4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
44 #include <asm/tlbflush.h>
45 #include <asm/div64.h>
47 #include <linux/swapops.h>
52 /* Incremented by the number of inactive pages that were scanned */
53 unsigned long nr_scanned
;
55 /* Number of pages freed so far during a call to shrink_zones() */
56 unsigned long nr_reclaimed
;
58 /* This context's GFP mask */
63 /* Can mapped pages be reclaimed? */
66 /* Can pages be swapped as part of reclaim? */
69 /* This context's SWAP_CLUSTER_MAX. If freeing memory for
70 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
71 * In this context, it doesn't matter that we scan the
72 * whole list at once. */
77 int all_unreclaimable
;
81 /* Which cgroup do we reclaim from */
82 struct mem_cgroup
*mem_cgroup
;
85 * Nodemask of nodes allowed by the caller. If NULL, all nodes
90 /* Pluggable isolate pages callback */
91 unsigned long (*isolate_pages
)(unsigned long nr
, struct list_head
*dst
,
92 unsigned long *scanned
, int order
, int mode
,
93 struct zone
*z
, struct mem_cgroup
*mem_cont
,
94 int active
, int file
);
97 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
99 #ifdef ARCH_HAS_PREFETCH
100 #define prefetch_prev_lru_page(_page, _base, _field) \
102 if ((_page)->lru.prev != _base) { \
105 prev = lru_to_page(&(_page->lru)); \
106 prefetch(&prev->_field); \
110 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
113 #ifdef ARCH_HAS_PREFETCHW
114 #define prefetchw_prev_lru_page(_page, _base, _field) \
116 if ((_page)->lru.prev != _base) { \
119 prev = lru_to_page(&(_page->lru)); \
120 prefetchw(&prev->_field); \
124 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
128 * From 0 .. 100. Higher means more swappy.
130 int vm_swappiness
= 60;
131 long vm_total_pages
; /* The total number of pages which the VM controls */
133 static LIST_HEAD(shrinker_list
);
134 static DECLARE_RWSEM(shrinker_rwsem
);
136 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
137 #define scanning_global_lru(sc) (!(sc)->mem_cgroup)
139 #define scanning_global_lru(sc) (1)
142 static struct zone_reclaim_stat
*get_reclaim_stat(struct zone
*zone
,
143 struct scan_control
*sc
)
145 if (!scanning_global_lru(sc
))
146 return mem_cgroup_get_reclaim_stat(sc
->mem_cgroup
, zone
);
148 return &zone
->reclaim_stat
;
151 static unsigned long zone_nr_pages(struct zone
*zone
, struct scan_control
*sc
,
154 if (!scanning_global_lru(sc
))
155 return mem_cgroup_zone_nr_pages(sc
->mem_cgroup
, zone
, lru
);
157 return zone_page_state(zone
, NR_LRU_BASE
+ lru
);
162 * Add a shrinker callback to be called from the vm
164 void register_shrinker(struct shrinker
*shrinker
)
167 down_write(&shrinker_rwsem
);
168 list_add_tail(&shrinker
->list
, &shrinker_list
);
169 up_write(&shrinker_rwsem
);
171 EXPORT_SYMBOL(register_shrinker
);
176 void unregister_shrinker(struct shrinker
*shrinker
)
178 down_write(&shrinker_rwsem
);
179 list_del(&shrinker
->list
);
180 up_write(&shrinker_rwsem
);
182 EXPORT_SYMBOL(unregister_shrinker
);
184 #define SHRINK_BATCH 128
186 * Call the shrink functions to age shrinkable caches
188 * Here we assume it costs one seek to replace a lru page and that it also
189 * takes a seek to recreate a cache object. With this in mind we age equal
190 * percentages of the lru and ageable caches. This should balance the seeks
191 * generated by these structures.
193 * If the vm encountered mapped pages on the LRU it increase the pressure on
194 * slab to avoid swapping.
196 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
198 * `lru_pages' represents the number of on-LRU pages in all the zones which
199 * are eligible for the caller's allocation attempt. It is used for balancing
200 * slab reclaim versus page reclaim.
202 * Returns the number of slab objects which we shrunk.
204 unsigned long shrink_slab(unsigned long scanned
, gfp_t gfp_mask
,
205 unsigned long lru_pages
)
207 struct shrinker
*shrinker
;
208 unsigned long ret
= 0;
211 scanned
= SWAP_CLUSTER_MAX
;
213 if (!down_read_trylock(&shrinker_rwsem
))
214 return 1; /* Assume we'll be able to shrink next time */
216 list_for_each_entry(shrinker
, &shrinker_list
, list
) {
217 unsigned long long delta
;
218 unsigned long total_scan
;
219 unsigned long max_pass
= (*shrinker
->shrink
)(0, gfp_mask
);
221 delta
= (4 * scanned
) / shrinker
->seeks
;
223 do_div(delta
, lru_pages
+ 1);
224 shrinker
->nr
+= delta
;
225 if (shrinker
->nr
< 0) {
226 printk(KERN_ERR
"shrink_slab: %pF negative objects to "
228 shrinker
->shrink
, shrinker
->nr
);
229 shrinker
->nr
= max_pass
;
233 * Avoid risking looping forever due to too large nr value:
234 * never try to free more than twice the estimate number of
237 if (shrinker
->nr
> max_pass
* 2)
238 shrinker
->nr
= max_pass
* 2;
240 total_scan
= shrinker
->nr
;
243 while (total_scan
>= SHRINK_BATCH
) {
244 long this_scan
= SHRINK_BATCH
;
248 nr_before
= (*shrinker
->shrink
)(0, gfp_mask
);
249 shrink_ret
= (*shrinker
->shrink
)(this_scan
, gfp_mask
);
250 if (shrink_ret
== -1)
252 if (shrink_ret
< nr_before
)
253 ret
+= nr_before
- shrink_ret
;
254 count_vm_events(SLABS_SCANNED
, this_scan
);
255 total_scan
-= this_scan
;
260 shrinker
->nr
+= total_scan
;
262 up_read(&shrinker_rwsem
);
266 /* Called without lock on whether page is mapped, so answer is unstable */
267 static inline int page_mapping_inuse(struct page
*page
)
269 struct address_space
*mapping
;
271 /* Page is in somebody's page tables. */
272 if (page_mapped(page
))
275 /* Be more reluctant to reclaim swapcache than pagecache */
276 if (PageSwapCache(page
))
279 mapping
= page_mapping(page
);
283 /* File is mmap'd by somebody? */
284 return mapping_mapped(mapping
);
287 static inline int is_page_cache_freeable(struct page
*page
)
289 return page_count(page
) - !!page_has_private(page
) == 2;
292 static int may_write_to_queue(struct backing_dev_info
*bdi
)
294 if (current
->flags
& PF_SWAPWRITE
)
296 if (!bdi_write_congested(bdi
))
298 if (bdi
== current
->backing_dev_info
)
304 * We detected a synchronous write error writing a page out. Probably
305 * -ENOSPC. We need to propagate that into the address_space for a subsequent
306 * fsync(), msync() or close().
308 * The tricky part is that after writepage we cannot touch the mapping: nothing
309 * prevents it from being freed up. But we have a ref on the page and once
310 * that page is locked, the mapping is pinned.
312 * We're allowed to run sleeping lock_page() here because we know the caller has
315 static void handle_write_error(struct address_space
*mapping
,
316 struct page
*page
, int error
)
319 if (page_mapping(page
) == mapping
)
320 mapping_set_error(mapping
, error
);
324 /* Request for sync pageout. */
330 /* possible outcome of pageout() */
332 /* failed to write page out, page is locked */
334 /* move page to the active list, page is locked */
336 /* page has been sent to the disk successfully, page is unlocked */
338 /* page is clean and locked */
343 * pageout is called by shrink_page_list() for each dirty page.
344 * Calls ->writepage().
346 static pageout_t
pageout(struct page
*page
, struct address_space
*mapping
,
347 enum pageout_io sync_writeback
)
350 * If the page is dirty, only perform writeback if that write
351 * will be non-blocking. To prevent this allocation from being
352 * stalled by pagecache activity. But note that there may be
353 * stalls if we need to run get_block(). We could test
354 * PagePrivate for that.
356 * If this process is currently in generic_file_write() against
357 * this page's queue, we can perform writeback even if that
360 * If the page is swapcache, write it back even if that would
361 * block, for some throttling. This happens by accident, because
362 * swap_backing_dev_info is bust: it doesn't reflect the
363 * congestion state of the swapdevs. Easy to fix, if needed.
364 * See swapfile.c:page_queue_congested().
366 if (!is_page_cache_freeable(page
))
370 * Some data journaling orphaned pages can have
371 * page->mapping == NULL while being dirty with clean buffers.
373 if (page_has_private(page
)) {
374 if (try_to_free_buffers(page
)) {
375 ClearPageDirty(page
);
376 printk("%s: orphaned page\n", __func__
);
382 if (mapping
->a_ops
->writepage
== NULL
)
383 return PAGE_ACTIVATE
;
384 if (!may_write_to_queue(mapping
->backing_dev_info
))
387 if (clear_page_dirty_for_io(page
)) {
389 struct writeback_control wbc
= {
390 .sync_mode
= WB_SYNC_NONE
,
391 .nr_to_write
= SWAP_CLUSTER_MAX
,
393 .range_end
= LLONG_MAX
,
398 SetPageReclaim(page
);
399 res
= mapping
->a_ops
->writepage(page
, &wbc
);
401 handle_write_error(mapping
, page
, res
);
402 if (res
== AOP_WRITEPAGE_ACTIVATE
) {
403 ClearPageReclaim(page
);
404 return PAGE_ACTIVATE
;
408 * Wait on writeback if requested to. This happens when
409 * direct reclaiming a large contiguous area and the
410 * first attempt to free a range of pages fails.
412 if (PageWriteback(page
) && sync_writeback
== PAGEOUT_IO_SYNC
)
413 wait_on_page_writeback(page
);
415 if (!PageWriteback(page
)) {
416 /* synchronous write or broken a_ops? */
417 ClearPageReclaim(page
);
419 inc_zone_page_state(page
, NR_VMSCAN_WRITE
);
427 * Same as remove_mapping, but if the page is removed from the mapping, it
428 * gets returned with a refcount of 0.
