
1932 r = dm_table_any_busy_target(map);
1934 dm_put_live_table_fast(md);
1936 return r;
1939 static int dm_any_congested(void *congested_data, int bdi_bits)
1941 int r = bdi_bits;
1942 struct mapped_device *md = congested_data;
1943 struct dm_table *map;
1945 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1946 map = dm_get_live_table_fast(md);
1947 if (map) {
1949 * Request-based dm cares about only own queue for
1950 * the query about congestion status of request_queue
1952 if (dm_request_based(md))
1953 r = md->queue->backing_dev_info.state &
1954 bdi_bits;
1955 else
1956 r = dm_table_any_congested(map, bdi_bits);
1958 dm_put_live_table_fast(md);
1961 return r;
1964 /*-----------------------------------------------------------------
1965 * An IDR is used to keep track of allocated minor numbers.
1966 *---------------------------------------------------------------*/
1967 static void free_minor(int minor)
1969 spin_lock(&_minor_lock);
1970 idr_remove(&_minor_idr, minor);
1971 spin_unlock(&_minor_lock);
1975 * See if the device with a specific minor # is free.
1977 static int specific_minor(int minor)
1979 int r;
1981 if (minor >= (1 << MINORBITS))
1982 return -EINVAL;
1984 idr_preload(GFP_KERNEL);
1985 spin_lock(&_minor_lock);
1987 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1989 spin_unlock(&_minor_lock);
1990 idr_preload_end();
1991 if (r < 0)
1992 return r == -ENOSPC ? -EBUSY : r;
1993 return 0;
1996 static int next_free_minor(int *minor)
1998 int r;
2000 idr_preload(GFP_KERNEL);
2001 spin_lock(&_minor_lock);
2003 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
2005 spin_unlock(&_minor_lock);
2006 idr_preload_end();
2007 if (r < 0)
2008 return r;
2009 *minor = r;
2010 return 0;
2013 static const struct block_device_operations dm_blk_dops;
2015 static void dm_wq_work(struct work_struct *work);
2017 static void dm_init_md_queue(struct mapped_device *md)
2020 * Request-based dm devices cannot be stacked on top of bio-based dm
2021 * devices. The type of this dm device has not been decided yet.
2022 * The type is decided at the first table loading time.
2023 * To prevent problematic device stacking, clear the queue flag
2024 * for request stacking support until then.
2026 * This queue is new, so no concurrency on the queue_flags.
2028 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
2030 md->queue->queuedata = md;
2031 md->queue->backing_dev_info.congested_fn = dm_any_congested;
2032 md->queue->backing_dev_info.congested_data = md;
2033 blk_queue_make_request(md->queue, dm_request);
2034 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
2035 blk_queue_merge_bvec(md->queue, dm_merge_bvec);
2039 * Allocate and initialise a blank device with a given minor.
2041 static struct mapped_device *alloc_dev(int minor)
2043 int r;
2044 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
2045 void *old_md;
2047 if (!md) {
2048 DMWARN("unable to allocate device, out of memory.");
2049 return NULL;
2052 if (!try_module_get(THIS_MODULE))
2053 goto bad_module_get;
2055 /* get a minor number for the dev */
2056 if (minor == DM_ANY_MINOR)
2057 r = next_free_minor(&minor);
2058 else
2059 r = specific_minor(minor);
2060 if (r < 0)
2061 goto bad_minor;
2063 r = init_srcu_struct(&md->io_barrier);
2064 if (r < 0)
2065 goto bad_io_barrier;
2067 md->type = DM_TYPE_NONE;
2068 mutex_init(&md->suspend_lock);
2069 mutex_init(&md->type_lock);
2070 mutex_init(&md->table_devices_lock);
2071 spin_lock_init(&md->deferred_lock);
2072 atomic_set(&md->holders, 1);
2073 atomic_set(&md->open_count, 0);
2074 atomic_set(&md->event_nr, 0);
2075 atomic_set(&md->uevent_seq, 0);
