Cleanup syscall code to look more like it's mips64 equivalent.
[linux-2.6/linux-mips.git] / mm / page-writeback.c
blob1bdfbac68637647fd4e0223055b6243dc264eea0
1 /*
2 * mm/page-writeback.c.
4 * Copyright (C) 2002, Linus Torvalds.
6 * Contains functions related to writing back dirty pages at the
7 * address_space level.
9 * 10Apr2002 akpm@zip.com.au
10 * Initial version
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/spinlock.h>
16 #include <linux/fs.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/slab.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/init.h>
23 #include <linux/backing-dev.h>
24 #include <linux/blkdev.h>
25 #include <linux/mpage.h>
26 #include <linux/percpu.h>
27 #include <linux/notifier.h>
28 #include <linux/smp.h>
29 #include <linux/sysctl.h>
30 #include <linux/cpu.h>
33 * The maximum number of pages to writeout in a single bdflush/kupdate
34 * operation. We do this so we don't hold I_LOCK against an inode for
35 * enormous amounts of time, which would block a userspace task which has
36 * been forced to throttle against that inode. Also, the code reevaluates
37 * the dirty each time it has written this many pages.
39 #define MAX_WRITEBACK_PAGES 1024
42 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
43 * will look to see if it needs to force writeback or throttling.
45 static long ratelimit_pages = 32;
47 static long total_pages; /* The total number of pages in the machine. */
48 static int dirty_exceeded; /* Dirty mem may be over limit */
51 * When balance_dirty_pages decides that the caller needs to perform some
52 * non-background writeback, this is how many pages it will attempt to write.
53 * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably
54 * large amounts of I/O are submitted.
56 static inline long sync_writeback_pages(void)
58 return ratelimit_pages + ratelimit_pages / 2;
61 /* The following parameters are exported via /proc/sys/vm */
64 * Start background writeback (via pdflush) at this percentage
66 int dirty_background_ratio = 10;
69 * The generator of dirty data starts writeback at this percentage
71 int vm_dirty_ratio = 40;
74 * The interval between `kupdate'-style writebacks, in centiseconds
75 * (hundredths of a second)
77 int dirty_writeback_centisecs = 5 * 100;
80 * The longest number of centiseconds for which data is allowed to remain dirty
82 int dirty_expire_centisecs = 30 * 100;
84 /* End of sysctl-exported parameters */
87 static void background_writeout(unsigned long _min_pages);
90 * Work out the current dirty-memory clamping and background writeout
91 * thresholds.
93 * The main aim here is to lower them aggressively if there is a lot of mapped
94 * memory around. To avoid stressing page reclaim with lots of unreclaimable
95 * pages. It is better to clamp down on writers than to start swapping, and
96 * performing lots of scanning.
98 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
100 * We don't permit the clamping level to fall below 5% - that is getting rather
101 * excessive.
103 * We make sure that the background writeout level is below the adjusted
104 * clamping level.
106 static void
107 get_dirty_limits(struct page_state *ps, long *pbackground, long *pdirty)
109 int background_ratio; /* Percentages */
110 int dirty_ratio;
111 int unmapped_ratio;
112 long background;
113 long dirty;
115 get_page_state(ps);
117 unmapped_ratio = 100 - (ps->nr_mapped * 100) / total_pages;
119 dirty_ratio = vm_dirty_ratio;
120 if (dirty_ratio > unmapped_ratio / 2)
121 dirty_ratio = unmapped_ratio / 2;
123 if (dirty_ratio < 5)
124 dirty_ratio = 5;
126 background_ratio = dirty_background_ratio;
127 if (background_ratio >= dirty_ratio)
128 background_ratio = dirty_ratio / 2;
130 background = (background_ratio * total_pages) / 100;
131 dirty = (dirty_ratio * total_pages) / 100;
132 if (current->flags & PF_LESS_THROTTLE) {
133 background += background / 4;
134 dirty += dirty / 4;
136 *pbackground = background;
137 *pdirty = dirty;
141 * balance_dirty_pages() must be called by processes which are generating dirty
142 * data. It looks at the number of dirty pages in the machine and will force
143 * the caller to perform writeback if the system is over `vm_dirty_ratio'.
144 * If we're over `background_thresh' then pdflush is woken to perform some
145 * writeout.
