2 * inode.c - NTFS kernel inode handling. Part of the Linux-NTFS project.
4 * Copyright (c) 2001-2006 Anton Altaparmakov
6 * This program/include file is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as published
8 * by the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program/include file is distributed in the hope that it will be
12 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program (in the main directory of the Linux-NTFS
18 * distribution in the file COPYING); if not, write to the Free Software
19 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 #include <linux/buffer_head.h>
25 #include <linux/mount.h>
26 #include <linux/mutex.h>
27 #include <linux/pagemap.h>
28 #include <linux/quotaops.h>
29 #include <linux/slab.h>
30 #include <linux/smp_lock.h>
46 * ntfs_test_inode - compare two (possibly fake) inodes for equality
47 * @vi: vfs inode which to test
48 * @na: ntfs attribute which is being tested with
50 * Compare the ntfs attribute embedded in the ntfs specific part of the vfs
51 * inode @vi for equality with the ntfs attribute @na.
53 * If searching for the normal file/directory inode, set @na->type to AT_UNUSED.
54 * @na->name and @na->name_len are then ignored.
56 * Return 1 if the attributes match and 0 if not.
58 * NOTE: This function runs with the inode_lock spin lock held so it is not
61 int ntfs_test_inode(struct inode
*vi
, ntfs_attr
*na
)
65 if (vi
->i_ino
!= na
->mft_no
)
68 /* If !NInoAttr(ni), @vi is a normal file or directory inode. */
69 if (likely(!NInoAttr(ni
))) {
70 /* If not looking for a normal inode this is a mismatch. */
71 if (unlikely(na
->type
!= AT_UNUSED
))
74 /* A fake inode describing an attribute. */
75 if (ni
->type
!= na
->type
)
77 if (ni
->name_len
!= na
->name_len
)
79 if (na
->name_len
&& memcmp(ni
->name
, na
->name
,
80 na
->name_len
* sizeof(ntfschar
)))
88 * ntfs_init_locked_inode - initialize an inode
89 * @vi: vfs inode to initialize
90 * @na: ntfs attribute which to initialize @vi to
92 * Initialize the vfs inode @vi with the values from the ntfs attribute @na in
93 * order to enable ntfs_test_inode() to do its work.
95 * If initializing the normal file/directory inode, set @na->type to AT_UNUSED.
96 * In that case, @na->name and @na->name_len should be set to NULL and 0,
97 * respectively. Although that is not strictly necessary as
98 * ntfs_read_inode_locked() will fill them in later.
100 * Return 0 on success and -errno on error.
102 * NOTE: This function runs with the inode_lock spin lock held so it is not
103 * allowed to sleep. (Hence the GFP_ATOMIC allocation.)
105 static int ntfs_init_locked_inode(struct inode
*vi
, ntfs_attr
*na
)
107 ntfs_inode
*ni
= NTFS_I(vi
);
109 vi
->i_ino
= na
->mft_no
;
112 if (na
->type
== AT_INDEX_ALLOCATION
)
113 NInoSetMstProtected(ni
);
116 ni
->name_len
= na
->name_len
;
118 /* If initializing a normal inode, we are done. */
119 if (likely(na
->type
== AT_UNUSED
)) {
121 BUG_ON(na
->name_len
);
125 /* It is a fake inode. */
129 * We have I30 global constant as an optimization as it is the name
130 * in >99.9% of named attributes! The other <0.1% incur a GFP_ATOMIC
131 * allocation but that is ok. And most attributes are unnamed anyway,
132 * thus the fraction of named attributes with name != I30 is actually
135 if (na
->name_len
&& na
->name
!= I30
) {
139 i
= na
->name_len
* sizeof(ntfschar
);
140 ni
->name
= (ntfschar
*)kmalloc(i
+ sizeof(ntfschar
), GFP_ATOMIC
);
143 memcpy(ni
->name
, na
->name
, i
);
149 typedef int (*set_t
)(struct inode
*, void *);
150 static int ntfs_read_locked_inode(struct inode
*vi
);
151 static int ntfs_read_locked_attr_inode(struct inode
*base_vi
, struct inode
*vi
);
152 static int ntfs_read_locked_index_inode(struct inode
*base_vi
,
156 * ntfs_iget - obtain a struct inode corresponding to a specific normal inode
157 * @sb: super block of mounted volume
158 * @mft_no: mft record number / inode number to obtain
160 * Obtain the struct inode corresponding to a specific normal inode (i.e. a
161 * file or directory).
163 * If the inode is in the cache, it is just returned with an increased
164 * reference count. Otherwise, a new struct inode is allocated and initialized,
165 * and finally ntfs_read_locked_inode() is called to read in the inode and
166 * fill in the remainder of the inode structure.
168 * Return the struct inode on success. Check the return value with IS_ERR() and
169 * if true, the function failed and the error code is obtained from PTR_ERR().
171 struct inode
*ntfs_iget(struct super_block
*sb
, unsigned long mft_no
)
182 vi
= iget5_locked(sb
, mft_no
, (test_t
)ntfs_test_inode
,
183 (set_t
)ntfs_init_locked_inode
, &na
);
185 return ERR_PTR(-ENOMEM
);
189 /* If this is a freshly allocated inode, need to read it now. */
190 if (vi
->i_state
& I_NEW
) {
191 err
= ntfs_read_locked_inode(vi
);
192 unlock_new_inode(vi
);
195 * There is no point in keeping bad inodes around if the failure was
196 * due to ENOMEM. We want to be able to retry again later.
198 if (unlikely(err
== -ENOMEM
)) {
206 * ntfs_attr_iget - obtain a struct inode corresponding to an attribute
207 * @base_vi: vfs base inode containing the attribute
208 * @type: attribute type
209 * @name: Unicode name of the attribute (NULL if unnamed)
210 * @name_len: length of @name in Unicode characters (0 if unnamed)
212 * Obtain the (fake) struct inode corresponding to the attribute specified by
213 * @type, @name, and @name_len, which is present in the base mft record
214 * specified by the vfs inode @base_vi.
216 * If the attribute inode is in the cache, it is just returned with an
217 * increased reference count. Otherwise, a new struct inode is allocated and
218 * initialized, and finally ntfs_read_locked_attr_inode() is called to read the
219 * attribute and fill in the inode structure.
221 * Note, for index allocation attributes, you need to use ntfs_index_iget()
222 * instead of ntfs_attr_iget() as working with indices is a lot more complex.
224 * Return the struct inode of the attribute inode on success. Check the return
225 * value with IS_ERR() and if true, the function failed and the error code is
226 * obtained from PTR_ERR().
228 struct inode
*ntfs_attr_iget(struct inode
*base_vi
, ATTR_TYPE type
,
229 ntfschar
*name
, u32 name_len
)
235 /* Make sure no one calls ntfs_attr_iget() for indices. */
236 BUG_ON(type
== AT_INDEX_ALLOCATION
);
238 na
.mft_no
= base_vi
->i_ino
;
241 na
.name_len
= name_len
;
243 vi
= iget5_locked(base_vi
->i_sb
, na
.mft_no
, (test_t
)ntfs_test_inode
,
244 (set_t
)ntfs_init_locked_inode
, &na
);
246 return ERR_PTR(-ENOMEM
);
250 /* If this is a freshly allocated inode, need to read it now. */
251 if (vi
->i_state
& I_NEW
) {
252 err
= ntfs_read_locked_attr_inode(base_vi
, vi
);
253 unlock_new_inode(vi
);
256 * There is no point in keeping bad attribute inodes around. This also
257 * simplifies things in that we never need to check for bad attribute
268 * ntfs_index_iget - obtain a struct inode corresponding to an index
269 * @base_vi: vfs base inode containing the index related attributes
270 * @name: Unicode name of the index
271 * @name_len: length of @name in Unicode characters
273 * Obtain the (fake) struct inode corresponding to the index specified by @name
274 * and @name_len, which is present in the base mft record specified by the vfs
277 * If the index inode is in the cache, it is just returned with an increased
278 * reference count. Otherwise, a new struct inode is allocated and
279 * initialized, and finally ntfs_read_locked_index_inode() is called to read
280 * the index related attributes and fill in the inode structure.
282 * Return the struct inode of the index inode on success. Check the return
283 * value with IS_ERR() and if true, the function failed and the error code is
284 * obtained from PTR_ERR().
286 struct inode
*ntfs_index_iget(struct inode
*base_vi
, ntfschar
*name
,
293 na
.mft_no
= base_vi
->i_ino
;
294 na
.type
= AT_INDEX_ALLOCATION
;
296 na
.name_len
= name_len
;
298 vi
= iget5_locked(base_vi
->i_sb
, na
.mft_no
, (test_t
)ntfs_test_inode
,
299 (set_t
)ntfs_init_locked_inode
, &na
);
301 return ERR_PTR(-ENOMEM
);
305 /* If this is a freshly allocated inode, need to read it now. */
306 if (vi
->i_state
& I_NEW
) {
307 err
= ntfs_read_locked_index_inode(base_vi
, vi
);
308 unlock_new_inode(vi
);
311 * There is no point in keeping bad index inodes around. This also
312 * simplifies things in that we never need to check for bad index
322 struct inode
*ntfs_alloc_big_inode(struct super_block
*sb
)
326 ntfs_debug("Entering.");
327 ni
= kmem_cache_alloc(ntfs_big_inode_cache
, SLAB_NOFS
);
328 if (likely(ni
!= NULL
)) {
332 ntfs_error(sb
, "Allocation of NTFS big inode structure failed.");
336 void ntfs_destroy_big_inode(struct inode
*inode
)
338 ntfs_inode
*ni
= NTFS_I(inode
);
340 ntfs_debug("Entering.");
342 if (!atomic_dec_and_test(&ni
->count
))
344 kmem_cache_free(ntfs_big_inode_cache
, NTFS_I(inode
));
347 static inline ntfs_inode
*ntfs_alloc_extent_inode(void)
351 ntfs_debug("Entering.");
352 ni
= kmem_cache_alloc(ntfs_inode_cache
, SLAB_NOFS
);
353 if (likely(ni
!= NULL
)) {
357 ntfs_error(NULL
, "Allocation of NTFS inode structure failed.");
361 static void ntfs_destroy_extent_inode(ntfs_inode
*ni
)
363 ntfs_debug("Entering.");
365 if (!atomic_dec_and_test(&ni
->count
))
367 kmem_cache_free(ntfs_inode_cache
, ni
);
371 * The attribute runlist lock has separate locking rules from the
372 * normal runlist lock, so split the two lock-classes:
374 static struct lock_class_key attr_list_rl_lock_class
;
377 * __ntfs_init_inode - initialize ntfs specific part of an inode
378 * @sb: super block of mounted volume
379 * @ni: freshly allocated ntfs inode which to initialize
381 * Initialize an ntfs inode to defaults.
383 * NOTE: ni->mft_no, ni->state, ni->type, ni->name, and ni->name_len are left
384 * untouched. Make sure to initialize them elsewhere.
386 * Return zero on success and -ENOMEM on error.