2076 INIT_LIST_HEAD(&md->uevent_list);
2077 INIT_LIST_HEAD(&md->table_devices);
2078 spin_lock_init(&md->uevent_lock);
2080 md->queue = blk_alloc_queue(GFP_KERNEL);
2081 if (!md->queue)
2082 goto bad_queue;
2084 dm_init_md_queue(md);
2086 md->disk = alloc_disk(1);
2087 if (!md->disk)
2088 goto bad_disk;
2090 atomic_set(&md->pending[0], 0);
2091 atomic_set(&md->pending[1], 0);
2092 init_waitqueue_head(&md->wait);
2093 INIT_WORK(&md->work, dm_wq_work);
2094 init_waitqueue_head(&md->eventq);
2095 init_completion(&md->kobj_holder.completion);
2097 md->disk->major = _major;
2098 md->disk->first_minor = minor;
2099 md->disk->fops = &dm_blk_dops;
2100 md->disk->queue = md->queue;
2101 md->disk->private_data = md;
2102 sprintf(md->disk->disk_name, "dm-%d", minor);
2103 add_disk(md->disk);
2104 format_dev_t(md->name, MKDEV(_major, minor));
2106 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
2107 if (!md->wq)
2108 goto bad_thread;
2110 md->bdev = bdget_disk(md->disk, 0);
2111 if (!md->bdev)
2112 goto bad_bdev;
2114 bio_init(&md->flush_bio);
2115 md->flush_bio.bi_bdev = md->bdev;
2116 md->flush_bio.bi_rw = WRITE_FLUSH;
2118 dm_stats_init(&md->stats);
2120 /* Populate the mapping, nobody knows we exist yet */
2121 spin_lock(&_minor_lock);
2122 old_md = idr_replace(&_minor_idr, md, minor);
2123 spin_unlock(&_minor_lock);
2125 BUG_ON(old_md != MINOR_ALLOCED);
2127 return md;
2129 bad_bdev:
2130 destroy_workqueue(md->wq);
2131 bad_thread:
2132 del_gendisk(md->disk);
2133 put_disk(md->disk);
2134 bad_disk:
2135 blk_cleanup_queue(md->queue);
2136 bad_queue:
2137 cleanup_srcu_struct(&md->io_barrier);
2138 bad_io_barrier:
2139 free_minor(minor);
2140 bad_minor:
2141 module_put(THIS_MODULE);
2142 bad_module_get:
2143 kfree(md);
2144 return NULL;
2147 static void unlock_fs(struct mapped_device *md);
2149 static void free_dev(struct mapped_device *md)
2151 int minor = MINOR(disk_devt(md->disk));
2153 unlock_fs(md);
2154 bdput(md->bdev);
2155 destroy_workqueue(md->wq);
2156 if (md->io_pool)
2157 mempool_destroy(md->io_pool);
2158 if (md->bs)
2159 bioset_free(md->bs);
2160 blk_integrity_unregister(md->disk);
2161 del_gendisk(md->disk);
2162 cleanup_srcu_struct(&md->io_barrier);
2163 free_table_devices(&md->table_devices);
2164 free_minor(minor);
2166 spin_lock(&_minor_lock);
2167 md->disk->private_data = NULL;
2168 spin_unlock(&_minor_lock);
2170 put_disk(md->disk);
2171 blk_cleanup_queue(md->queue);
2172 dm_stats_cleanup(&md->stats);
2173 module_put(THIS_MODULE);
2174 kfree(md);
2177 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
2179 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2181 if (md->io_pool && md->bs) {
2182 /* The md already has necessary mempools. */
2183 if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) {
2185 * Reload bioset because front_pad may have changed
2186 * because a different table was loaded.
2188 bioset_free(md->bs);
2189 md->bs = p->bs;
2190 p->bs = NULL;
2191 } else if (dm_table_get_type(t) == DM_TYPE_REQUEST_BASED) {
2193 * There's no need to reload with request-based dm
2194 * because the size of front_pad doesn't change.
2195 * Note for future: If you are to reload bioset,
2196 * prep-ed requests in the queue may refer
2197 * to bio from the old bioset, so you must walk
2198 * through the queue to unprep.
2201 goto out;
2204 BUG_ON(!p || md->io_pool || md->bs);
2206 md->io_pool = p->io_pool;
2207 p->io_pool = NULL;
2208 md->bs = p->bs;
2209 p->bs = NULL;
2211 out:
2212 /* mempool bind completed, now no need any mempools in the table */
2213 dm_table_free_md_mempools(t);
2217 * Bind a table to the device.