430 static int __remove_mapping(struct address_space
*mapping
, struct page
*page
)
432 BUG_ON(!PageLocked(page
));
433 BUG_ON(mapping
!= page_mapping(page
));
435 spin_lock_irq(&mapping
->tree_lock
);
437 * The non racy check for a busy page.
439 * Must be careful with the order of the tests. When someone has
440 * a ref to the page, it may be possible that they dirty it then
441 * drop the reference. So if PageDirty is tested before page_count
442 * here, then the following race may occur:
444 * get_user_pages(&page);
445 * [user mapping goes away]
447 * !PageDirty(page) [good]
448 * SetPageDirty(page);
450 * !page_count(page) [good, discard it]
452 * [oops, our write_to data is lost]
454 * Reversing the order of the tests ensures such a situation cannot
455 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
456 * load is not satisfied before that of page->_count.
458 * Note that if SetPageDirty is always performed via set_page_dirty,
459 * and thus under tree_lock, then this ordering is not required.
461 if (!page_freeze_refs(page
, 2))
463 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
464 if (unlikely(PageDirty(page
))) {
465 page_unfreeze_refs(page
, 2);
469 if (PageSwapCache(page
)) {
470 swp_entry_t swap
= { .val
= page_private(page
) };
471 __delete_from_swap_cache(page
);
472 spin_unlock_irq(&mapping
->tree_lock
);
475 __remove_from_page_cache(page
);
476 spin_unlock_irq(&mapping
->tree_lock
);
482 spin_unlock_irq(&mapping
->tree_lock
);
487 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
488 * someone else has a ref on the page, abort and return 0. If it was
489 * successfully detached, return 1. Assumes the caller has a single ref on
492 int remove_mapping(struct address_space
*mapping
, struct page
*page
)
494 if (__remove_mapping(mapping
, page
)) {
496 * Unfreezing the refcount with 1 rather than 2 effectively
497 * drops the pagecache ref for us without requiring another
500 page_unfreeze_refs(page
, 1);
507 * putback_lru_page - put previously isolated page onto appropriate LRU list
508 * @page: page to be put back to appropriate lru list
510 * Add previously isolated @page to appropriate LRU list.
511 * Page may still be unevictable for other reasons.
513 * lru_lock must not be held, interrupts must be enabled.
515 #ifdef CONFIG_UNEVICTABLE_LRU
516 void putback_lru_page(struct page
*page
)
519 int active
= !!TestClearPageActive(page
);
520 int was_unevictable
= PageUnevictable(page
);
522 VM_BUG_ON(PageLRU(page
));
525 ClearPageUnevictable(page
);
527 if (page_evictable(page
, NULL
)) {
529 * For evictable pages, we can use the cache.
530 * In event of a race, worst case is we end up with an
531 * unevictable page on [in]active list.
532 * We know how to handle that.
534 lru
= active
+ page_is_file_cache(page
);
535 lru_cache_add_lru(page
, lru
);
538 * Put unevictable pages directly on zone's unevictable
541 lru
= LRU_UNEVICTABLE
;
542 add_page_to_unevictable_list(page
);
546 * page's status can change while we move it among lru. If an evictable
547 * page is on unevictable list, it never be freed. To avoid that,
548 * check after we added it to the list, again.
550 if (lru
== LRU_UNEVICTABLE
&& page_evictable(page
, NULL
)) {
551 if (!isolate_lru_page(page
)) {
555 /* This means someone else dropped this page from LRU
556 * So, it will be freed or putback to LRU again. There is
557 * nothing to do here.
561 if (was_unevictable
&& lru
!= LRU_UNEVICTABLE
)
562 count_vm_event(UNEVICTABLE_PGRESCUED
);
563 else if (!was_unevictable
&& lru
== LRU_UNEVICTABLE
)
564 count_vm_event(UNEVICTABLE_PGCULLED
);
566 put_page(page
); /* drop ref from isolate */
569 #else /* CONFIG_UNEVICTABLE_LRU */
571 void putback_lru_page(struct page
*page
)
574 VM_BUG_ON(PageLRU(page
));
576 lru
= !!TestClearPageActive(page
) + page_is_file_cache(page
);
577 lru_cache_add_lru(page
, lru
);
580 #endif /* CONFIG_UNEVICTABLE_LRU */
584 * shrink_page_list() returns the number of reclaimed pages
586 static unsigned long shrink_page_list(struct list_head
*page_list
,
587 struct scan_control
*sc
,
588 enum pageout_io sync_writeback
)
590 LIST_HEAD(ret_pages
);
591 struct pagevec freed_pvec
;
593 unsigned long nr_reclaimed
= 0;
597 pagevec_init(&freed_pvec
, 1);
598 while (!list_empty(page_list
)) {
599 struct address_space
*mapping
;
606 page
= lru_to_page(page_list
);
607 list_del(&page
->lru
);
609 if (!trylock_page(page
))
612 VM_BUG_ON(PageActive(page
));
616 if (unlikely(!page_evictable(page
, NULL
)))
619 if (!sc
->may_unmap
&& page_mapped(page
))
622 /* Double the slab pressure for mapped and swapcache pages */
623 if (page_mapped(page
) || PageSwapCache(page
))
626 may_enter_fs
= (sc
->gfp_mask
& __GFP_FS
) ||
627 (PageSwapCache(page
) && (sc
->gfp_mask
& __GFP_IO
));
629 if (PageWriteback(page
)) {
631 * Synchronous reclaim is performed in two passes,
632 * first an asynchronous pass over the list to
633 * start parallel writeback, and a second synchronous
634 * pass to wait for the IO to complete. Wait here
635 * for any page for which writeback has already
638 if (sync_writeback
== PAGEOUT_IO_SYNC
&& may_enter_fs
)
639 wait_on_page_writeback(page
);
644 referenced
= page_referenced(page
, 1, sc
->mem_cgroup
);
645 /* In active use or really unfreeable? Activate it. */
646 if (sc
->order
<= PAGE_ALLOC_COSTLY_ORDER
&&
647 referenced
&& page_mapping_inuse(page
))
648 goto activate_locked
;
651 * Anonymous process memory has backing store?
652 * Try to allocate it some swap space here.
654 if (PageAnon(page
) && !PageSwapCache(page
)) {
655 if (!(sc
->gfp_mask
& __GFP_IO
))
657 if (!add_to_swap(page
))
658 goto activate_locked
;
662 mapping
= page_mapping(page
);
665 * The page is mapped into the page tables of one or more
666 * processes. Try to unmap it here.
668 if (page_mapped(page
) && mapping
) {
669 switch (try_to_unmap(page
, 0)) {
671 goto activate_locked
;
677 ; /* try to free the page below */
681 if (PageDirty(page
)) {
682 if (sc
->order
<= PAGE_ALLOC_COSTLY_ORDER
&& referenced
)
686 if (!sc
->may_writepage
)
689 /* Page is dirty, try to write it out here */
690 switch (pageout(page
, mapping
, sync_writeback
)) {
694 goto activate_locked
;
696 if (PageWriteback(page
) || PageDirty(page
))
699 * A synchronous write - probably a ramdisk. Go
700 * ahead and try to reclaim the page.
702 if (!trylock_page(page
))
704 if (PageDirty(page
) || PageWriteback(page
))
706 mapping
= page_mapping(page
);
708 ; /* try to free the page below */
713 * If the page has buffers, try to free the buffer mappings
714 * associated with this page. If we succeed we try to free
717 * We do this even if the page is PageDirty().
718 * try_to_release_page() does not perform I/O, but it is
719 * possible for a page to have PageDirty set, but it is actually
720 * clean (all its buffers are clean). This happens if the
721 * buffers were written out directly, with submit_bh(). ext3
722 * will do this, as well as the blockdev mapping.
723 * try_to_release_page() will discover that cleanness and will
724 * drop the buffers and mark the page clean - it can be freed.
726 * Rarely, pages can have buffers and no ->mapping. These are
727 * the pages which were not successfully invalidated in
728 * truncate_complete_page(). We try to drop those buffers here
729 * and if that worked, and the page is no longer mapped into
730 * process address space (page_count == 1) it can be freed.
731 * Otherwise, leave the page on the LRU so it is swappable.
733 if (page_has_private(page
)) {
734 if (!try_to_release_page(page
, sc
->gfp_mask
))
735 goto activate_locked
;
736 if (!mapping
&& page_count(page
) == 1) {
738 if (put_page_testzero(page
))
742 * rare race with speculative reference.
743 * the speculative reference will free
744 * this page shortly, so we may
745 * increment nr_reclaimed here (and
746 * leave it off the LRU).
754 if (!mapping
|| !__remove_mapping(mapping
, page
))
758 * At this point, we have no other references and there is
759 * no way to pick any more up (removed from LRU, removed
760 * from pagecache). Can use non-atomic bitops now (and
761 * we obviously don't have to worry about waking up a process
762 * waiting on the page lock, because there are no references.
764 __clear_page_locked(page
);
767 if (!pagevec_add(&freed_pvec
, page
)) {
768 __pagevec_free(&freed_pvec
);
769 pagevec_reinit(&freed_pvec
);
774 if (PageSwapCache(page
))
775 try_to_free_swap(page
);
777 putback_lru_page(page
);
781 /* Not a candidate for swapping, so reclaim swap space. */
782 if (PageSwapCache(page
) && vm_swap_full())
783 try_to_free_swap(page
);
784 VM_BUG_ON(PageActive(page
));
790 list_add(&page
->lru
, &ret_pages
);
791 VM_BUG_ON(PageLRU(page
) || PageUnevictable(page
));
793 list_splice(&ret_pages
, page_list
);
794 if (pagevec_count(&freed_pvec
))
795 __pagevec_free(&freed_pvec
);
796 count_vm_events(PGACTIVATE
, pgactivate
);
800 /* LRU Isolation modes. */
801 #define ISOLATE_INACTIVE 0 /* Isolate inactive pages. */
802 #define ISOLATE_ACTIVE 1 /* Isolate active pages. */
803 #define ISOLATE_BOTH 2 /* Isolate both active and inactive pages. */
806 * Attempt to remove the specified page from its LRU. Only take this page
807 * if it is of the appropriate PageActive status. Pages which are being
808 * freed elsewhere are also ignored.
