Pull one more egcs 1.1.2 workaround.
[linux-2.6/linux-mips.git] / fs / dcache.c
blobd0fcfeba16eeb3c2a1461bc01af56b189eff2bff
1 /*
2 * fs/dcache.c
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
9 /*
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/config.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/smp_lock.h>
24 #include <linux/cache.h>
25 #include <linux/module.h>
27 #include <asm/uaccess.h>
29 #define DCACHE_PARANOIA 1
30 /* #define DCACHE_DEBUG 1 */
32 spinlock_t dcache_lock __cacheline_aligned_in_smp = SPIN_LOCK_UNLOCKED;
33 rwlock_t dparent_lock __cacheline_aligned_in_smp = RW_LOCK_UNLOCKED;
35 static kmem_cache_t *dentry_cache;
38 * This is the single most critical data structure when it comes
39 * to the dcache: the hashtable for lookups. Somebody should try
40 * to make this good - I've just made it work.
42 * This hash-function tries to avoid losing too many bits of hash
43 * information, yet avoid using a prime hash-size or similar.
45 #define D_HASHBITS d_hash_shift
46 #define D_HASHMASK d_hash_mask
48 static unsigned int d_hash_mask;
49 static unsigned int d_hash_shift;
50 static struct list_head *dentry_hashtable;
51 static LIST_HEAD(dentry_unused);
53 /* Statistics gathering. */
54 struct dentry_stat_t dentry_stat = {
55 .age_limit = 45,
58 /* no dcache_lock, please */
59 static inline void d_free(struct dentry *dentry)
61 if (dentry->d_op && dentry->d_op->d_release)
62 dentry->d_op->d_release(dentry);
63 if (dname_external(dentry))
64 kfree(dentry->d_name.name);
65 kmem_cache_free(dentry_cache, dentry);
66 dentry_stat.nr_dentry--;
70 * Release the dentry's inode, using the filesystem
71 * d_iput() operation if defined.
72 * Called with dcache_lock held, drops it.
74 static inline void dentry_iput(struct dentry * dentry)
76 struct inode *inode = dentry->d_inode;
77 if (inode) {
78 dentry->d_inode = NULL;
79 list_del_init(&dentry->d_alias);
80 spin_unlock(&dcache_lock);
81 if (dentry->d_op && dentry->d_op->d_iput)
82 dentry->d_op->d_iput(dentry, inode);
83 else
84 iput(inode);
85 } else
86 spin_unlock(&dcache_lock);
89 /*
90 * This is dput
92 * This is complicated by the fact that we do not want to put
93 * dentries that are no longer on any hash chain on the unused
94 * list: we'd much rather just get rid of them immediately.
96 * However, that implies that we have to traverse the dentry
97 * tree upwards to the parents which might _also_ now be
98 * scheduled for deletion (it may have been only waiting for
99 * its last child to go away).
101 * This tail recursion is done by hand as we don't want to depend
102 * on the compiler to always get this right (gcc generally doesn't).
103 * Real recursion would eat up our stack space.
107 * dput - release a dentry
108 * @dentry: dentry to release
110 * Release a dentry. This will drop the usage count and if appropriate
111 * call the dentry unlink method as well as removing it from the queues and
112 * releasing its resources. If the parent dentries were scheduled for release
113 * they too may now get deleted.
115 * no dcache lock, please.
118 void dput(struct dentry *dentry)
120 if (!dentry)
121 return;
123 repeat:
124 if (!atomic_dec_and_lock(&dentry->d_count, &dcache_lock))
125 return;
127 /* dput on a free dentry? */
128 if (!list_empty(&dentry->d_lru))
129 BUG();
131 * AV: ->d_delete() is _NOT_ allowed to block now.
133 if (dentry->d_op && dentry->d_op->d_delete) {
134 if (dentry->d_op->d_delete(dentry))
135 goto unhash_it;
137 /* Unreachable? Get rid of it */
138 if (list_empty(&dentry->d_hash))
139 goto kill_it;
140 list_add(&dentry->d_lru, &dentry_unused);
141 dentry_stat.nr_unused++;
142 dentry->d_vfs_flags |= DCACHE_REFERENCED;
143 spin_unlock(&dcache_lock);
144 return;
146 unhash_it:
147 list_del_init(&dentry->d_hash);
149 kill_it: {
150 struct dentry *parent;
151 list_del(&dentry->d_child);
152 /* drops the lock, at that point nobody can reach this dentry */
153 dentry_iput(dentry);
154 parent = dentry->d_parent;
155 d_free(dentry);
156 if (dentry == parent)
157 return;
158 dentry = parent;
159 goto repeat;
164 * d_invalidate - invalidate a dentry
165 * @dentry: dentry to invalidate
167 * Try to invalidate the dentry if it turns out to be
168 * possible. If there are other dentries that can be
169 * reached through this one we can't delete it and we
170 * return -EBUSY. On success we return 0.
172 * no dcache lock.
175 int d_invalidate(struct dentry * dentry)
178 * If it's already been dropped, return OK.
180 spin_lock(&dcache_lock);
181 if (list_empty(&dentry->d_hash)) {
182 spin_unlock(&dcache_lock);
183 return 0;
186 * Check whether to do a partial shrink_dcache
187 * to get rid of unused child entries.