2219 static void event_callback(void *context)
2221 unsigned long flags;
2222 LIST_HEAD(uevents);
2223 struct mapped_device *md = (struct mapped_device *) context;
2225 spin_lock_irqsave(&md->uevent_lock, flags);
2226 list_splice_init(&md->uevent_list, &uevents);
2227 spin_unlock_irqrestore(&md->uevent_lock, flags);
2229 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2231 atomic_inc(&md->event_nr);
2232 wake_up(&md->eventq);
2236 * Protected by md->suspend_lock obtained by dm_swap_table().
2238 static void __set_size(struct mapped_device *md, sector_t size)
2240 set_capacity(md->disk, size);
2242 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2246 * Return 1 if the queue has a compulsory merge_bvec_fn function.
2248 * If this function returns 0, then the device is either a non-dm
2249 * device without a merge_bvec_fn, or it is a dm device that is
2250 * able to split any bios it receives that are too big.
2252 int dm_queue_merge_is_compulsory(struct request_queue *q)
2254 struct mapped_device *dev_md;
2256 if (!q->merge_bvec_fn)
2257 return 0;
2259 if (q->make_request_fn == dm_request) {
2260 dev_md = q->queuedata;
2261 if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2262 return 0;
2265 return 1;
2268 static int dm_device_merge_is_compulsory(struct dm_target *ti,
2269 struct dm_dev *dev, sector_t start,
2270 sector_t len, void *data)
2272 struct block_device *bdev = dev->bdev;
2273 struct request_queue *q = bdev_get_queue(bdev);
2275 return dm_queue_merge_is_compulsory(q);
2279 * Return 1 if it is acceptable to ignore merge_bvec_fn based
2280 * on the properties of the underlying devices.
2282 static int dm_table_merge_is_optional(struct dm_table *table)
2284 unsigned i = 0;
2285 struct dm_target *ti;
2287 while (i < dm_table_get_num_targets(table)) {
2288 ti = dm_table_get_target(table, i++);
2290 if (ti->type->iterate_devices &&
2291 ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2292 return 0;
2295 return 1;
2299 * Returns old map, which caller must destroy.
2301 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2302 struct queue_limits *limits)
2304 struct dm_table *old_map;
2305 struct request_queue *q = md->queue;
2306 sector_t size;
2307 int merge_is_optional;
2309 size = dm_table_get_size(t);
2312 * Wipe any geometry if the size of the table changed.
2314 if (size != dm_get_size(md))
2315 memset(&md->geometry, 0, sizeof(md->geometry));
2317 __set_size(md, size);
2319 dm_table_event_callback(t, event_callback, md);
2322 * The queue hasn't been stopped yet, if the old table type wasn't
2323 * for request-based during suspension. So stop it to prevent
2324 * I/O mapping before resume.
2325 * This must be done before setting the queue restrictions,
2326 * because request-based dm may be run just after the setting.
2328 if (dm_table_request_based(t) && !blk_queue_stopped(q))
2329 stop_queue(q);
2331 __bind_mempools(md, t);
2333 merge_is_optional = dm_table_merge_is_optional(t);
2335 old_map = md->map;
2336 rcu_assign_pointer(md->map, t);
2337 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2339 dm_table_set_restrictions(t, q, limits);
2340 if (merge_is_optional)
2341 set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2342 else
2343 clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2344 dm_sync_table(md);
2346 return old_map;
2350 * Returns unbound table for the caller to free.
2352 static struct dm_table *__unbind(struct mapped_device *md)
2354 struct dm_table *map = md->map;
2356 if (!map)
2357 return NULL;
2359 dm_table_event_callback(map, NULL, NULL);
2360 RCU_INIT_POINTER(md->map, NULL);
2361 dm_sync_table(md);
2363 return map;
2367 * Constructor for a new device.
2369 int dm_create(int minor, struct mapped_device **result)
2371 struct mapped_device *md;
2373 md = alloc_dev(minor);
2374 if (!md)
2375 return -ENXIO;
2377 dm_sysfs_init(md);
2379 *result = md;
2380 return 0;
2384 * Functions to manage md->type.
2385 * All are required to hold md->type_lock.
