Merge with Linux 2.4.0-test6-pre9.
[linux-2.6/linux-mips.git] / drivers / block / raid1.c
blobbaf839b1d5639888c72e415b5aa6756f05ee8c55
1 /*
2 * raid1.c : Multiple Devices driver for Linux
4 * Copyright (C) 1999, 2000 Ingo Molnar, Red Hat
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 * RAID-1 management functions.
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 * This program is free software; you can redistribute it and/or modify
16 * it under the terms of the GNU General Public License as published by
17 * the Free Software Foundation; either version 2, or (at your option)
18 * any later version.
20 * You should have received a copy of the GNU General Public License
21 * (for example /usr/src/linux/COPYING); if not, write to the Free
22 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 #include <linux/module.h>
26 #include <linux/malloc.h>
27 #include <linux/raid/raid1.h>
28 #include <asm/atomic.h>
30 #define MAJOR_NR MD_MAJOR
31 #define MD_DRIVER
32 #define MD_PERSONALITY
34 #define MAX_WORK_PER_DISK 128
37 * The following can be used to debug the driver
39 #define RAID1_DEBUG 0
41 #if RAID1_DEBUG
42 #define PRINTK(x...) printk(x)
43 #define inline
44 #define __inline__
45 #else
46 #define PRINTK(x...) do { } while (0)
47 #endif
50 static mdk_personality_t raid1_personality;
51 static md_spinlock_t retry_list_lock = MD_SPIN_LOCK_UNLOCKED;
52 struct raid1_bh *raid1_retry_list = NULL, **raid1_retry_tail;
54 static struct buffer_head *raid1_alloc_bh(raid1_conf_t *conf, int cnt)
56 /* return a linked list of "cnt" struct buffer_heads.
57 * don't take any off the free list unless we know we can
58 * get all we need, otherwise we could deadlock
60 struct buffer_head *bh=NULL;
62 while(cnt) {
63 struct buffer_head *t;
64 md_spin_lock_irq(&conf->device_lock);
65 if (conf->freebh_cnt >= cnt)
66 while (cnt) {
67 t = conf->freebh;
68 conf->freebh = t->b_next;
69 t->b_next = bh;
70 bh = t;
71 t->b_state = 0;
72 conf->freebh_cnt--;
73 cnt--;
75 md_spin_unlock_irq(&conf->device_lock);
76 if (cnt == 0)
77 break;
78 t = (struct buffer_head *)kmalloc(sizeof(struct buffer_head), GFP_BUFFER);
79 if (t) {
80 memset(t, 0, sizeof(*t));
81 t->b_next = bh;
82 bh = t;
83 cnt--;
84 } else {
85 PRINTK("waiting for %d bh\n", cnt);
86 wait_event(conf->wait_buffer, conf->freebh_cnt >= cnt);
89 return bh;
92 static inline void raid1_free_bh(raid1_conf_t *conf, struct buffer_head *bh)
94 md_spin_lock_irq(&conf->device_lock);
95 while (bh) {
96 struct buffer_head *t = bh;
97 bh=bh->b_next;
98 if (t->b_pprev == NULL)
99 kfree(t);
100 else {
101 t->b_next= conf->freebh;
102 conf->freebh = t;
103 conf->freebh_cnt++;
106 md_spin_unlock_irq(&conf->device_lock);
107 wake_up(&conf->wait_buffer);
110 static int raid1_grow_bh(raid1_conf_t *conf, int cnt)
112 /* allocate cnt buffer_heads, possibly less if kalloc fails */
113 int i = 0;
115 while (i < cnt) {
116 struct buffer_head *bh;
117 bh = kmalloc(sizeof(*bh), GFP_KERNEL);
118 if (!bh) break;
119 memset(bh, 0, sizeof(*bh));
121 md_spin_lock_irq(&conf->device_lock);
122 bh->b_pprev = &conf->freebh;
123 bh->b_next = conf->freebh;
124 conf->freebh = bh;
125 conf->freebh_cnt++;
126 md_spin_unlock_irq(&conf->device_lock);
128 i++;
130 return i;
133 static int raid1_shrink_bh(raid1_conf_t *conf, int cnt)
135 /* discard cnt buffer_heads, if we can find them */
136 int i = 0;
138 md_spin_lock_irq(&conf->device_lock);
139 while ((i < cnt) && conf->freebh) {
140 struct buffer_head *bh = conf->freebh;
141 conf->freebh = bh->b_next;
142 kfree(bh);
143 i++;
144 conf->freebh_cnt--;
146 md_spin_unlock_irq(&conf->device_lock);
147 return i;
151 static struct raid1_bh *raid1_alloc_r1bh(raid1_conf_t *conf)
153 struct raid1_bh *r1_bh = NULL;
155 do {
156 md_spin_lock_irq(&conf->device_lock);
157 if (conf->freer1) {
158 r1_bh = conf->freer1;
159 conf->freer1 = r1_bh->next_r1;
160 r1_bh->next_r1 = NULL;
161 r1_bh->state = 0;
162 r1_bh->bh_req.b_state = 0;
164 md_spin_unlock_irq(&conf->device_lock);
165 if (r1_bh)
166 return r1_bh;
167 r1_bh = (struct raid1_bh *) kmalloc(sizeof(struct raid1_bh),
168 GFP_BUFFER);
169 if (r1_bh) {
170 memset(r1_bh, 0, sizeof(*r1_bh));
171 return r1_bh;
173 wait_event(conf->wait_buffer, conf->freer1);
174 } while (1);
177 static inline void raid1_free_r1bh(struct raid1_bh *r1_bh)
179 struct buffer_head *bh = r1_bh->mirror_bh_list;
180 raid1_conf_t *conf = mddev_to_conf(r1_bh->mddev);
182 r1_bh->mirror_bh_list = NULL;
184 if (test_bit(R1BH_PreAlloc, &r1_bh->state)) {
185 md_spin_lock_irq(&conf->device_lock);
186 r1_bh->next_r1 = conf->freer1;
187 conf->freer1 = r1_bh;
188 md_spin_unlock_irq(&conf->device_lock);
189 } else {
190 kfree(r1_bh);
192 raid1_free_bh(conf, bh);
195 static int raid1_grow_r1bh (raid1_conf_t *conf, int cnt)
197 int i = 0;
199 while (i < cnt) {
200 struct raid1_bh *r1_bh;
201 r1_bh = (struct raid1_bh*)kmalloc(sizeof(*r1_bh), GFP_KERNEL);
202 if (!r1_bh)
203 break;
204 memset(r1_bh, 0, sizeof(*r1_bh));
206 md_spin_lock_irq(&conf->device_lock);
207 set_bit(R1BH_PreAlloc, &r1_bh->state);
208 r1_bh->next_r1 = conf->freer1;
209 conf->freer1 = r1_bh;
210 md_spin_unlock_irq(&conf->device_lock);
212 i++;
214 return i;
217 static void raid1_shrink_r1bh(raid1_conf_t *conf)
219 md_spin_lock_irq(&conf->device_lock);
220 while (conf->freer1) {
221 struct raid1_bh *r1_bh = conf->freer1;
222 conf->freer1 = r1_bh->next_r1;
223 kfree(r1_bh);
225 md_spin_unlock_irq(&conf->device_lock);
230 static inline void raid1_free_buf(struct raid1_bh *r1_bh)
232 struct buffer_head *bh = r1_bh->mirror_bh_list;
233 raid1_conf_t *conf = mddev_to_conf(r1_bh->mddev);
234 r1_bh->mirror_bh_list = NULL;
236 md_spin_lock_irq(&conf->device_lock);
237 r1_bh->next_r1 = conf->freebuf;
238 conf->freebuf = r1_bh;
239 md_spin_unlock_irq(&conf->device_lock);
240 raid1_free_bh(conf, bh);
243 static struct raid1_bh *raid1_alloc_buf(raid1_conf_t *conf)
245 struct raid1_bh *r1_bh;
247 md_spin_lock_irq(&conf->device_lock);
248 wait_event_lock_irq(conf->wait_buffer, conf->freebuf, conf->device_lock);
249 r1_bh = conf->freebuf;
250 conf->freebuf = r1_bh->next_r1;
251 r1_bh->next_r1= NULL;
252 md_spin_unlock_irq(&conf->device_lock);
254 return r1_bh;
257 static int raid1_grow_buffers (raid1_conf_t *conf, int cnt)
259 int i = 0;
261 md_spin_lock_irq(&conf->device_lock);
262 while (i < cnt) {
263 struct raid1_bh *r1_bh;
264 struct page *page;
266 page = alloc_page(GFP_KERNEL);
267 if (!page)
268 break;
270 r1_bh = (struct raid1_bh *) kmalloc(sizeof(*r1_bh), GFP_KERNEL);
271 if (!r1_bh) {
272 __free_page(page);
273 break;
275 memset(r1_bh, 0, sizeof(*r1_bh));
276 r1_bh->bh_req.b_page = page;
277 r1_bh->bh_req.b_data = page_address(page);
278 r1_bh->next_r1 = conf->freebuf;
279 conf->freebuf = r1_bh;
280 i++;
282 md_spin_unlock_irq(&conf->device_lock);
283 return i;
286 static void raid1_shrink_buffers (raid1_conf_t *conf)
288 md_spin_lock_irq(&conf->device_lock);
289 while (conf->freebuf) {
290 struct raid1_bh *r1_bh = conf->freebuf;
291 conf->freebuf = r1_bh->next_r1;
292 __free_page(r1_bh->bh_req.b_page);
293 kfree(r1_bh);
295 md_spin_unlock_irq(&conf->device_lock);
298 static int raid1_map (mddev_t *mddev, kdev_t *rdev, unsigned long size)
300 raid1_conf_t *conf = mddev_to_conf(mddev);
301 int i, disks = MD_SB_DISKS;
304 * Later we do read balancing on the read side
305 * now we use the first available disk.