189 if (!list_empty(&dentry->d_subdirs)) {
190 spin_unlock(&dcache_lock);
191 shrink_dcache_parent(dentry);
192 spin_lock(&dcache_lock);
196 * Somebody else still using it?
198 * If it's a directory, we can't drop it
199 * for fear of somebody re-populating it
200 * with children (even though dropping it
201 * would make it unreachable from the root,
202 * we might still populate it if it was a
203 * working directory or similar).
205 if (atomic_read(&dentry->d_count) > 1) {
206 if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) {
207 spin_unlock(&dcache_lock);
208 return -EBUSY;
212 list_del_init(&dentry->d_hash);
213 spin_unlock(&dcache_lock);
214 return 0;
217 /* This should be called _only_ with dcache_lock held */
219 static inline struct dentry * __dget_locked(struct dentry *dentry)
221 atomic_inc(&dentry->d_count);
222 if (atomic_read(&dentry->d_count) == 1) {
223 dentry_stat.nr_unused--;
224 list_del_init(&dentry->d_lru);
226 return dentry;
229 struct dentry * dget_locked(struct dentry *dentry)
231 return __dget_locked(dentry);
235 * d_find_alias - grab a hashed alias of inode
236 * @inode: inode in question
238 * If inode has a hashed alias - acquire the reference to alias and
239 * return it. Otherwise return NULL. Notice that if inode is a directory
240 * there can be only one alias and it can be unhashed only if it has
241 * no children.
243 * If the inode has a DCACHE_DISCONNECTED alias, then prefer
244 * any other hashed alias over that one.
247 struct dentry * d_find_alias(struct inode *inode)
249 struct list_head *head, *next, *tmp;
250 struct dentry *alias, *discon_alias=NULL;
252 spin_lock(&dcache_lock);
253 head = &inode->i_dentry;
254 next = inode->i_dentry.next;
255 while (next != head) {
256 tmp = next;
257 next = tmp->next;
258 alias = list_entry(tmp, struct dentry, d_alias);
259 if (!list_empty(&alias->d_hash)) {
260 if (alias->d_flags & DCACHE_DISCONNECTED)
261 discon_alias = alias;
262 else {
263 __dget_locked(alias);
264 spin_unlock(&dcache_lock);
265 return alias;
269 if (discon_alias)
270 __dget_locked(discon_alias);
271 spin_unlock(&dcache_lock);
272 return discon_alias;
276 * Try to kill dentries associated with this inode.
277 * WARNING: you must own a reference to inode.
279 void d_prune_aliases(struct inode *inode)
281 struct list_head *tmp, *head = &inode->i_dentry;
282 restart:
283 spin_lock(&dcache_lock);
284 tmp = head;
285 while ((tmp = tmp->next) != head) {
286 struct dentry *dentry = list_entry(tmp, struct dentry, d_alias);
287 if (!atomic_read(&dentry->d_count)) {
288 __dget_locked(dentry);
289 spin_unlock(&dcache_lock);
290 d_drop(dentry);
291 dput(dentry);
292 goto restart;
295 spin_unlock(&dcache_lock);
299 * Throw away a dentry - free the inode, dput the parent.
300 * This requires that the LRU list has already been
301 * removed.
302 * Called with dcache_lock, drops it and then regains.
304 static inline void prune_one_dentry(struct dentry * dentry)
306 struct dentry * parent;
308 list_del_init(&dentry->d_hash);
309 list_del(&dentry->d_child);
310 dentry_iput(dentry);
311 parent = dentry->d_parent;
312 d_free(dentry);
313 if (parent != dentry)
314 dput(parent);
315 spin_lock(&dcache_lock);
319 * prune_dcache - shrink the dcache
320 * @count: number of entries to try and free
322 * Shrink the dcache. This is done when we need
323 * more memory, or simply when we need to unmount
324 * something (at which point we need to unuse
325 * all dentries).
327 * This function may fail to free any resources if
328 * all the dentries are in use.
331 static void prune_dcache(int count)
333 spin_lock(&dcache_lock);
334 for (; count ; count--) {
335 struct dentry *dentry;
336 struct list_head *tmp;
338 tmp = dentry_unused.prev;
339 if (tmp == &dentry_unused)
340 break;
341 list_del_init(tmp);
342 dentry = list_entry(tmp, struct dentry, d_lru);
344 /* If the dentry was recently referenced, don't free it. */
345 if (dentry->d_vfs_flags & DCACHE_REFERENCED) {
346 dentry->d_vfs_flags &= ~DCACHE_REFERENCED;
347 list_add(&dentry->d_lru, &dentry_unused);
348 continue;
350 dentry_stat.nr_unused--;
352 /* Unused dentry with a count? */
353 BUG_ON(atomic_read(&dentry->d_count));
354 prune_one_dentry(dentry);
356 spin_unlock(&dcache_lock);
360 * Shrink the dcache for the specified super block.
361 * This allows us to unmount a device without disturbing
362 * the dcache for the other devices.
364 * This implementation makes just two traversals of the
365 * unused list. On the first pass we move the selected
366 * dentries to the most recent end, and on the second
367 * pass we free them. The second pass must restart after
368 * each dput(), but since the target dentries are all at
369 * the end, it's really just a single traversal.