2387 void dm_lock_md_type(struct mapped_device *md)
2389 mutex_lock(&md->type_lock);
2392 void dm_unlock_md_type(struct mapped_device *md)
2394 mutex_unlock(&md->type_lock);
2397 void dm_set_md_type(struct mapped_device *md, unsigned type)
2399 BUG_ON(!mutex_is_locked(&md->type_lock));
2400 md->type = type;
2403 unsigned dm_get_md_type(struct mapped_device *md)
2405 BUG_ON(!mutex_is_locked(&md->type_lock));
2406 return md->type;
2409 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2411 return md->immutable_target_type;
2415 * The queue_limits are only valid as long as you have a reference
2416 * count on 'md'.
2418 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2420 BUG_ON(!atomic_read(&md->holders));
2421 return &md->queue->limits;
2423 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2426 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2428 static int dm_init_request_based_queue(struct mapped_device *md)
2430 struct request_queue *q = NULL;
2432 if (md->queue->elevator)
2433 return 1;
2435 /* Fully initialize the queue */
2436 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2437 if (!q)
2438 return 0;
2440 md->queue = q;
2441 dm_init_md_queue(md);
2442 blk_queue_softirq_done(md->queue, dm_softirq_done);
2443 blk_queue_prep_rq(md->queue, dm_prep_fn);
2444 blk_queue_lld_busy(md->queue, dm_lld_busy);
2446 elv_register_queue(md->queue);
2448 return 1;
2452 * Setup the DM device's queue based on md's type
2454 int dm_setup_md_queue(struct mapped_device *md)
2456 if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) &&
2457 !dm_init_request_based_queue(md)) {
2458 DMWARN("Cannot initialize queue for request-based mapped device");
2459 return -EINVAL;
2462 return 0;
2465 static struct mapped_device *dm_find_md(dev_t dev)
2467 struct mapped_device *md;
2468 unsigned minor = MINOR(dev);
2470 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2471 return NULL;
2473 spin_lock(&_minor_lock);
2475 md = idr_find(&_minor_idr, minor);
2476 if (md && (md == MINOR_ALLOCED ||
2477 (MINOR(disk_devt(dm_disk(md))) != minor) ||
2478 dm_deleting_md(md) ||
2479 test_bit(DMF_FREEING, &md->flags))) {
2480 md = NULL;
2481 goto out;
2484 out:
2485 spin_unlock(&_minor_lock);
2487 return md;
2490 struct mapped_device *dm_get_md(dev_t dev)
2492 struct mapped_device *md = dm_find_md(dev);
2494 if (md)
2495 dm_get(md);
2497 return md;
2499 EXPORT_SYMBOL_GPL(dm_get_md);
2501 void *dm_get_mdptr(struct mapped_device *md)
2503 return md->interface_ptr;
2506 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2508 md->interface_ptr = ptr;
2511 void dm_get(struct mapped_device *md)
2513 atomic_inc(&md->holders);
2514 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2517 const char *dm_device_name(struct mapped_device *md)
2519 return md->name;
2521 EXPORT_SYMBOL_GPL(dm_device_name);
2523 static void __dm_destroy(struct mapped_device *md, bool wait)
2525 struct dm_table *map;
2526 int srcu_idx;
2528 might_sleep();
2530 spin_lock(&_minor_lock);
2531 map = dm_get_live_table(md, &srcu_idx);
2532 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2533 set_bit(DMF_FREEING, &md->flags);
2534 spin_unlock(&_minor_lock);
2536 if (!dm_suspended_md(md)) {
2537 dm_table_presuspend_targets(map);
2538 dm_table_postsuspend_targets(map);
2541 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2542 dm_put_live_table(md, srcu_idx);
2545 * Rare, but there may be I/O requests still going to complete,
2546 * for example. Wait for all references to disappear.
2547 * No one should increment the reference count of the mapped_device,
2548 * after the mapped_device state becomes DMF_FREEING.