810 * page: page to consider
811 * mode: one of the LRU isolation modes defined above
813 * returns 0 on success, -ve errno on failure.
815 int __isolate_lru_page(struct page
*page
, int mode
, int file
)
819 /* Only take pages on the LRU. */
824 * When checking the active state, we need to be sure we are
825 * dealing with comparible boolean values. Take the logical not
828 if (mode
!= ISOLATE_BOTH
&& (!PageActive(page
) != !mode
))
831 if (mode
!= ISOLATE_BOTH
&& (!page_is_file_cache(page
) != !file
))
835 * When this function is being called for lumpy reclaim, we
836 * initially look into all LRU pages, active, inactive and
837 * unevictable; only give shrink_page_list evictable pages.
839 if (PageUnevictable(page
))
844 if (likely(get_page_unless_zero(page
))) {
846 * Be careful not to clear PageLRU until after we're
847 * sure the page is not being freed elsewhere -- the
848 * page release code relies on it.
852 mem_cgroup_del_lru(page
);
859 * zone->lru_lock is heavily contended. Some of the functions that
860 * shrink the lists perform better by taking out a batch of pages
861 * and working on them outside the LRU lock.
863 * For pagecache intensive workloads, this function is the hottest
864 * spot in the kernel (apart from copy_*_user functions).
866 * Appropriate locks must be held before calling this function.
868 * @nr_to_scan: The number of pages to look through on the list.
869 * @src: The LRU list to pull pages off.
870 * @dst: The temp list to put pages on to.
871 * @scanned: The number of pages that were scanned.
872 * @order: The caller's attempted allocation order
873 * @mode: One of the LRU isolation modes
874 * @file: True [1] if isolating file [!anon] pages
876 * returns how many pages were moved onto *@dst.
878 static unsigned long isolate_lru_pages(unsigned long nr_to_scan
,
879 struct list_head
*src
, struct list_head
*dst
,
880 unsigned long *scanned
, int order
, int mode
, int file
)
882 unsigned long nr_taken
= 0;
885 for (scan
= 0; scan
< nr_to_scan
&& !list_empty(src
); scan
++) {
888 unsigned long end_pfn
;
889 unsigned long page_pfn
;
892 page
= lru_to_page(src
);
893 prefetchw_prev_lru_page(page
, src
, flags
);
895 VM_BUG_ON(!PageLRU(page
));
897 switch (__isolate_lru_page(page
, mode
, file
)) {
899 list_move(&page
->lru
, dst
);
904 /* else it is being freed elsewhere */
905 list_move(&page
->lru
, src
);
916 * Attempt to take all pages in the order aligned region
917 * surrounding the tag page. Only take those pages of
918 * the same active state as that tag page. We may safely
919 * round the target page pfn down to the requested order
920 * as the mem_map is guarenteed valid out to MAX_ORDER,
921 * where that page is in a different zone we will detect
922 * it from its zone id and abort this block scan.
924 zone_id
= page_zone_id(page
);
925 page_pfn
= page_to_pfn(page
);
926 pfn
= page_pfn
& ~((1 << order
) - 1);
927 end_pfn
= pfn
+ (1 << order
);
928 for (; pfn
< end_pfn
; pfn
++) {
929 struct page
*cursor_page
;
931 /* The target page is in the block, ignore it. */
932 if (unlikely(pfn
== page_pfn
))
935 /* Avoid holes within the zone. */
936 if (unlikely(!pfn_valid_within(pfn
)))
939 cursor_page
= pfn_to_page(pfn
);
941 /* Check that we have not crossed a zone boundary. */
942 if (unlikely(page_zone_id(cursor_page
) != zone_id
))
944 switch (__isolate_lru_page(cursor_page
, mode
, file
)) {
946 list_move(&cursor_page
->lru
, dst
);
952 /* else it is being freed elsewhere */
953 list_move(&cursor_page
->lru
, src
);
955 break; /* ! on LRU or wrong list */
964 static unsigned long isolate_pages_global(unsigned long nr
,
965 struct list_head
*dst
,
966 unsigned long *scanned
, int order
,
967 int mode
, struct zone
*z
,
968 struct mem_cgroup
*mem_cont
,
969 int active
, int file
)
976 return isolate_lru_pages(nr
, &z
->lru
[lru
].list
, dst
, scanned
, order
,
981 * clear_active_flags() is a helper for shrink_active_list(), clearing
982 * any active bits from the pages in the list.
984 static unsigned long clear_active_flags(struct list_head
*page_list
,
991 list_for_each_entry(page
, page_list
, lru
) {
992 lru
= page_is_file_cache(page
);
993 if (PageActive(page
)) {
995 ClearPageActive(page
);
1005 * isolate_lru_page - tries to isolate a page from its LRU list
1006 * @page: page to isolate from its LRU list
1008 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1009 * vmstat statistic corresponding to whatever LRU list the page was on.
1011 * Returns 0 if the page was removed from an LRU list.
1012 * Returns -EBUSY if the page was not on an LRU list.
1014 * The returned page will have PageLRU() cleared. If it was found on
1015 * the active list, it will have PageActive set. If it was found on
1016 * the unevictable list, it will have the PageUnevictable bit set. That flag
1017 * may need to be cleared by the caller before letting the page go.
1019 * The vmstat statistic corresponding to the list on which the page was
1020 * found will be decremented.
1023 * (1) Must be called with an elevated refcount on the page. This is a
1024 * fundamentnal difference from isolate_lru_pages (which is called
1025 * without a stable reference).
1026 * (2) the lru_lock must not be held.
1027 * (3) interrupts must be enabled.
1029 int isolate_lru_page(struct page
*page
)
1033 if (PageLRU(page
)) {
1034 struct zone
*zone
= page_zone(page
);
1036 spin_lock_irq(&zone
->lru_lock
);
1037 if (PageLRU(page
) && get_page_unless_zero(page
)) {
1038 int lru
= page_lru(page
);
1042 del_page_from_lru_list(zone
, page
, lru
);
1044 spin_unlock_irq(&zone
->lru_lock
);
1050 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1051 * of reclaimed pages
1053 static unsigned long shrink_inactive_list(unsigned long max_scan
,
1054 struct zone
*zone
, struct scan_control
*sc
,
1055 int priority
, int file
)
1057 LIST_HEAD(page_list
);
1058 struct pagevec pvec
;
1059 unsigned long nr_scanned
= 0;
1060 unsigned long nr_reclaimed
= 0;
1061 struct zone_reclaim_stat
*reclaim_stat
= get_reclaim_stat(zone
, sc
);
1063 pagevec_init(&pvec
, 1);
1066 spin_lock_irq(&zone
->lru_lock
);
1069 unsigned long nr_taken
;
1070 unsigned long nr_scan
;
1071 unsigned long nr_freed
;
1072 unsigned long nr_active
;
1073 unsigned int count
[NR_LRU_LISTS
] = { 0, };
1074 int mode
= ISOLATE_INACTIVE
;
1077 * If we need a large contiguous chunk of memory, or have
1078 * trouble getting a small set of contiguous pages, we
1079 * will reclaim both active and inactive pages.
1081 * We use the same threshold as pageout congestion_wait below.
1083 if (sc
->order
> PAGE_ALLOC_COSTLY_ORDER
)
1084 mode
= ISOLATE_BOTH
;
1085 else if (sc
->order
&& priority
< DEF_PRIORITY
- 2)
1086 mode
= ISOLATE_BOTH
;
1088 nr_taken
= sc
->isolate_pages(sc
->swap_cluster_max
,
1089 &page_list
, &nr_scan
, sc
->order
, mode
,
1090 zone
, sc
->mem_cgroup
, 0, file
);
1091 nr_active
= clear_active_flags(&page_list
, count
);
1092 __count_vm_events(PGDEACTIVATE
, nr_active
);
1094 __mod_zone_page_state(zone
, NR_ACTIVE_FILE
,
1095 -count
[LRU_ACTIVE_FILE
]);
1096 __mod_zone_page_state(zone
, NR_INACTIVE_FILE
,
1097 -count
[LRU_INACTIVE_FILE
]);
1098 __mod_zone_page_state(zone
, NR_ACTIVE_ANON
,
1099 -count
[LRU_ACTIVE_ANON
]);
1100 __mod_zone_page_state(zone
, NR_INACTIVE_ANON
,
1101 -count
[LRU_INACTIVE_ANON
]);
1103 if (scanning_global_lru(sc
))
1104 zone
->pages_scanned
+= nr_scan
;
1106 reclaim_stat
->recent_scanned
[0] += count
[LRU_INACTIVE_ANON
];
1107 reclaim_stat
->recent_scanned
[0] += count
[LRU_ACTIVE_ANON
];
1108 reclaim_stat
->recent_scanned
[1] += count
[LRU_INACTIVE_FILE
];
1109 reclaim_stat
->recent_scanned
[1] += count
[LRU_ACTIVE_FILE
];
1111 spin_unlock_irq(&zone
->lru_lock
);
1113 nr_scanned
+= nr_scan
;
1114 nr_freed
= shrink_page_list(&page_list
, sc
, PAGEOUT_IO_ASYNC
);
1117 * If we are direct reclaiming for contiguous pages and we do
1118 * not reclaim everything in the list, try again and wait
1119 * for IO to complete. This will stall high-order allocations
1120 * but that should be acceptable to the caller
1122 if (nr_freed
< nr_taken
&& !current_is_kswapd() &&
1123 sc
->order
> PAGE_ALLOC_COSTLY_ORDER
) {
1124 congestion_wait(WRITE
, HZ
/10);
1127 * The attempt at page out may have made some
1128 * of the pages active, mark them inactive again.
