Merge with 2.5.75.
[linux-2.6/linux-mips.git] / arch / arm26 / mm / init.c
blob989f08c19c62929c8aec3bfb373b5f7a5adc5ff0
1 /*
2 * linux/arch/arm/mm/init.c
4 * Copyright (C) 1995-2002 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #include <linux/config.h>
11 #include <linux/signal.h>
12 #include <linux/sched.h>
13 #include <linux/kernel.h>
14 #include <linux/errno.h>
15 #include <linux/string.h>
16 #include <linux/types.h>
17 #include <linux/ptrace.h>
18 #include <linux/mman.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/smp.h>
22 #include <linux/init.h>
23 #include <linux/initrd.h>
24 #include <linux/bootmem.h>
25 #include <linux/blk.h>
27 #include <asm/segment.h>
28 #include <asm/mach-types.h>
29 #include <asm/pgalloc.h>
30 #include <asm/dma.h>
31 #include <asm/hardware.h>
32 #include <asm/setup.h>
33 #include <asm/tlb.h>
35 //#include <asm/arch.h>
36 #include <asm/map.h>
38 #define TABLE_SIZE PTRS_PER_PTE * sizeof(pte_t))
40 struct mmu_gather mmu_gathers[NR_CPUS];
42 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
43 extern char _stext, _text, _etext, _end, __init_begin, __init_end;
44 extern unsigned long phys_initrd_start;
45 extern unsigned long phys_initrd_size;
48 * The sole use of this is to pass memory configuration
49 * data from paging_init to mem_init.
51 static struct meminfo meminfo __initdata = { 0, };
54 * empty_zero_page is a special page that is used for
55 * zero-initialized data and COW.
57 struct page *empty_zero_page;
59 void show_mem(void)
61 int free = 0, total = 0, reserved = 0;
62 int shared = 0, cached = 0, slab = 0;
63 struct page *page, *end;
65 printk("Mem-info:\n");
66 show_free_areas();
67 printk("Free swap: %6dkB\n",nr_swap_pages<<(PAGE_SHIFT-10));
70 page = NODE_MEM_MAP(0);
71 end = page + NODE_DATA(0)->node_spanned_pages;
73 do {
74 total++;
75 if (PageReserved(page))
76 reserved++;
77 else if (PageSwapCache(page))
78 cached++;
79 else if (PageSlab(page))
80 slab++;
81 else if (!page_count(page))
82 free++;
83 else
84 shared += atomic_read(&page->count) - 1;
85 page++;
86 } while (page < end);
88 printk("%d pages of RAM\n", total);
89 printk("%d free pages\n", free);
90 printk("%d reserved pages\n", reserved);
91 printk("%d slab pages\n", slab);
92 printk("%d pages shared\n", shared);
93 printk("%d pages swap cached\n", cached);
96 struct node_info {
97 unsigned int start;
98 unsigned int end;
99 int bootmap_pages;
102 #define PFN_DOWN(x) ((x) >> PAGE_SHIFT)
103 #define PFN_UP(x) (PAGE_ALIGN(x) >> PAGE_SHIFT)
104 #define PFN_SIZE(x) ((x) >> PAGE_SHIFT)
105 #define PFN_RANGE(s,e) PFN_SIZE(PAGE_ALIGN((unsigned long)(e)) - \
106 (((unsigned long)(s)) & PAGE_MASK))
109 * FIXME: We really want to avoid allocating the bootmap bitmap
110 * over the top of the initrd. Hopefully, this is located towards
111 * the start of a bank, so if we allocate the bootmap bitmap at
112 * the end, we won't clash.