388 void __ntfs_init_inode(struct super_block
*sb
, ntfs_inode
*ni
)
390 ntfs_debug("Entering.");
391 rwlock_init(&ni
->size_lock
);
392 ni
->initialized_size
= ni
->allocated_size
= 0;
394 atomic_set(&ni
->count
, 1);
395 ni
->vol
= NTFS_SB(sb
);
396 ntfs_init_runlist(&ni
->runlist
);
397 mutex_init(&ni
->mrec_lock
);
400 ni
->attr_list_size
= 0;
401 ni
->attr_list
= NULL
;
402 ntfs_init_runlist(&ni
->attr_list_rl
);
403 lockdep_set_class(&ni
->attr_list_rl
.lock
,
404 &attr_list_rl_lock_class
);
405 ni
->itype
.index
.bmp_ino
= NULL
;
406 ni
->itype
.index
.block_size
= 0;
407 ni
->itype
.index
.vcn_size
= 0;
408 ni
->itype
.index
.collation_rule
= 0;
409 ni
->itype
.index
.block_size_bits
= 0;
410 ni
->itype
.index
.vcn_size_bits
= 0;
411 mutex_init(&ni
->extent_lock
);
413 ni
->ext
.base_ntfs_ino
= NULL
;
417 * Extent inodes get MFT-mapped in a nested way, while the base inode
418 * is still mapped. Teach this nesting to the lock validator by creating
419 * a separate class for nested inode's mrec_lock's:
421 static struct lock_class_key extent_inode_mrec_lock_key
;
423 inline ntfs_inode
*ntfs_new_extent_inode(struct super_block
*sb
,
424 unsigned long mft_no
)
426 ntfs_inode
*ni
= ntfs_alloc_extent_inode();
428 ntfs_debug("Entering.");
429 if (likely(ni
!= NULL
)) {
430 __ntfs_init_inode(sb
, ni
);
431 lockdep_set_class(&ni
->mrec_lock
, &extent_inode_mrec_lock_key
);
433 ni
->type
= AT_UNUSED
;
441 * ntfs_is_extended_system_file - check if a file is in the $Extend directory
442 * @ctx: initialized attribute search context
444 * Search all file name attributes in the inode described by the attribute
445 * search context @ctx and check if any of the names are in the $Extend system
449 * 1: file is in $Extend directory
450 * 0: file is not in $Extend directory
451 * -errno: failed to determine if the file is in the $Extend directory
453 static int ntfs_is_extended_system_file(ntfs_attr_search_ctx
*ctx
)
457 /* Restart search. */
458 ntfs_attr_reinit_search_ctx(ctx
);
460 /* Get number of hard links. */
461 nr_links
= le16_to_cpu(ctx
->mrec
->link_count
);
463 /* Loop through all hard links. */
464 while (!(err
= ntfs_attr_lookup(AT_FILE_NAME
, NULL
, 0, 0, 0, NULL
, 0,
466 FILE_NAME_ATTR
*file_name_attr
;
467 ATTR_RECORD
*attr
= ctx
->attr
;
472 * Maximum sanity checking as we are called on an inode that
473 * we suspect might be corrupt.
475 p
= (u8
*)attr
+ le32_to_cpu(attr
->length
);
476 if (p
< (u8
*)ctx
->mrec
|| (u8
*)p
> (u8
*)ctx
->mrec
+
477 le32_to_cpu(ctx
->mrec
->bytes_in_use
)) {
479 ntfs_error(ctx
->ntfs_ino
->vol
->sb
, "Corrupt file name "
480 "attribute. You should run chkdsk.");
483 if (attr
->non_resident
) {
484 ntfs_error(ctx
->ntfs_ino
->vol
->sb
, "Non-resident file "
485 "name. You should run chkdsk.");
489 ntfs_error(ctx
->ntfs_ino
->vol
->sb
, "File name with "
490 "invalid flags. You should run "
494 if (!(attr
->data
.resident
.flags
& RESIDENT_ATTR_IS_INDEXED
)) {
495 ntfs_error(ctx
->ntfs_ino
->vol
->sb
, "Unindexed file "
496 "name. You should run chkdsk.");
499 file_name_attr
= (FILE_NAME_ATTR
*)((u8
*)attr
+
500 le16_to_cpu(attr
->data
.resident
.value_offset
));
501 p2
= (u8
*)attr
+ le32_to_cpu(attr
->data
.resident
.value_length
);
502 if (p2
< (u8
*)attr
|| p2
> p
)
503 goto err_corrupt_attr
;
504 /* This attribute is ok, but is it in the $Extend directory? */
505 if (MREF_LE(file_name_attr
->parent_directory
) == FILE_Extend
)
506 return 1; /* YES, it's an extended system file. */
508 if (unlikely(err
!= -ENOENT
))
510 if (unlikely(nr_links
)) {
511 ntfs_error(ctx
->ntfs_ino
->vol
->sb
, "Inode hard link count "
512 "doesn't match number of name attributes. You "
513 "should run chkdsk.");
516 return 0; /* NO, it is not an extended system file. */
520 * ntfs_read_locked_inode - read an inode from its device
523 * ntfs_read_locked_inode() is called from ntfs_iget() to read the inode
524 * described by @vi into memory from the device.
526 * The only fields in @vi that we need to/can look at when the function is
527 * called are i_sb, pointing to the mounted device's super block, and i_ino,
528 * the number of the inode to load.
530 * ntfs_read_locked_inode() maps, pins and locks the mft record number i_ino
531 * for reading and sets up the necessary @vi fields as well as initializing
534 * Q: What locks are held when the function is called?
535 * A: i_state has I_LOCK set, hence the inode is locked, also
536 * i_count is set to 1, so it is not going to go away
537 * i_flags is set to 0 and we have no business touching it. Only an ioctl()
538 * is allowed to write to them. We should of course be honouring them but
539 * we need to do that using the IS_* macros defined in include/linux/fs.h.
540 * In any case ntfs_read_locked_inode() has nothing to do with i_flags.
542 * Return 0 on success and -errno on error. In the error case, the inode will
543 * have had make_bad_inode() executed on it.
545 static int ntfs_read_locked_inode(struct inode
*vi
)
547 ntfs_volume
*vol
= NTFS_SB(vi
->i_sb
);
551 STANDARD_INFORMATION
*si
;
552 ntfs_attr_search_ctx
*ctx
;
555 ntfs_debug("Entering for i_ino 0x%lx.", vi
->i_ino
);
557 /* Setup the generic vfs inode parts now. */
559 /* This is the optimal IO size (for stat), not the fs block size. */
560 vi
->i_blksize
= PAGE_CACHE_SIZE
;
562 * This is for checking whether an inode has changed w.r.t. a file so
563 * that the file can be updated if necessary (compare with f_version).
567 vi
->i_uid
= vol
->uid
;
568 vi
->i_gid
= vol
->gid
;
572 * Initialize the ntfs specific part of @vi special casing
573 * FILE_MFT which we need to do at mount time.
575 if (vi
->i_ino
!= FILE_MFT
)
576 ntfs_init_big_inode(vi
);
579 m
= map_mft_record(ni
);
584 ctx
= ntfs_attr_get_search_ctx(ni
, m
);
590 if (!(m
->flags
& MFT_RECORD_IN_USE
)) {
591 ntfs_error(vi
->i_sb
, "Inode is not in use!");
594 if (m
->base_mft_record
) {
595 ntfs_error(vi
->i_sb
, "Inode is an extent inode!");
599 /* Transfer information from mft record into vfs and ntfs inodes. */
600 vi
->i_generation
= ni
->seq_no
= le16_to_cpu(m
->sequence_number
);
603 * FIXME: Keep in mind that link_count is two for files which have both
604 * a long file name and a short file name as separate entries, so if
605 * we are hiding short file names this will be too high. Either we need
606 * to account for the short file names by subtracting them or we need
607 * to make sure we delete files even though i_nlink is not zero which
608 * might be tricky due to vfs interactions. Need to think about this
609 * some more when implementing the unlink command.
611 vi
->i_nlink
= le16_to_cpu(m
->link_count
);
613 * FIXME: Reparse points can have the directory bit set even though
614 * they would be S_IFLNK. Need to deal with this further below when we
615 * implement reparse points / symbolic links but it will do for now.
616 * Also if not a directory, it could be something else, rather than
617 * a regular file. But again, will do for now.
619 /* Everyone gets all permissions. */
620 vi
->i_mode
|= S_IRWXUGO
;
621 /* If read-only, noone gets write permissions. */
623 vi
->i_mode
&= ~S_IWUGO
;
624 if (m
->flags
& MFT_RECORD_IS_DIRECTORY
) {
625 vi
->i_mode
|= S_IFDIR
;
627 * Apply the directory permissions mask set in the mount
630 vi
->i_mode
&= ~vol
->dmask
;
631 /* Things break without this kludge! */
635 vi
->i_mode
|= S_IFREG
;
636 /* Apply the file permissions mask set in the mount options. */
637 vi
->i_mode
&= ~vol
->fmask
;
640 * Find the standard information attribute in the mft record. At this
641 * stage we haven't setup the attribute list stuff yet, so this could
642 * in fact fail if the standard information is in an extent record, but
643 * I don't think this actually ever happens.
645 err
= ntfs_attr_lookup(AT_STANDARD_INFORMATION
, NULL
, 0, 0, 0, NULL
, 0,
648 if (err
== -ENOENT
) {
650 * TODO: We should be performing a hot fix here (if the
651 * recover mount option is set) by creating a new
654 ntfs_error(vi
->i_sb
, "$STANDARD_INFORMATION attribute "
660 /* Get the standard information attribute value. */
661 si
= (STANDARD_INFORMATION
*)((u8
*)a
+
662 le16_to_cpu(a
->data
.resident
.value_offset
));
664 /* Transfer information from the standard information into vi. */
666 * Note: The i_?times do not quite map perfectly onto the NTFS times,
667 * but they are close enough, and in the end it doesn't really matter
671 * mtime is the last change of the data within the file. Not changed
672 * when only metadata is changed, e.g. a rename doesn't affect mtime.
674 vi
->i_mtime
= ntfs2utc(si
->last_data_change_time
);
676 * ctime is the last change of the metadata of the file. This obviously
677 * always changes, when mtime is changed. ctime can be changed on its
678 * own, mtime is then not changed, e.g. when a file is renamed.
680 vi
->i_ctime
= ntfs2utc(si
->last_mft_change_time
);
682 * Last access to the data within the file. Not changed during a rename
683 * for example but changed whenever the file is written to.
685 vi
->i_atime
= ntfs2utc(si
->last_access_time
);
687 /* Find the attribute list attribute if present. */
688 ntfs_attr_reinit_search_ctx(ctx
);
689 err
= ntfs_attr_lookup(AT_ATTRIBUTE_LIST
, NULL
, 0, 0, 0, NULL
, 0, ctx
);
691 if (unlikely(err
!= -ENOENT
)) {
692 ntfs_error(vi
->i_sb
, "Failed to lookup attribute list "
696 } else /* if (!err) */ {
697 if (vi
->i_ino
== FILE_MFT
)
698 goto skip_attr_list_load
;
699 ntfs_debug("Attribute list found in inode 0x%lx.", vi
->i_ino
);
702 if (a
->flags
& ATTR_COMPRESSION_MASK
) {
703 ntfs_error(vi
->i_sb
, "Attribute list attribute is "
707 if (a
->flags
& ATTR_IS_ENCRYPTED
||
708 a
->flags
& ATTR_IS_SPARSE
) {
709 if (a
->non_resident
) {
710 ntfs_error(vi
->i_sb
, "Non-resident attribute "
711 "list attribute is encrypted/"
715 ntfs_warning(vi
->i_sb
, "Resident attribute list "
716 "attribute in inode 0x%lx is marked "
717 "encrypted/sparse which is not true. "
718 "However, Windows allows this and "
719 "chkdsk does not detect or correct it "
720 "so we will just ignore the invalid "
721 "flags and pretend they are not set.",
724 /* Now allocate memory for the attribute list. */
725 ni
->attr_list_size
= (u32
)ntfs_attr_size(a
);
726 ni
->attr_list
= ntfs_malloc_nofs(ni
->attr_list_size
);
727 if (!ni
->attr_list
) {
728 ntfs_error(vi
->i_sb
, "Not enough memory to allocate "
729 "buffer for attribute list.");
733 if (a
->non_resident
) {
734 NInoSetAttrListNonResident(ni
);
735 if (a
->data
.non_resident
.lowest_vcn
) {
736 ntfs_error(vi
->i_sb
, "Attribute list has non "
741 * Setup the runlist. No need for locking as we have
742 * exclusive access to the inode at this time.
744 ni
->attr_list_rl
.rl
= ntfs_mapping_pairs_decompress(vol
,
746 if (IS_ERR(ni
->attr_list_rl
.rl
)) {
747 err
= PTR_ERR(ni
->attr_list_rl
.rl
);
748 ni
->attr_list_rl
.rl
= NULL
;
749 ntfs_error(vi
->i_sb
, "Mapping pairs "
750 "decompression failed.");
753 /* Now load the attribute list. */
754 if ((err
= load_attribute_list(vol
, &ni
->attr_list_rl
,
755 ni
->attr_list
, ni
->attr_list_size
,
756 sle64_to_cpu(a
->data
.non_resident
.