373 * shrink_dcache_sb - shrink dcache for a superblock
374 * @sb: superblock
376 * Shrink the dcache for the specified super block. This
377 * is used to free the dcache before unmounting a file
378 * system
381 void shrink_dcache_sb(struct super_block * sb)
383 struct list_head *tmp, *next;
384 struct dentry *dentry;
387 * Pass one ... move the dentries for the specified
388 * superblock to the most recent end of the unused list.
390 spin_lock(&dcache_lock);
391 next = dentry_unused.next;
392 while (next != &dentry_unused) {
393 tmp = next;
394 next = tmp->next;
395 dentry = list_entry(tmp, struct dentry, d_lru);
396 if (dentry->d_sb != sb)
397 continue;
398 list_del(tmp);
399 list_add(tmp, &dentry_unused);
403 * Pass two ... free the dentries for this superblock.
405 repeat:
406 next = dentry_unused.next;
407 while (next != &dentry_unused) {
408 tmp = next;
409 next = tmp->next;
410 dentry = list_entry(tmp, struct dentry, d_lru);
411 if (dentry->d_sb != sb)
412 continue;
413 if (atomic_read(&dentry->d_count))
414 continue;
415 dentry_stat.nr_unused--;
416 list_del_init(tmp);
417 prune_one_dentry(dentry);
418 goto repeat;
420 spin_unlock(&dcache_lock);
424 * Search for at least 1 mount point in the dentry's subdirs.
425 * We descend to the next level whenever the d_subdirs
426 * list is non-empty and continue searching.
430 * have_submounts - check for mounts over a dentry
431 * @parent: dentry to check.
433 * Return true if the parent or its subdirectories contain
434 * a mount point
437 int have_submounts(struct dentry *parent)
439 struct dentry *this_parent = parent;
440 struct list_head *next;
442 spin_lock(&dcache_lock);
443 if (d_mountpoint(parent))
444 goto positive;
445 repeat:
446 next = this_parent->d_subdirs.next;
447 resume:
448 while (next != &this_parent->d_subdirs) {
449 struct list_head *tmp = next;
450 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
451 next = tmp->next;
452 /* Have we found a mount point ? */
453 if (d_mountpoint(dentry))
454 goto positive;
455 if (!list_empty(&dentry->d_subdirs)) {
456 this_parent = dentry;
457 goto repeat;
461 * All done at this level ... ascend and resume the search.
463 if (this_parent != parent) {
464 next = this_parent->d_child.next;
465 this_parent = this_parent->d_parent;
466 goto resume;
468 spin_unlock(&dcache_lock);
469 return 0; /* No mount points found in tree */
470 positive:
471 spin_unlock(&dcache_lock);
472 return 1;
476 * Search the dentry child list for the specified parent,
477 * and move any unused dentries to the end of the unused
478 * list for prune_dcache(). We descend to the next level
479 * whenever the d_subdirs list is non-empty and continue
480 * searching.
482 static int select_parent(struct dentry * parent)
484 struct dentry *this_parent = parent;
485 struct list_head *next;
486 int found = 0;
488 spin_lock(&dcache_lock);
489 repeat:
490 next = this_parent->d_subdirs.next;
491 resume:
492 while (next != &this_parent->d_subdirs) {
493 struct list_head *tmp = next;
494 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
495 next = tmp->next;
496 if (!atomic_read(&dentry->d_count)) {
497 list_del(&dentry->d_lru);
498 list_add(&dentry->d_lru, dentry_unused.prev);
499 found++;
502 * Descend a level if the d_subdirs list is non-empty.
504 if (!list_empty(&dentry->d_subdirs)) {
505 this_parent = dentry;
506 #ifdef DCACHE_DEBUG
507 printk(KERN_DEBUG "select_parent: descending to %s/%s, found=%d\n",
508 dentry->d_parent->d_name.name, dentry->d_name.name, found);
509 #endif
510 goto repeat;
514 * All done at this level ... ascend and resume the search.
516 if (this_parent != parent) {
517 next = this_parent->d_child.next;
518 this_parent = this_parent->d_parent;
519 #ifdef DCACHE_DEBUG
520 printk(KERN_DEBUG "select_parent: ascending to %s/%s, found=%d\n",
521 this_parent->d_parent->d_name.name, this_parent->d_name.name, found);
522 #endif
523 goto resume;
525 spin_unlock(&dcache_lock);
526 return found;
530 * shrink_dcache_parent - prune dcache
531 * @parent: parent of entries to prune
533 * Prune the dcache to remove unused children of the parent dentry.
536 void shrink_dcache_parent(struct dentry * parent)
538 int found;
540 while ((found = select_parent(parent)) != 0)
541 prune_dcache(found);
545 * shrink_dcache_anon - further prune the cache
546 * @head: head of d_hash list of dentries to prune
548 * Prune the dentries that are anonymous
551 void shrink_dcache_anon(struct list_head *head)
553 struct list_head *lp;
554 int found;
555 do {
556 found = 0;
557 spin_lock(&dcache_lock);
558 list_for_each(lp, head) {
559 struct dentry *this = list_entry(lp, struct dentry, d_hash);
560 if (!atomic_read(&this->d_count)) {
561 list_del(&this->d_lru);
562 list_add_tail(&this->d_lru, &dentry_unused);
563 found++;
566 spin_unlock(&dcache_lock);
567 prune_dcache(found);
568 } while(found);
572 * This is called from kswapd when we think we need some
573 * more memory.