308 for (i = 0; i < disks; i++) {
309 if (conf->mirrors[i].operational) {
310 *rdev = conf->mirrors[i].dev;
311 return (0);
315 printk (KERN_ERR "raid1_map(): huh, no more operational devices?\n");
316 return (-1);
319 static void raid1_reschedule_retry (struct raid1_bh *r1_bh)
321 unsigned long flags;
322 mddev_t *mddev = r1_bh->mddev;
323 raid1_conf_t *conf = mddev_to_conf(mddev);
325 md_spin_lock_irqsave(&retry_list_lock, flags);
326 if (raid1_retry_list == NULL)
327 raid1_retry_tail = &raid1_retry_list;
328 *raid1_retry_tail = r1_bh;
329 raid1_retry_tail = &r1_bh->next_r1;
330 r1_bh->next_r1 = NULL;
331 md_spin_unlock_irqrestore(&retry_list_lock, flags);
332 md_wakeup_thread(conf->thread);
336 static void inline io_request_done(unsigned long sector, raid1_conf_t *conf, int phase)
338 unsigned long flags;
339 spin_lock_irqsave(&conf->segment_lock, flags);
340 if (sector < conf->start_active)
341 conf->cnt_done--;
342 else if (sector >= conf->start_future && conf->phase == phase)
343 conf->cnt_future--;
344 else if (!--conf->cnt_pending)
345 wake_up(&conf->wait_ready);
347 spin_unlock_irqrestore(&conf->segment_lock, flags);
350 static void inline sync_request_done (unsigned long sector, raid1_conf_t *conf)
352 unsigned long flags;
353 spin_lock_irqsave(&conf->segment_lock, flags);
354 if (sector >= conf->start_ready)
355 --conf->cnt_ready;
356 else if (sector >= conf->start_active) {
357 if (!--conf->cnt_active) {
358 conf->start_active = conf->start_ready;
359 wake_up(&conf->wait_done);
362 spin_unlock_irqrestore(&conf->segment_lock, flags);
366 * raid1_end_bh_io() is called when we have finished servicing a mirrored
367 * operation and are ready to return a success/failure code to the buffer
368 * cache layer.
370 static void raid1_end_bh_io (struct raid1_bh *r1_bh, int uptodate)
372 struct buffer_head *bh = r1_bh->master_bh;
374 io_request_done(bh->b_rsector, mddev_to_conf(r1_bh->mddev),
375 test_bit(R1BH_SyncPhase, &r1_bh->state));
377 bh->b_end_io(bh, uptodate);
378 raid1_free_r1bh(r1_bh);
380 void raid1_end_request (struct buffer_head *bh, int uptodate)
382 struct raid1_bh * r1_bh = (struct raid1_bh *)(bh->b_private);
385 * this branch is our 'one mirror IO has finished' event handler:
387 if (!uptodate)
388 md_error (mddev_to_kdev(r1_bh->mddev), bh->b_dev);
389 else
391 * Set R1BH_Uptodate in our master buffer_head, so that
392 * we will return a good error code for to the higher
393 * levels even if IO on some other mirrored buffer fails.
395 * The 'master' represents the complex operation to
396 * user-side. So if something waits for IO, then it will
397 * wait for the 'master' buffer_head.
399 set_bit (R1BH_Uptodate, &r1_bh->state);
402 * We split up the read and write side, imho they are
403 * conceptually different.
406 if ( (r1_bh->cmd == READ) || (r1_bh->cmd == READA) ) {
408 * we have only one buffer_head on the read side
411 if (uptodate) {
412 raid1_end_bh_io(r1_bh, uptodate);
413 return;
416 * oops, read error:
418 printk(KERN_ERR "raid1: %s: rescheduling block %lu\n",
419 partition_name(bh->b_dev), bh->b_blocknr);
420 raid1_reschedule_retry(r1_bh);
421 return;
425 * WRITE:
427 * Let's see if all mirrored write operations have finished
428 * already.
431 if (atomic_dec_and_test(&r1_bh->remaining))
432 raid1_end_bh_io(r1_bh, test_bit(R1BH_Uptodate, &r1_bh->state));
436 * This routine returns the disk from which the requested read should
437 * be done. It bookkeeps the last read position for every disk
438 * in array and when new read requests come, the disk which last
439 * position is nearest to the request, is chosen.
441 * TODO: now if there are 2 mirrors in the same 2 devices, performance
442 * degrades dramatically because position is mirror, not device based.
443 * This should be changed to be device based. Also atomic sequential
444 * reads should be somehow balanced.
447 static int raid1_read_balance (raid1_conf_t *conf, struct buffer_head *bh)
449 int new_disk = conf->last_used;
450 const int sectors = bh->b_size >> 9;
451 const unsigned long this_sector = bh->b_rsector;
452 int disk = new_disk;
453 unsigned long new_distance;
454 unsigned long current_distance;
457 * Check if it is sane at all to balance
460 if (conf->resync_mirrors)
461 goto rb_out;
463 if (conf->working_disks < 2) {
464 int i = 0;
466 while( !conf->mirrors[new_disk].operational &&
467 (i < MD_SB_DISKS) ) {
468 new_disk = conf->mirrors[new_disk].next;
469 i++;
472 if (i >= MD_SB_DISKS) {
474 * This means no working disk was found
475 * Nothing much to do, lets not change anything
476 * and hope for the best...
479 new_disk = conf->last_used;
482 goto rb_out;
486 * Don't touch anything for sequential reads.
489 if (this_sector == conf->mirrors[new_disk].head_position)
490 goto rb_out;
493 * If reads have been done only on a single disk
494 * for a time, lets give another disk a change.
495 * This is for kicking those idling disks so that
496 * they would find work near some hotspot.