757 initialized_size
)))) {
758 ntfs_error(vi
->i_sb
, "Failed to load "
759 "attribute list attribute.");
762 } else /* if (!a->non_resident) */ {
763 if ((u8
*)a
+ le16_to_cpu(a
->data
.resident
.value_offset
)
765 a
->data
.resident
.value_length
) >
766 (u8
*)ctx
->mrec
+ vol
->mft_record_size
) {
767 ntfs_error(vi
->i_sb
, "Corrupt attribute list "
771 /* Now copy the attribute list. */
772 memcpy(ni
->attr_list
, (u8
*)a
+ le16_to_cpu(
773 a
->data
.resident
.value_offset
),
775 a
->data
.resident
.value_length
));
780 * If an attribute list is present we now have the attribute list value
781 * in ntfs_ino->attr_list and it is ntfs_ino->attr_list_size bytes.
783 if (S_ISDIR(vi
->i_mode
)) {
788 u8
*ir_end
, *index_end
;
790 /* It is a directory, find index root attribute. */
791 ntfs_attr_reinit_search_ctx(ctx
);
792 err
= ntfs_attr_lookup(AT_INDEX_ROOT
, I30
, 4, CASE_SENSITIVE
,
795 if (err
== -ENOENT
) {
796 // FIXME: File is corrupt! Hot-fix with empty
797 // index root attribute if recovery option is
799 ntfs_error(vi
->i_sb
, "$INDEX_ROOT attribute "
805 /* Set up the state. */
806 if (unlikely(a
->non_resident
)) {
807 ntfs_error(vol
->sb
, "$INDEX_ROOT attribute is not "
811 /* Ensure the attribute name is placed before the value. */
812 if (unlikely(a
->name_length
&& (le16_to_cpu(a
->name_offset
) >=
813 le16_to_cpu(a
->data
.resident
.value_offset
)))) {
814 ntfs_error(vol
->sb
, "$INDEX_ROOT attribute name is "
815 "placed after the attribute value.");
819 * Compressed/encrypted index root just means that the newly
820 * created files in that directory should be created compressed/
821 * encrypted. However index root cannot be both compressed and
824 if (a
->flags
& ATTR_COMPRESSION_MASK
)
825 NInoSetCompressed(ni
);
826 if (a
->flags
& ATTR_IS_ENCRYPTED
) {
827 if (a
->flags
& ATTR_COMPRESSION_MASK
) {
828 ntfs_error(vi
->i_sb
, "Found encrypted and "
829 "compressed attribute.");
832 NInoSetEncrypted(ni
);
834 if (a
->flags
& ATTR_IS_SPARSE
)
836 ir
= (INDEX_ROOT
*)((u8
*)a
+
837 le16_to_cpu(a
->data
.resident
.value_offset
));
838 ir_end
= (u8
*)ir
+ le32_to_cpu(a
->data
.resident
.value_length
);
839 if (ir_end
> (u8
*)ctx
->mrec
+ vol
->mft_record_size
) {
840 ntfs_error(vi
->i_sb
, "$INDEX_ROOT attribute is "
844 index_end
= (u8
*)&ir
->index
+
845 le32_to_cpu(ir
->index
.index_length
);
846 if (index_end
> ir_end
) {
847 ntfs_error(vi
->i_sb
, "Directory index is corrupt.");
850 if (ir
->type
!= AT_FILE_NAME
) {
851 ntfs_error(vi
->i_sb
, "Indexed attribute is not "
855 if (ir
->collation_rule
!= COLLATION_FILE_NAME
) {
856 ntfs_error(vi
->i_sb
, "Index collation rule is not "
857 "COLLATION_FILE_NAME.");
860 ni
->itype
.index
.collation_rule
= ir
->collation_rule
;
861 ni
->itype
.index
.block_size
= le32_to_cpu(ir
->index_block_size
);
862 if (ni
->itype
.index
.block_size
&
863 (ni
->itype
.index
.block_size
- 1)) {
864 ntfs_error(vi
->i_sb
, "Index block size (%u) is not a "
866 ni
->itype
.index
.block_size
);
869 if (ni
->itype
.index
.block_size
> PAGE_CACHE_SIZE
) {
870 ntfs_error(vi
->i_sb
, "Index block size (%u) > "
871 "PAGE_CACHE_SIZE (%ld) is not "
873 ni
->itype
.index
.block_size
,
878 if (ni
->itype
.index
.block_size
< NTFS_BLOCK_SIZE
) {
879 ntfs_error(vi
->i_sb
, "Index block size (%u) < "
880 "NTFS_BLOCK_SIZE (%i) is not "
882 ni
->itype
.index
.block_size
,
887 ni
->itype
.index
.block_size_bits
=
888 ffs(ni
->itype
.index
.block_size
) - 1;
889 /* Determine the size of a vcn in the directory index. */
890 if (vol
->cluster_size
<= ni
->itype
.index
.block_size
) {
891 ni
->itype
.index
.vcn_size
= vol
->cluster_size
;
892 ni
->itype
.index
.vcn_size_bits
= vol
->cluster_size_bits
;
894 ni
->itype
.index
.vcn_size
= vol
->sector_size
;
895 ni
->itype
.index
.vcn_size_bits
= vol
->sector_size_bits
;
898 /* Setup the index allocation attribute, even if not present. */
899 NInoSetMstProtected(ni
);
900 ni
->type
= AT_INDEX_ALLOCATION
;
904 if (!(ir
->index
.flags
& LARGE_INDEX
)) {
905 /* No index allocation. */
906 vi
->i_size
= ni
->initialized_size
=
907 ni
->allocated_size
= 0;
908 /* We are done with the mft record, so we release it. */
909 ntfs_attr_put_search_ctx(ctx
);
910 unmap_mft_record(ni
);
913 goto skip_large_dir_stuff
;
914 } /* LARGE_INDEX: Index allocation present. Setup state. */
915 NInoSetIndexAllocPresent(ni
);
916 /* Find index allocation attribute. */
917 ntfs_attr_reinit_search_ctx(ctx
);
918 err
= ntfs_attr_lookup(AT_INDEX_ALLOCATION
, I30
, 4,
919 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
922 ntfs_error(vi
->i_sb
, "$INDEX_ALLOCATION "
923 "attribute is not present but "
924 "$INDEX_ROOT indicated it is.");
926 ntfs_error(vi
->i_sb
, "Failed to lookup "
932 if (!a
->non_resident
) {
933 ntfs_error(vi
->i_sb
, "$INDEX_ALLOCATION attribute "
938 * Ensure the attribute name is placed before the mapping pairs
941 if (unlikely(a
->name_length
&& (le16_to_cpu(a
->name_offset
) >=
943 a
->data
.non_resident
.mapping_pairs_offset
)))) {
944 ntfs_error(vol
->sb
, "$INDEX_ALLOCATION attribute name "
945 "is placed after the mapping pairs "
949 if (a
->flags
& ATTR_IS_ENCRYPTED
) {
950 ntfs_error(vi
->i_sb
, "$INDEX_ALLOCATION attribute "
954 if (a
->flags
& ATTR_IS_SPARSE
) {
955 ntfs_error(vi
->i_sb
, "$INDEX_ALLOCATION attribute "
959 if (a
->flags
& ATTR_COMPRESSION_MASK
) {
960 ntfs_error(vi
->i_sb
, "$INDEX_ALLOCATION attribute "
964 if (a
->data
.non_resident
.lowest_vcn
) {
965 ntfs_error(vi
->i_sb
, "First extent of "
966 "$INDEX_ALLOCATION attribute has non "
970 vi
->i_size
= sle64_to_cpu(a
->data
.non_resident
.data_size
);
971 ni
->initialized_size
= sle64_to_cpu(
972 a
->data
.non_resident
.initialized_size
);
973 ni
->allocated_size
= sle64_to_cpu(
974 a
->data
.non_resident
.allocated_size
);
976 * We are done with the mft record, so we release it. Otherwise
977 * we would deadlock in ntfs_attr_iget().
979 ntfs_attr_put_search_ctx(ctx
);
980 unmap_mft_record(ni
);
983 /* Get the index bitmap attribute inode. */
984 bvi
= ntfs_attr_iget(vi
, AT_BITMAP
, I30
, 4);
986 ntfs_error(vi
->i_sb
, "Failed to get bitmap attribute.");
990 ni
->itype
.index
.bmp_ino
= bvi
;
992 if (NInoCompressed(bni
) || NInoEncrypted(bni
) ||
994 ntfs_error(vi
->i_sb
, "$BITMAP attribute is compressed "
995 "and/or encrypted and/or sparse.");
998 /* Consistency check bitmap size vs. index allocation size. */
999 bvi_size
= i_size_read(bvi
);
1000 if ((bvi_size
<< 3) < (vi
->i_size
>>
1001 ni
->itype
.index
.block_size_bits
)) {
1002 ntfs_error(vi
->i_sb
, "Index bitmap too small (0x%llx) "
1003 "for index allocation (0x%llx).",
1004 bvi_size
<< 3, vi
->i_size
);
1007 skip_large_dir_stuff
:
1008 /* Setup the operations for this inode. */
1009 vi
->i_op
= &ntfs_dir_inode_ops
;
1010 vi
->i_fop
= &ntfs_dir_ops
;
1013 ntfs_attr_reinit_search_ctx(ctx
);
1015 /* Setup the data attribute, even if not present. */
1020 /* Find first extent of the unnamed data attribute. */
1021 err
= ntfs_attr_lookup(AT_DATA
, NULL
, 0, 0, 0, NULL
, 0, ctx
);
1022 if (unlikely(err
)) {
1023 vi
->i_size
= ni
->initialized_size
=
1024 ni
->allocated_size
= 0;
1025 if (err
!= -ENOENT
) {
1026 ntfs_error(vi
->i_sb
, "Failed to lookup $DATA "
1031 * FILE_Secure does not have an unnamed $DATA
1032 * attribute, so we special case it here.
1034 if (vi
->i_ino
== FILE_Secure
)
1035 goto no_data_attr_special_case
;
1037 * Most if not all the system files in the $Extend
1038 * system directory do not have unnamed data
1039 * attributes so we need to check if the parent
1040 * directory of the file is FILE_Extend and if it is
1041 * ignore this error. To do this we need to get the
1042 * name of this inode from the mft record as the name
1043 * contains the back reference to the parent directory.
1045 if (ntfs_is_extended_system_file(ctx
) > 0)
1046 goto no_data_attr_special_case
;
1047 // FIXME: File is corrupt! Hot-fix with empty data
1048 // attribute if recovery option is set.
1049 ntfs_error(vi
->i_sb
, "$DATA attribute is missing.");
1053 /* Setup the state. */
1054 if (a
->flags
& (ATTR_COMPRESSION_MASK
| ATTR_IS_SPARSE
)) {
1055 if (a
->flags
& ATTR_COMPRESSION_MASK
) {
1056 NInoSetCompressed(ni
);
1057 if (vol
->cluster_size
> 4096) {
1058 ntfs_error(vi
->i_sb
, "Found "
1059 "compressed data but "
1062 "cluster size (%i) > "
1067 if ((a
->flags
& ATTR_COMPRESSION_MASK
)
1068 != ATTR_IS_COMPRESSED
) {
1069 ntfs_error(vi
->i_sb
, "Found unknown "
1070 "compression method "
1071 "or corrupt file.");
1075 if (a
->flags
& ATTR_IS_SPARSE
)
1078 if (a
->flags
& ATTR_IS_ENCRYPTED
) {
1079 if (NInoCompressed(ni
)) {
1080 ntfs_error(vi
->i_sb
, "Found encrypted and "
1081 "compressed data.");
1084 NInoSetEncrypted(ni
);
1086 if (a
->non_resident
) {
1087 NInoSetNonResident(ni
);
1088 if (NInoCompressed(ni
) || NInoSparse(ni
)) {
1089 if (NInoCompressed(ni
) && a
->data
.non_resident
.