575 static int shrink_dcache_memory(int nr, unsigned int gfp_mask)
577 if (nr) {
579 * Nasty deadlock avoidance.
581 * ext2_new_block->getblk->GFP->shrink_dcache_memory->
582 * prune_dcache->prune_one_dentry->dput->dentry_iput->iput->
583 * inode->i_sb->s_op->put_inode->ext2_discard_prealloc->
584 * ext2_free_blocks->lock_super->DEADLOCK.
586 * We should make sure we don't hold the superblock lock over
587 * block allocations, but for now:
589 if (gfp_mask & __GFP_FS)
590 prune_dcache(nr);
592 return dentry_stat.nr_dentry;
595 #define NAME_ALLOC_LEN(len) ((len+16) & ~15)
598 * d_alloc - allocate a dcache entry
599 * @parent: parent of entry to allocate
600 * @name: qstr of the name
602 * Allocates a dentry. It returns %NULL if there is insufficient memory
603 * available. On a success the dentry is returned. The name passed in is
604 * copied and the copy passed in may be reused after this call.
607 struct dentry * d_alloc(struct dentry * parent, const struct qstr *name)
609 char * str;
610 struct dentry *dentry;
612 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
613 if (!dentry)
614 return NULL;
616 if (name->len > DNAME_INLINE_LEN-1) {
617 str = kmalloc(NAME_ALLOC_LEN(name->len), GFP_KERNEL);
618 if (!str) {
619 kmem_cache_free(dentry_cache, dentry);
620 return NULL;
622 } else
623 str = dentry->d_iname;
625 memcpy(str, name->name, name->len);
626 str[name->len] = 0;
628 atomic_set(&dentry->d_count, 1);
629 dentry->d_vfs_flags = 0;
630 dentry->d_flags = 0;
631 dentry->d_inode = NULL;
632 dentry->d_parent = NULL;
633 dentry->d_sb = NULL;
634 dentry->d_name.name = str;
635 dentry->d_name.len = name->len;
636 dentry->d_name.hash = name->hash;
637 dentry->d_op = NULL;
638 dentry->d_fsdata = NULL;
639 dentry->d_mounted = 0;
640 dentry->d_cookie = NULL;
641 INIT_LIST_HEAD(&dentry->d_hash);
642 INIT_LIST_HEAD(&dentry->d_lru);
643 INIT_LIST_HEAD(&dentry->d_subdirs);
644 INIT_LIST_HEAD(&dentry->d_alias);
645 if (parent) {
646 dentry->d_parent = dget(parent);
647 dentry->d_sb = parent->d_sb;
648 spin_lock(&dcache_lock);
649 list_add(&dentry->d_child, &parent->d_subdirs);
650 spin_unlock(&dcache_lock);
651 } else
652 INIT_LIST_HEAD(&dentry->d_child);
654 dentry_stat.nr_dentry++;
655 return dentry;
659 * d_instantiate - fill in inode information for a dentry
660 * @entry: dentry to complete
661 * @inode: inode to attach to this dentry
663 * Fill in inode information in the entry.
665 * This turns negative dentries into productive full members
666 * of society.
668 * NOTE! This assumes that the inode count has been incremented
669 * (or otherwise set) by the caller to indicate that it is now
670 * in use by the dcache.
673 void d_instantiate(struct dentry *entry, struct inode * inode)
675 if (!list_empty(&entry->d_alias)) BUG();
676 spin_lock(&dcache_lock);
677 if (inode)
678 list_add(&entry->d_alias, &inode->i_dentry);
679 entry->d_inode = inode;
680 spin_unlock(&dcache_lock);
684 * d_alloc_root - allocate root dentry
685 * @root_inode: inode to allocate the root for
687 * Allocate a root ("/") dentry for the inode given. The inode is
688 * instantiated and returned. %NULL is returned if there is insufficient
689 * memory or the inode passed is %NULL.
692 struct dentry * d_alloc_root(struct inode * root_inode)
694 struct dentry *res = NULL;
696 if (root_inode) {
697 res = d_alloc(NULL, &(const struct qstr) { "/", 1, 0 });
698 if (res) {
699 res->d_sb = root_inode->i_sb;
700 res->d_parent = res;
701 d_instantiate(res, root_inode);
704 return res;
707 static inline struct list_head * d_hash(struct dentry * parent, unsigned long hash)
709 hash += (unsigned long) parent / L1_CACHE_BYTES;
710 hash = hash ^ (hash >> D_HASHBITS);
711 return dentry_hashtable + (hash & D_HASHMASK);
715 * d_alloc_anon - allocate an anonymous dentry
716 * @inode: inode to allocate the dentry for
718 * This is similar to d_alloc_root. It is used by filesystems when
719 * creating a dentry for a given inode, often in the process of
720 * mapping a filehandle to a dentry. The returned dentry may be
721 * anonymous, or may have a full name (if the inode was already
722 * in the cache). The file system may need to make further
723 * efforts to connect this dentry into the dcache properly.
725 * When called on a directory inode, we must ensure that
726 * the inode only ever has one dentry. If a dentry is
727 * found, that is returned instead of allocating a new one.