114 static unsigned int __init
115 find_bootmap_pfn(struct meminfo *mi, unsigned int bootmap_pages)
117 unsigned int start_pfn, bootmap_pfn;
118 unsigned int start, end;
120 start_pfn = PFN_UP((unsigned long)&_end);
121 bootmap_pfn = 0;
123 /* ARM26 machines only have one node */
124 if (mi->bank->node != 0)
125 BUG();
127 start = PFN_UP(mi->bank->start);
128 end = PFN_DOWN(mi->bank->size + mi->bank->start);
130 if (start < start_pfn)
131 start = start_pfn;
133 if (end <= start)
134 BUG();
136 if (end - start >= bootmap_pages)
137 bootmap_pfn = start;
138 else
139 BUG();
141 return bootmap_pfn;
145 * Scan the memory info structure and pull out:
146 * - the end of memory
147 * - the number of nodes
148 * - the pfn range of each node
149 * - the number of bootmem bitmap pages
151 static void __init
152 find_memend_and_nodes(struct meminfo *mi, struct node_info *np)
154 unsigned int memend_pfn = 0;
155 numnodes = 1;
157 np->bootmap_pages = 0;
159 if (mi->bank->size == 0) {
160 BUG();
164 * Get the start and end pfns for this bank
166 np->start = PFN_UP(mi->bank->start);
167 np->end = PFN_DOWN(mi->bank->start + mi->bank->size);
169 if (memend_pfn < np->end)
170 memend_pfn = np->end;
173 * Calculate the number of pages we require to
174 * store the bootmem bitmaps.
176 np->bootmap_pages = bootmem_bootmap_pages(np->end - np->start);
179 * This doesn't seem to be used by the Linux memory
180 * manager any more. If we can get rid of it, we
181 * also get rid of some of the stuff above as well.
183 max_low_pfn = memend_pfn - PFN_DOWN(PHYS_OFFSET);
184 max_pfn = memend_pfn - PFN_DOWN(PHYS_OFFSET);
185 mi->end = memend_pfn << PAGE_SHIFT;
190 * Reserve the various regions of node 0
192 static __init void reserve_node_zero(unsigned int bootmap_pfn, unsigned int bootmap_pages)
194 pg_data_t *pgdat = NODE_DATA(0);
197 * Register the kernel text and data with bootmem.
198 * Note that this can only be in node 0.
200 reserve_bootmem_node(pgdat, __pa(&_stext), &_end - &_stext);
203 * And don't forget to reserve the allocator bitmap,
204 * which will be freed later.
206 reserve_bootmem_node(pgdat, bootmap_pfn << PAGE_SHIFT,
207 bootmap_pages << PAGE_SHIFT);
210 * These should likewise go elsewhere. They pre-reserve
211 * the screen memory region at the start of main system
212 * memory.
214 reserve_bootmem_node(pgdat, 0x02000000, 0x00080000);
216 #ifdef CONFIG_BLK_DEV_INITRD
217 initrd_start = phys_initrd_start;
218 initrd_end = initrd_start + phys_initrd_size;
220 /* Achimedes machines only have one node, so initrd is in node 0 */
221 reserve_bootmem_node(pgdat, __pa(initrd_start),
222 initrd_end - initrd_start);
223 #endif
229 * Initialise the bootmem allocator for all nodes. This is called
230 * early during the architecture specific initialisation.
232 void __init bootmem_init(struct meminfo *mi)
234 struct node_info node_info;
235 unsigned int bootmap_pfn;
237 find_memend_and_nodes(mi, &node_info);
239 bootmap_pfn = find_bootmap_pfn(mi, node_info.bootmap_pages);
242 * Note that node 0 must always have some pages.
244 if (node_info.end == 0)
245 BUG();
248 * Initialise the bootmem allocator.
250 init_bootmem_node(NODE_DATA(node), bootmap_pfn, node_info.start, node_info.end);
253 * Register all available RAM in this node with the bootmem allocator.
255 free_bootmem_node(NODE_DATA(node), mi->bank->start, mi->bank->size);
258 * Reserve ram for stuff like initrd, video, kernel, etc.
261 reserve_node_zero(bootmap_pfn, node_info.bootmap_pages);
266 * paging_init() sets up the page tables, initialises the zone memory
267 * maps, and sets up the zero page, bad page and bad page tables.