147 void balance_dirty_pages(struct address_space *mapping)
149 struct page_state ps;
150 long nr_reclaimable;
151 long background_thresh;
152 long dirty_thresh;
153 unsigned long pages_written = 0;
154 unsigned long write_chunk = sync_writeback_pages();
156 struct backing_dev_info *bdi = mapping->backing_dev_info;
158 for (;;) {
159 struct writeback_control wbc = {
160 .bdi = bdi,
161 .sync_mode = WB_SYNC_NONE,
162 .older_than_this = NULL,
163 .nr_to_write = write_chunk,
166 get_dirty_limits(&ps, &background_thresh, &dirty_thresh);
167 nr_reclaimable = ps.nr_dirty + ps.nr_unstable;
168 if (nr_reclaimable + ps.nr_writeback <= dirty_thresh)
169 break;
171 dirty_exceeded = 1;
173 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
174 * Unstable writes are a feature of certain networked
175 * filesystems (i.e. NFS) in which data may have been
176 * written to the server's write cache, but has not yet
177 * been flushed to permanent storage.
179 if (nr_reclaimable) {
180 writeback_inodes(&wbc);
181 get_dirty_limits(&ps, &background_thresh,
182 &dirty_thresh);
183 nr_reclaimable = ps.nr_dirty + ps.nr_unstable;
184 if (nr_reclaimable + ps.nr_writeback <= dirty_thresh)
185 break;
186 pages_written += write_chunk - wbc.nr_to_write;
187 if (pages_written >= write_chunk)
188 break; /* We've done our duty */
190 blk_congestion_wait(WRITE, HZ/10);
193 if (nr_reclaimable + ps.nr_writeback <= dirty_thresh)
194 dirty_exceeded = 0;
196 if (!writeback_in_progress(bdi) && nr_reclaimable > background_thresh)
197 pdflush_operation(background_writeout, 0);
201 * balance_dirty_pages_ratelimited - balance dirty memory state
202 * @mapping - address_space which was dirtied
204 * Processes which are dirtying memory should call in here once for each page
205 * which was newly dirtied. The function will periodically check the system's
206 * dirty state and will initiate writeback if needed.
208 * On really big machines, get_page_state is expensive, so try to avoid calling
209 * it too often (ratelimiting). But once we're over the dirty memory limit we
210 * decrease the ratelimiting by a lot, to prevent individual processes from
211 * overshooting the limit by (ratelimit_pages) each.
213 void balance_dirty_pages_ratelimited(struct address_space *mapping)
215 static DEFINE_PER_CPU(int, ratelimits) = 0;
216 long ratelimit;
218 ratelimit = ratelimit_pages;
219 if (dirty_exceeded)
220 ratelimit = 8;
222 if (get_cpu_var(ratelimits)++ >= ratelimit) {
223 __get_cpu_var(ratelimits) = 0;
224 put_cpu_var(ratelimits);
225 balance_dirty_pages(mapping);
226 return;
228 put_cpu_var(ratelimits);
232 * writeback at least _min_pages, and keep writing until the amount of dirty
233 * memory is less than the background threshold, or until we're all clean.
235 static void background_writeout(unsigned long _min_pages)
237 long min_pages = _min_pages;
238 struct writeback_control wbc = {
239 .bdi = NULL,
240 .sync_mode = WB_SYNC_NONE,
241 .older_than_this = NULL,
242 .nr_to_write = 0,
243 .nonblocking = 1,
246 for ( ; ; ) {
247 struct page_state ps;
248 long background_thresh;
249 long dirty_thresh;
251 get_dirty_limits(&ps, &background_thresh, &dirty_thresh);
252 if (ps.nr_dirty + ps.nr_unstable < background_thresh
253 && min_pages <= 0)
254 break;
255 wbc.encountered_congestion = 0;
256 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
257 writeback_inodes(&wbc);
258 min_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
259 if (wbc.nr_to_write > 0) {
260 /* Wrote less than expected */
261 if (wbc.encountered_congestion)
262 blk_congestion_wait(WRITE, HZ/10);
263 else
264 break;
270 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
271 * the whole world. Returns 0 if a pdflush thread was dispatched. Returns
272 * -1 if all pdflush threads were busy.