499 if (conf->sect_count >= conf->mirrors[new_disk].sect_limit) {
500 conf->sect_count = 0;
502 while( new_disk != conf->mirrors[new_disk].next ) {
503 if ((conf->mirrors[new_disk].write_only) ||
504 (!conf->mirrors[new_disk].operational) )
505 continue;
507 new_disk = conf->mirrors[new_disk].next;
508 break;
511 goto rb_out;
514 current_distance = abs(this_sector -
515 conf->mirrors[disk].head_position);
517 /* Find the disk which is closest */
519 while( conf->mirrors[disk].next != conf->last_used ) {
520 disk = conf->mirrors[disk].next;
522 if ((conf->mirrors[disk].write_only) ||
523 (!conf->mirrors[disk].operational))
524 continue;
526 new_distance = abs(this_sector -
527 conf->mirrors[disk].head_position);
529 if (new_distance < current_distance) {
530 conf->sect_count = 0;
531 current_distance = new_distance;
532 new_disk = disk;
536 rb_out:
537 conf->mirrors[new_disk].head_position = this_sector + sectors;
539 conf->last_used = new_disk;
540 conf->sect_count += sectors;
542 return new_disk;
545 static int raid1_make_request (mddev_t *mddev, int rw,
546 struct buffer_head * bh)
548 raid1_conf_t *conf = mddev_to_conf(mddev);
549 struct buffer_head *bh_req, *bhl;
550 struct raid1_bh * r1_bh;
551 int disks = MD_SB_DISKS;
552 int i, sum_bhs = 0, sectors;
553 struct mirror_info *mirror;
554 request_queue_t *q;
556 if (!buffer_locked(bh))
557 BUG();
560 * make_request() can abort the operation when READA is being
561 * used and no empty request is available.
563 * Currently, just replace the command with READ/WRITE.
565 if (rw == READA)
566 rw = READ;
568 if (rw == WRITE) {
569 rw = WRITERAW;
571 * we first clean the bh, then we start the IO, then
572 * when the IO has finished, we end_io the bh and
573 * mark it uptodate. This way we do not miss the
574 * case when the bh got dirty again during the IO.
576 * We do an important optimization here - if the
577 * buffer was not dirty and we are during resync or
578 * reconstruction, then we can skip writing it back
579 * to the master disk! (we still have to write it
580 * back to the other disks, because we are not sync
581 * yet.)
583 if (atomic_set_buffer_clean(bh))
584 __mark_buffer_clean(bh);
585 else {
586 bh->b_end_io(bh, test_bit(BH_Uptodate, &bh->b_state));
587 return 0;
590 r1_bh = raid1_alloc_r1bh (conf);
592 spin_lock_irq(&conf->segment_lock);
593 wait_event_lock_irq(conf->wait_done,
594 bh->b_rsector < conf->start_active ||
595 bh->b_rsector >= conf->start_future,
596 conf->segment_lock);
597 if (bh->b_rsector < conf->start_active)
598 conf->cnt_done++;
599 else {
600 conf->cnt_future++;
601 if (conf->phase)
602 set_bit(R1BH_SyncPhase, &r1_bh->state);
604 spin_unlock_irq(&conf->segment_lock);
607 * i think the read and write branch should be separated completely,
608 * since we want to do read balancing on the read side for example.
609 * Alternative implementations? :) --mingo
612 r1_bh->master_bh = bh;
613 r1_bh->mddev = mddev;
614 r1_bh->cmd = rw;
616 sectors = bh->b_size >> 9;
617 if (rw == READ) {
619 * read balancing logic:
621 mirror = conf->mirrors + raid1_read_balance(conf, bh);
623 bh_req = &r1_bh->bh_req;
624 memcpy(bh_req, bh, sizeof(*bh));
625 bh_req->b_blocknr = bh->b_rsector * sectors;
626 bh_req->b_dev = mirror->dev;
627 bh_req->b_rdev = mirror->dev;
628 /* bh_req->b_rsector = bh->n_rsector; */
629 bh_req->b_end_io = raid1_end_request;
630 bh_req->b_private = r1_bh;
631 q = blk_get_queue(bh_req->b_rdev);
632 generic_make_request (q, rw, bh_req);
633 return 0;
637 * WRITE:
640 bhl = raid1_alloc_bh(conf, conf->raid_disks);
641 for (i = 0; i < disks; i++) {
642 struct buffer_head *mbh;
643 if (!conf->mirrors[i].operational)
644 continue;
647 * We should use a private pool (size depending on NR_REQUEST),
648 * to avoid writes filling up the memory with bhs
650 * Such pools are much faster than kmalloc anyways (so we waste
651 * almost nothing by not using the master bh when writing and
652 * win alot of cleanness) but for now we are cool enough. --mingo
654 * It's safe to sleep here, buffer heads cannot be used in a shared
655 * manner in the write branch. Look how we lock the buffer at the
656 * beginning of this function to grok the difference ;)
658 mbh = bhl;
659 if (mbh == NULL) {
660 MD_BUG();
661 break;
663 bhl = mbh->b_next;
664 mbh->b_next = NULL;
665 mbh->b_this_page = (struct buffer_head *)1;
668 * prepare mirrored mbh (fields ordered for max mem throughput):
670 mbh->b_blocknr = bh->b_rsector * sectors;
671 mbh->b_dev = conf->mirrors[i].dev;
672 mbh->b_rdev = conf->mirrors[i].dev;
673 mbh->b_rsector = bh->b_rsector;
674 mbh->b_state = (1<<BH_Req) | (1<<BH_Dirty) |
675 (1<<BH_Mapped) | (1<<BH_Lock);
677 atomic_set(&mbh->b_count, 1);
678 mbh->b_size = bh->b_size;
679 mbh->b_page = bh->b_page;
680 mbh->b_data = bh->b_data;
681 mbh->b_list = BUF_LOCKED;
682 mbh->b_end_io = raid1_end_request;
683 mbh->b_private = r1_bh;
685 mbh->b_next = r1_bh->mirror_bh_list;
686 r1_bh->mirror_bh_list = mbh;
687 sum_bhs++;
689 if (bhl) raid1_free_bh(conf,bhl);
690 md_atomic_set(&r1_bh->remaining, sum_bhs);
693 * We have to be a bit careful about the semaphore above, thats
694 * why we start the requests separately. Since kmalloc() could
695 * fail, sleep and make_request() can sleep too, this is the
696 * safer solution. Imagine, end_request decreasing the semaphore
697 * before we could have set it up ... We could play tricks with
698 * the semaphore (presetting it and correcting at the end if
699 * sum_bhs is not 'n' but we have to do end_request by hand if
700 * all requests finish until we had a chance to set up the
701 * semaphore correctly ... lots of races).
703 bh = r1_bh->mirror_bh_list;
704 while(bh) {
705 struct buffer_head *bh2 = bh;
706 bh = bh->b_next;
707 q = blk_get_queue(bh2->b_rdev);
708 generic_make_request(q, rw, bh2);
710 return (0);
713 static int raid1_status (char *page, mddev_t *mddev)
715 raid1_conf_t *conf = mddev_to_conf(mddev);
716 int sz = 0, i;
718 sz += sprintf (page+sz, " [%d/%d] [", conf->raid_disks,
719 conf->working_disks);
720 for (i = 0; i < conf->raid_disks; i++)
721 sz += sprintf (page+sz, "%s",
722 conf->mirrors[i].operational ? "U" : "_");
723 sz += sprintf (page+sz, "]");
724 return sz;
727 static void unlink_disk (raid1_conf_t *conf, int target)
729 int disks = MD_SB_DISKS;
730 int i;
732 for (i = 0; i < disks; i++)
733 if (conf->mirrors[i].next == target)
734 conf->mirrors[i].next = conf->mirrors[target].next;
737 #define LAST_DISK KERN_ALERT \
738 "raid1: only one disk left and IO error.\n"
740 #define NO_SPARE_DISK KERN_ALERT \
741 "raid1: no spare disk left, degrading mirror level by one.\n"
743 #define DISK_FAILED KERN_ALERT \
744 "raid1: Disk failure on %s, disabling device. \n" \
745 " Operation continuing on %d devices\n"
747 #define START_SYNCING KERN_ALERT \
748 "raid1: start syncing spare disk.\n"
750 #define ALREADY_SYNCING KERN_INFO \
751 "raid1: syncing already in progress.\n"
753 static void mark_disk_bad (mddev_t *mddev, int failed)
755 raid1_conf_t *conf = mddev_to_conf(mddev);
756 struct mirror_info *mirror = conf->mirrors+failed;
757 mdp_super_t *sb = mddev->sb;
759 mirror->operational = 0;
760 unlink_disk(conf, failed);
761 mark_disk_faulty(sb->disks+mirror->number);
762 mark_disk_nonsync(sb->disks+mirror->number);
763 mark_disk_inactive(sb->disks+mirror->number);
764 sb->active_disks--;
765 sb->working_disks--;
766 sb->failed_disks++;
767 mddev->sb_dirty = 1;
768 md_wakeup_thread(conf->thread);
769 conf->working_disks--;
770 printk (DISK_FAILED, partition_name (mirror->dev),
771 conf->working_disks);
774 static int raid1_error (mddev_t *mddev, kdev_t dev)
776 raid1_conf_t *conf = mddev_to_conf(mddev);
777 struct mirror_info * mirrors = conf->mirrors;
778 int disks = MD_SB_DISKS;
779 int i;
781 if (conf->working_disks == 1) {
783 * Uh oh, we can do nothing if this is our last disk, but
784 * first check if this is a queued request for a device
785 * which has just failed.