1130 nr_active
= clear_active_flags(&page_list
, count
);
1131 count_vm_events(PGDEACTIVATE
, nr_active
);
1133 nr_freed
+= shrink_page_list(&page_list
, sc
,
1137 nr_reclaimed
+= nr_freed
;
1138 local_irq_disable();
1139 if (current_is_kswapd()) {
1140 __count_zone_vm_events(PGSCAN_KSWAPD
, zone
, nr_scan
);
1141 __count_vm_events(KSWAPD_STEAL
, nr_freed
);
1142 } else if (scanning_global_lru(sc
))
1143 __count_zone_vm_events(PGSCAN_DIRECT
, zone
, nr_scan
);
1145 __count_zone_vm_events(PGSTEAL
, zone
, nr_freed
);
1150 spin_lock(&zone
->lru_lock
);
1152 * Put back any unfreeable pages.
1154 while (!list_empty(&page_list
)) {
1156 page
= lru_to_page(&page_list
);
1157 VM_BUG_ON(PageLRU(page
));
1158 list_del(&page
->lru
);
1159 if (unlikely(!page_evictable(page
, NULL
))) {
1160 spin_unlock_irq(&zone
->lru_lock
);
1161 putback_lru_page(page
);
1162 spin_lock_irq(&zone
->lru_lock
);
1166 lru
= page_lru(page
);
1167 add_page_to_lru_list(zone
, page
, lru
);
1168 if (PageActive(page
)) {
1169 int file
= !!page_is_file_cache(page
);
1170 reclaim_stat
->recent_rotated
[file
]++;
1172 if (!pagevec_add(&pvec
, page
)) {
1173 spin_unlock_irq(&zone
->lru_lock
);
1174 __pagevec_release(&pvec
);
1175 spin_lock_irq(&zone
->lru_lock
);
1178 } while (nr_scanned
< max_scan
);
1179 spin_unlock(&zone
->lru_lock
);
1182 pagevec_release(&pvec
);
1183 return nr_reclaimed
;
1187 * We are about to scan this zone at a certain priority level. If that priority
1188 * level is smaller (ie: more urgent) than the previous priority, then note
1189 * that priority level within the zone. This is done so that when the next
1190 * process comes in to scan this zone, it will immediately start out at this
1191 * priority level rather than having to build up its own scanning priority.
1192 * Here, this priority affects only the reclaim-mapped threshold.
1194 static inline void note_zone_scanning_priority(struct zone
*zone
, int priority
)
1196 if (priority
< zone
->prev_priority
)
1197 zone
->prev_priority
= priority
;
1201 * This moves pages from the active list to the inactive list.
1203 * We move them the other way if the page is referenced by one or more
1204 * processes, from rmap.
1206 * If the pages are mostly unmapped, the processing is fast and it is
1207 * appropriate to hold zone->lru_lock across the whole operation. But if
1208 * the pages are mapped, the processing is slow (page_referenced()) so we
1209 * should drop zone->lru_lock around each page. It's impossible to balance
1210 * this, so instead we remove the pages from the LRU while processing them.
1211 * It is safe to rely on PG_active against the non-LRU pages in here because
1212 * nobody will play with that bit on a non-LRU page.
1214 * The downside is that we have to touch page->_count against each page.
1215 * But we had to alter page->flags anyway.
1219 static void shrink_active_list(unsigned long nr_pages
, struct zone
*zone
,
1220 struct scan_control
*sc
, int priority
, int file
)
1222 unsigned long pgmoved
;
1223 int pgdeactivate
= 0;
1224 unsigned long pgscanned
;
1225 LIST_HEAD(l_hold
); /* The pages which were snipped off */
1226 LIST_HEAD(l_inactive
);
1228 struct pagevec pvec
;
1230 struct zone_reclaim_stat
*reclaim_stat
= get_reclaim_stat(zone
, sc
);
1233 spin_lock_irq(&zone
->lru_lock
);
1234 pgmoved
= sc
->isolate_pages(nr_pages
, &l_hold
, &pgscanned
, sc
->order
,
1235 ISOLATE_ACTIVE
, zone
,
1236 sc
->mem_cgroup
, 1, file
);
1238 * zone->pages_scanned is used for detect zone's oom
1239 * mem_cgroup remembers nr_scan by itself.
1241 if (scanning_global_lru(sc
)) {
1242 zone
->pages_scanned
+= pgscanned
;
1244 reclaim_stat
->recent_scanned
[!!file
] += pgmoved
;
1247 __mod_zone_page_state(zone
, NR_ACTIVE_FILE
, -pgmoved
);
1249 __mod_zone_page_state(zone
, NR_ACTIVE_ANON
, -pgmoved
);
1250 spin_unlock_irq(&zone
->lru_lock
);
1253 while (!list_empty(&l_hold
)) {
1255 page
= lru_to_page(&l_hold
);
1256 list_del(&page
->lru
);
1258 if (unlikely(!page_evictable(page
, NULL
))) {
1259 putback_lru_page(page
);
1263 /* page_referenced clears PageReferenced */
1264 if (page_mapping_inuse(page
) &&
1265 page_referenced(page
, 0, sc
->mem_cgroup
))
1268 list_add(&page
->lru
, &l_inactive
);
1272 * Move the pages to the [file or anon] inactive list.
1274 pagevec_init(&pvec
, 1);
1275 lru
= LRU_BASE
+ file
* LRU_FILE
;
1277 spin_lock_irq(&zone
->lru_lock
);
1279 * Count referenced pages from currently used mappings as
1280 * rotated, even though they are moved to the inactive list.
1281 * This helps balance scan pressure between file and anonymous
1282 * pages in get_scan_ratio.
1284 reclaim_stat
->recent_rotated
[!!file
] += pgmoved
;
1287 while (!list_empty(&l_inactive
)) {
1288 page
= lru_to_page(&l_inactive
);
1289 prefetchw_prev_lru_page(page
, &l_inactive
, flags
);
1290 VM_BUG_ON(PageLRU(page
));
1292 VM_BUG_ON(!PageActive(page
));
1293 ClearPageActive(page
);
1295 list_move(&page
->lru
, &zone
->lru
[lru
].list
);
1296 mem_cgroup_add_lru_list(page
, lru
);
1298 if (!pagevec_add(&pvec
, page
)) {
1299 __mod_zone_page_state(zone
, NR_LRU_BASE
+ lru
, pgmoved
);
1300 spin_unlock_irq(&zone
->lru_lock
);
1301 pgdeactivate
+= pgmoved
;
1303 if (buffer_heads_over_limit
)
1304 pagevec_strip(&pvec
);
1305 __pagevec_release(&pvec
);
1306 spin_lock_irq(&zone
->lru_lock
);
1309 __mod_zone_page_state(zone
, NR_LRU_BASE
+ lru
, pgmoved
);
1310 pgdeactivate
+= pgmoved
;
1311 __count_zone_vm_events(PGREFILL
, zone
, pgscanned
);
1312 __count_vm_events(PGDEACTIVATE
, pgdeactivate
);
1313 spin_unlock_irq(&zone
->lru_lock
);
1314 if (buffer_heads_over_limit
)
1315 pagevec_strip(&pvec
);
1316 pagevec_release(&pvec
);
1319 static int inactive_anon_is_low_global(struct zone
*zone
)
1321 unsigned long active
, inactive
;
1323 active
= zone_page_state(zone
, NR_ACTIVE_ANON
);
1324 inactive
= zone_page_state(zone
, NR_INACTIVE_ANON
);
1326 if (inactive
* zone
->inactive_ratio
< active
)
1333 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1334 * @zone: zone to check
1335 * @sc: scan control of this context
1337 * Returns true if the zone does not have enough inactive anon pages,
1338 * meaning some active anon pages need to be deactivated.
1340 static int inactive_anon_is_low(struct zone
*zone
, struct scan_control
*sc
)
1344 if (scanning_global_lru(sc
))
1345 low
= inactive_anon_is_low_global(zone
);
1347 low
= mem_cgroup_inactive_anon_is_low(sc
->mem_cgroup
);
1351 static unsigned long shrink_list(enum lru_list lru
, unsigned long nr_to_scan
,
1352 struct zone
*zone
, struct scan_control
*sc
, int priority
)
1354 int file
= is_file_lru(lru
);
1356 if (lru
== LRU_ACTIVE_FILE
) {
1357 shrink_active_list(nr_to_scan
, zone
, sc
, priority
, file
);
1361 if (lru
== LRU_ACTIVE_ANON
&& inactive_anon_is_low(zone
, sc
)) {
1362 shrink_active_list(nr_to_scan
, zone
, sc
, priority
, file
);
1365 return shrink_inactive_list(nr_to_scan
, zone
, sc
, priority
, file
);
1369 * Determine how aggressively the anon and file LRU lists should be
1370 * scanned. The relative value of each set of LRU lists is determined
1371 * by looking at the fraction of the pages scanned we did rotate back
1372 * onto the active list instead of evict.
1374 * percent[0] specifies how much pressure to put on ram/swap backed
1375 * memory, while percent[1] determines pressure on the file LRUs.
1377 static void get_scan_ratio(struct zone
*zone
, struct scan_control
*sc
,
1378 unsigned long *percent
)
1380 unsigned long anon
, file
, free
;
1381 unsigned long anon_prio
, file_prio
;
1382 unsigned long ap
, fp
;
1383 struct zone_reclaim_stat
*reclaim_stat
= get_reclaim_stat(zone
, sc
);
1385 /* If we have no swap space, do not bother scanning anon pages. */
1386 if (!sc
->may_swap
|| (nr_swap_pages
<= 0)) {
1392 anon
= zone_nr_pages(zone
, sc
, LRU_ACTIVE_ANON
) +
1393 zone_nr_pages(zone
, sc
, LRU_INACTIVE_ANON
);
1394 file
= zone_nr_pages(zone
, sc
, LRU_ACTIVE_FILE
) +
1395 zone_nr_pages(zone
, sc
, LRU_INACTIVE_FILE
);
1397 if (scanning_global_lru(sc
)) {
1398 free
= zone_page_state(zone
, NR_FREE_PAGES
);
1399 /* If we have very few page cache pages,
1400 force-scan anon pages. */
1401 if (unlikely(file
+ free
<= zone
->pages_high
)) {
1409 * OK, so we have swap space and a fair amount of page cache
1410 * pages. We use the recently rotated / recently scanned
1411 * ratios to determine how valuable each cache is.