1090 compression_unit
!= 4) {
1091 ntfs_error(vi
->i_sb
, "Found "
1093 "compression unit (%u "
1095 "Cannot handle this.",
1096 a
->data
.non_resident
.
1101 if (a
->data
.non_resident
.compression_unit
) {
1102 ni
->itype
.compressed
.block_size
= 1U <<
1103 (a
->data
.non_resident
.
1105 vol
->cluster_size_bits
);
1106 ni
->itype
.compressed
.block_size_bits
=
1110 ni
->itype
.compressed
.block_clusters
=
1115 ni
->itype
.compressed
.block_size
= 0;
1116 ni
->itype
.compressed
.block_size_bits
=
1118 ni
->itype
.compressed
.block_clusters
=
1121 ni
->itype
.compressed
.size
= sle64_to_cpu(
1122 a
->data
.non_resident
.
1125 if (a
->data
.non_resident
.lowest_vcn
) {
1126 ntfs_error(vi
->i_sb
, "First extent of $DATA "
1127 "attribute has non zero "
1131 vi
->i_size
= sle64_to_cpu(
1132 a
->data
.non_resident
.data_size
);
1133 ni
->initialized_size
= sle64_to_cpu(
1134 a
->data
.non_resident
.initialized_size
);
1135 ni
->allocated_size
= sle64_to_cpu(
1136 a
->data
.non_resident
.allocated_size
);
1137 } else { /* Resident attribute. */
1138 vi
->i_size
= ni
->initialized_size
= le32_to_cpu(
1139 a
->data
.resident
.value_length
);
1140 ni
->allocated_size
= le32_to_cpu(a
->length
) -
1142 a
->data
.resident
.value_offset
);
1143 if (vi
->i_size
> ni
->allocated_size
) {
1144 ntfs_error(vi
->i_sb
, "Resident data attribute "
1145 "is corrupt (size exceeds "
1150 no_data_attr_special_case
:
1151 /* We are done with the mft record, so we release it. */
1152 ntfs_attr_put_search_ctx(ctx
);
1153 unmap_mft_record(ni
);
1156 /* Setup the operations for this inode. */
1157 vi
->i_op
= &ntfs_file_inode_ops
;
1158 vi
->i_fop
= &ntfs_file_ops
;
1160 if (NInoMstProtected(ni
))
1161 vi
->i_mapping
->a_ops
= &ntfs_mst_aops
;
1163 vi
->i_mapping
->a_ops
= &ntfs_aops
;
1165 * The number of 512-byte blocks used on disk (for stat). This is in so
1166 * far inaccurate as it doesn't account for any named streams or other
1167 * special non-resident attributes, but that is how Windows works, too,
1168 * so we are at least consistent with Windows, if not entirely
1169 * consistent with the Linux Way. Doing it the Linux Way would cause a
1170 * significant slowdown as it would involve iterating over all
1171 * attributes in the mft record and adding the allocated/compressed
1172 * sizes of all non-resident attributes present to give us the Linux
1173 * correct size that should go into i_blocks (after division by 512).
1175 if (S_ISREG(vi
->i_mode
) && (NInoCompressed(ni
) || NInoSparse(ni
)))
1176 vi
->i_blocks
= ni
->itype
.compressed
.size
>> 9;
1178 vi
->i_blocks
= ni
->allocated_size
>> 9;
1179 ntfs_debug("Done.");
1186 ntfs_attr_put_search_ctx(ctx
);
1188 unmap_mft_record(ni
);
1190 ntfs_error(vol
->sb
, "Failed with error code %i. Marking corrupt "
1191 "inode 0x%lx as bad. Run chkdsk.", err
, vi
->i_ino
);
1193 if (err
!= -EOPNOTSUPP
&& err
!= -ENOMEM
)
1199 * ntfs_read_locked_attr_inode - read an attribute inode from its base inode
1200 * @base_vi: base inode
1201 * @vi: attribute inode to read
1203 * ntfs_read_locked_attr_inode() is called from ntfs_attr_iget() to read the
1204 * attribute inode described by @vi into memory from the base mft record
1205 * described by @base_ni.
1207 * ntfs_read_locked_attr_inode() maps, pins and locks the base inode for
1208 * reading and looks up the attribute described by @vi before setting up the
1209 * necessary fields in @vi as well as initializing the ntfs inode.
1211 * Q: What locks are held when the function is called?
1212 * A: i_state has I_LOCK set, hence the inode is locked, also
1213 * i_count is set to 1, so it is not going to go away
1215 * Return 0 on success and -errno on error. In the error case, the inode will
1216 * have had make_bad_inode() executed on it.
1218 * Note this cannot be called for AT_INDEX_ALLOCATION.
1220 static int ntfs_read_locked_attr_inode(struct inode
*base_vi
, struct inode
*vi
)
1222 ntfs_volume
*vol
= NTFS_SB(vi
->i_sb
);
1223 ntfs_inode
*ni
, *base_ni
;
1226 ntfs_attr_search_ctx
*ctx
;
1229 ntfs_debug("Entering for i_ino 0x%lx.", vi
->i_ino
);
1231 ntfs_init_big_inode(vi
);
1234 base_ni
= NTFS_I(base_vi
);
1236 /* Just mirror the values from the base inode. */
1237 vi
->i_blksize
= base_vi
->i_blksize
;
1238 vi
->i_version
= base_vi
->i_version
;
1239 vi
->i_uid
= base_vi
->i_uid
;
1240 vi
->i_gid
= base_vi
->i_gid
;
1241 vi
->i_nlink
= base_vi
->i_nlink
;
1242 vi
->i_mtime
= base_vi
->i_mtime
;
1243 vi
->i_ctime
= base_vi
->i_ctime
;
1244 vi
->i_atime
= base_vi
->i_atime
;
1245 vi
->i_generation
= ni
->seq_no
= base_ni
->seq_no
;
1247 /* Set inode type to zero but preserve permissions. */
1248 vi
->i_mode
= base_vi
->i_mode
& ~S_IFMT
;
1250 m
= map_mft_record(base_ni
);
1255 ctx
= ntfs_attr_get_search_ctx(base_ni
, m
);
1260 /* Find the attribute. */
1261 err
= ntfs_attr_lookup(ni
->type
, ni
->name
, ni
->name_len
,
1262 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
1266 if (a
->flags
& (ATTR_COMPRESSION_MASK
| ATTR_IS_SPARSE
)) {
1267 if (a
->flags
& ATTR_COMPRESSION_MASK
) {
1268 NInoSetCompressed(ni
);
1269 if ((ni
->type
!= AT_DATA
) || (ni
->type
== AT_DATA
&&
1271 ntfs_error(vi
->i_sb
, "Found compressed "
1272 "non-data or named data "
1273 "attribute. Please report "
1274 "you saw this message to "
1275 "linux-ntfs-dev@lists."
1279 if (vol
->cluster_size
> 4096) {
1280 ntfs_error(vi
->i_sb
, "Found compressed "
1281 "attribute but compression is "
1282 "disabled due to cluster size "
1287 if ((a
->flags
& ATTR_COMPRESSION_MASK
) !=
1288 ATTR_IS_COMPRESSED
) {
1289 ntfs_error(vi
->i_sb
, "Found unknown "
1290 "compression method.");
1295 * The compressed/sparse flag set in an index root just means
1296 * to compress all files.
1298 if (NInoMstProtected(ni
) && ni
->type
!= AT_INDEX_ROOT
) {
1299 ntfs_error(vi
->i_sb
, "Found mst protected attribute "
1300 "but the attribute is %s. Please "
1301 "report you saw this message to "
1302 "linux-ntfs-dev@lists.sourceforge.net",
1303 NInoCompressed(ni
) ? "compressed" :
1307 if (a
->flags
& ATTR_IS_SPARSE
)
1310 if (a
->flags
& ATTR_IS_ENCRYPTED
) {
1311 if (NInoCompressed(ni
)) {
1312 ntfs_error(vi
->i_sb
, "Found encrypted and compressed "
1317 * The encryption flag set in an index root just means to
1318 * encrypt all files.
1320 if (NInoMstProtected(ni
) && ni
->type
!= AT_INDEX_ROOT
) {
1321 ntfs_error(vi
->i_sb
, "Found mst protected attribute "
1322 "but the attribute is encrypted. "
1323 "Please report you saw this message "
1324 "to linux-ntfs-dev@lists.sourceforge."
1328 if (ni
->type
!= AT_DATA
) {
1329 ntfs_error(vi
->i_sb
, "Found encrypted non-data "
1333 NInoSetEncrypted(ni
);
1335 if (!a
->non_resident
) {
1336 /* Ensure the attribute name is placed before the value. */
1337 if (unlikely(a
->name_length
&& (le16_to_cpu(a
->name_offset
) >=
1338 le16_to_cpu(a
->data
.resident
.value_offset
)))) {
1339 ntfs_error(vol
->sb
, "Attribute name is placed after "
1340 "the attribute value.");
1343 if (NInoMstProtected(ni
)) {
1344 ntfs_error(vi
->i_sb
, "Found mst protected attribute "
1345 "but the attribute is resident. "
1346 "Please report you saw this message to "
1347 "linux-ntfs-dev@lists.sourceforge.net");
1350 vi
->i_size
= ni
->initialized_size
= le32_to_cpu(
1351 a
->data
.resident
.value_length
);
1352 ni
->allocated_size
= le32_to_cpu(a
->length
) -
1353 le16_to_cpu(a
->data
.resident
.value_offset
);
1354 if (vi
->i_size
> ni
->allocated_size
) {
1355 ntfs_error(vi
->i_sb
, "Resident attribute is corrupt "
1356 "(size exceeds allocation).");
1360 NInoSetNonResident(ni
);
1362 * Ensure the attribute name is placed before the mapping pairs
1365 if (unlikely(a
->name_length
&& (le16_to_cpu(a
->name_offset
) >=
1367 a
->data
.non_resident
.mapping_pairs_offset
)))) {
1368 ntfs_error(vol
->sb
, "Attribute name is placed after "
1369 "the mapping pairs array.");
1372 if (NInoCompressed(ni
) || NInoSparse(ni
)) {
1373 if (NInoCompressed(ni
) && a
->data
.non_resident
.
1374 compression_unit
!= 4) {
1375 ntfs_error(vi
->i_sb
, "Found non-standard "
1376 "compression unit (%u instead "
1377 "of 4). Cannot handle this.",
1378 a
->data
.non_resident
.
1383 if (a
->data
.non_resident
.compression_unit
) {
1384 ni
->itype
.compressed
.block_size
= 1U <<
1385 (a
->data
.non_resident
.
1387 vol
->cluster_size_bits
);
1388 ni
->itype
.compressed
.block_size_bits
=
1389 ffs(ni
->itype
.compressed
.
1391 ni
->itype
.compressed
.block_clusters
= 1U <<
1392 a
->data
.non_resident
.