274 int wakeup_bdflush(long nr_pages)
276 if (nr_pages == 0) {
277 struct page_state ps;
279 get_page_state(&ps);
280 nr_pages = ps.nr_dirty + ps.nr_unstable;
282 return pdflush_operation(background_writeout, nr_pages);
285 static struct timer_list wb_timer;
288 * Periodic writeback of "old" data.
290 * Define "old": the first time one of an inode's pages is dirtied, we mark the
291 * dirtying-time in the inode's address_space. So this periodic writeback code
292 * just walks the superblock inode list, writing back any inodes which are
293 * older than a specific point in time.
295 * Try to run once per dirty_writeback_centisecs. But if a writeback event
296 * takes longer than a dirty_writeback_centisecs interval, then leave a
297 * one-second gap.
299 * older_than_this takes precedence over nr_to_write. So we'll only write back
300 * all dirty pages if they are all attached to "old" mappings.
302 static void wb_kupdate(unsigned long arg)
304 unsigned long oldest_jif;
305 unsigned long start_jif;
306 unsigned long next_jif;
307 long nr_to_write;
308 struct page_state ps;
309 struct writeback_control wbc = {
310 .bdi = NULL,
311 .sync_mode = WB_SYNC_NONE,
312 .older_than_this = &oldest_jif,
313 .nr_to_write = 0,
314 .nonblocking = 1,
315 .for_kupdate = 1,
318 sync_supers();
320 get_page_state(&ps);
321 oldest_jif = jiffies - (dirty_expire_centisecs * HZ) / 100;
322 start_jif = jiffies;
323 next_jif = start_jif + (dirty_writeback_centisecs * HZ) / 100;
324 nr_to_write = ps.nr_dirty + ps.nr_unstable +
325 (inodes_stat.nr_inodes - inodes_stat.nr_unused);
326 while (nr_to_write > 0) {
327 wbc.encountered_congestion = 0;
328 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
329 writeback_inodes(&wbc);
330 if (wbc.nr_to_write > 0) {
331 if (wbc.encountered_congestion)
332 blk_congestion_wait(WRITE, HZ/10);
333 else
334 break; /* All the old data is written */
336 nr_to_write -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
338 if (time_before(next_jif, jiffies + HZ))
339 next_jif = jiffies + HZ;
340 if (dirty_writeback_centisecs)
341 mod_timer(&wb_timer, next_jif);
345 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
347 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
348 struct file *file, void *buffer, size_t *length)
350 proc_dointvec(table, write, file, buffer, length);
351 if (dirty_writeback_centisecs) {
352 mod_timer(&wb_timer,
353 jiffies + (dirty_writeback_centisecs * HZ) / 100);
354 } else {
355 del_timer(&wb_timer);
357 return 0;
360 static void wb_timer_fn(unsigned long unused)
362 if (pdflush_operation(wb_kupdate, 0) < 0)
363 mod_timer(&wb_timer, jiffies + HZ); /* delay 1 second */
368 * If ratelimit_pages is too high then we can get into dirty-data overload
369 * if a large number of processes all perform writes at the same time.
370 * If it is too low then SMP machines will call the (expensive) get_page_state
371 * too often.
373 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
374 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
375 * thresholds before writeback cuts in.
377 * But the limit should not be set too high. Because it also controls the
378 * amount of memory which the balance_dirty_pages() caller has to write back.
379 * If this is too large then the caller will block on the IO queue all the
380 * time. So limit it to four megabytes - the balance_dirty_pages() caller
381 * will write six megabyte chunks, max.
384 static void set_ratelimit(void)
386 ratelimit_pages = total_pages / (num_online_cpus() * 32);
387 if (ratelimit_pages < 16)
388 ratelimit_pages = 16;
389 if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
390 ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
393 static int
394 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
396 set_ratelimit();
397 return 0;
400 static struct notifier_block ratelimit_nb = {
401 .notifier_call = ratelimit_handler,
402 .next = NULL,
406 * If the machine has a large highmem:lowmem ratio then scale back the default
407 * dirty memory thresholds: allowing too much dirty highmem pins an excessive
408 * number of buffer_heads.