1413 * Because workloads change over time (and to avoid overflow)
1414 * we keep these statistics as a floating average, which ends
1415 * up weighing recent references more than old ones.
1417 * anon in [0], file in [1]
1419 if (unlikely(reclaim_stat
->recent_scanned
[0] > anon
/ 4)) {
1420 spin_lock_irq(&zone
->lru_lock
);
1421 reclaim_stat
->recent_scanned
[0] /= 2;
1422 reclaim_stat
->recent_rotated
[0] /= 2;
1423 spin_unlock_irq(&zone
->lru_lock
);
1426 if (unlikely(reclaim_stat
->recent_scanned
[1] > file
/ 4)) {
1427 spin_lock_irq(&zone
->lru_lock
);
1428 reclaim_stat
->recent_scanned
[1] /= 2;
1429 reclaim_stat
->recent_rotated
[1] /= 2;
1430 spin_unlock_irq(&zone
->lru_lock
);
1434 * With swappiness at 100, anonymous and file have the same priority.
1435 * This scanning priority is essentially the inverse of IO cost.
1437 anon_prio
= sc
->swappiness
;
1438 file_prio
= 200 - sc
->swappiness
;
1441 * The amount of pressure on anon vs file pages is inversely
1442 * proportional to the fraction of recently scanned pages on
1443 * each list that were recently referenced and in active use.
1445 ap
= (anon_prio
+ 1) * (reclaim_stat
->recent_scanned
[0] + 1);
1446 ap
/= reclaim_stat
->recent_rotated
[0] + 1;
1448 fp
= (file_prio
+ 1) * (reclaim_stat
->recent_scanned
[1] + 1);
1449 fp
/= reclaim_stat
->recent_rotated
[1] + 1;
1451 /* Normalize to percentages */
1452 percent
[0] = 100 * ap
/ (ap
+ fp
+ 1);
1453 percent
[1] = 100 - percent
[0];
1458 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1460 static void shrink_zone(int priority
, struct zone
*zone
,
1461 struct scan_control
*sc
)
1463 unsigned long nr
[NR_LRU_LISTS
];
1464 unsigned long nr_to_scan
;
1465 unsigned long percent
[2]; /* anon @ 0; file @ 1 */
1467 unsigned long nr_reclaimed
= sc
->nr_reclaimed
;
1468 unsigned long swap_cluster_max
= sc
->swap_cluster_max
;
1470 get_scan_ratio(zone
, sc
, percent
);
1472 for_each_evictable_lru(l
) {
1473 int file
= is_file_lru(l
);
1476 scan
= zone_nr_pages(zone
, sc
, l
);
1479 scan
= (scan
* percent
[file
]) / 100;
1481 if (scanning_global_lru(sc
)) {
1482 zone
->lru
[l
].nr_scan
+= scan
;
1483 nr
[l
] = zone
->lru
[l
].nr_scan
;
1484 if (nr
[l
] >= swap_cluster_max
)
1485 zone
->lru
[l
].nr_scan
= 0;
1492 while (nr
[LRU_INACTIVE_ANON
] || nr
[LRU_ACTIVE_FILE
] ||
1493 nr
[LRU_INACTIVE_FILE
]) {
1494 for_each_evictable_lru(l
) {
1496 nr_to_scan
= min(nr
[l
], swap_cluster_max
);
1497 nr
[l
] -= nr_to_scan
;
1499 nr_reclaimed
+= shrink_list(l
, nr_to_scan
,
1500 zone
, sc
, priority
);
1504 * On large memory systems, scan >> priority can become
1505 * really large. This is fine for the starting priority;
1506 * we want to put equal scanning pressure on each zone.
1507 * However, if the VM has a harder time of freeing pages,
1508 * with multiple processes reclaiming pages, the total
1509 * freeing target can get unreasonably large.
1511 if (nr_reclaimed
> swap_cluster_max
&&
1512 priority
< DEF_PRIORITY
&& !current_is_kswapd())
1516 sc
->nr_reclaimed
= nr_reclaimed
;
1519 * Even if we did not try to evict anon pages at all, we want to
1520 * rebalance the anon lru active/inactive ratio.
1522 if (inactive_anon_is_low(zone
, sc
))
1523 shrink_active_list(SWAP_CLUSTER_MAX
, zone
, sc
, priority
, 0);
1525 throttle_vm_writeout(sc
->gfp_mask
);
1529 * This is the direct reclaim path, for page-allocating processes. We only
1530 * try to reclaim pages from zones which will satisfy the caller's allocation
1533 * We reclaim from a zone even if that zone is over pages_high. Because:
1534 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1536 * b) The zones may be over pages_high but they must go *over* pages_high to
1537 * satisfy the `incremental min' zone defense algorithm.
1539 * If a zone is deemed to be full of pinned pages then just give it a light
1540 * scan then give up on it.
1542 static void shrink_zones(int priority
, struct zonelist
*zonelist
,
1543 struct scan_control
*sc
)
1545 enum zone_type high_zoneidx
= gfp_zone(sc
->gfp_mask
);
1549 sc
->all_unreclaimable
= 1;
1550 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, high_zoneidx
,
1552 if (!populated_zone(zone
))
1555 * Take care memory controller reclaiming has small influence
1558 if (scanning_global_lru(sc
)) {
1559 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1561 note_zone_scanning_priority(zone
, priority
);
1563 if (zone_is_all_unreclaimable(zone
) &&
1564 priority
!= DEF_PRIORITY
)
1565 continue; /* Let kswapd poll it */
1566 sc
->all_unreclaimable
= 0;
1569 * Ignore cpuset limitation here. We just want to reduce
1570 * # of used pages by us regardless of memory shortage.
1572 sc
->all_unreclaimable
= 0;
1573 mem_cgroup_note_reclaim_priority(sc
->mem_cgroup
,
1577 shrink_zone(priority
, zone
, sc
);
1582 * This is the main entry point to direct page reclaim.
1584 * If a full scan of the inactive list fails to free enough memory then we
1585 * are "out of memory" and something needs to be killed.
1587 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1588 * high - the zone may be full of dirty or under-writeback pages, which this
1589 * caller can't do much about. We kick pdflush and take explicit naps in the
1590 * hope that some of these pages can be written. But if the allocating task
1591 * holds filesystem locks which prevent writeout this might not work, and the
1592 * allocation attempt will fail.
1594 * returns: 0, if no pages reclaimed
1595 * else, the number of pages reclaimed
1597 static unsigned long do_try_to_free_pages(struct zonelist
*zonelist
,
1598 struct scan_control
*sc
)
1601 unsigned long ret
= 0;
1602 unsigned long total_scanned
= 0;
1603 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
1604 unsigned long lru_pages
= 0;
1607 enum zone_type high_zoneidx
= gfp_zone(sc
->gfp_mask
);
1609 delayacct_freepages_start();
1611 if (scanning_global_lru(sc
))
1612 count_vm_event(ALLOCSTALL
);
1614 * mem_cgroup will not do shrink_slab.
1616 if (scanning_global_lru(sc
)) {
1617 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1619 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1622 lru_pages
+= zone_lru_pages(zone
);
1626 for (priority
= DEF_PRIORITY
; priority
>= 0; priority
--) {
1629 disable_swap_token();
1630 shrink_zones(priority
, zonelist
, sc
);
1632 * Don't shrink slabs when reclaiming memory from
1633 * over limit cgroups
1635 if (scanning_global_lru(sc
)) {
1636 shrink_slab(sc
->nr_scanned
, sc
->gfp_mask
, lru_pages
);
1637 if (reclaim_state
) {
1638 sc
->nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
1639 reclaim_state
->reclaimed_slab
= 0;
1642 total_scanned
+= sc
->nr_scanned
;
1643 if (sc
->nr_reclaimed
>= sc
->swap_cluster_max
) {
1644 ret
= sc
->nr_reclaimed
;
1649 * Try to write back as many pages as we just scanned. This
1650 * tends to cause slow streaming writers to write data to the
1651 * disk smoothly, at the dirtying rate, which is nice. But
1652 * that's undesirable in laptop mode, where we *want* lumpy
1653 * writeout. So in laptop mode, write out the whole world.
1655 if (total_scanned
> sc
->swap_cluster_max
+
1656 sc
->swap_cluster_max
/ 2) {
1657 wakeup_pdflush(laptop_mode
? 0 : total_scanned
);
1658 sc
->may_writepage
= 1;
1661 /* Take a nap, wait for some writeback to complete */
1662 if (sc
->nr_scanned
&& priority
< DEF_PRIORITY
- 2)
1663 congestion_wait(WRITE
, HZ
/10);
1665 /* top priority shrink_zones still had more to do? don't OOM, then */
1666 if (!sc
->all_unreclaimable
&& scanning_global_lru(sc
))
1667 ret
= sc
->nr_reclaimed
;
1670 * Now that we've scanned all the zones at this priority level, note
1671 * that level within the zone so that the next thread which performs
1672 * scanning of this zone will immediately start out at this priority
1673 * level. This affects only the decision whether or not to bring
1674 * mapped pages onto the inactive list.