1395 ni
->itype
.compressed
.block_size
= 0;
1396 ni
->itype
.compressed
.block_size_bits
= 0;
1397 ni
->itype
.compressed
.block_clusters
= 0;
1399 ni
->itype
.compressed
.size
= sle64_to_cpu(
1400 a
->data
.non_resident
.compressed_size
);
1402 if (a
->data
.non_resident
.lowest_vcn
) {
1403 ntfs_error(vi
->i_sb
, "First extent of attribute has "
1404 "non-zero lowest_vcn.");
1407 vi
->i_size
= sle64_to_cpu(a
->data
.non_resident
.data_size
);
1408 ni
->initialized_size
= sle64_to_cpu(
1409 a
->data
.non_resident
.initialized_size
);
1410 ni
->allocated_size
= sle64_to_cpu(
1411 a
->data
.non_resident
.allocated_size
);
1413 /* Setup the operations for this attribute inode. */
1416 if (NInoMstProtected(ni
))
1417 vi
->i_mapping
->a_ops
= &ntfs_mst_aops
;
1419 vi
->i_mapping
->a_ops
= &ntfs_aops
;
1420 if ((NInoCompressed(ni
) || NInoSparse(ni
)) && ni
->type
!= AT_INDEX_ROOT
)
1421 vi
->i_blocks
= ni
->itype
.compressed
.size
>> 9;
1423 vi
->i_blocks
= ni
->allocated_size
>> 9;
1425 * Make sure the base inode does not go away and attach it to the
1429 ni
->ext
.base_ntfs_ino
= base_ni
;
1430 ni
->nr_extents
= -1;
1432 ntfs_attr_put_search_ctx(ctx
);
1433 unmap_mft_record(base_ni
);
1435 ntfs_debug("Done.");
1442 ntfs_attr_put_search_ctx(ctx
);
1443 unmap_mft_record(base_ni
);
1445 ntfs_error(vol
->sb
, "Failed with error code %i while reading attribute "
1446 "inode (mft_no 0x%lx, type 0x%x, name_len %i). "
1447 "Marking corrupt inode and base inode 0x%lx as bad. "
1448 "Run chkdsk.", err
, vi
->i_ino
, ni
->type
, ni
->name_len
,
1457 * ntfs_read_locked_index_inode - read an index inode from its base inode
1458 * @base_vi: base inode
1459 * @vi: index inode to read
1461 * ntfs_read_locked_index_inode() is called from ntfs_index_iget() to read the
1462 * index inode described by @vi into memory from the base mft record described
1465 * ntfs_read_locked_index_inode() maps, pins and locks the base inode for
1466 * reading and looks up the attributes relating to the index described by @vi
1467 * before setting up the necessary fields in @vi as well as initializing the
1470 * Note, index inodes are essentially attribute inodes (NInoAttr() is true)
1471 * with the attribute type set to AT_INDEX_ALLOCATION. Apart from that, they
1472 * are setup like directory inodes since directories are a special case of
1473 * indices ao they need to be treated in much the same way. Most importantly,
1474 * for small indices the index allocation attribute might not actually exist.
1475 * However, the index root attribute always exists but this does not need to
1476 * have an inode associated with it and this is why we define a new inode type
1477 * index. Also, like for directories, we need to have an attribute inode for
1478 * the bitmap attribute corresponding to the index allocation attribute and we
1479 * can store this in the appropriate field of the inode, just like we do for
1480 * normal directory inodes.
1482 * Q: What locks are held when the function is called?
1483 * A: i_state has I_LOCK set, hence the inode is locked, also
1484 * i_count is set to 1, so it is not going to go away
1486 * Return 0 on success and -errno on error. In the error case, the inode will
1487 * have had make_bad_inode() executed on it.
1489 static int ntfs_read_locked_index_inode(struct inode
*base_vi
, struct inode
*vi
)
1492 ntfs_volume
*vol
= NTFS_SB(vi
->i_sb
);
1493 ntfs_inode
*ni
, *base_ni
, *bni
;
1497 ntfs_attr_search_ctx
*ctx
;
1499 u8
*ir_end
, *index_end
;
1502 ntfs_debug("Entering for i_ino 0x%lx.", vi
->i_ino
);
1503 ntfs_init_big_inode(vi
);
1505 base_ni
= NTFS_I(base_vi
);
1506 /* Just mirror the values from the base inode. */
1507 vi
->i_blksize
= base_vi
->i_blksize
;
1508 vi
->i_version
= base_vi
->i_version
;
1509 vi
->i_uid
= base_vi
->i_uid
;
1510 vi
->i_gid
= base_vi
->i_gid
;
1511 vi
->i_nlink
= base_vi
->i_nlink
;
1512 vi
->i_mtime
= base_vi
->i_mtime
;
1513 vi
->i_ctime
= base_vi
->i_ctime
;
1514 vi
->i_atime
= base_vi
->i_atime
;
1515 vi
->i_generation
= ni
->seq_no
= base_ni
->seq_no
;
1516 /* Set inode type to zero but preserve permissions. */
1517 vi
->i_mode
= base_vi
->i_mode
& ~S_IFMT
;
1518 /* Map the mft record for the base inode. */
1519 m
= map_mft_record(base_ni
);
1524 ctx
= ntfs_attr_get_search_ctx(base_ni
, m
);
1529 /* Find the index root attribute. */
1530 err
= ntfs_attr_lookup(AT_INDEX_ROOT
, ni
->name
, ni
->name_len
,
1531 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
1532 if (unlikely(err
)) {
1534 ntfs_error(vi
->i_sb
, "$INDEX_ROOT attribute is "
1539 /* Set up the state. */
1540 if (unlikely(a
->non_resident
)) {
1541 ntfs_error(vol
->sb
, "$INDEX_ROOT attribute is not resident.");
1544 /* Ensure the attribute name is placed before the value. */
1545 if (unlikely(a
->name_length
&& (le16_to_cpu(a
->name_offset
) >=
1546 le16_to_cpu(a
->data
.resident
.value_offset
)))) {
1547 ntfs_error(vol
->sb
, "$INDEX_ROOT attribute name is placed "
1548 "after the attribute value.");
1552 * Compressed/encrypted/sparse index root is not allowed, except for
1553 * directories of course but those are not dealt with here.
1555 if (a
->flags
& (ATTR_COMPRESSION_MASK
| ATTR_IS_ENCRYPTED
|
1557 ntfs_error(vi
->i_sb
, "Found compressed/encrypted/sparse index "
1561 ir
= (INDEX_ROOT
*)((u8
*)a
+ le16_to_cpu(a
->data
.resident
.value_offset
));
1562 ir_end
= (u8
*)ir
+ le32_to_cpu(a
->data
.resident
.value_length
);
1563 if (ir_end
> (u8
*)ctx
->mrec
+ vol
->mft_record_size
) {
1564 ntfs_error(vi
->i_sb
, "$INDEX_ROOT attribute is corrupt.");
1567 index_end
= (u8
*)&ir
->index
+ le32_to_cpu(ir
->index
.index_length
);
1568 if (index_end
> ir_end
) {
1569 ntfs_error(vi
->i_sb
, "Index is corrupt.");
1573 ntfs_error(vi
->i_sb
, "Index type is not 0 (type is 0x%x).",
1574 le32_to_cpu(ir
->type
));
1577 ni
->itype
.index
.collation_rule
= ir
->collation_rule
;
1578 ntfs_debug("Index collation rule is 0x%x.",
1579 le32_to_cpu(ir
->collation_rule
));
1580 ni
->itype
.index
.block_size
= le32_to_cpu(ir
->index_block_size
);
1581 if (ni
->itype
.index
.block_size
& (ni
->itype
.index
.block_size
- 1)) {
1582 ntfs_error(vi
->i_sb
, "Index block size (%u) is not a power of "
1583 "two.", ni
->itype
.index
.block_size
);
1586 if (ni
->itype
.index
.block_size
> PAGE_CACHE_SIZE
) {
1587 ntfs_error(vi
->i_sb
, "Index block size (%u) > PAGE_CACHE_SIZE "
1588 "(%ld) is not supported. Sorry.",
1589 ni
->itype
.index
.block_size
, PAGE_CACHE_SIZE
);
1593 if (ni
->itype
.index
.block_size
< NTFS_BLOCK_SIZE
) {
1594 ntfs_error(vi
->i_sb
, "Index block size (%u) < NTFS_BLOCK_SIZE "
1595 "(%i) is not supported. Sorry.",
1596 ni
->itype
.index
.block_size
, NTFS_BLOCK_SIZE
);
1600 ni
->itype
.index
.block_size_bits
= ffs(ni
->itype
.index
.block_size
) - 1;
1601 /* Determine the size of a vcn in the index. */
1602 if (vol
->cluster_size
<= ni
->itype
.index
.block_size
) {
1603 ni
->itype
.index
.vcn_size
= vol
->cluster_size
;
1604 ni
->itype
.index
.vcn_size_bits
= vol
->cluster_size_bits
;
1606 ni
->itype
.index
.vcn_size
= vol
->sector_size
;
1607 ni
->itype
.index
.vcn_size_bits
= vol
->sector_size_bits
;
1609 /* Check for presence of index allocation attribute. */
1610 if (!(ir
->index
.flags
& LARGE_INDEX
)) {
1611 /* No index allocation. */
1612 vi
->i_size
= ni
->initialized_size
= ni
->allocated_size
= 0;
1613 /* We are done with the mft record, so we release it. */
1614 ntfs_attr_put_search_ctx(ctx
);
1615 unmap_mft_record(base_ni
);
1618 goto skip_large_index_stuff
;
1619 } /* LARGE_INDEX: Index allocation present. Setup state. */
1620 NInoSetIndexAllocPresent(ni
);
1621 /* Find index allocation attribute. */
1622 ntfs_attr_reinit_search_ctx(ctx
);
1623 err
= ntfs_attr_lookup(AT_INDEX_ALLOCATION
, ni
->name
, ni
->name_len
,
1624 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
1625 if (unlikely(err
)) {
1627 ntfs_error(vi
->i_sb
, "$INDEX_ALLOCATION attribute is "
1628 "not present but $INDEX_ROOT "
1629 "indicated it is.");
1631 ntfs_error(vi
->i_sb
, "Failed to lookup "
1632 "$INDEX_ALLOCATION attribute.");
1636 if (!a
->non_resident
) {
1637 ntfs_error(vi
->i_sb
, "$INDEX_ALLOCATION attribute is "
1642 * Ensure the attribute name is placed before the mapping pairs array.
1644 if (unlikely(a
->name_length
&& (le16_to_cpu(a
->name_offset
) >=
1646 a
->data
.non_resident
.mapping_pairs_offset
)))) {
1647 ntfs_error(vol
->sb
, "$INDEX_ALLOCATION attribute name is "
1648 "placed after the mapping pairs array.");
1651 if (a
->flags
& ATTR_IS_ENCRYPTED
) {
1652 ntfs_error(vi
->i_sb
, "$INDEX_ALLOCATION attribute is "
1656 if (a
->flags
& ATTR_IS_SPARSE
) {
1657 ntfs_error(vi
->i_sb
, "$INDEX_ALLOCATION attribute is sparse.");
1660 if (a
->flags
& ATTR_COMPRESSION_MASK
) {
1661 ntfs_error(vi
->i_sb
, "$INDEX_ALLOCATION attribute is "
1665 if (a
->data
.non_resident
.lowest_vcn
) {
1666 ntfs_error(vi
->i_sb
, "First extent of $INDEX_ALLOCATION "
1667 "attribute has non zero lowest_vcn.");
1670 vi
->i_size
= sle64_to_cpu(a
->data
.non_resident
.data_size
);
1671 ni
->initialized_size
= sle64_to_cpu(
1672 a
->data
.non_resident
.initialized_size
);
1673 ni
->allocated_size
= sle64_to_cpu(a
->data
.non_resident
.allocated_size
);
1675 * We are done with the mft record, so we release it. Otherwise
1676 * we would deadlock in ntfs_attr_iget().
1678 ntfs_attr_put_search_ctx(ctx
);
1679 unmap_mft_record(base_ni
);
1682 /* Get the index bitmap attribute inode. */
1683 bvi
= ntfs_attr_iget(base_vi
, AT_BITMAP
, ni
->name
, ni
->name_len
);
1685 ntfs_error(vi
->i_sb
, "Failed to get bitmap attribute.");
1690 if (NInoCompressed(bni
) || NInoEncrypted(bni
) ||
1692 ntfs_error(vi
->i_sb
, "$BITMAP attribute is compressed and/or "
1693 "encrypted and/or sparse.");
1694 goto iput_unm_err_out
;
1696 /* Consistency check bitmap size vs. index allocation size. */
1697 bvi_size
= i_size_read(bvi
);
1698 if ((bvi_size
<< 3) < (vi
->i_size
>> ni
->itype
.index
.block_size_bits
)) {
1699 ntfs_error(vi
->i_sb
, "Index bitmap too small (0x%llx) for "
1700 "index allocation (0x%llx).", bvi_size
<< 3,
1702 goto iput_unm_err_out
;
1704 ni
->itype
.index
.bmp_ino
= bvi
;
1705 skip_large_index_stuff
:
1706 /* Setup the operations for this index inode. */
1709 vi
->i_mapping
->a_ops
= &ntfs_mst_aops
;
1710 vi
->i_blocks
= ni
->allocated_size
>> 9;
1712 * Make sure the base inode doesn't go away and attach it to the
1716 ni
->ext
.base_ntfs_ino
= base_ni
;
1717 ni
->nr_extents
= -1;
1719 ntfs_debug("Done.");
1728 ntfs_attr_put_search_ctx(ctx
);
1730 unmap_mft_record(base_ni
);
1732 ntfs_error(vi
->i_sb
, "Failed with error code %i while reading index "
1733 "inode (mft_no 0x%lx, name_len %i.", err
, vi
->i_ino
,
1736 if (err
!= -EOPNOTSUPP
&& err
!= -ENOMEM
)
1742 * The MFT inode has special locking, so teach the lock validator
1743 * about this by splitting off the locking rules of the MFT from
1744 * the locking rules of other inodes. The MFT inode can never be
1745 * accessed from the VFS side (or even internally), only by the
1746 * map_mft functions.