787 for (i = 0; i < disks; i++) {
788 if (mirrors[i].dev==dev && !mirrors[i].operational)
789 return 0;
791 printk (LAST_DISK);
792 } else {
794 * Mark disk as unusable
796 for (i = 0; i < disks; i++) {
797 if (mirrors[i].dev==dev && mirrors[i].operational) {
798 mark_disk_bad(mddev, i);
799 break;
803 return 0;
806 #undef LAST_DISK
807 #undef NO_SPARE_DISK
808 #undef DISK_FAILED
809 #undef START_SYNCING
812 * Insert the spare disk into the drive-ring
814 static void link_disk(raid1_conf_t *conf, struct mirror_info *mirror)
816 int j, next;
817 int disks = MD_SB_DISKS;
818 struct mirror_info *p = conf->mirrors;
820 for (j = 0; j < disks; j++, p++)
821 if (p->operational && !p->write_only) {
822 next = p->next;
823 p->next = mirror->raid_disk;
824 mirror->next = next;
825 return;
828 printk("raid1: bug: no read-operational devices\n");
831 static void print_raid1_conf (raid1_conf_t *conf)
833 int i;
834 struct mirror_info *tmp;
836 printk("RAID1 conf printout:\n");
837 if (!conf) {
838 printk("(conf==NULL)\n");
839 return;
841 printk(" --- wd:%d rd:%d nd:%d\n", conf->working_disks,
842 conf->raid_disks, conf->nr_disks);
844 for (i = 0; i < MD_SB_DISKS; i++) {
845 tmp = conf->mirrors + i;
846 printk(" disk %d, s:%d, o:%d, n:%d rd:%d us:%d dev:%s\n",
847 i, tmp->spare,tmp->operational,
848 tmp->number,tmp->raid_disk,tmp->used_slot,
849 partition_name(tmp->dev));
853 static int raid1_diskop(mddev_t *mddev, mdp_disk_t **d, int state)
855 int err = 0;
856 int i, failed_disk=-1, spare_disk=-1, removed_disk=-1, added_disk=-1;
857 raid1_conf_t *conf = mddev->private;
858 struct mirror_info *tmp, *sdisk, *fdisk, *rdisk, *adisk;
859 mdp_super_t *sb = mddev->sb;
860 mdp_disk_t *failed_desc, *spare_desc, *added_desc;
862 print_raid1_conf(conf);
863 md_spin_lock_irq(&conf->device_lock);
865 * find the disk ...
867 switch (state) {
869 case DISKOP_SPARE_ACTIVE:
872 * Find the failed disk within the RAID1 configuration ...
873 * (this can only be in the first conf->working_disks part)
875 for (i = 0; i < conf->raid_disks; i++) {
876 tmp = conf->mirrors + i;
877 if ((!tmp->operational && !tmp->spare) ||
878 !tmp->used_slot) {
879 failed_disk = i;
880 break;
884 * When we activate a spare disk we _must_ have a disk in
885 * the lower (active) part of the array to replace.
887 if ((failed_disk == -1) || (failed_disk >= conf->raid_disks)) {
888 MD_BUG();
889 err = 1;
890 goto abort;
892 /* fall through */
894 case DISKOP_SPARE_WRITE:
895 case DISKOP_SPARE_INACTIVE:
898 * Find the spare disk ... (can only be in the 'high'
899 * area of the array)
901 for (i = conf->raid_disks; i < MD_SB_DISKS; i++) {
902 tmp = conf->mirrors + i;
903 if (tmp->spare && tmp->number == (*d)->number) {
904 spare_disk = i;
905 break;
908 if (spare_disk == -1) {
909 MD_BUG();
910 err = 1;
911 goto abort;
913 break;
915 case DISKOP_HOT_REMOVE_DISK:
917 for (i = 0; i < MD_SB_DISKS; i++) {
918 tmp = conf->mirrors + i;
919 if (tmp->used_slot && (tmp->number == (*d)->number)) {
920 if (tmp->operational) {
921 err = -EBUSY;
922 goto abort;
924 removed_disk = i;
925 break;
928 if (removed_disk == -1) {
929 MD_BUG();
930 err = 1;
931 goto abort;
933 break;
935 case DISKOP_HOT_ADD_DISK:
937 for (i = conf->raid_disks; i < MD_SB_DISKS; i++) {
938 tmp = conf->mirrors + i;
939 if (!tmp->used_slot) {
940 added_disk = i;
941 break;
944 if (added_disk == -1) {
945 MD_BUG();
946 err = 1;
947 goto abort;
949 break;
952 switch (state) {
954 * Switch the spare disk to write-only mode:
956 case DISKOP_SPARE_WRITE:
957 sdisk = conf->mirrors + spare_disk;
958 sdisk->operational = 1;
959 sdisk->write_only = 1;
960 break;
962 * Deactivate a spare disk:
964 case DISKOP_SPARE_INACTIVE:
965 sdisk = conf->mirrors + spare_disk;
966 sdisk->operational = 0;
967 sdisk->write_only = 0;
968 break;
970 * Activate (mark read-write) the (now sync) spare disk,
971 * which means we switch it's 'raid position' (->raid_disk)
972 * with the failed disk. (only the first 'conf->nr_disks'
973 * slots are used for 'real' disks and we must preserve this
974 * property)
976 case DISKOP_SPARE_ACTIVE:
978 sdisk = conf->mirrors + spare_disk;
979 fdisk = conf->mirrors + failed_disk;
981 spare_desc = &sb->disks[sdisk->number];
982 failed_desc = &sb->disks[fdisk->number];
984 if (spare_desc != *d) {
985 MD_BUG();
986 err = 1;
987 goto abort;
990 if (spare_desc->raid_disk != sdisk->raid_disk) {
991 MD_BUG();
992 err = 1;
993 goto abort;
996 if (sdisk->raid_disk != spare_disk) {
997 MD_BUG();
998 err = 1;
999 goto abort;
1002 if (failed_desc->raid_disk != fdisk->raid_disk) {
1003 MD_BUG();
1004 err = 1;
1005 goto abort;
1008 if (fdisk->raid_disk != failed_disk) {
1009 MD_BUG();
1010 err = 1;
1011 goto abort;
1015 * do the switch finally
1017 xchg_values(*spare_desc, *failed_desc);
1018 xchg_values(*fdisk, *sdisk);
1021 * (careful, 'failed' and 'spare' are switched from now on)
1023 * we want to preserve linear numbering and we want to
1024 * give the proper raid_disk number to the now activated
1025 * disk. (this means we switch back these values)
1028 xchg_values(spare_desc->raid_disk, failed_desc->raid_disk);
1029 xchg_values(sdisk->raid_disk, fdisk->raid_disk);
1030 xchg_values(spare_desc->number, failed_desc->number);
1031 xchg_values(sdisk->number, fdisk->number);
1033 *d = failed_desc;
1035 if (sdisk->dev == MKDEV(0,0))
1036 sdisk->used_slot = 0;
1038 * this really activates the spare.