1679 if (scanning_global_lru(sc
)) {
1680 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1682 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1685 zone
->prev_priority
= priority
;
1688 mem_cgroup_record_reclaim_priority(sc
->mem_cgroup
, priority
);
1690 delayacct_freepages_end();
1695 unsigned long try_to_free_pages(struct zonelist
*zonelist
, int order
,
1696 gfp_t gfp_mask
, nodemask_t
*nodemask
)
1698 struct scan_control sc
= {
1699 .gfp_mask
= gfp_mask
,
1700 .may_writepage
= !laptop_mode
,
1701 .swap_cluster_max
= SWAP_CLUSTER_MAX
,
1704 .swappiness
= vm_swappiness
,
1707 .isolate_pages
= isolate_pages_global
,
1708 .nodemask
= nodemask
,
1711 return do_try_to_free_pages(zonelist
, &sc
);
1714 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1716 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup
*mem_cont
,
1719 unsigned int swappiness
)
1721 struct scan_control sc
= {
1722 .may_writepage
= !laptop_mode
,
1724 .may_swap
= !noswap
,
1725 .swap_cluster_max
= SWAP_CLUSTER_MAX
,
1726 .swappiness
= swappiness
,
1728 .mem_cgroup
= mem_cont
,
1729 .isolate_pages
= mem_cgroup_isolate_pages
,
1730 .nodemask
= NULL
, /* we don't care the placement */
1732 struct zonelist
*zonelist
;
1734 sc
.gfp_mask
= (gfp_mask
& GFP_RECLAIM_MASK
) |
1735 (GFP_HIGHUSER_MOVABLE
& ~GFP_RECLAIM_MASK
);
1736 zonelist
= NODE_DATA(numa_node_id())->node_zonelists
;
1737 return do_try_to_free_pages(zonelist
, &sc
);
1742 * For kswapd, balance_pgdat() will work across all this node's zones until
1743 * they are all at pages_high.
1745 * Returns the number of pages which were actually freed.
1747 * There is special handling here for zones which are full of pinned pages.
1748 * This can happen if the pages are all mlocked, or if they are all used by
1749 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
1750 * What we do is to detect the case where all pages in the zone have been
1751 * scanned twice and there has been zero successful reclaim. Mark the zone as
1752 * dead and from now on, only perform a short scan. Basically we're polling
1753 * the zone for when the problem goes away.
1755 * kswapd scans the zones in the highmem->normal->dma direction. It skips
1756 * zones which have free_pages > pages_high, but once a zone is found to have
1757 * free_pages <= pages_high, we scan that zone and the lower zones regardless
1758 * of the number of free pages in the lower zones. This interoperates with
1759 * the page allocator fallback scheme to ensure that aging of pages is balanced
1762 static unsigned long balance_pgdat(pg_data_t
*pgdat
, int order
)
1767 unsigned long total_scanned
;
1768 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
1769 struct scan_control sc
= {
1770 .gfp_mask
= GFP_KERNEL
,
1773 .swap_cluster_max
= SWAP_CLUSTER_MAX
,
1774 .swappiness
= vm_swappiness
,
1777 .isolate_pages
= isolate_pages_global
,
1780 * temp_priority is used to remember the scanning priority at which
1781 * this zone was successfully refilled to free_pages == pages_high.
1783 int temp_priority
[MAX_NR_ZONES
];
1787 sc
.nr_reclaimed
= 0;
1788 sc
.may_writepage
= !laptop_mode
;
1789 count_vm_event(PAGEOUTRUN
);
1791 for (i
= 0; i
< pgdat
->nr_zones
; i
++)
1792 temp_priority
[i
] = DEF_PRIORITY
;
1794 for (priority
= DEF_PRIORITY
; priority
>= 0; priority
--) {
1795 int end_zone
= 0; /* Inclusive. 0 = ZONE_DMA */
1796 unsigned long lru_pages
= 0;
1798 /* The swap token gets in the way of swapout... */
1800 disable_swap_token();
1805 * Scan in the highmem->dma direction for the highest
1806 * zone which needs scanning
1808 for (i
= pgdat
->nr_zones
- 1; i
>= 0; i
--) {
1809 struct zone
*zone
= pgdat
->node_zones
+ i
;
1811 if (!populated_zone(zone
))
1814 if (zone_is_all_unreclaimable(zone
) &&
1815 priority
!= DEF_PRIORITY
)
1819 * Do some background aging of the anon list, to give
1820 * pages a chance to be referenced before reclaiming.
1822 if (inactive_anon_is_low(zone
, &sc
))
1823 shrink_active_list(SWAP_CLUSTER_MAX
, zone
,
1826 if (!zone_watermark_ok(zone
, order
, zone
->pages_high
,
1835 for (i
= 0; i
<= end_zone
; i
++) {
1836 struct zone
*zone
= pgdat
->node_zones
+ i
;
1838 lru_pages
+= zone_lru_pages(zone
);
1842 * Now scan the zone in the dma->highmem direction, stopping
1843 * at the last zone which needs scanning.
1845 * We do this because the page allocator works in the opposite
1846 * direction. This prevents the page allocator from allocating
1847 * pages behind kswapd's direction of progress, which would
1848 * cause too much scanning of the lower zones.
1850 for (i
= 0; i
<= end_zone
; i
++) {
1851 struct zone
*zone
= pgdat
->node_zones
+ i
;
1854 if (!populated_zone(zone
))
1857 if (zone_is_all_unreclaimable(zone
) &&
1858 priority
!= DEF_PRIORITY
)
1861 if (!zone_watermark_ok(zone
, order
, zone
->pages_high
,
1864 temp_priority
[i
] = priority
;
1866 note_zone_scanning_priority(zone
, priority
);
1868 * We put equal pressure on every zone, unless one
1869 * zone has way too many pages free already.
1871 if (!zone_watermark_ok(zone
, order
, 8*zone
->pages_high
,
1873 shrink_zone(priority
, zone
, &sc
);
1874 reclaim_state
->reclaimed_slab
= 0;
1875 nr_slab
= shrink_slab(sc
.nr_scanned
, GFP_KERNEL
,
1877 sc
.nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
1878 total_scanned
+= sc
.nr_scanned
;
1879 if (zone_is_all_unreclaimable(zone
))
1881 if (nr_slab
== 0 && zone
->pages_scanned
>=
1882 (zone_lru_pages(zone
) * 6))
1884 ZONE_ALL_UNRECLAIMABLE
);
1886 * If we've done a decent amount of scanning and
1887 * the reclaim ratio is low, start doing writepage
1888 * even in laptop mode
1890 if (total_scanned
> SWAP_CLUSTER_MAX
* 2 &&
1891 total_scanned
> sc
.nr_reclaimed
+ sc
.nr_reclaimed
/ 2)
1892 sc
.may_writepage
= 1;
1895 break; /* kswapd: all done */
1897 * OK, kswapd is getting into trouble. Take a nap, then take
1898 * another pass across the zones.
1900 if (total_scanned
&& priority
< DEF_PRIORITY
- 2)
1901 congestion_wait(WRITE
, HZ
/10);
1904 * We do this so kswapd doesn't build up large priorities for
1905 * example when it is freeing in parallel with allocators. It
1906 * matches the direct reclaim path behaviour in terms of impact
1907 * on zone->*_priority.
1909 if (sc
.nr_reclaimed
>= SWAP_CLUSTER_MAX
)
1914 * Note within each zone the priority level at which this zone was
1915 * brought into a happy state. So that the next thread which scans this
1916 * zone will start out at that priority level.
1918 for (i
= 0; i
< pgdat
->nr_zones
; i
++) {
1919 struct zone
*zone
= pgdat
->node_zones
+ i
;
1921 zone
->prev_priority
= temp_priority
[i
];
1923 if (!all_zones_ok
) {
1929 * Fragmentation may mean that the system cannot be
1930 * rebalanced for high-order allocations in all zones.
1931 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
1932 * it means the zones have been fully scanned and are still
1933 * not balanced. For high-order allocations, there is
1934 * little point trying all over again as kswapd may
1937 * Instead, recheck all watermarks at order-0 as they
1938 * are the most important. If watermarks are ok, kswapd will go
1939 * back to sleep. High-order users can still perform direct
1940 * reclaim if they wish.
1942 if (sc
.nr_reclaimed
< SWAP_CLUSTER_MAX
)
1943 order
= sc
.order
= 0;
1948 return sc
.nr_reclaimed
;
1952 * The background pageout daemon, started as a kernel thread
1953 * from the init process.
1955 * This basically trickles out pages so that we have _some_
1956 * free memory available even if there is no other activity
1957 * that frees anything up. This is needed for things like routing
1958 * etc, where we otherwise might have all activity going on in
1959 * asynchronous contexts that cannot page things out.
1961 * If there are applications that are active memory-allocators
1962 * (most normal use), this basically shouldn't matter.
1964 static int kswapd(void *p
)
1966 unsigned long order
;
1967 pg_data_t
*pgdat
= (pg_data_t
*)p
;
1968 struct task_struct
*tsk
= current
;
1970 struct reclaim_state reclaim_state
= {
1971 .reclaimed_slab
= 0,
1973 const struct cpumask
*cpumask
= cpumask_of_node(pgdat
->node_id
);
1975 lockdep_set_current_reclaim_state(GFP_KERNEL
);
1977 if (!cpumask_empty(cpumask
))
1978 set_cpus_allowed_ptr(tsk
, cpumask
);
1979 current
->reclaim_state
= &reclaim_state
;
1982 * Tell the memory management that we're a "memory allocator",
1983 * and that if we need more memory we should get access to it
1984 * regardless (see "__alloc_pages()"). "kswapd" should
1985 * never get caught in the normal page freeing logic.
1987 * (Kswapd normally doesn't need memory anyway, but sometimes
1988 * you need a small amount of memory in order to be able to
1989 * page out something else, and this flag essentially protects
1990 * us from recursively trying to free more memory as we're
1991 * trying to free the first piece of memory in the first place).
1993 tsk
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
| PF_KSWAPD
;
1998 unsigned long new_order
;
2000 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
2001 new_order
= pgdat
->kswapd_max_order
;
2002 pgdat
->kswapd_max_order
= 0;
2003 if (order
< new_order
) {
2005 * Don't sleep if someone wants a larger 'order'
2010 if (!freezing(current
))
2013 order
= pgdat
->kswapd_max_order
;
2015 finish_wait(&pgdat
->kswapd_wait
, &wait
);
2017 if (!try_to_freeze()) {
2018 /* We can speed up thawing tasks if we don't call
2019 * balance_pgdat after returning from the refrigerator
2021 balance_pgdat(pgdat
, order
);
2028 * A zone is low on free memory, so wake its kswapd task to service it.