1748 static struct lock_class_key mft_ni_runlist_lock_key
, mft_ni_mrec_lock_key
;
1751 * ntfs_read_inode_mount - special read_inode for mount time use only
1752 * @vi: inode to read
1754 * Read inode FILE_MFT at mount time, only called with super_block lock
1755 * held from within the read_super() code path.
1757 * This function exists because when it is called the page cache for $MFT/$DATA
1758 * is not initialized and hence we cannot get at the contents of mft records
1759 * by calling map_mft_record*().
1761 * Further it needs to cope with the circular references problem, i.e. cannot
1762 * load any attributes other than $ATTRIBUTE_LIST until $DATA is loaded, because
1763 * we do not know where the other extent mft records are yet and again, because
1764 * we cannot call map_mft_record*() yet. Obviously this applies only when an
1765 * attribute list is actually present in $MFT inode.
1767 * We solve these problems by starting with the $DATA attribute before anything
1768 * else and iterating using ntfs_attr_lookup($DATA) over all extents. As each
1769 * extent is found, we ntfs_mapping_pairs_decompress() including the implied
1770 * ntfs_runlists_merge(). Each step of the iteration necessarily provides
1771 * sufficient information for the next step to complete.
1773 * This should work but there are two possible pit falls (see inline comments
1774 * below), but only time will tell if they are real pits or just smoke...
1776 int ntfs_read_inode_mount(struct inode
*vi
)
1778 VCN next_vcn
, last_vcn
, highest_vcn
;
1780 struct super_block
*sb
= vi
->i_sb
;
1781 ntfs_volume
*vol
= NTFS_SB(sb
);
1782 struct buffer_head
*bh
;
1784 MFT_RECORD
*m
= NULL
;
1786 ntfs_attr_search_ctx
*ctx
;
1787 unsigned int i
, nr_blocks
;
1790 ntfs_debug("Entering.");
1792 /* Initialize the ntfs specific part of @vi. */
1793 ntfs_init_big_inode(vi
);
1797 /* Setup the data attribute. It is special as it is mst protected. */
1798 NInoSetNonResident(ni
);
1799 NInoSetMstProtected(ni
);
1800 NInoSetSparseDisabled(ni
);
1805 * This sets up our little cheat allowing us to reuse the async read io
1806 * completion handler for directories.
1808 ni
->itype
.index
.block_size
= vol
->mft_record_size
;
1809 ni
->itype
.index
.block_size_bits
= vol
->mft_record_size_bits
;
1811 /* Very important! Needed to be able to call map_mft_record*(). */
1814 /* Allocate enough memory to read the first mft record. */
1815 if (vol
->mft_record_size
> 64 * 1024) {
1816 ntfs_error(sb
, "Unsupported mft record size %i (max 64kiB).",
1817 vol
->mft_record_size
);
1820 i
= vol
->mft_record_size
;
1821 if (i
< sb
->s_blocksize
)
1822 i
= sb
->s_blocksize
;
1823 m
= (MFT_RECORD
*)ntfs_malloc_nofs(i
);
1825 ntfs_error(sb
, "Failed to allocate buffer for $MFT record 0.");
1829 /* Determine the first block of the $MFT/$DATA attribute. */
1830 block
= vol
->mft_lcn
<< vol
->cluster_size_bits
>>
1831 sb
->s_blocksize_bits
;
1832 nr_blocks
= vol
->mft_record_size
>> sb
->s_blocksize_bits
;
1836 /* Load $MFT/$DATA's first mft record. */
1837 for (i
= 0; i
< nr_blocks
; i
++) {
1838 bh
= sb_bread(sb
, block
++);
1840 ntfs_error(sb
, "Device read failed.");
1843 memcpy((char*)m
+ (i
<< sb
->s_blocksize_bits
), bh
->b_data
,
1848 /* Apply the mst fixups. */
1849 if (post_read_mst_fixup((NTFS_RECORD
*)m
, vol
->mft_record_size
)) {
1850 /* FIXME: Try to use the $MFTMirr now. */
1851 ntfs_error(sb
, "MST fixup failed. $MFT is corrupt.");
1855 /* Need this to sanity check attribute list references to $MFT. */
1856 vi
->i_generation
= ni
->seq_no
= le16_to_cpu(m
->sequence_number
);
1858 /* Provides readpage() and sync_page() for map_mft_record(). */
1859 vi
->i_mapping
->a_ops
= &ntfs_mst_aops
;
1861 ctx
= ntfs_attr_get_search_ctx(ni
, m
);
1867 /* Find the attribute list attribute if present. */
1868 err
= ntfs_attr_lookup(AT_ATTRIBUTE_LIST
, NULL
, 0, 0, 0, NULL
, 0, ctx
);
1870 if (unlikely(err
!= -ENOENT
)) {
1871 ntfs_error(sb
, "Failed to lookup attribute list "
1872 "attribute. You should run chkdsk.");
1875 } else /* if (!err) */ {
1876 ATTR_LIST_ENTRY
*al_entry
, *next_al_entry
;
1878 static const char *es
= " Not allowed. $MFT is corrupt. "
1879 "You should run chkdsk.";
1881 ntfs_debug("Attribute list attribute found in $MFT.");
1882 NInoSetAttrList(ni
);
1884 if (a
->flags
& ATTR_COMPRESSION_MASK
) {
1885 ntfs_error(sb
, "Attribute list attribute is "
1886 "compressed.%s", es
);
1889 if (a
->flags
& ATTR_IS_ENCRYPTED
||
1890 a
->flags
& ATTR_IS_SPARSE
) {
1891 if (a
->non_resident
) {
1892 ntfs_error(sb
, "Non-resident attribute list "
1893 "attribute is encrypted/"
1897 ntfs_warning(sb
, "Resident attribute list attribute "
1898 "in $MFT system file is marked "
1899 "encrypted/sparse which is not true. "
1900 "However, Windows allows this and "
1901 "chkdsk does not detect or correct it "
1902 "so we will just ignore the invalid "
1903 "flags and pretend they are not set.");
1905 /* Now allocate memory for the attribute list. */
1906 ni
->attr_list_size
= (u32
)ntfs_attr_size(a
);
1907 ni
->attr_list
= ntfs_malloc_nofs(ni
->attr_list_size
);
1908 if (!ni
->attr_list
) {
1909 ntfs_error(sb
, "Not enough memory to allocate buffer "
1910 "for attribute list.");
1913 if (a
->non_resident
) {
1914 NInoSetAttrListNonResident(ni
);
1915 if (a
->data
.non_resident
.lowest_vcn
) {
1916 ntfs_error(sb
, "Attribute list has non zero "
1917 "lowest_vcn. $MFT is corrupt. "
1918 "You should run chkdsk.");
1921 /* Setup the runlist. */
1922 ni
->attr_list_rl
.rl
= ntfs_mapping_pairs_decompress(vol
,
1924 if (IS_ERR(ni
->attr_list_rl
.rl
)) {
1925 err
= PTR_ERR(ni
->attr_list_rl
.rl
);
1926 ni
->attr_list_rl
.rl
= NULL
;
1927 ntfs_error(sb
, "Mapping pairs decompression "
1928 "failed with error code %i.",
1932 /* Now load the attribute list. */
1933 if ((err
= load_attribute_list(vol
, &ni
->attr_list_rl
,
1934 ni
->attr_list
, ni
->attr_list_size
,
1935 sle64_to_cpu(a
->data
.
1936 non_resident
.initialized_size
)))) {
1937 ntfs_error(sb
, "Failed to load attribute list "
1938 "attribute with error code %i.",
1942 } else /* if (!ctx.attr->non_resident) */ {
1943 if ((u8
*)a
+ le16_to_cpu(
1944 a
->data
.resident
.value_offset
) +
1946 a
->data
.resident
.value_length
) >
1947 (u8
*)ctx
->mrec
+ vol
->mft_record_size
) {
1948 ntfs_error(sb
, "Corrupt attribute list "
1952 /* Now copy the attribute list. */
1953 memcpy(ni
->attr_list
, (u8
*)a
+ le16_to_cpu(
1954 a
->data
.resident
.value_offset
),
1956 a
->data
.resident
.value_length
));
1958 /* The attribute list is now setup in memory. */
1960 * FIXME: I don't know if this case is actually possible.
1961 * According to logic it is not possible but I have seen too
1962 * many weird things in MS software to rely on logic... Thus we
1963 * perform a manual search and make sure the first $MFT/$DATA
1964 * extent is in the base inode. If it is not we abort with an
1965 * error and if we ever see a report of this error we will need
1966 * to do some magic in order to have the necessary mft record
1967 * loaded and in the right place in the page cache. But
1968 * hopefully logic will prevail and this never happens...
1970 al_entry
= (ATTR_LIST_ENTRY
*)ni
->attr_list
;
1971 al_end
= (u8
*)al_entry
+ ni
->attr_list_size
;
1972 for (;; al_entry
= next_al_entry
) {
1973 /* Out of bounds check. */
1974 if ((u8
*)al_entry
< ni
->attr_list
||
1975 (u8
*)al_entry
> al_end
)
1976 goto em_put_err_out
;
1977 /* Catch the end of the attribute list. */
1978 if ((u8
*)al_entry
== al_end
)
1979 goto em_put_err_out
;
1980 if (!al_entry
->length
)
1981 goto em_put_err_out
;
1982 if ((u8
*)al_entry
+ 6 > al_end
|| (u8
*)al_entry
+
1983 le16_to_cpu(al_entry
->length
) > al_end
)
1984 goto em_put_err_out
;
1985 next_al_entry
= (ATTR_LIST_ENTRY
*)((u8
*)al_entry
+
1986 le16_to_cpu(al_entry
->length
));
1987 if (le32_to_cpu(al_entry
->type
) >
1988 const_le32_to_cpu(AT_DATA
))
1989 goto em_put_err_out
;
1990 if (AT_DATA
!= al_entry
->type
)
1992 /* We want an unnamed attribute. */
1993 if (al_entry
->name_length
)
1994 goto em_put_err_out
;
1995 /* Want the first entry, i.e. lowest_vcn == 0. */
1996 if (al_entry
->lowest_vcn
)
1997 goto em_put_err_out
;
1998 /* First entry has to be in the base mft record. */
1999 if (MREF_LE(al_entry
->mft_reference
) != vi
->i_ino
) {
2000 /* MFT references do not match, logic fails. */
2001 ntfs_error(sb
, "BUG: The first $DATA extent "
2002 "of $MFT is not in the base "
2003 "mft record. Please report "
2004 "you saw this message to "
2005 "linux-ntfs-dev@lists."