1040 fdisk->spare = 0;
1041 fdisk->write_only = 0;
1042 link_disk(conf, fdisk);
1045 * if we activate a spare, we definitely replace a
1046 * non-operational disk slot in the 'low' area of
1047 * the disk array.
1050 conf->working_disks++;
1052 break;
1054 case DISKOP_HOT_REMOVE_DISK:
1055 rdisk = conf->mirrors + removed_disk;
1057 if (rdisk->spare && (removed_disk < conf->raid_disks)) {
1058 MD_BUG();
1059 err = 1;
1060 goto abort;
1062 rdisk->dev = MKDEV(0,0);
1063 rdisk->used_slot = 0;
1064 conf->nr_disks--;
1065 break;
1067 case DISKOP_HOT_ADD_DISK:
1068 adisk = conf->mirrors + added_disk;
1069 added_desc = *d;
1071 if (added_disk != added_desc->number) {
1072 MD_BUG();
1073 err = 1;
1074 goto abort;
1077 adisk->number = added_desc->number;
1078 adisk->raid_disk = added_desc->raid_disk;
1079 adisk->dev = MKDEV(added_desc->major,added_desc->minor);
1081 adisk->operational = 0;
1082 adisk->write_only = 0;
1083 adisk->spare = 1;
1084 adisk->used_slot = 1;
1085 adisk->head_position = 0;
1086 conf->nr_disks++;
1088 break;
1090 default:
1091 MD_BUG();
1092 err = 1;
1093 goto abort;
1095 abort:
1096 md_spin_unlock_irq(&conf->device_lock);
1097 if (state == DISKOP_SPARE_ACTIVE || state == DISKOP_SPARE_INACTIVE)
1098 /* should move to "END_REBUILD" when such exists */
1099 raid1_shrink_buffers(conf);
1101 print_raid1_conf(conf);
1102 return err;
1106 #define IO_ERROR KERN_ALERT \
1107 "raid1: %s: unrecoverable I/O read error for block %lu\n"
1109 #define REDIRECT_SECTOR KERN_ERR \
1110 "raid1: %s: redirecting sector %lu to another mirror\n"
1113 * This is a kernel thread which:
1115 * 1. Retries failed read operations on working mirrors.
1116 * 2. Updates the raid superblock when problems encounter.
1117 * 3. Performs writes following reads for array syncronising.
1119 static void end_sync_write(struct buffer_head *bh, int uptodate);
1120 static void end_sync_read(struct buffer_head *bh, int uptodate);
1122 static void raid1d (void *data)
1124 struct raid1_bh *r1_bh;
1125 struct buffer_head *bh;
1126 unsigned long flags;
1127 request_queue_t *q;
1128 mddev_t *mddev;
1129 kdev_t dev;
1132 for (;;) {
1133 md_spin_lock_irqsave(&retry_list_lock, flags);
1134 r1_bh = raid1_retry_list;
1135 if (!r1_bh)
1136 break;
1137 raid1_retry_list = r1_bh->next_r1;
1138 md_spin_unlock_irqrestore(&retry_list_lock, flags);
1140 mddev = r1_bh->mddev;
1141 if (mddev->sb_dirty) {
1142 printk(KERN_INFO "dirty sb detected, updating.\n");
1143 mddev->sb_dirty = 0;
1144 md_update_sb(mddev);
1146 bh = &r1_bh->bh_req;
1147 switch(r1_bh->cmd) {
1148 case SPECIAL:
1149 /* have to allocate lots of bh structures and
1150 * schedule writes
1152 if (test_bit(R1BH_Uptodate, &r1_bh->state)) {
1153 int i, sum_bhs = 0;
1154 int disks = MD_SB_DISKS;
1155 struct buffer_head *bhl, *mbh;
1156 raid1_conf_t *conf;
1157 int sectors = bh->b_size >> 9;
1159 conf = mddev_to_conf(mddev);
1160 bhl = raid1_alloc_bh(conf, conf->raid_disks); /* don't really need this many */
1161 for (i = 0; i < disks ; i++) {
1162 if (!conf->mirrors[i].operational)
1163 continue;
1164 if (i==conf->last_used)
1165 /* we read from here, no need to write */
1166 continue;
1167 if (i < conf->raid_disks
1168 && !conf->resync_mirrors)
1169 /* don't need to write this,
1170 * we are just rebuilding */
1171 continue;
1172 mbh = bhl;
1173 if (!mbh) {
1174 MD_BUG();
1175 break;
1177 bhl = mbh->b_next;
1178 mbh->b_this_page = (struct buffer_head *)1;
1182 * prepare mirrored bh (fields ordered for max mem throughput):
1184 mbh->b_blocknr = bh->b_blocknr;
1185 mbh->b_dev = conf->mirrors[i].dev;
1186 mbh->b_rdev = conf->mirrors[i].dev;
1187 mbh->b_rsector = bh->b_blocknr * sectors;
1188 mbh->b_state = (1<<BH_Req) | (1<<BH_Dirty) |
1189 (1<<BH_Mapped) | (1<<BH_Lock);
1190 atomic_set(&mbh->b_count, 1);
1191 mbh->b_size = bh->b_size;
1192 mbh->b_page = bh->b_page;
1193 mbh->b_data = bh->b_data;
1194 mbh->b_list = BUF_LOCKED;
1195 mbh->b_end_io = end_sync_write;
1196 mbh->b_private = r1_bh;
1198 mbh->b_next = r1_bh->mirror_bh_list;
1199 r1_bh->mirror_bh_list = mbh;
1201 sum_bhs++;
1203 md_atomic_set(&r1_bh->remaining, sum_bhs);
1204 if (bhl) raid1_free_bh(conf, bhl);
1205 mbh = r1_bh->mirror_bh_list;
1206 while (mbh) {
1207 struct buffer_head *bh1 = mbh;
1208 mbh = mbh->b_next;
1209 q = blk_get_queue(bh1->b_rdev);
1210 generic_make_request(q, WRITE, bh1);
1211 md_sync_acct(bh1->b_rdev, bh1->b_size/512);
1213 } else {
1214 dev = bh->b_dev;
1215 raid1_map (mddev, &bh->b_dev, bh->b_size >> 9);
1216 if (bh->b_dev == dev) {
1217 printk (IO_ERROR, partition_name(bh->b_dev), bh->b_blocknr);
1218 md_done_sync(mddev, bh->b_size>>10, 0);
1219 } else {
1220 printk (REDIRECT_SECTOR,
1221 partition_name(bh->b_dev), bh->b_blocknr);
1222 bh->b_rdev = bh->b_dev;
1223 q = blk_get_queue(bh->b_rdev);
1224 generic_make_request (q, READ, bh);
1228 break;
1229 case READ:
1230 case READA:
1231 dev = bh->b_dev;
1233 raid1_map (mddev, &bh->b_dev, bh->b_size >> 9);
1234 if (bh->b_dev == dev) {
1235 printk (IO_ERROR, partition_name(bh->b_dev), bh->b_blocknr);
1236 raid1_end_bh_io(r1_bh, 0);
1237 } else {
1238 printk (REDIRECT_SECTOR,
1239 partition_name(bh->b_dev), bh->b_blocknr);
1240 bh->b_rdev = bh->b_dev;
1241 q = blk_get_queue(bh->b_rdev);
1242 generic_make_request (q, r1_bh->cmd, bh);
1244 break;
1247 md_spin_unlock_irqrestore(&retry_list_lock, flags);
1249 #undef IO_ERROR
1250 #undef REDIRECT_SECTOR
1253 * Private kernel thread to reconstruct mirrors after an unclean
1254 * shutdown.