2550 if (wait)
2551 while (atomic_read(&md->holders))
2552 msleep(1);
2553 else if (atomic_read(&md->holders))
2554 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2555 dm_device_name(md), atomic_read(&md->holders));
2557 dm_sysfs_exit(md);
2558 dm_table_destroy(__unbind(md));
2559 free_dev(md);
2562 void dm_destroy(struct mapped_device *md)
2564 __dm_destroy(md, true);
2567 void dm_destroy_immediate(struct mapped_device *md)
2569 __dm_destroy(md, false);
2572 void dm_put(struct mapped_device *md)
2574 atomic_dec(&md->holders);
2576 EXPORT_SYMBOL_GPL(dm_put);
2578 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2580 int r = 0;
2581 DECLARE_WAITQUEUE(wait, current);
2583 add_wait_queue(&md->wait, &wait);
2585 while (1) {
2586 set_current_state(interruptible);
2588 if (!md_in_flight(md))
2589 break;
2591 if (interruptible == TASK_INTERRUPTIBLE &&
2592 signal_pending(current)) {
2593 r = -EINTR;
2594 break;
2597 io_schedule();
2599 set_current_state(TASK_RUNNING);
2601 remove_wait_queue(&md->wait, &wait);
2603 return r;
2607 * Process the deferred bios
2609 static void dm_wq_work(struct work_struct *work)
2611 struct mapped_device *md = container_of(work, struct mapped_device,
2612 work);
2613 struct bio *c;
2614 int srcu_idx;
2615 struct dm_table *map;
2617 map = dm_get_live_table(md, &srcu_idx);
2619 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2620 spin_lock_irq(&md->deferred_lock);
2621 c = bio_list_pop(&md->deferred);
2622 spin_unlock_irq(&md->deferred_lock);
2624 if (!c)
2625 break;
2627 if (dm_request_based(md))
2628 generic_make_request(c);
2629 else
2630 __split_and_process_bio(md, map, c);
2633 dm_put_live_table(md, srcu_idx);
2636 static void dm_queue_flush(struct mapped_device *md)
2638 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2639 smp_mb__after_atomic();
2640 queue_work(md->wq, &md->work);
2644 * Swap in a new table, returning the old one for the caller to destroy.
2646 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2648 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2649 struct queue_limits limits;
2650 int r;
2652 mutex_lock(&md->suspend_lock);
2654 /* device must be suspended */
2655 if (!dm_suspended_md(md))
2656 goto out;
2659 * If the new table has no data devices, retain the existing limits.
2660 * This helps multipath with queue_if_no_path if all paths disappear,
2661 * then new I/O is queued based on these limits, and then some paths
2662 * reappear.
2664 if (dm_table_has_no_data_devices(table)) {
2665 live_map = dm_get_live_table_fast(md);
2666 if (live_map)
2667 limits = md->queue->limits;
2668 dm_put_live_table_fast(md);
2671 if (!live_map) {
2672 r = dm_calculate_queue_limits(table, &limits);
2673 if (r) {
2674 map = ERR_PTR(r);
2675 goto out;
2679 map = __bind(md, table, &limits);
2681 out:
2682 mutex_unlock(&md->suspend_lock);
2683 return map;
2687 * Functions to lock and unlock any filesystem running on the
2688 * device.
2690 static int lock_fs(struct mapped_device *md)
2692 int r;
2694 WARN_ON(md->frozen_sb);
2696 md->frozen_sb = freeze_bdev(md->bdev);
2697 if (IS_ERR(md->frozen_sb)) {
2698 r = PTR_ERR(md->frozen_sb);
2699 md->frozen_sb = NULL;
2700 return r;
2703 set_bit(DMF_FROZEN, &md->flags);
2705 return 0;
2708 static void unlock_fs(struct mapped_device *md)
2710 if (!test_bit(DMF_FROZEN, &md->flags))
2711 return;
2713 thaw_bdev(md->bdev, md->frozen_sb);
2714 md->frozen_sb = NULL;
2715 clear_bit(DMF_FROZEN, &md->flags);
2719 * We need to be able to change a mapping table under a mounted
2720 * filesystem. For example we might want to move some data in
2721 * the background. Before the table can be swapped with
2722 * dm_bind_table, dm_suspend must be called to flush any in
2723 * flight bios and ensure that any further io gets deferred.
2726 * Suspend mechanism in request-based dm.
2728 * 1. Flush all I/Os by lock_fs() if needed.
2729 * 2. Stop dispatching any I/O by stopping the request_queue.
2730 * 3. Wait for all in-flight I/Os to be completed or requeued.
2732 * To abort suspend, start the request_queue.