2009 /* Sequence numbers must match. */
2010 if (MSEQNO_LE(al_entry
->mft_reference
) !=
2012 goto em_put_err_out
;
2013 /* Got it. All is ok. We can stop now. */
2019 ntfs_attr_reinit_search_ctx(ctx
);
2021 /* Now load all attribute extents. */
2023 next_vcn
= last_vcn
= highest_vcn
= 0;
2024 while (!(err
= ntfs_attr_lookup(AT_DATA
, NULL
, 0, 0, next_vcn
, NULL
, 0,
2026 runlist_element
*nrl
;
2028 /* Cache the current attribute. */
2030 /* $MFT must be non-resident. */
2031 if (!a
->non_resident
) {
2032 ntfs_error(sb
, "$MFT must be non-resident but a "
2033 "resident extent was found. $MFT is "
2034 "corrupt. Run chkdsk.");
2037 /* $MFT must be uncompressed and unencrypted. */
2038 if (a
->flags
& ATTR_COMPRESSION_MASK
||
2039 a
->flags
& ATTR_IS_ENCRYPTED
||
2040 a
->flags
& ATTR_IS_SPARSE
) {
2041 ntfs_error(sb
, "$MFT must be uncompressed, "
2042 "non-sparse, and unencrypted but a "
2043 "compressed/sparse/encrypted extent "
2044 "was found. $MFT is corrupt. Run "
2049 * Decompress the mapping pairs array of this extent and merge
2050 * the result into the existing runlist. No need for locking
2051 * as we have exclusive access to the inode at this time and we
2052 * are a mount in progress task, too.
2054 nrl
= ntfs_mapping_pairs_decompress(vol
, a
, ni
->runlist
.rl
);
2056 ntfs_error(sb
, "ntfs_mapping_pairs_decompress() "
2057 "failed with error code %ld. $MFT is "
2058 "corrupt.", PTR_ERR(nrl
));
2061 ni
->runlist
.rl
= nrl
;
2063 /* Are we in the first extent? */
2065 if (a
->data
.non_resident
.lowest_vcn
) {
2066 ntfs_error(sb
, "First extent of $DATA "
2067 "attribute has non zero "
2068 "lowest_vcn. $MFT is corrupt. "
2069 "You should run chkdsk.");
2072 /* Get the last vcn in the $DATA attribute. */
2073 last_vcn
= sle64_to_cpu(
2074 a
->data
.non_resident
.allocated_size
)
2075 >> vol
->cluster_size_bits
;
2076 /* Fill in the inode size. */
2077 vi
->i_size
= sle64_to_cpu(
2078 a
->data
.non_resident
.data_size
);
2079 ni
->initialized_size
= sle64_to_cpu(
2080 a
->data
.non_resident
.initialized_size
);
2081 ni
->allocated_size
= sle64_to_cpu(
2082 a
->data
.non_resident
.allocated_size
);
2084 * Verify the number of mft records does not exceed
2087 if ((vi
->i_size
>> vol
->mft_record_size_bits
) >=
2089 ntfs_error(sb
, "$MFT is too big! Aborting.");
2093 * We have got the first extent of the runlist for
2094 * $MFT which means it is now relatively safe to call
2095 * the normal ntfs_read_inode() function.
2096 * Complete reading the inode, this will actually
2097 * re-read the mft record for $MFT, this time entering
2098 * it into the page cache with which we complete the
2099 * kick start of the volume. It should be safe to do
2100 * this now as the first extent of $MFT/$DATA is
2101 * already known and we would hope that we don't need
2102 * further extents in order to find the other
2103 * attributes belonging to $MFT. Only time will tell if
2104 * this is really the case. If not we will have to play
2105 * magic at this point, possibly duplicating a lot of
2106 * ntfs_read_inode() at this point. We will need to
2107 * ensure we do enough of its work to be able to call
2108 * ntfs_read_inode() on extents of $MFT/$DATA. But lets
2109 * hope this never happens...
2111 ntfs_read_locked_inode(vi
);
2112 if (is_bad_inode(vi
)) {
2113 ntfs_error(sb
, "ntfs_read_inode() of $MFT "
2114 "failed. BUG or corrupt $MFT. "
2115 "Run chkdsk and if no errors "
2116 "are found, please report you "
2117 "saw this message to "
2118 "linux-ntfs-dev@lists."
2120 ntfs_attr_put_search_ctx(ctx
);
2121 /* Revert to the safe super operations. */
2126 * Re-initialize some specifics about $MFT's inode as
2127 * ntfs_read_inode() will have set up the default ones.
2129 /* Set uid and gid to root. */
2130 vi
->i_uid
= vi
->i_gid
= 0;
2131 /* Regular file. No access for anyone. */
2132 vi
->i_mode
= S_IFREG
;
2133 /* No VFS initiated operations allowed for $MFT. */
2134 vi
->i_op
= &ntfs_empty_inode_ops
;
2135 vi
->i_fop
= &ntfs_empty_file_ops
;
2138 /* Get the lowest vcn for the next extent. */
2139 highest_vcn
= sle64_to_cpu(a
->data
.non_resident
.highest_vcn
);
2140 next_vcn
= highest_vcn
+ 1;
2142 /* Only one extent or error, which we catch below. */
2146 /* Avoid endless loops due to corruption. */
2147 if (next_vcn
< sle64_to_cpu(
2148 a
->data
.non_resident
.lowest_vcn
)) {
2149 ntfs_error(sb
, "$MFT has corrupt attribute list "
2150 "attribute. Run chkdsk.");
2154 if (err
!= -ENOENT
) {
2155 ntfs_error(sb
, "Failed to lookup $MFT/$DATA attribute extent. "
2156 "$MFT is corrupt. Run chkdsk.");
2160 ntfs_error(sb
, "$MFT/$DATA attribute not found. $MFT is "
2161 "corrupt. Run chkdsk.");
2164 if (highest_vcn
&& highest_vcn
!= last_vcn
- 1) {
2165 ntfs_error(sb
, "Failed to load the complete runlist for "
2166 "$MFT/$DATA. Driver bug or corrupt $MFT. "
2168 ntfs_debug("highest_vcn = 0x%llx, last_vcn - 1 = 0x%llx",
2169 (unsigned long long)highest_vcn
,
2170 (unsigned long long)last_vcn
- 1);
2173 ntfs_attr_put_search_ctx(ctx
);
2174 ntfs_debug("Done.");
2178 * Split the locking rules of the MFT inode from the
2179 * locking rules of other inodes:
2181 lockdep_set_class(&ni
->runlist
.lock
, &mft_ni_runlist_lock_key
);
2182 lockdep_set_class(&ni
->mrec_lock
, &mft_ni_mrec_lock_key
);
2187 ntfs_error(sb
, "Couldn't find first extent of $DATA attribute in "
2188 "attribute list. $MFT is corrupt. Run chkdsk.");
2190 ntfs_attr_put_search_ctx(ctx
);
2192 ntfs_error(sb
, "Failed. Marking inode as bad.");
2199 * ntfs_put_inode - handler for when the inode reference count is decremented
2202 * The VFS calls ntfs_put_inode() every time the inode reference count (i_count)
2203 * is about to be decremented (but before the decrement itself.
2205 * If the inode @vi is a directory with two references, one of which is being
2206 * dropped, we need to put the attribute inode for the directory index bitmap,
2207 * if it is present, otherwise the directory inode would remain pinned for
2210 void ntfs_put_inode(struct inode
*vi
)
2212 if (S_ISDIR(vi
->i_mode
) && atomic_read(&vi
->i_count
) == 2) {
2213 ntfs_inode
*ni
= NTFS_I(vi
);
2214 if (NInoIndexAllocPresent(ni
)) {
2215 struct inode
*bvi
= NULL
;
2216 mutex_lock(&vi
->i_mutex
);
2217 if (atomic_read(&vi
->i_count
) == 2) {
2218 bvi
= ni
->itype
.index
.bmp_ino
;
2220 ni
->itype
.index
.bmp_ino
= NULL
;
2222 mutex_unlock(&vi
->i_mutex
);
2229 static void __ntfs_clear_inode(ntfs_inode
*ni
)
2231 /* Free all alocated memory. */
2232 down_write(&ni
->runlist
.lock
);
2233 if (ni
->runlist
.rl
) {
2234 ntfs_free(ni
->runlist
.rl
);
2235 ni
->runlist
.rl
= NULL
;
2237 up_write(&ni
->runlist
.lock
);
2239 if (ni
->attr_list
) {
2240 ntfs_free(ni
->attr_list
);
2241 ni
->attr_list
= NULL
;
2244 down_write(&ni
->attr_list_rl
.lock
);
2245 if (ni
->attr_list_rl
.rl
) {
2246 ntfs_free(ni
->attr_list_rl
.rl
);
2247 ni
->attr_list_rl
.rl
= NULL
;
2249 up_write(&ni
->attr_list_rl
.lock
);
2251 if (ni
->name_len
&& ni
->name
!= I30
) {
2258 void ntfs_clear_extent_inode(ntfs_inode
*ni
)
2260 ntfs_debug("Entering for inode 0x%lx.", ni
->mft_no
);
2262 BUG_ON(NInoAttr(ni
));
2263 BUG_ON(ni
->nr_extents
!= -1);
2266 if (NInoDirty(ni
)) {
2267 if (!is_bad_inode(VFS_I(ni
->ext
.base_ntfs_ino
)))
2268 ntfs_error(ni
->vol
->sb
, "Clearing dirty extent inode! "
2269 "Losing data! This is a BUG!!!");
2270 // FIXME: Do something!!!
2272 #endif /* NTFS_RW */
2274 __ntfs_clear_inode(ni
);
2277 ntfs_destroy_extent_inode(ni
);
2281 * ntfs_clear_big_inode - clean up the ntfs specific part of an inode
2282 * @vi: vfs inode pending annihilation
2284 * When the VFS is going to remove an inode from memory, ntfs_clear_big_inode()
2285 * is called, which deallocates all memory belonging to the NTFS specific part
2286 * of the inode and returns.
2288 * If the MFT record is dirty, we commit it before doing anything else.
2290 void ntfs_clear_big_inode(struct inode
*vi
)
2292 ntfs_inode
*ni
= NTFS_I(vi
);
2295 * If the inode @vi is an index inode we need to put the attribute
2296 * inode for the index bitmap, if it is present, otherwise the index
2297 * inode would disappear and the attribute inode for the index bitmap
2298 * would no longer be referenced from anywhere and thus it would remain
2301 if (NInoAttr(ni
) && (ni
->type
== AT_INDEX_ALLOCATION
) &&
2302 NInoIndexAllocPresent(ni
) && ni
->itype
.index
.bmp_ino
) {
2303 iput(ni
->itype
.index
.bmp_ino
);
2304 ni
->itype
.index
.bmp_ino
= NULL
;
2307 if (NInoDirty(ni
)) {
2308 BOOL was_bad
= (is_bad_inode(vi
));
2310 /* Committing the inode also commits all extent inodes. */
2311 ntfs_commit_inode(vi
);
2313 if (!was_bad
&& (is_bad_inode(vi
) || NInoDirty(ni
))) {
2314 ntfs_error(vi
->i_sb
, "Failed to commit dirty inode "
2315 "0x%lx. Losing data!", vi
->i_ino
);
2316 // FIXME: Do something!!!
2319 #endif /* NTFS_RW */
2321 /* No need to lock at this stage as no one else has a reference. */
2322 if (ni
->nr_extents
> 0) {
2325 for (i
= 0; i
< ni
->nr_extents
; i
++)
2326 ntfs_clear_extent_inode(ni
->ext
.extent_ntfs_inos
[i
]);
2327 kfree(ni
->ext
.extent_ntfs_inos
);
2330 __ntfs_clear_inode(ni
);
2333 /* Release the base inode if we are holding it. */
2334 if (ni
->nr_extents
== -1) {
2335 iput(VFS_I(ni
->ext
.base_ntfs_ino
));
2337 ni
->ext
.base_ntfs_ino
= NULL
;
2344 * ntfs_show_options - show mount options in /proc/mounts
2345 * @sf: seq_file in which to write our mount options
2346 * @mnt: vfs mount whose mount options to display
2348 * Called by the VFS once for each mounted ntfs volume when someone reads
2349 * /proc/mounts in order to display the NTFS specific mount options of each
2350 * mount. The mount options of the vfs mount @mnt are written to the seq file
2351 * @sf and success is returned.