1256 static void raid1syncd (void *data)
1258 raid1_conf_t *conf = data;
1259 mddev_t *mddev = conf->mddev;
1261 if (!conf->resync_mirrors)
1262 return;
1263 if (conf->resync_mirrors == 2)
1264 return;
1265 down(&mddev->recovery_sem);
1266 if (!md_do_sync(mddev, NULL)) {
1268 * Only if everything went Ok.
1270 conf->resync_mirrors = 0;
1273 /* If reconstruction was interrupted, we need to close the "active" and "pending"
1274 * holes.
1275 * we know that there are no active rebuild requests, os cnt_active == cnt_ready ==0
1277 /* this is really needed when recovery stops too... */
1278 spin_lock_irq(&conf->segment_lock);
1279 conf->start_active = conf->start_pending;
1280 conf->start_ready = conf->start_pending;
1281 wait_event_lock_irq(conf->wait_ready, !conf->cnt_pending, conf->segment_lock);
1282 conf->start_active =conf->start_ready = conf->start_pending = conf->start_future;
1283 conf->start_future = mddev->sb->size+1;
1284 conf->cnt_pending = conf->cnt_future;
1285 conf->cnt_future = 0;
1286 conf->phase = conf->phase ^1;
1287 wait_event_lock_irq(conf->wait_ready, !conf->cnt_pending, conf->segment_lock);
1288 conf->start_active = conf->start_ready = conf->start_pending = conf->start_future = 0;
1289 conf->phase = 0;
1290 conf->cnt_future = conf->cnt_done;;
1291 conf->cnt_done = 0;
1292 spin_unlock_irq(&conf->segment_lock);
1293 wake_up(&conf->wait_done);
1295 up(&mddev->recovery_sem);
1296 raid1_shrink_buffers(conf);
1300 * perform a "sync" on one "block"
1302 * We need to make sure that no normal I/O request - particularly write
1303 * requests - conflict with active sync requests.
1304 * This is achieved by conceptually dividing the device space into a
1305 * number of sections:
1306 * DONE: 0 .. a-1 These blocks are in-sync
1307 * ACTIVE: a.. b-1 These blocks may have active sync requests, but
1308 * no normal IO requests
1309 * READY: b .. c-1 These blocks have no normal IO requests - sync
1310 * request may be happening
1311 * PENDING: c .. d-1 These blocks may have IO requests, but no new
1312 * ones will be added
1313 * FUTURE: d .. end These blocks are not to be considered yet. IO may
1314 * be happening, but not sync
1316 * We keep a
1317 * phase which flips (0 or 1) each time d moves and
1318 * a count of:
1319 * z = active io requests in FUTURE since d moved - marked with
1320 * current phase
1321 * y = active io requests in FUTURE before d moved, or PENDING -
1322 * marked with previous phase
1323 * x = active sync requests in READY
1324 * w = active sync requests in ACTIVE
1325 * v = active io requests in DONE
1327 * Normally, a=b=c=d=0 and z= active io requests
1328 * or a=b=c=d=END and v= active io requests
1329 * Allowed changes to a,b,c,d:
1330 * A: c==d && y==0 -> d+=window, y=z, z=0, phase=!phase
1331 * B: y==0 -> c=d
1332 * C: b=c, w+=x, x=0
1333 * D: w==0 -> a=b
1334 * E: a==b==c==d==end -> a=b=c=d=0, z=v, v=0
1336 * At start of sync we apply A.
1337 * When y reaches 0, we apply B then A then being sync requests
1338 * When sync point reaches c-1, we wait for y==0, and W==0, and
1339 * then apply apply B then A then D then C.
1340 * Finally, we apply E
1342 * The sync request simply issues a "read" against a working drive
1343 * This is marked so that on completion the raid1d thread is woken to
1344 * issue suitable write requests
1347 static int raid1_sync_request (mddev_t *mddev, unsigned long block_nr)
1349 raid1_conf_t *conf = mddev_to_conf(mddev);
1350 struct mirror_info *mirror;
1351 request_queue_t *q;
1352 struct raid1_bh *r1_bh;
1353 struct buffer_head *bh;
1354 int bsize;
1356 spin_lock_irq(&conf->segment_lock);
1357 if (!block_nr) {
1358 /* initialize ...*/
1359 int buffs;
1360 conf->start_active = 0;
1361 conf->start_ready = 0;
1362 conf->start_pending = 0;
1363 conf->start_future = 0;
1364 conf->phase = 0;
1365 /* we want enough buffers to hold twice the window of 128*/
1366 buffs = 128 *2 / (PAGE_SIZE>>9);
1367 buffs = raid1_grow_buffers(conf, buffs);
1368 if (buffs < 2)
1369 goto nomem;
1371 conf->window = buffs*(PAGE_SIZE>>9)/2;
1372 conf->cnt_future += conf->cnt_done+conf->cnt_pending;
1373 conf->cnt_done = conf->cnt_pending = 0;
1374 if (conf->cnt_ready || conf->cnt_active)
1375 MD_BUG();
1377 while ((block_nr<<1) >= conf->start_pending) {
1378 PRINTK("wait .. sect=%lu start_active=%d ready=%d pending=%d future=%d, cnt_done=%d active=%d ready=%d pending=%d future=%d\n",
1379 block_nr<<1, conf->start_active, conf->start_ready, conf->start_pending, conf->start_future,
1380 conf->cnt_done, conf->cnt_active, conf->cnt_ready, conf->cnt_pending, conf->cnt_future);
1381 wait_event_lock_irq(conf->wait_done,
1382 !conf->cnt_active,
1383 conf->segment_lock);
1384 wait_event_lock_irq(conf->wait_ready,
1385 !conf->cnt_pending,
1386 conf->segment_lock);
1387 conf->start_active = conf->start_ready;
1388 conf->start_ready = conf->start_pending;
1389 conf->start_pending = conf->start_future;
1390 conf->start_future = conf->start_future+conf->window;
1391 // Note: falling off the end is not a problem
1392 conf->phase = conf->phase ^1;
1393 conf->cnt_active = conf->cnt_ready;
1394 conf->cnt_ready = 0;
1395 conf->cnt_pending = conf->cnt_future;
1396 conf->cnt_future = 0;
1397 wake_up(&conf->wait_done);
1399 conf->cnt_ready++;
1400 spin_unlock_irq(&conf->segment_lock);
1403 /* If reconstructing, and >1 working disc,
1404 * could dedicate one to rebuild and others to
1405 * service read requests ..
1407 mirror = conf->mirrors+conf->last_used;
1409 r1_bh = raid1_alloc_buf (conf);
1410 r1_bh->master_bh = NULL;
1411 r1_bh->mddev = mddev;
1412 r1_bh->cmd = SPECIAL;
1413 bh = &r1_bh->bh_req;
1415 bh->b_blocknr = block_nr;
1416 bsize = 1024;
1417 while (!(bh->b_blocknr & 1) && bsize < PAGE_SIZE
1418 && (bh->b_blocknr+2)*(bsize>>10) < mddev->sb->size) {
1419 bh->b_blocknr >>= 1;
1420 bsize <<= 1;
1422 bh->b_size = bsize;
1423 bh->b_list = BUF_LOCKED;
1424 bh->b_dev = mirror->dev;
1425 bh->b_rdev = mirror->dev;
1426 bh->b_state = (1<<BH_Req) | (1<<BH_Mapped);
1427 if (!bh->b_page)
1428 BUG();
1429 if (!bh->b_data)
1430 BUG();
1431 if (bh->b_data != page_address(bh->b_page))
1432 BUG();
1433 bh->b_end_io = end_sync_read;
1434 bh->b_private = r1_bh;
1435 bh->b_rsector = block_nr<<1;
1436 init_waitqueue_head(&bh->b_wait);
1438 q = blk_get_queue(bh->b_rdev);
1439 generic_make_request(q, READ, bh);
1440 md_sync_acct(bh->b_rdev, bh->b_size/512);
1442 return (bsize >> 10);
1444 nomem:
1445 raid1_shrink_buffers(conf);
1446 spin_unlock_irq(&conf->segment_lock);
1447 return -ENOMEM;
1450 static void end_sync_read(struct buffer_head *bh, int uptodate)
1452 struct raid1_bh * r1_bh = (struct raid1_bh *)(bh->b_private);
1454 /* we have read a block, now it needs to be re-written,
1455 * or re-read if the read failed.