729 * On successful return, the reference to the inode has been transferred
730 * to the dentry. If %NULL is returned (indicating kmalloc failure),
731 * the reference on the inode has not been released.
734 struct dentry * d_alloc_anon(struct inode *inode)
736 struct dentry *tmp;
737 struct dentry *res;
739 if ((res = d_find_alias(inode))) {
740 iput(inode);
741 return res;
744 tmp = d_alloc(NULL, &(const struct qstr) {"",0,0});
745 if (!tmp)
746 return NULL;
748 tmp->d_parent = tmp; /* make sure dput doesn't croak */
750 spin_lock(&dcache_lock);
751 if (S_ISDIR(inode->i_mode) && !list_empty(&inode->i_dentry)) {
752 /* A directory can only have one dentry.
753 * This (now) has one, so use it.
755 res = list_entry(inode->i_dentry.next, struct dentry, d_alias);
756 __dget_locked(res);
757 } else {
758 /* attach a disconnected dentry */
759 res = tmp;
760 tmp = NULL;
761 if (res) {
762 res->d_sb = inode->i_sb;
763 res->d_parent = res;
764 res->d_inode = inode;
765 res->d_flags |= DCACHE_DISCONNECTED;
766 list_add(&res->d_alias, &inode->i_dentry);
767 list_add(&res->d_hash, &inode->i_sb->s_anon);
769 inode = NULL; /* don't drop reference */
771 spin_unlock(&dcache_lock);
773 if (inode)
774 iput(inode);
775 if (tmp)
776 dput(tmp);
777 return res;
782 * d_splice_alias - splice a disconnected dentry into the tree if one exists
783 * @inode: the inode which may have a disconnected dentry
784 * @dentry: a negative dentry which we want to point to the inode.
786 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
787 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
788 * and return it, else simply d_add the inode to the dentry and return NULL.
790 * This is (will be) needed in the lookup routine of any filesystem that is exportable
791 * (via knfsd) so that we can build dcache paths to directories effectively.
793 * If a dentry was found and moved, then it is returned. Otherwise NULL
794 * is returned. This matches the expected return value of ->lookup.
797 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
799 struct dentry *new = NULL;
801 if (inode && S_ISDIR(inode->i_mode)) {
802 spin_lock(&dcache_lock);
803 if (!list_empty(&inode->i_dentry)) {
804 new = list_entry(inode->i_dentry.next, struct dentry, d_alias);
805 __dget_locked(new);
806 spin_unlock(&dcache_lock);
807 d_rehash(dentry);
808 d_move(new, dentry);
809 iput(inode);
810 } else {
811 /* d_instantiate takes dcache_lock, so we do it by hand */
812 list_add(&dentry->d_alias, &inode->i_dentry);
813 dentry->d_inode = inode;
814 spin_unlock(&dcache_lock);
815 d_rehash(dentry);
817 } else
818 d_add(dentry, inode);
819 return new;
824 * d_lookup - search for a dentry
825 * @parent: parent dentry
826 * @name: qstr of name we wish to find
828 * Searches the children of the parent dentry for the name in question. If
829 * the dentry is found its reference count is incremented and the dentry
830 * is returned. The caller must use d_put to free the entry when it has
831 * finished using it. %NULL is returned on failure.
834 struct dentry * d_lookup(struct dentry * parent, struct qstr * name)
836 struct dentry * dentry;
837 spin_lock(&dcache_lock);
838 dentry = __d_lookup(parent,name);
839 if (dentry)
840 __dget_locked(dentry);
841 spin_unlock(&dcache_lock);
842 return dentry;
845 struct dentry * __d_lookup(struct dentry * parent, struct qstr * name)
848 unsigned int len = name->len;
849 unsigned int hash = name->hash;
850 const unsigned char *str = name->name;
851 struct list_head *head = d_hash(parent,hash);
852 struct list_head *tmp;
854 tmp = head->next;
855 for (;;) {
856 struct dentry * dentry = list_entry(tmp, struct dentry, d_hash);
857 if (tmp == head)
858 break;
859 tmp = tmp->next;
860 if (dentry->d_name.hash != hash)
861 continue;
862 if (dentry->d_parent != parent)
863 continue;
864 if (parent->d_op && parent->d_op->d_compare) {
865 if (parent->d_op->d_compare(parent, &dentry->d_name, name))
866 continue;
867 } else {
868 if (dentry->d_name.len != len)
869 continue;
870 if (memcmp(dentry->d_name.name, str, len))
871 continue;
873 return dentry;
875 return NULL;
879 * d_validate - verify dentry provided from insecure source
880 * @dentry: The dentry alleged to be valid child of @dparent
881 * @dparent: The parent dentry (known to be valid)
882 * @hash: Hash of the dentry
883 * @len: Length of the name
885 * An insecure source has sent us a dentry, here we verify it and dget() it.
886 * This is used by ncpfs in its readdir implementation.
887 * Zero is returned in the dentry is invalid.