2030 void wakeup_kswapd(struct zone
*zone
, int order
)
2034 if (!populated_zone(zone
))
2037 pgdat
= zone
->zone_pgdat
;
2038 if (zone_watermark_ok(zone
, order
, zone
->pages_low
, 0, 0))
2040 if (pgdat
->kswapd_max_order
< order
)
2041 pgdat
->kswapd_max_order
= order
;
2042 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
2044 if (!waitqueue_active(&pgdat
->kswapd_wait
))
2046 wake_up_interruptible(&pgdat
->kswapd_wait
);
2049 unsigned long global_lru_pages(void)
2051 return global_page_state(NR_ACTIVE_ANON
)
2052 + global_page_state(NR_ACTIVE_FILE
)
2053 + global_page_state(NR_INACTIVE_ANON
)
2054 + global_page_state(NR_INACTIVE_FILE
);
2059 * Helper function for shrink_all_memory(). Tries to reclaim 'nr_pages' pages
2060 * from LRU lists system-wide, for given pass and priority.
2062 * For pass > 3 we also try to shrink the LRU lists that contain a few pages
2064 static void shrink_all_zones(unsigned long nr_pages
, int prio
,
2065 int pass
, struct scan_control
*sc
)
2068 unsigned long nr_reclaimed
= 0;
2070 for_each_populated_zone(zone
) {
2073 if (zone_is_all_unreclaimable(zone
) && prio
!= DEF_PRIORITY
)
2076 for_each_evictable_lru(l
) {
2077 enum zone_stat_item ls
= NR_LRU_BASE
+ l
;
2078 unsigned long lru_pages
= zone_page_state(zone
, ls
);
2080 /* For pass = 0, we don't shrink the active list */
2081 if (pass
== 0 && (l
== LRU_ACTIVE_ANON
||
2082 l
== LRU_ACTIVE_FILE
))
2085 zone
->lru
[l
].nr_scan
+= (lru_pages
>> prio
) + 1;
2086 if (zone
->lru
[l
].nr_scan
>= nr_pages
|| pass
> 3) {
2087 unsigned long nr_to_scan
;
2089 zone
->lru
[l
].nr_scan
= 0;
2090 nr_to_scan
= min(nr_pages
, lru_pages
);
2091 nr_reclaimed
+= shrink_list(l
, nr_to_scan
, zone
,
2093 if (nr_reclaimed
>= nr_pages
) {
2094 sc
->nr_reclaimed
+= nr_reclaimed
;
2100 sc
->nr_reclaimed
+= nr_reclaimed
;
2104 * Try to free `nr_pages' of memory, system-wide, and return the number of
2107 * Rather than trying to age LRUs the aim is to preserve the overall
2108 * LRU order by reclaiming preferentially
2109 * inactive > active > active referenced > active mapped
2111 unsigned long shrink_all_memory(unsigned long nr_pages
)
2113 unsigned long lru_pages
, nr_slab
;
2115 struct reclaim_state reclaim_state
;
2116 struct scan_control sc
= {
2117 .gfp_mask
= GFP_KERNEL
,
2120 .isolate_pages
= isolate_pages_global
,
2124 current
->reclaim_state
= &reclaim_state
;
2126 lru_pages
= global_lru_pages();
2127 nr_slab
= global_page_state(NR_SLAB_RECLAIMABLE
);
2128 /* If slab caches are huge, it's better to hit them first */
2129 while (nr_slab
>= lru_pages
) {
2130 reclaim_state
.reclaimed_slab
= 0;
2131 shrink_slab(nr_pages
, sc
.gfp_mask
, lru_pages
);
2132 if (!reclaim_state
.reclaimed_slab
)
2135 sc
.nr_reclaimed
+= reclaim_state
.reclaimed_slab
;
2136 if (sc
.nr_reclaimed
>= nr_pages
)
2139 nr_slab
-= reclaim_state
.reclaimed_slab
;
2143 * We try to shrink LRUs in 5 passes:
2144 * 0 = Reclaim from inactive_list only
2145 * 1 = Reclaim from active list but don't reclaim mapped
2146 * 2 = 2nd pass of type 1
2147 * 3 = Reclaim mapped (normal reclaim)
2148 * 4 = 2nd pass of type 3
2150 for (pass
= 0; pass
< 5; pass
++) {
2153 /* Force reclaiming mapped pages in the passes #3 and #4 */
2157 for (prio
= DEF_PRIORITY
; prio
>= 0; prio
--) {
2158 unsigned long nr_to_scan
= nr_pages
- sc
.nr_reclaimed
;
2161 sc
.swap_cluster_max
= nr_to_scan
;
2162 shrink_all_zones(nr_to_scan
, prio
, pass
, &sc
);
2163 if (sc
.nr_reclaimed
>= nr_pages
)
2166 reclaim_state
.reclaimed_slab
= 0;
2167 shrink_slab(sc
.nr_scanned
, sc
.gfp_mask
,
2168 global_lru_pages());
2169 sc
.nr_reclaimed
+= reclaim_state
.reclaimed_slab
;
2170 if (sc
.nr_reclaimed
>= nr_pages
)
2173 if (sc
.nr_scanned
&& prio
< DEF_PRIORITY
- 2)
2174 congestion_wait(WRITE
, HZ
/ 10);
2179 * If sc.nr_reclaimed = 0, we could not shrink LRUs, but there may be
2180 * something in slab caches
2182 if (!sc
.nr_reclaimed
) {
2184 reclaim_state
.reclaimed_slab
= 0;
2185 shrink_slab(nr_pages
, sc
.gfp_mask
, global_lru_pages());
2186 sc
.nr_reclaimed
+= reclaim_state
.reclaimed_slab
;
2187 } while (sc
.nr_reclaimed
< nr_pages
&&
2188 reclaim_state
.reclaimed_slab
> 0);
2193 current
->reclaim_state
= NULL
;
2195 return sc
.nr_reclaimed
;
2199 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2200 not required for correctness. So if the last cpu in a node goes
2201 away, we get changed to run anywhere: as the first one comes back,
2202 restore their cpu bindings. */
2203 static int __devinit
cpu_callback(struct notifier_block
*nfb
,
2204 unsigned long action
, void *hcpu
)
2208 if (action
== CPU_ONLINE
|| action
== CPU_ONLINE_FROZEN
) {
2209 for_each_node_state(nid
, N_HIGH_MEMORY
) {
2210 pg_data_t
*pgdat
= NODE_DATA(nid
);
2211 const struct cpumask
*mask
;
2213 mask
= cpumask_of_node(pgdat
->node_id
);
2215 if (cpumask_any_and(cpu_online_mask
, mask
) < nr_cpu_ids
)
2216 /* One of our CPUs online: restore mask */
2217 set_cpus_allowed_ptr(pgdat
->kswapd
, mask
);
2224 * This kswapd start function will be called by init and node-hot-add.
2225 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2227 int kswapd_run(int nid
)
2229 pg_data_t
*pgdat
= NODE_DATA(nid
);
2235 pgdat
->kswapd
= kthread_run(kswapd
, pgdat
, "kswapd%d", nid
);
2236 if (IS_ERR(pgdat
->kswapd
)) {
2237 /* failure at boot is fatal */
2238 BUG_ON(system_state
== SYSTEM_BOOTING
);
2239 printk("Failed to start kswapd on node %d\n",nid
);
2245 static int __init
kswapd_init(void)
2250 for_each_node_state(nid
, N_HIGH_MEMORY
)
2252 hotcpu_notifier(cpu_callback
, 0);
2256 module_init(kswapd_init
)
2262 * If non-zero call zone_reclaim when the number of free pages falls below
2265 int zone_reclaim_mode __read_mostly
;
2267 #define RECLAIM_OFF 0
2268 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
2269 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
2270 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
2273 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2274 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2277 #define ZONE_RECLAIM_PRIORITY 4
2280 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2283 int sysctl_min_unmapped_ratio
= 1;
2286 * If the number of slab pages in a zone grows beyond this percentage then
2287 * slab reclaim needs to occur.
2289 int sysctl_min_slab_ratio
= 5;
2292 * Try to free up some pages from this zone through reclaim.
2294 static int __zone_reclaim(struct zone
*zone
, gfp_t gfp_mask
, unsigned int order
)
2296 /* Minimum pages needed in order to stay on node */
2297 const unsigned long nr_pages
= 1 << order
;
2298 struct task_struct
*p
= current
;
2299 struct reclaim_state reclaim_state
;
2301 struct scan_control sc
= {
2302 .may_writepage
= !!(zone_reclaim_mode
& RECLAIM_WRITE
),
2303 .may_unmap
= !!(zone_reclaim_mode
& RECLAIM_SWAP
),
2305 .swap_cluster_max
= max_t(unsigned long, nr_pages
,
2307 .gfp_mask
= gfp_mask
,
2308 .swappiness
= vm_swappiness
,
2310 .isolate_pages
= isolate_pages_global
,
2312 unsigned long slab_reclaimable
;
2314 disable_swap_token();
2317 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2318 * and we also need to be able to write out pages for RECLAIM_WRITE
2321 p
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
;
2322 reclaim_state
.reclaimed_slab
= 0;
2323 p
->reclaim_state
= &reclaim_state
;
2325 if (zone_page_state(zone
, NR_FILE_PAGES
) -
2326 zone_page_state(zone
, NR_FILE_MAPPED
) >
2327 zone
->min_unmapped_pages
) {
2329 * Free memory by calling shrink zone with increasing
2330 * priorities until we have enough memory freed.