1456 * We don't do much here, just schedule handling by raid1d
1458 if (!uptodate)
1459 md_error (mddev_to_kdev(r1_bh->mddev), bh->b_dev);
1460 else
1461 set_bit(R1BH_Uptodate, &r1_bh->state);
1462 raid1_reschedule_retry(r1_bh);
1465 static void end_sync_write(struct buffer_head *bh, int uptodate)
1467 struct raid1_bh * r1_bh = (struct raid1_bh *)(bh->b_private);
1469 if (!uptodate)
1470 md_error (mddev_to_kdev(r1_bh->mddev), bh->b_dev);
1471 if (atomic_dec_and_test(&r1_bh->remaining)) {
1472 mddev_t *mddev = r1_bh->mddev;
1473 unsigned long sect = bh->b_blocknr * (bh->b_size>>9);
1474 int size = bh->b_size;
1475 raid1_free_buf(r1_bh);
1476 sync_request_done(sect, mddev_to_conf(mddev));
1477 md_done_sync(mddev,size>>10, uptodate);
1482 * This will catch the scenario in which one of the mirrors was
1483 * mounted as a normal device rather than as a part of a raid set.
1485 * check_consistency is very personality-dependent, eg. RAID5 cannot
1486 * do this check, it uses another method.
1488 static int __check_consistency (mddev_t *mddev, int row)
1490 raid1_conf_t *conf = mddev_to_conf(mddev);
1491 int disks = MD_SB_DISKS;
1492 kdev_t dev;
1493 struct buffer_head *bh = NULL;
1494 int i, rc = 0;
1495 char *buffer = NULL;
1497 for (i = 0; i < disks; i++) {
1498 printk("(checking disk %d)\n",i);
1499 if (!conf->mirrors[i].operational)
1500 continue;
1501 printk("(really checking disk %d)\n",i);
1502 dev = conf->mirrors[i].dev;
1503 set_blocksize(dev, 4096);
1504 if ((bh = bread(dev, row / 4, 4096)) == NULL)
1505 break;
1506 if (!buffer) {
1507 buffer = (char *) __get_free_page(GFP_KERNEL);
1508 if (!buffer)
1509 break;
1510 memcpy(buffer, bh->b_data, 4096);
1511 } else if (memcmp(buffer, bh->b_data, 4096)) {
1512 rc = 1;
1513 break;
1515 bforget(bh);
1516 fsync_dev(dev);
1517 invalidate_buffers(dev);
1518 bh = NULL;
1520 if (buffer)
1521 free_page((unsigned long) buffer);
1522 if (bh) {
1523 dev = bh->b_dev;
1524 bforget(bh);
1525 fsync_dev(dev);
1526 invalidate_buffers(dev);
1528 return rc;
1531 static int check_consistency (mddev_t *mddev)
1533 if (__check_consistency(mddev, 0))
1535 * we do not do this currently, as it's perfectly possible to
1536 * have an inconsistent array when it's freshly created. Only
1537 * newly written data has to be consistent.
1539 return 0;
1541 return 0;
1544 #define INVALID_LEVEL KERN_WARNING \
1545 "raid1: md%d: raid level not set to mirroring (%d)\n"
1547 #define NO_SB KERN_ERR \
1548 "raid1: disabled mirror %s (couldn't access raid superblock)\n"
1550 #define ERRORS KERN_ERR \
1551 "raid1: disabled mirror %s (errors detected)\n"
1553 #define NOT_IN_SYNC KERN_ERR \
1554 "raid1: disabled mirror %s (not in sync)\n"
1556 #define INCONSISTENT KERN_ERR \
1557 "raid1: disabled mirror %s (inconsistent descriptor)\n"
1559 #define ALREADY_RUNNING KERN_ERR \
1560 "raid1: disabled mirror %s (mirror %d already operational)\n"
1562 #define OPERATIONAL KERN_INFO \
1563 "raid1: device %s operational as mirror %d\n"
1565 #define MEM_ERROR KERN_ERR \
1566 "raid1: couldn't allocate memory for md%d\n"
1568 #define SPARE KERN_INFO \
1569 "raid1: spare disk %s\n"
1571 #define NONE_OPERATIONAL KERN_ERR \
1572 "raid1: no operational mirrors for md%d\n"
1574 #define RUNNING_CKRAID KERN_ERR \
1575 "raid1: detected mirror differences -- running resync\n"
1577 #define ARRAY_IS_ACTIVE KERN_INFO \
1578 "raid1: raid set md%d active with %d out of %d mirrors\n"
1580 #define THREAD_ERROR KERN_ERR \
1581 "raid1: couldn't allocate thread for md%d\n"
1583 #define START_RESYNC KERN_WARNING \
1584 "raid1: raid set md%d not clean; reconstructing mirrors\n"
1586 static int raid1_run (mddev_t *mddev)
1588 raid1_conf_t *conf;
1589 int i, j, disk_idx;
1590 struct mirror_info *disk;
1591 mdp_super_t *sb = mddev->sb;
1592 mdp_disk_t *descriptor;
1593 mdk_rdev_t *rdev;
1594 struct md_list_head *tmp;
1595 int start_recovery = 0;
1597 MOD_INC_USE_COUNT;
1599 if (sb->level != 1) {
1600 printk(INVALID_LEVEL, mdidx(mddev), sb->level);
1601 goto out;
1604 * copy the already verified devices into our private RAID1
1605 * bookkeeping area. [whatever we allocate in raid1_run(),
1606 * should be freed in raid1_stop()]
1609 conf = kmalloc(sizeof(raid1_conf_t), GFP_KERNEL);
1610 mddev->private = conf;
1611 if (!conf) {
1612 printk(MEM_ERROR, mdidx(mddev));
1613 goto out;
1615 memset(conf, 0, sizeof(*conf));
1617 ITERATE_RDEV(mddev,rdev,tmp) {
1618 if (rdev->faulty) {
1619 printk(ERRORS, partition_name(rdev->dev));
1620 } else {
1621 if (!rdev->sb) {
1622 MD_BUG();
1623 continue;
1626 if (rdev->desc_nr == -1) {
1627 MD_BUG();
1628 continue;
1630 descriptor = &sb->disks[rdev->desc_nr];
1631 disk_idx = descriptor->raid_disk;
1632 disk = conf->mirrors + disk_idx;
1634 if (disk_faulty(descriptor)) {
1635 disk->number = descriptor->number;
1636 disk->raid_disk = disk_idx;
1637 disk->dev = rdev->dev;
1638 disk->sect_limit = MAX_WORK_PER_DISK;
1639 disk->operational = 0;
1640 disk->write_only = 0;
1641 disk->spare = 0;
1642 disk->used_slot = 1;
1643 disk->head_position = 0;
1644 continue;
1646 if (disk_active(descriptor)) {
1647 if (!disk_sync(descriptor)) {
1648 printk(NOT_IN_SYNC,
1649 partition_name(rdev->dev));
1650 continue;
1652 if ((descriptor->number > MD_SB_DISKS) ||
1653 (disk_idx > sb->raid_disks)) {
1655 printk(INCONSISTENT,
1656 partition_name(rdev->dev));
1657 continue;
1659 if (disk->operational) {
1660 printk(ALREADY_RUNNING,
1661 partition_name(rdev->dev),
1662 disk_idx);
1663 continue;
1665 printk(OPERATIONAL, partition_name(rdev->dev),
1666 disk_idx);
1667 disk->number = descriptor->number;
1668 disk->raid_disk = disk_idx;
1669 disk->dev = rdev->dev;
1670 disk->sect_limit = MAX_WORK_PER_DISK;
1671 disk->operational = 1;
1672 disk->write_only = 0;
1673 disk->spare = 0;
1674 disk->used_slot = 1;
1675 disk->head_position = 0;
1676 conf->working_disks++;
1677 } else {
1679 * Must be a spare disk ..