410 void __init page_writeback_init(void)
412 long buffer_pages = nr_free_buffer_pages();
413 long correction;
415 total_pages = nr_free_pagecache_pages();
417 correction = (100 * 4 * buffer_pages) / total_pages;
419 if (correction < 100) {
420 dirty_background_ratio *= correction;
421 dirty_background_ratio /= 100;
422 vm_dirty_ratio *= correction;
423 vm_dirty_ratio /= 100;
426 init_timer(&wb_timer);
427 wb_timer.expires = jiffies + (dirty_writeback_centisecs * HZ) / 100;
428 wb_timer.data = 0;
429 wb_timer.function = wb_timer_fn;
430 add_timer(&wb_timer);
431 set_ratelimit();
432 register_cpu_notifier(&ratelimit_nb);
435 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
437 if (mapping->a_ops->writepages)
438 return mapping->a_ops->writepages(mapping, wbc);
439 return generic_writepages(mapping, wbc);
443 * write_one_page - write out a single page and optionally wait on I/O
445 * @page - the page to write
446 * @wait - if true, wait on writeout
448 * The page must be locked by the caller and will be unlocked upon return.
450 * write_one_page() returns a negative error code if I/O failed.
452 int write_one_page(struct page *page, int wait)
454 struct address_space *mapping = page->mapping;
455 int ret = 0;
456 struct writeback_control wbc = {
457 .sync_mode = WB_SYNC_ALL,
458 .nr_to_write = 1,
461 BUG_ON(!PageLocked(page));
463 if (wait)
464 wait_on_page_writeback(page);
466 spin_lock(&mapping->page_lock);
467 list_del(&page->list);
468 if (test_clear_page_dirty(page)) {
469 list_add(&page->list, &mapping->locked_pages);
470 page_cache_get(page);
471 spin_unlock(&mapping->page_lock);
472 ret = mapping->a_ops->writepage(page, &wbc);
473 if (ret == 0 && wait) {
474 wait_on_page_writeback(page);
475 if (PageError(page))
476 ret = -EIO;
478 page_cache_release(page);
479 } else {
480 list_add(&page->list, &mapping->clean_pages);
481 spin_unlock(&mapping->page_lock);
482 unlock_page(page);
484 return ret;
486 EXPORT_SYMBOL(write_one_page);
489 * For address_spaces which do not use buffers. Just set the page's dirty bit
490 * and move it to the dirty_pages list. Also perform space reservation if
491 * required.
493 * __set_page_dirty_nobuffers() may return -ENOSPC. But if it does, the page
494 * is still safe, as long as it actually manages to find some blocks at
495 * writeback time.
497 * This is also used when a single buffer is being dirtied: we want to set the
498 * page dirty in that case, but not all the buffers. This is a "bottom-up"
499 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
501 int __set_page_dirty_nobuffers(struct page *page)
503 int ret = 0;
505 if (!TestSetPageDirty(page)) {
506 struct address_space *mapping = page->mapping;
508 if (mapping) {
509 spin_lock(&mapping->page_lock);
510 if (page->mapping) { /* Race with truncate? */
511 BUG_ON(page->mapping != mapping);
512 if (!mapping->backing_dev_info->memory_backed)
513 inc_page_state(nr_dirty);
514 list_del(&page->list);
515 list_add(&page->list, &mapping->dirty_pages);
517 spin_unlock(&mapping->page_lock);
518 if (!PageSwapCache(page))
519 __mark_inode_dirty(mapping->host,
520 I_DIRTY_PAGES);
523 return ret;
525 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
528 * set_page_dirty() is racy if the caller has no reference against
529 * page->mapping->host, and if the page is unlocked. This is because another
530 * CPU could truncate the page off the mapping and then free the mapping.
532 * Usually, the page _is_ locked, or the caller is a user-space process which
533 * holds a reference on the inode by having an open file.
535 * In other cases, the page should be locked before running set_page_dirty().
537 int set_page_dirty_lock(struct page *page)
539 int ret;
541 lock_page(page);
542 ret = set_page_dirty(page);
543 unlock_page(page);
544 return ret;
548 * Clear a page's dirty flag, while caring for dirty memory accounting.
549 * Returns true if the page was previously dirty.
551 int test_clear_page_dirty(struct page *page)
553 if (TestClearPageDirty(page)) {
554 struct address_space *mapping = page->mapping;
556 if (mapping && !mapping->backing_dev_info->memory_backed)
557 dec_page_state(nr_dirty);
558 return 1;
560 return 0;
562 EXPORT_SYMBOL(test_clear_page_dirty);