2332 priority
= ZONE_RECLAIM_PRIORITY
;
2334 note_zone_scanning_priority(zone
, priority
);
2335 shrink_zone(priority
, zone
, &sc
);
2337 } while (priority
>= 0 && sc
.nr_reclaimed
< nr_pages
);
2340 slab_reclaimable
= zone_page_state(zone
, NR_SLAB_RECLAIMABLE
);
2341 if (slab_reclaimable
> zone
->min_slab_pages
) {
2343 * shrink_slab() does not currently allow us to determine how
2344 * many pages were freed in this zone. So we take the current
2345 * number of slab pages and shake the slab until it is reduced
2346 * by the same nr_pages that we used for reclaiming unmapped
2349 * Note that shrink_slab will free memory on all zones and may
2352 while (shrink_slab(sc
.nr_scanned
, gfp_mask
, order
) &&
2353 zone_page_state(zone
, NR_SLAB_RECLAIMABLE
) >
2354 slab_reclaimable
- nr_pages
)
2358 * Update nr_reclaimed by the number of slab pages we
2359 * reclaimed from this zone.
2361 sc
.nr_reclaimed
+= slab_reclaimable
-
2362 zone_page_state(zone
, NR_SLAB_RECLAIMABLE
);
2365 p
->reclaim_state
= NULL
;
2366 current
->flags
&= ~(PF_MEMALLOC
| PF_SWAPWRITE
);
2367 return sc
.nr_reclaimed
>= nr_pages
;
2370 int zone_reclaim(struct zone
*zone
, gfp_t gfp_mask
, unsigned int order
)
2376 * Zone reclaim reclaims unmapped file backed pages and
2377 * slab pages if we are over the defined limits.
2379 * A small portion of unmapped file backed pages is needed for
2380 * file I/O otherwise pages read by file I/O will be immediately
2381 * thrown out if the zone is overallocated. So we do not reclaim
2382 * if less than a specified percentage of the zone is used by
2383 * unmapped file backed pages.
2385 if (zone_page_state(zone
, NR_FILE_PAGES
) -
2386 zone_page_state(zone
, NR_FILE_MAPPED
) <= zone
->min_unmapped_pages
2387 && zone_page_state(zone
, NR_SLAB_RECLAIMABLE
)
2388 <= zone
->min_slab_pages
)
2391 if (zone_is_all_unreclaimable(zone
))
2395 * Do not scan if the allocation should not be delayed.
2397 if (!(gfp_mask
& __GFP_WAIT
) || (current
->flags
& PF_MEMALLOC
))
2401 * Only run zone reclaim on the local zone or on zones that do not
2402 * have associated processors. This will favor the local processor
2403 * over remote processors and spread off node memory allocations
2404 * as wide as possible.
2406 node_id
= zone_to_nid(zone
);
2407 if (node_state(node_id
, N_CPU
) && node_id
!= numa_node_id())
2410 if (zone_test_and_set_flag(zone
, ZONE_RECLAIM_LOCKED
))
2412 ret
= __zone_reclaim(zone
, gfp_mask
, order
);
2413 zone_clear_flag(zone
, ZONE_RECLAIM_LOCKED
);
2419 #ifdef CONFIG_UNEVICTABLE_LRU
2421 * page_evictable - test whether a page is evictable
2422 * @page: the page to test
2423 * @vma: the VMA in which the page is or will be mapped, may be NULL
2425 * Test whether page is evictable--i.e., should be placed on active/inactive
2426 * lists vs unevictable list. The vma argument is !NULL when called from the
2427 * fault path to determine how to instantate a new page.
2429 * Reasons page might not be evictable:
2430 * (1) page's mapping marked unevictable
2431 * (2) page is part of an mlocked VMA
2434 int page_evictable(struct page
*page
, struct vm_area_struct
*vma
)
2437 if (mapping_unevictable(page_mapping(page
)))
2440 if (PageMlocked(page
) || (vma
&& is_mlocked_vma(vma
, page
)))
2447 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2448 * @page: page to check evictability and move to appropriate lru list
2449 * @zone: zone page is in
2451 * Checks a page for evictability and moves the page to the appropriate
2454 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2455 * have PageUnevictable set.
2457 static void check_move_unevictable_page(struct page
*page
, struct zone
*zone
)
2459 VM_BUG_ON(PageActive(page
));
2462 ClearPageUnevictable(page
);
2463 if (page_evictable(page
, NULL
)) {
2464 enum lru_list l
= LRU_INACTIVE_ANON
+ page_is_file_cache(page
);
2466 __dec_zone_state(zone
, NR_UNEVICTABLE
);
2467 list_move(&page
->lru
, &zone
->lru
[l
].list
);
2468 mem_cgroup_move_lists(page
, LRU_UNEVICTABLE
, l
);
2469 __inc_zone_state(zone
, NR_INACTIVE_ANON
+ l
);
2470 __count_vm_event(UNEVICTABLE_PGRESCUED
);
2473 * rotate unevictable list
2475 SetPageUnevictable(page
);
2476 list_move(&page
->lru
, &zone
->lru
[LRU_UNEVICTABLE
].list
);
2477 mem_cgroup_rotate_lru_list(page
, LRU_UNEVICTABLE
);
2478 if (page_evictable(page
, NULL
))
2484 * scan_mapping_unevictable_pages - scan an address space for evictable pages
2485 * @mapping: struct address_space to scan for evictable pages
2487 * Scan all pages in mapping. Check unevictable pages for
2488 * evictability and move them to the appropriate zone lru list.
2490 void scan_mapping_unevictable_pages(struct address_space
*mapping
)
2493 pgoff_t end
= (i_size_read(mapping
->host
) + PAGE_CACHE_SIZE
- 1) >>
2496 struct pagevec pvec
;
2498 if (mapping
->nrpages
== 0)
2501 pagevec_init(&pvec
, 0);
2502 while (next
< end
&&
2503 pagevec_lookup(&pvec
, mapping
, next
, PAGEVEC_SIZE
)) {
2509 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
2510 struct page
*page
= pvec
.pages
[i
];
2511 pgoff_t page_index
= page
->index
;
2512 struct zone
*pagezone
= page_zone(page
);
2515 if (page_index
> next
)
2519 if (pagezone
!= zone
) {
2521 spin_unlock_irq(&zone
->lru_lock
);
2523 spin_lock_irq(&zone
->lru_lock
);
2526 if (PageLRU(page
) && PageUnevictable(page
))
2527 check_move_unevictable_page(page
, zone
);
2530 spin_unlock_irq(&zone
->lru_lock
);
2531 pagevec_release(&pvec
);
2533 count_vm_events(UNEVICTABLE_PGSCANNED
, pg_scanned
);
2539 * scan_zone_unevictable_pages - check unevictable list for evictable pages
2540 * @zone - zone of which to scan the unevictable list
2542 * Scan @zone's unevictable LRU lists to check for pages that have become
2543 * evictable. Move those that have to @zone's inactive list where they
2544 * become candidates for reclaim, unless shrink_inactive_zone() decides
2545 * to reactivate them. Pages that are still unevictable are rotated
2546 * back onto @zone's unevictable list.
2548 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
2549 static void scan_zone_unevictable_pages(struct zone
*zone
)
2551 struct list_head
*l_unevictable
= &zone
->lru
[LRU_UNEVICTABLE
].list
;
2553 unsigned long nr_to_scan
= zone_page_state(zone
, NR_UNEVICTABLE
);
2555 while (nr_to_scan
> 0) {
2556 unsigned long batch_size
= min(nr_to_scan
,
2557 SCAN_UNEVICTABLE_BATCH_SIZE
);
2559 spin_lock_irq(&zone
->lru_lock
);
2560 for (scan
= 0; scan
< batch_size
; scan
++) {
2561 struct page
*page
= lru_to_page(l_unevictable
);
2563 if (!trylock_page(page
))
2566 prefetchw_prev_lru_page(page
, l_unevictable
, flags
);
2568 if (likely(PageLRU(page
) && PageUnevictable(page
)))
2569 check_move_unevictable_page(page
, zone
);
2573 spin_unlock_irq(&zone
->lru_lock
);
2575 nr_to_scan
-= batch_size
;
2581 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
2583 * A really big hammer: scan all zones' unevictable LRU lists to check for
2584 * pages that have become evictable. Move those back to the zones'
2585 * inactive list where they become candidates for reclaim.
2586 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
2587 * and we add swap to the system. As such, it runs in the context of a task
2588 * that has possibly/probably made some previously unevictable pages
2591 static void scan_all_zones_unevictable_pages(void)
2595 for_each_zone(zone
) {
2596 scan_zone_unevictable_pages(zone
);
2601 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
2602 * all nodes' unevictable lists for evictable pages
2604 unsigned long scan_unevictable_pages
;
2606 int scan_unevictable_handler(struct ctl_table
*table
, int write
,
2607 struct file
*file
, void __user
*buffer
,
2608 size_t *length
, loff_t
*ppos
)
2610 proc_doulongvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
2612 if (write
&& *(unsigned long *)table
->data
)
2613 scan_all_zones_unevictable_pages();
2615 scan_unevictable_pages
= 0;
2620 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
2621 * a specified node's per zone unevictable lists for evictable pages.
2624 static ssize_t
read_scan_unevictable_node(struct sys_device
*dev
,
2625 struct sysdev_attribute
*attr
,
2628 return sprintf(buf
, "0\n"); /* always zero; should fit... */
2631 static ssize_t
write_scan_unevictable_node(struct sys_device
*dev
,
2632 struct sysdev_attribute
*attr
,
2633 const char *buf
, size_t count
)
2635 struct zone
*node_zones
= NODE_DATA(dev
->id
)->node_zones
;
2638 unsigned long req
= strict_strtoul(buf
, 10, &res
);
2641 return 1; /* zero is no-op */
2643 for (zone
= node_zones
; zone
- node_zones
< MAX_NR_ZONES
; ++zone
) {
2644 if (!populated_zone(zone
))
2646 scan_zone_unevictable_pages(zone
);
2652 static SYSDEV_ATTR(scan_unevictable_pages
, S_IRUGO
| S_IWUSR
,
2653 read_scan_unevictable_node
,
2654 write_scan_unevictable_node
);
2656 int scan_unevictable_register_node(struct node
*node
)
2658 return sysdev_create_file(&node
->sysdev
, &attr_scan_unevictable_pages
);
2661 void scan_unevictable_unregister_node(struct node
*node
)
2663 sysdev_remove_file(&node
->sysdev
, &attr_scan_unevictable_pages
);