1681 printk(SPARE, partition_name(rdev->dev));
1682 disk->number = descriptor->number;
1683 disk->raid_disk = disk_idx;
1684 disk->dev = rdev->dev;
1685 disk->sect_limit = MAX_WORK_PER_DISK;
1686 disk->operational = 0;
1687 disk->write_only = 0;
1688 disk->spare = 1;
1689 disk->used_slot = 1;
1690 disk->head_position = 0;
1693 conf->raid_disks = sb->raid_disks;
1694 conf->nr_disks = sb->nr_disks;
1695 conf->mddev = mddev;
1696 conf->device_lock = MD_SPIN_LOCK_UNLOCKED;
1698 conf->segment_lock = MD_SPIN_LOCK_UNLOCKED;
1699 init_waitqueue_head(&conf->wait_buffer);
1700 init_waitqueue_head(&conf->wait_done);
1701 init_waitqueue_head(&conf->wait_ready);
1703 if (!conf->working_disks) {
1704 printk(NONE_OPERATIONAL, mdidx(mddev));
1705 goto out_free_conf;
1709 /* pre-allocate some buffer_head structures.
1710 * As a minimum, 1 r1bh and raid_disks buffer_heads
1711 * would probably get us by in tight memory situations,
1712 * but a few more is probably a good idea.
1713 * For now, try 16 r1bh and 16*raid_disks bufferheads
1714 * This will allow at least 16 concurrent reads or writes
1715 * even if kmalloc starts failing
1717 if (raid1_grow_r1bh(conf, 16) < 16 ||
1718 raid1_grow_bh(conf, 16*conf->raid_disks)< 16*conf->raid_disks) {
1719 printk(MEM_ERROR, mdidx(mddev));
1720 goto out_free_conf;
1723 for (i = 0; i < MD_SB_DISKS; i++) {
1725 descriptor = sb->disks+i;
1726 disk_idx = descriptor->raid_disk;
1727 disk = conf->mirrors + disk_idx;
1729 if (disk_faulty(descriptor) && (disk_idx < conf->raid_disks) &&
1730 !disk->used_slot) {
1732 disk->number = descriptor->number;
1733 disk->raid_disk = disk_idx;
1734 disk->dev = MKDEV(0,0);
1736 disk->operational = 0;
1737 disk->write_only = 0;
1738 disk->spare = 0;
1739 disk->used_slot = 1;
1740 disk->head_position = 0;
1745 * find the first working one and use it as a starting point
1746 * to read balancing.
1748 for (j = 0; !conf->mirrors[j].operational; j++)
1749 /* nothing */;
1750 conf->last_used = j;
1753 * initialize the 'working disks' list.
1755 for (i = conf->raid_disks - 1; i >= 0; i--) {
1756 if (conf->mirrors[i].operational) {
1757 conf->mirrors[i].next = j;
1758 j = i;
1762 if (conf->working_disks != sb->raid_disks) {
1763 printk(KERN_ALERT "raid1: md%d, not all disks are operational -- trying to recover array\n", mdidx(mddev));
1764 start_recovery = 1;
1767 if (!start_recovery && (sb->state & (1 << MD_SB_CLEAN))) {
1769 * we do sanity checks even if the device says
1770 * it's clean ...
1772 if (check_consistency(mddev)) {
1773 printk(RUNNING_CKRAID);
1774 sb->state &= ~(1 << MD_SB_CLEAN);
1779 const char * name = "raid1d";
1781 conf->thread = md_register_thread(raid1d, conf, name);
1782 if (!conf->thread) {
1783 printk(THREAD_ERROR, mdidx(mddev));
1784 goto out_free_conf;
1788 if (!start_recovery && !(sb->state & (1 << MD_SB_CLEAN))) {
1789 const char * name = "raid1syncd";
1791 conf->resync_thread = md_register_thread(raid1syncd, conf,name);
1792 if (!conf->resync_thread) {
1793 printk(THREAD_ERROR, mdidx(mddev));
1794 goto out_free_conf;
1797 printk(START_RESYNC, mdidx(mddev));
1798 conf->resync_mirrors = 1;
1799 md_wakeup_thread(conf->resync_thread);
1803 * Regenerate the "device is in sync with the raid set" bit for
1804 * each device.
1806 for (i = 0; i < MD_SB_DISKS; i++) {
1807 mark_disk_nonsync(sb->disks+i);
1808 for (j = 0; j < sb->raid_disks; j++) {
1809 if (!conf->mirrors[j].operational)
1810 continue;
1811 if (sb->disks[i].number == conf->mirrors[j].number)
1812 mark_disk_sync(sb->disks+i);
1815 sb->active_disks = conf->working_disks;
1817 if (start_recovery)
1818 md_recover_arrays();
1821 printk(ARRAY_IS_ACTIVE, mdidx(mddev), sb->active_disks, sb->raid_disks);
1823 * Ok, everything is just fine now
1825 return 0;
1827 out_free_conf:
1828 raid1_shrink_r1bh(conf);
1829 raid1_shrink_bh(conf, conf->freebh_cnt);
1830 raid1_shrink_buffers(conf);
1831 kfree(conf);
1832 mddev->private = NULL;
1833 out:
1834 MOD_DEC_USE_COUNT;
1835 return -EIO;
1838 #undef INVALID_LEVEL
1839 #undef NO_SB
1840 #undef ERRORS
1841 #undef NOT_IN_SYNC
1842 #undef INCONSISTENT
1843 #undef ALREADY_RUNNING
1844 #undef OPERATIONAL
1845 #undef SPARE
1846 #undef NONE_OPERATIONAL
1847 #undef RUNNING_CKRAID
1848 #undef ARRAY_IS_ACTIVE
1850 static int raid1_stop_resync (mddev_t *mddev)
1852 raid1_conf_t *conf = mddev_to_conf(mddev);
1854 if (conf->resync_thread) {
1855 if (conf->resync_mirrors) {
1856 conf->resync_mirrors = 2;
1857 md_interrupt_thread(conf->resync_thread);
1859 printk(KERN_INFO "raid1: mirror resync was not fully finished, restarting next time.\n");
1860 return 1;
1862 return 0;
1864 return 0;
1867 static int raid1_restart_resync (mddev_t *mddev)
1869 raid1_conf_t *conf = mddev_to_conf(mddev);
1871 if (conf->resync_mirrors) {
1872 if (!conf->resync_thread) {
1873 MD_BUG();
1874 return 0;
1876 conf->resync_mirrors = 1;
1877 md_wakeup_thread(conf->resync_thread);
1878 return 1;
1880 return 0;
1883 static int raid1_stop (mddev_t *mddev)
1885 raid1_conf_t *conf = mddev_to_conf(mddev);
1887 md_unregister_thread(conf->thread);
1888 if (conf->resync_thread)
1889 md_unregister_thread(conf->resync_thread);
1890 raid1_shrink_r1bh(conf);
1891 raid1_shrink_bh(conf, conf->freebh_cnt);
1892 raid1_shrink_buffers(conf);
1893 kfree(conf);
1894 mddev->private = NULL;
1895 MOD_DEC_USE_COUNT;
1896 return 0;
1899 static mdk_personality_t raid1_personality=
1901 name: "raid1",
1902 make_request: raid1_make_request,
1903 run: raid1_run,
1904 stop: raid1_stop,
1905 status: raid1_status,
1906 error_handler: raid1_error,
1907 diskop: raid1_diskop,
1908 stop_resync: raid1_stop_resync,
1909 restart_resync: raid1_restart_resync,
1910 sync_request: raid1_sync_request
1913 int raid1_init (void)
1915 return register_md_personality (RAID1, &raid1_personality);
1918 #ifdef MODULE
1919 int init_module (void)
1921 return raid1_init();
1924 void cleanup_module (void)
1926 unregister_md_personality (RAID1);
1928 #endif