890 int d_validate(struct dentry *dentry, struct dentry *dparent)
892 unsigned long dent_addr = (unsigned long) dentry;
893 unsigned long min_addr = PAGE_OFFSET;
894 unsigned long align_mask = 0x0F;
895 struct list_head *base, *lhp;
897 if (dent_addr < min_addr)
898 goto out;
899 if (dent_addr > (unsigned long)high_memory - sizeof(struct dentry))
900 goto out;
901 if (dent_addr & align_mask)
902 goto out;
903 if ((!kern_addr_valid(dent_addr)) || (!kern_addr_valid(dent_addr -1 +
904 sizeof(struct dentry))))
905 goto out;
907 if (dentry->d_parent != dparent)
908 goto out;
910 spin_lock(&dcache_lock);
911 lhp = base = d_hash(dparent, dentry->d_name.hash);
912 while ((lhp = lhp->next) != base) {
913 if (dentry == list_entry(lhp, struct dentry, d_hash)) {
914 __dget_locked(dentry);
915 spin_unlock(&dcache_lock);
916 return 1;
919 spin_unlock(&dcache_lock);
920 out:
921 return 0;
925 * When a file is deleted, we have two options:
926 * - turn this dentry into a negative dentry
927 * - unhash this dentry and free it.
929 * Usually, we want to just turn this into
930 * a negative dentry, but if anybody else is
931 * currently using the dentry or the inode
932 * we can't do that and we fall back on removing
933 * it from the hash queues and waiting for
934 * it to be deleted later when it has no users
938 * d_delete - delete a dentry
939 * @dentry: The dentry to delete
941 * Turn the dentry into a negative dentry if possible, otherwise
942 * remove it from the hash queues so it can be deleted later
945 void d_delete(struct dentry * dentry)
948 * Are we the only user?
950 spin_lock(&dcache_lock);
951 if (atomic_read(&dentry->d_count) == 1) {
952 dentry_iput(dentry);
953 return;
955 spin_unlock(&dcache_lock);
958 * If not, just drop the dentry and let dput
959 * pick up the tab..
961 d_drop(dentry);
965 * d_rehash - add an entry back to the hash
966 * @entry: dentry to add to the hash
968 * Adds a dentry to the hash according to its name.
971 void d_rehash(struct dentry * entry)
973 struct list_head *list = d_hash(entry->d_parent, entry->d_name.hash);
974 if (!list_empty(&entry->d_hash)) BUG();
975 spin_lock(&dcache_lock);
976 list_add(&entry->d_hash, list);
977 spin_unlock(&dcache_lock);
980 #define do_switch(x,y) do { \
981 __typeof__ (x) __tmp = x; \
982 x = y; y = __tmp; } while (0)
985 * When switching names, the actual string doesn't strictly have to
986 * be preserved in the target - because we're dropping the target
987 * anyway. As such, we can just do a simple memcpy() to copy over
988 * the new name before we switch.
990 * Note that we have to be a lot more careful about getting the hash
991 * switched - we have to switch the hash value properly even if it
992 * then no longer matches the actual (corrupted) string of the target.
993 * The hash value has to match the hash queue that the dentry is on..
995 static inline void switch_names(struct dentry * dentry, struct dentry * target)
997 const unsigned char *old_name, *new_name;
999 memcpy(dentry->d_iname, target->d_iname, DNAME_INLINE_LEN);
1000 old_name = target->d_name.name;
1001 new_name = dentry->d_name.name;
1002 if (old_name == target->d_iname)
1003 old_name = dentry->d_iname;
1004 if (new_name == dentry->d_iname)
1005 new_name = target->d_iname;
1006 target->d_name.name = new_name;
1007 dentry->d_name.name = old_name;
1011 * We cannibalize "target" when moving dentry on top of it,
1012 * because it's going to be thrown away anyway. We could be more
1013 * polite about it, though.
1015 * This forceful removal will result in ugly /proc output if
1016 * somebody holds a file open that got deleted due to a rename.
1017 * We could be nicer about the deleted file, and let it show
1018 * up under the name it got deleted rather than the name that
1019 * deleted it.
1021 * Careful with the hash switch. The hash switch depends on
1022 * the fact that any list-entry can be a head of the list.
1023 * Think about it.
1027 * d_move - move a dentry
1028 * @dentry: entry to move
1029 * @target: new dentry
1031 * Update the dcache to reflect the move of a file name. Negative
1032 * dcache entries should not be moved in this way.
1035 void d_move(struct dentry * dentry, struct dentry * target)
1037 if (!dentry->d_inode)
1038 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
1040 spin_lock(&dcache_lock);
1041 /* Move the dentry to the target hash queue */
1042 list_del(&dentry->d_hash);
1043 list_add(&dentry->d_hash, &target->d_hash);
1045 /* Unhash the target: dput() will then get rid of it */
1046 list_del_init(&target->d_hash);
1048 list_del(&dentry->d_child);
1049 list_del(&target->d_child);
1051 /* Switch the names.. */
1052 switch_names(dentry, target);
1053 do_switch(dentry->d_name.len, target->d_name.len);
1054 do_switch(dentry->d_name.hash, target->d_name.hash);
1055 /* ... and switch the parents */
1056 write_lock(&dparent_lock);
1057 if (IS_ROOT(dentry)) {
1058 dentry->d_parent = target->d_parent;
1059 target->d_parent = target;
1060 INIT_LIST_HEAD(&target->d_child);
1061 } else {
1062 do_switch(dentry->d_parent, target->d_parent);
1064 /* And add them back to the (new) parent lists */
1065 list_add(&target->d_child, &target->d_parent->d_subdirs);
1067 write_unlock(&dparent_lock);
1069 list_add(&dentry->d_child, &dentry->d_parent->d_subdirs);
1070 spin_unlock(&dcache_lock);
1074 * d_path - return the path of a dentry
1075 * @dentry: dentry to report
1076 * @vfsmnt: vfsmnt to which the dentry belongs
1077 * @root: root dentry
1078 * @rootmnt: vfsmnt to which the root dentry belongs
1079 * @buffer: buffer to return value in
1080 * @buflen: buffer length
1082 * Convert a dentry into an ASCII path name. If the entry has been deleted
1083 * the string " (deleted)" is appended. Note that this is ambiguous. Returns
1084 * the buffer.