2734 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2736 struct dm_table *map = NULL;
2737 int r = 0;
2738 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
2739 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
2741 mutex_lock(&md->suspend_lock);
2743 if (dm_suspended_md(md)) {
2744 r = -EINVAL;
2745 goto out_unlock;
2748 map = md->map;
2751 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2752 * This flag is cleared before dm_suspend returns.
2754 if (noflush)
2755 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2757 /* This does not get reverted if there's an error later. */
2758 dm_table_presuspend_targets(map);
2761 * Flush I/O to the device.
2762 * Any I/O submitted after lock_fs() may not be flushed.
2763 * noflush takes precedence over do_lockfs.
2764 * (lock_fs() flushes I/Os and waits for them to complete.)
2766 if (!noflush && do_lockfs) {
2767 r = lock_fs(md);
2768 if (r)
2769 goto out_unlock;
2773 * Here we must make sure that no processes are submitting requests
2774 * to target drivers i.e. no one may be executing
2775 * __split_and_process_bio. This is called from dm_request and
2776 * dm_wq_work.
2778 * To get all processes out of __split_and_process_bio in dm_request,
2779 * we take the write lock. To prevent any process from reentering
2780 * __split_and_process_bio from dm_request and quiesce the thread
2781 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2782 * flush_workqueue(md->wq).
2784 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2785 synchronize_srcu(&md->io_barrier);
2788 * Stop md->queue before flushing md->wq in case request-based
2789 * dm defers requests to md->wq from md->queue.
2791 if (dm_request_based(md))
2792 stop_queue(md->queue);
2794 flush_workqueue(md->wq);
2797 * At this point no more requests are entering target request routines.
2798 * We call dm_wait_for_completion to wait for all existing requests
2799 * to finish.
2801 r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
2803 if (noflush)
2804 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2805 synchronize_srcu(&md->io_barrier);
2807 /* were we interrupted ? */
2808 if (r < 0) {
2809 dm_queue_flush(md);
2811 if (dm_request_based(md))
2812 start_queue(md->queue);
2814 unlock_fs(md);
2815 goto out_unlock; /* pushback list is already flushed, so skip flush */
2819 * If dm_wait_for_completion returned 0, the device is completely
2820 * quiescent now. There is no request-processing activity. All new
2821 * requests are being added to md->deferred list.
2824 set_bit(DMF_SUSPENDED, &md->flags);
2826 dm_table_postsuspend_targets(map);
2828 out_unlock:
2829 mutex_unlock(&md->suspend_lock);
2830 return r;
2833 int dm_resume(struct mapped_device *md)
2835 int r = -EINVAL;
2836 struct dm_table *map = NULL;
2838 mutex_lock(&md->suspend_lock);
2839 if (!dm_suspended_md(md))
2840 goto out;
2842 map = md->map;
2843 if (!map || !dm_table_get_size(map))
2844 goto out;
2846 r = dm_table_resume_targets(map);
2847 if (r)
2848 goto out;
2850 dm_queue_flush(md);
2853 * Flushing deferred I/Os must be done after targets are resumed
2854 * so that mapping of targets can work correctly.
2855 * Request-based dm is queueing the deferred I/Os in its request_queue.
2857 if (dm_request_based(md))
2858 start_queue(md->queue);
2860 unlock_fs(md);
2862 clear_bit(DMF_SUSPENDED, &md->flags);
2864 r = 0;
2865 out:
2866 mutex_unlock(&md->suspend_lock);
2868 return r;
2872 * Internal suspend/resume works like userspace-driven suspend. It waits
2873 * until all bios finish and prevents issuing new bios to the target drivers.
2874 * It may be used only from the kernel.
2876 * Internal suspend holds md->suspend_lock, which prevents interaction with
2877 * userspace-driven suspend.
2880 void dm_internal_suspend(struct mapped_device *md)
2882 mutex_lock(&md->suspend_lock);
2883 if (dm_suspended_md(md))
2884 return;
2886 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2887 synchronize_srcu(&md->io_barrier);
2888 flush_workqueue(md->wq);
2889 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2892 void dm_internal_resume(struct mapped_device *md)
2894 if (dm_suspended_md(md))
2895 goto done;
2897 dm_queue_flush(md);
2899 done:
2900 mutex_unlock(&md->suspend_lock);
2903 /*-----------------------------------------------------------------
2904 * Event notification.