269 void __init paging_init(struct meminfo *mi)
271 void *zero_page;
272 unsigned long zone_size[MAX_NR_ZONES];
273 unsigned long zhole_size[MAX_NR_ZONES];
274 struct bootmem_data *bdata;
275 pg_data_t *pgdat;
276 int i;
278 memcpy(&meminfo, mi, sizeof(meminfo));
281 * allocate the zero page. Note that we count on this going ok.
283 zero_page = alloc_bootmem_low_pages(PAGE_SIZE);
286 * initialise the page tables.
288 memtable_init(mi);
289 flush_tlb_all();
292 * initialise the zones in node 0 (archimedes have only 1 node)
295 for (i = 0; i < MAX_NR_ZONES; i++) {
296 zone_size[i] = 0;
297 zhole_size[i] = 0;
300 pgdat = NODE_DATA(0);
301 bdata = pgdat->bdata;
303 zone_size[0] = bdata->node_low_pfn -
304 (bdata->node_boot_start >> PAGE_SHIFT);
305 if (!zone_size[0])
306 BUG();
308 free_area_init_node(0, pgdat, 0, zone_size,
309 bdata->node_boot_start >> PAGE_SHIFT, 0);
311 mem_map = contig_page_data.node_mem_map;
314 * finish off the bad pages once
315 * the mem_map is initialised
317 memzero(zero_page, PAGE_SIZE);
318 empty_zero_page = virt_to_page(zero_page);
321 static inline void free_area(unsigned long addr, unsigned long end, char *s)
323 unsigned int size = (end - addr) >> 10;
325 for (; addr < end; addr += PAGE_SIZE) {
326 struct page *page = virt_to_page(addr);
327 ClearPageReserved(page);
328 set_page_count(page, 1);
329 free_page(addr);
330 totalram_pages++;
333 if (size && s)
334 printk(KERN_INFO "Freeing %s memory: %dK\n", s, size);
338 * mem_init() marks the free areas in the mem_map and tells us how much
339 * memory is free. This is done after various parts of the system have
340 * claimed their memory after the kernel image.
342 void __init mem_init(void)
344 unsigned int codepages, datapages, initpages;
345 pg_data_t *pgdat = NODE_DATA(0);
346 extern int sysctl_overcommit_memory;
348 datapages = &_end - &_etext;
349 codepages = &_etext - &_text;
350 initpages = &__init_end - &__init_begin;
352 high_memory = (void *)__va(meminfo.end);
353 max_mapnr = virt_to_page(high_memory) - mem_map;
355 /* this will put all unused low memory onto the freelists */
356 if (pgdat->node_spanned_pages != 0)
357 totalram_pages += free_all_bootmem_node(pgdat);
359 printk(KERN_INFO "Memory:");
361 num_physpages = meminfo.bank[0].size >> PAGE_SHIFT;
363 printk(" = %luMB total\n", num_physpages >> (20 - PAGE_SHIFT));
364 printk(KERN_NOTICE "Memory: %luKB available (%dK code, "
365 "%dK data, %dK init)\n",
366 (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
367 codepages >> 10, datapages >> 10, initpages >> 10);
369 * Turn on overcommit on tiny machines
371 if (PAGE_SIZE >= 16384 && num_physpages <= 128) {
372 sysctl_overcommit_memory = 1;
373 printk("Turning on overcommit\n");
377 void free_initmem(void)
379 free_area((unsigned long)(&__init_begin),
380 (unsigned long)(&__init_end),
381 "init");
384 #ifdef CONFIG_BLK_DEV_INITRD
386 static int keep_initrd;
388 void free_initrd_mem(unsigned long start, unsigned long end)
390 if (!keep_initrd)
391 free_area(start, end, "initrd");
394 static int __init keepinitrd_setup(char *__unused)
396 keep_initrd = 1;
397 return 1;
400 __setup("keepinitrd", keepinitrd_setup);
401 #endif