1086 * "buflen" should be %PAGE_SIZE or more. Caller holds the dcache_lock.
1088 char * __d_path(struct dentry *dentry, struct vfsmount *vfsmnt,
1089 struct dentry *root, struct vfsmount *rootmnt,
1090 char *buffer, int buflen)
1092 char * end = buffer+buflen;
1093 char * retval;
1094 int namelen;
1096 *--end = '\0';
1097 buflen--;
1098 if (!IS_ROOT(dentry) && list_empty(&dentry->d_hash)) {
1099 buflen -= 10;
1100 end -= 10;
1101 memcpy(end, " (deleted)", 10);
1104 /* Get '/' right */
1105 retval = end-1;
1106 *retval = '/';
1108 for (;;) {
1109 struct dentry * parent;
1111 if (dentry == root && vfsmnt == rootmnt)
1112 break;
1113 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
1114 /* Global root? */
1115 if (vfsmnt->mnt_parent == vfsmnt)
1116 goto global_root;
1117 dentry = vfsmnt->mnt_mountpoint;
1118 vfsmnt = vfsmnt->mnt_parent;
1119 continue;
1121 parent = dentry->d_parent;
1122 namelen = dentry->d_name.len;
1123 buflen -= namelen + 1;
1124 if (buflen < 0)
1125 break;
1126 end -= namelen;
1127 memcpy(end, dentry->d_name.name, namelen);
1128 *--end = '/';
1129 retval = end;
1130 dentry = parent;
1132 return retval;
1133 global_root:
1134 namelen = dentry->d_name.len;
1135 buflen -= namelen;
1136 if (buflen >= 0) {
1137 retval -= namelen-1; /* hit the slash */
1138 memcpy(retval, dentry->d_name.name, namelen);
1140 return retval;
1144 * NOTE! The user-level library version returns a
1145 * character pointer. The kernel system call just
1146 * returns the length of the buffer filled (which
1147 * includes the ending '\0' character), or a negative
1148 * error value. So libc would do something like
1150 * char *getcwd(char * buf, size_t size)
1152 * int retval;
1154 * retval = sys_getcwd(buf, size);
1155 * if (retval >= 0)
1156 * return buf;
1157 * errno = -retval;
1158 * return NULL;
1161 asmlinkage long sys_getcwd(char *buf, unsigned long size)
1163 int error;
1164 struct vfsmount *pwdmnt, *rootmnt;
1165 struct dentry *pwd, *root;
1166 char *page = (char *) __get_free_page(GFP_USER);
1168 if (!page)
1169 return -ENOMEM;
1171 read_lock(&current->fs->lock);
1172 pwdmnt = mntget(current->fs->pwdmnt);
1173 pwd = dget(current->fs->pwd);
1174 rootmnt = mntget(current->fs->rootmnt);
1175 root = dget(current->fs->root);
1176 read_unlock(&current->fs->lock);
1178 error = -ENOENT;
1179 /* Has the current directory has been unlinked? */
1180 spin_lock(&dcache_lock);
1181 if (pwd->d_parent == pwd || !list_empty(&pwd->d_hash)) {
1182 unsigned long len;
1183 char * cwd;
1185 cwd = __d_path(pwd, pwdmnt, root, rootmnt, page, PAGE_SIZE);
1186 spin_unlock(&dcache_lock);
1188 error = -ERANGE;
1189 len = PAGE_SIZE + page - cwd;
1190 if (len <= size) {
1191 error = len;
1192 if (copy_to_user(buf, cwd, len))
1193 error = -EFAULT;
1195 } else
1196 spin_unlock(&dcache_lock);
1197 dput(pwd);
1198 mntput(pwdmnt);
1199 dput(root);
1200 mntput(rootmnt);
1201 free_page((unsigned long) page);
1202 return error;
1206 * Test whether new_dentry is a subdirectory of old_dentry.
1208 * Trivially implemented using the dcache structure
1212 * is_subdir - is new dentry a subdirectory of old_dentry
1213 * @new_dentry: new dentry
1214 * @old_dentry: old dentry
1216 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
1217 * Returns 0 otherwise.