2905 *---------------------------------------------------------------*/
2906 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2907 unsigned cookie)
2909 char udev_cookie[DM_COOKIE_LENGTH];
2910 char *envp[] = { udev_cookie, NULL };
2912 if (!cookie)
2913 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2914 else {
2915 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2916 DM_COOKIE_ENV_VAR_NAME, cookie);
2917 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2918 action, envp);
2922 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2924 return atomic_add_return(1, &md->uevent_seq);
2927 uint32_t dm_get_event_nr(struct mapped_device *md)
2929 return atomic_read(&md->event_nr);
2932 int dm_wait_event(struct mapped_device *md, int event_nr)
2934 return wait_event_interruptible(md->eventq,
2935 (event_nr != atomic_read(&md->event_nr)));
2938 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2940 unsigned long flags;
2942 spin_lock_irqsave(&md->uevent_lock, flags);
2943 list_add(elist, &md->uevent_list);
2944 spin_unlock_irqrestore(&md->uevent_lock, flags);
2948 * The gendisk is only valid as long as you have a reference
2949 * count on 'md'.
2951 struct gendisk *dm_disk(struct mapped_device *md)
2953 return md->disk;
2956 struct kobject *dm_kobject(struct mapped_device *md)
2958 return &md->kobj_holder.kobj;
2961 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2963 struct mapped_device *md;
2965 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2967 if (test_bit(DMF_FREEING, &md->flags) ||
2968 dm_deleting_md(md))
2969 return NULL;
2971 dm_get(md);
2972 return md;
2975 int dm_suspended_md(struct mapped_device *md)
2977 return test_bit(DMF_SUSPENDED, &md->flags);
2980 int dm_test_deferred_remove_flag(struct mapped_device *md)
2982 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2985 int dm_suspended(struct dm_target *ti)
2987 return dm_suspended_md(dm_table_get_md(ti->table));
2989 EXPORT_SYMBOL_GPL(dm_suspended);
2991 int dm_noflush_suspending(struct dm_target *ti)
2993 return __noflush_suspending(dm_table_get_md(ti->table));
2995 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2997 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity, unsigned per_bio_data_size)
2999 struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL);
3000 struct kmem_cache *cachep;
3001 unsigned int pool_size;
3002 unsigned int front_pad;
3004 if (!pools)
3005 return NULL;
3007 if (type == DM_TYPE_BIO_BASED) {
3008 cachep = _io_cache;
3009 pool_size = dm_get_reserved_bio_based_ios();
3010 front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
3011 } else if (type == DM_TYPE_REQUEST_BASED) {
3012 cachep = _rq_tio_cache;
3013 pool_size = dm_get_reserved_rq_based_ios();
3014 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3015 /* per_bio_data_size is not used. See __bind_mempools(). */
3016 WARN_ON(per_bio_data_size != 0);
3017 } else
3018 goto out;
3020 pools->io_pool = mempool_create_slab_pool(pool_size, cachep);
3021 if (!pools->io_pool)
3022 goto out;
3024 pools->bs = bioset_create_nobvec(pool_size, front_pad);
3025 if (!pools->bs)
3026 goto out;
3028 if (integrity && bioset_integrity_create(pools->bs, pool_size))
3029 goto out;
3031 return pools;
3033 out:
3034 dm_free_md_mempools(pools);
3036 return NULL;
3039 void dm_free_md_mempools(struct dm_md_mempools *pools)
3041 if (!pools)
3042 return;
3044 if (pools->io_pool)
3045 mempool_destroy(pools->io_pool);
3047 if (pools->bs)
3048 bioset_free(pools->bs);
3050 kfree(pools);
3053 static const struct block_device_operations dm_blk_dops = {
3054 .open = dm_blk_open,
3055 .release = dm_blk_close,
3056 .ioctl = dm_blk_ioctl,
3057 .getgeo = dm_blk_getgeo,
3058 .owner = THIS_MODULE
3062 * module hooks
3064 module_init(dm_init);
3065 module_exit(dm_exit);
3067 module_param(major, uint, 0);
3068 MODULE_PARM_DESC(major, "The major number of the device mapper");
3070 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3071 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3073 module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR);
3074 MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools");
3076 MODULE_DESCRIPTION(DM_NAME " driver");
3077 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3078 MODULE_LICENSE("GPL");