1220 int is_subdir(struct dentry * new_dentry, struct dentry * old_dentry)
1222 int result;
1224 result = 0;
1225 for (;;) {
1226 if (new_dentry != old_dentry) {
1227 struct dentry * parent = new_dentry->d_parent;
1228 if (parent == new_dentry)
1229 break;
1230 new_dentry = parent;
1231 continue;
1233 result = 1;
1234 break;
1236 return result;
1239 void d_genocide(struct dentry *root)
1241 struct dentry *this_parent = root;
1242 struct list_head *next;
1244 spin_lock(&dcache_lock);
1245 repeat:
1246 next = this_parent->d_subdirs.next;
1247 resume:
1248 while (next != &this_parent->d_subdirs) {
1249 struct list_head *tmp = next;
1250 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1251 next = tmp->next;
1252 if (d_unhashed(dentry)||!dentry->d_inode)
1253 continue;
1254 if (!list_empty(&dentry->d_subdirs)) {
1255 this_parent = dentry;
1256 goto repeat;
1258 atomic_dec(&dentry->d_count);
1260 if (this_parent != root) {
1261 next = this_parent->d_child.next;
1262 atomic_dec(&this_parent->d_count);
1263 this_parent = this_parent->d_parent;
1264 goto resume;
1266 spin_unlock(&dcache_lock);
1270 * find_inode_number - check for dentry with name
1271 * @dir: directory to check
1272 * @name: Name to find.
1274 * Check whether a dentry already exists for the given name,
1275 * and return the inode number if it has an inode. Otherwise
1276 * 0 is returned.
1278 * This routine is used to post-process directory listings for
1279 * filesystems using synthetic inode numbers, and is necessary
1280 * to keep getcwd() working.
1283 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
1285 struct dentry * dentry;
1286 ino_t ino = 0;
1289 * Check for a fs-specific hash function. Note that we must
1290 * calculate the standard hash first, as the d_op->d_hash()
1291 * routine may choose to leave the hash value unchanged.
1293 name->hash = full_name_hash(name->name, name->len);
1294 if (dir->d_op && dir->d_op->d_hash)
1296 if (dir->d_op->d_hash(dir, name) != 0)
1297 goto out;
1300 dentry = d_lookup(dir, name);
1301 if (dentry)
1303 if (dentry->d_inode)
1304 ino = dentry->d_inode->i_ino;
1305 dput(dentry);
1307 out:
1308 return ino;
1311 static void __init dcache_init(unsigned long mempages)
1313 struct list_head *d;
1314 unsigned long order;
1315 unsigned int nr_hash;
1316 int i;
1319 * A constructor could be added for stable state like the lists,
1320 * but it is probably not worth it because of the cache nature
1321 * of the dcache.
1322 * If fragmentation is too bad then the SLAB_HWCACHE_ALIGN
1323 * flag could be removed here, to hint to the allocator that
1324 * it should not try to get multiple page regions.
1326 dentry_cache = kmem_cache_create("dentry_cache",
1327 sizeof(struct dentry),
1329 SLAB_HWCACHE_ALIGN,
1330 NULL, NULL);
1331 if (!dentry_cache)
1332 panic("Cannot create dentry cache");
1334 set_shrinker(DEFAULT_SEEKS, shrink_dcache_memory);
1336 #if PAGE_SHIFT < 13
1337 mempages >>= (13 - PAGE_SHIFT);
1338 #endif
1339 mempages *= sizeof(struct list_head);
1340 for (order = 0; ((1UL << order) << PAGE_SHIFT) < mempages; order++)
1343 do {
1344 unsigned long tmp;
1346 nr_hash = (1UL << order) * PAGE_SIZE /
1347 sizeof(struct list_head);
1348 d_hash_mask = (nr_hash - 1);
1350 tmp = nr_hash;
1351 d_hash_shift = 0;
1352 while ((tmp >>= 1UL) != 0UL)
1353 d_hash_shift++;
1355 dentry_hashtable = (struct list_head *)
1356 __get_free_pages(GFP_ATOMIC, order);
1357 } while (dentry_hashtable == NULL && --order >= 0);
1359 printk(KERN_INFO "Dentry cache hash table entries: %d (order: %ld, %ld bytes)\n",
1360 nr_hash, order, (PAGE_SIZE << order));
1362 if (!dentry_hashtable)
1363 panic("Failed to allocate dcache hash table\n");
1365 d = dentry_hashtable;
1366 i = nr_hash;
1367 do {
1368 INIT_LIST_HEAD(d);
1369 d++;
1370 i--;
1371 } while (i);
1374 /* SLAB cache for __getname() consumers */
1375 kmem_cache_t *names_cachep;
1377 /* SLAB cache for file structures */
1378 kmem_cache_t *filp_cachep;
1380 EXPORT_SYMBOL(d_genocide);
1382 extern void bdev_cache_init(void);
1383 extern void cdev_cache_init(void);
1385 void __init vfs_caches_init(unsigned long mempages)
1387 names_cachep = kmem_cache_create("names_cache",
1388 PATH_MAX, 0,
1389 SLAB_HWCACHE_ALIGN, NULL, NULL);
1390 if (!names_cachep)
1391 panic("Cannot create names SLAB cache");
1393 filp_cachep = kmem_cache_create("filp",
1394 sizeof(struct file), 0,
1395 SLAB_HWCACHE_ALIGN, NULL, NULL);
1396 if(!filp_cachep)
1397 panic("Cannot create filp SLAB cache");
1399 dcache_init(mempages);
1400 inode_init(mempages);
1401 files_init(mempages);
1402 mnt_init(mempages);
1403 bdev_cache_init();
1404 cdev_cache_init();