2353 int ntfs_show_options(struct seq_file
*sf
, struct vfsmount
*mnt
)
2355 ntfs_volume
*vol
= NTFS_SB(mnt
->mnt_sb
);
2358 seq_printf(sf
, ",uid=%i", vol
->uid
);
2359 seq_printf(sf
, ",gid=%i", vol
->gid
);
2360 if (vol
->fmask
== vol
->dmask
)
2361 seq_printf(sf
, ",umask=0%o", vol
->fmask
);
2363 seq_printf(sf
, ",fmask=0%o", vol
->fmask
);
2364 seq_printf(sf
, ",dmask=0%o", vol
->dmask
);
2366 seq_printf(sf
, ",nls=%s", vol
->nls_map
->charset
);
2367 if (NVolCaseSensitive(vol
))
2368 seq_printf(sf
, ",case_sensitive");
2369 if (NVolShowSystemFiles(vol
))
2370 seq_printf(sf
, ",show_sys_files");
2371 if (!NVolSparseEnabled(vol
))
2372 seq_printf(sf
, ",disable_sparse");
2373 for (i
= 0; on_errors_arr
[i
].val
; i
++) {
2374 if (on_errors_arr
[i
].val
& vol
->on_errors
)
2375 seq_printf(sf
, ",errors=%s", on_errors_arr
[i
].str
);
2377 seq_printf(sf
, ",mft_zone_multiplier=%i", vol
->mft_zone_multiplier
);
2383 static const char *es
= " Leaving inconsistent metadata. Unmount and run "
2387 * ntfs_truncate - called when the i_size of an ntfs inode is changed
2388 * @vi: inode for which the i_size was changed
2390 * We only support i_size changes for normal files at present, i.e. not
2391 * compressed and not encrypted. This is enforced in ntfs_setattr(), see
2394 * The kernel guarantees that @vi is a regular file (S_ISREG() is true) and
2395 * that the change is allowed.
2397 * This implies for us that @vi is a file inode rather than a directory, index,
2398 * or attribute inode as well as that @vi is a base inode.
2400 * Returns 0 on success or -errno on error.
2402 * Called with ->i_mutex held. In all but one case ->i_alloc_sem is held for
2403 * writing. The only case in the kernel where ->i_alloc_sem is not held is
2404 * mm/filemap.c::generic_file_buffered_write() where vmtruncate() is called
2405 * with the current i_size as the offset. The analogous place in NTFS is in
2406 * fs/ntfs/file.c::ntfs_file_buffered_write() where we call vmtruncate() again
2407 * without holding ->i_alloc_sem.
2409 int ntfs_truncate(struct inode
*vi
)
2411 s64 new_size
, old_size
, nr_freed
, new_alloc_size
, old_alloc_size
;
2413 unsigned long flags
;
2414 ntfs_inode
*base_ni
, *ni
= NTFS_I(vi
);
2415 ntfs_volume
*vol
= ni
->vol
;
2416 ntfs_attr_search_ctx
*ctx
;
2419 const char *te
= " Leaving file length out of sync with i_size.";
2420 int err
, mp_size
, size_change
, alloc_change
;
2423 ntfs_debug("Entering for inode 0x%lx.", vi
->i_ino
);
2424 BUG_ON(NInoAttr(ni
));
2425 BUG_ON(S_ISDIR(vi
->i_mode
));
2426 BUG_ON(NInoMstProtected(ni
));
2427 BUG_ON(ni
->nr_extents
< 0);
2430 * Lock the runlist for writing and map the mft record to ensure it is
2431 * safe to mess with the attribute runlist and sizes.
2433 down_write(&ni
->runlist
.lock
);
2437 base_ni
= ni
->ext
.base_ntfs_ino
;
2438 m
= map_mft_record(base_ni
);
2441 ntfs_error(vi
->i_sb
, "Failed to map mft record for inode 0x%lx "
2442 "(error code %d).%s", vi
->i_ino
, err
, te
);
2447 ctx
= ntfs_attr_get_search_ctx(base_ni
, m
);
2448 if (unlikely(!ctx
)) {
2449 ntfs_error(vi
->i_sb
, "Failed to allocate a search context for "
2450 "inode 0x%lx (not enough memory).%s",
2455 err
= ntfs_attr_lookup(ni
->type
, ni
->name
, ni
->name_len
,
2456 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
2457 if (unlikely(err
)) {
2458 if (err
== -ENOENT
) {
2459 ntfs_error(vi
->i_sb
, "Open attribute is missing from "
2460 "mft record. Inode 0x%lx is corrupt. "
2461 "Run chkdsk.%s", vi
->i_ino
, te
);
2464 ntfs_error(vi
->i_sb
, "Failed to lookup attribute in "
2465 "inode 0x%lx (error code %d).%s",
2466 vi
->i_ino
, err
, te
);
2472 * The i_size of the vfs inode is the new size for the attribute value.
2474 new_size
= i_size_read(vi
);
2475 /* The current size of the attribute value is the old size. */
2476 old_size
= ntfs_attr_size(a
);
2477 /* Calculate the new allocated size. */
2478 if (NInoNonResident(ni
))
2479 new_alloc_size
= (new_size
+ vol
->cluster_size
- 1) &
2480 ~(s64
)vol
->cluster_size_mask
;
2482 new_alloc_size
= (new_size
+ 7) & ~7;
2483 /* The current allocated size is the old allocated size. */
2484 read_lock_irqsave(&ni
->size_lock
, flags
);
2485 old_alloc_size
= ni
->allocated_size
;
2486 read_unlock_irqrestore(&ni
->size_lock
, flags
);
2488 * The change in the file size. This will be 0 if no change, >0 if the
2489 * size is growing, and <0 if the size is shrinking.
2492 if (new_size
- old_size
>= 0) {
2494 if (new_size
== old_size
)
2497 /* As above for the allocated size. */
2499 if (new_alloc_size
- old_alloc_size
>= 0) {
2501 if (new_alloc_size
== old_alloc_size
)
2505 * If neither the size nor the allocation are being changed there is
2508 if (!size_change
&& !alloc_change
)
2510 /* If the size is changing, check if new size is allowed in $AttrDef. */
2512 err
= ntfs_attr_size_bounds_check(vol
, ni
->type
, new_size
);
2513 if (unlikely(err
)) {
2514 if (err
== -ERANGE
) {
2515 ntfs_error(vol
->sb
, "Truncate would cause the "
2516 "inode 0x%lx to %simum size "
2517 "for its attribute type "
2518 "(0x%x). Aborting truncate.",
2520 new_size
> old_size
? "exceed "
2521 "the max" : "go under the min",
2522 le32_to_cpu(ni
->type
));
2525 ntfs_error(vol
->sb
, "Inode 0x%lx has unknown "
2526 "attribute type 0x%x. "
2527 "Aborting truncate.",
2529 le32_to_cpu(ni
->type
));
2532 /* Reset the vfs inode size to the old size. */
2533 i_size_write(vi
, old_size
);
2537 if (NInoCompressed(ni
) || NInoEncrypted(ni
)) {
2538 ntfs_warning(vi
->i_sb
, "Changes in inode size are not "
2539 "supported yet for %s files, ignoring.",
2540 NInoCompressed(ni
) ? "compressed" :
2545 if (a
->non_resident
)
2546 goto do_non_resident_truncate
;
2547 BUG_ON(NInoNonResident(ni
));
2548 /* Resize the attribute record to best fit the new attribute size. */
2549 if (new_size
< vol
->mft_record_size
&&
2550 !ntfs_resident_attr_value_resize(m
, a
, new_size
)) {
2551 unsigned long flags
;
2553 /* The resize succeeded! */
2554 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
2555 mark_mft_record_dirty(ctx
->ntfs_ino
);
2556 write_lock_irqsave(&ni
->size_lock
, flags
);
2557 /* Update the sizes in the ntfs inode and all is done. */
2558 ni
->allocated_size
= le32_to_cpu(a
->length
) -
2559 le16_to_cpu(a
->data
.resident
.value_offset
);
2561 * Note ntfs_resident_attr_value_resize() has already done any
2562 * necessary data clearing in the attribute record. When the
2563 * file is being shrunk vmtruncate() will already have cleared
2564 * the top part of the last partial page, i.e. since this is
2565 * the resident case this is the page with index 0. However,
2566 * when the file is being expanded, the page cache page data
2567 * between the old data_size, i.e. old_size, and the new_size
2568 * has not been zeroed. Fortunately, we do not need to zero it
2569 * either since on one hand it will either already be zero due
2570 * to both readpage and writepage clearing partial page data
2571 * beyond i_size in which case there is nothing to do or in the
2572 * case of the file being mmap()ped at the same time, POSIX
2573 * specifies that the behaviour is unspecified thus we do not
2574 * have to do anything. This means that in our implementation
2575 * in the rare case that the file is mmap()ped and a write
2576 * occured into the mmap()ped region just beyond the file size
2577 * and writepage has not yet been called to write out the page
2578 * (which would clear the area beyond the file size) and we now
2579 * extend the file size to incorporate this dirty region
2580 * outside the file size, a write of the page would result in
2581 * this data being written to disk instead of being cleared.
2582 * Given both POSIX and the Linux mmap(2) man page specify that
2583 * this corner case is undefined, we choose to leave it like
2584 * that as this is much simpler for us as we cannot lock the
2585 * relevant page now since we are holding too many ntfs locks
2586 * which would result in a lock reversal deadlock.
2588 ni
->initialized_size
= new_size
;
2589 write_unlock_irqrestore(&ni
->size_lock
, flags
);
2592 /* If the above resize failed, this must be an attribute extension. */
2593 BUG_ON(size_change
< 0);
2595 * We have to drop all the locks so we can call
2596 * ntfs_attr_make_non_resident(). This could be optimised by try-
2597 * locking the first page cache page and only if that fails dropping
2598 * the locks, locking the page, and redoing all the locking and
2599 * lookups. While this would be a huge optimisation, it is not worth
2600 * it as this is definitely a slow code path as it only ever can happen
2601 * once for any given file.
2603 ntfs_attr_put_search_ctx(ctx
);
2604 unmap_mft_record(base_ni
);
2605 up_write(&ni
->runlist
.lock
);
2607 * Not enough space in the mft record, try to make the attribute
2608 * non-resident and if successful restart the truncation process.
2610 err
= ntfs_attr_make_non_resident(ni
, old_size
);
2612 goto retry_truncate
;
2614 * Could not make non-resident. If this is due to this not being
2615 * permitted for this attribute type or there not being enough space,
2616 * try to make other attributes non-resident. Otherwise fail.
2618 if (unlikely(err
!= -EPERM
&& err
!= -ENOSPC
)) {
2619 ntfs_error(vol
->sb
, "Cannot truncate inode 0x%lx, attribute "
2620 "type 0x%x, because the conversion from "
2621 "resident to non-resident attribute failed "
2622 "with error code %i.", vi
->i_ino
,
2623 (unsigned)le32_to_cpu(ni
->type
), err
);
2628 /* TODO: Not implemented from here, abort. */
2630 ntfs_error(vol
->sb
, "Not enough space in the mft record/on "
2631 "disk for the non-resident attribute value. "
2632 "This case is not implemented yet.");
2633 else /* if (err == -EPERM) */
2634 ntfs_error(vol
->sb
, "This attribute type may not be "
2635 "non-resident. This case is not implemented "
2640 // TODO: Attempt to make other attributes non-resident.
2642 goto do_resident_extend
;
2644 * Both the attribute list attribute and the standard information
2645 * attribute must remain in the base inode. Thus, if this is one of
2646 * these attributes, we have to try to move other attributes out into
2647 * extent mft records instead.
2649 if (ni
->type
== AT_ATTRIBUTE_LIST
||
2650 ni
->type
== AT_STANDARD_INFORMATION
) {
2651 // TODO: Attempt to move other attributes into extent mft
2655 goto do_resident_extend
;
2658 // TODO: Attempt to move this attribute to an extent mft record, but
2659 // only if it is not already the only attribute in an mft record in
2660 // which case there would be nothing to gain.
2663 goto do_resident_extend
;
2664 /* There is nothing we can do to make enough space. )-: */
2667 do_non_resident_truncate
:
2668 BUG_ON(!NInoNonResident(ni
));
2669 if (alloc_change
< 0) {
2670 highest_vcn
= sle64_to_cpu(a
->data
.non_resident
.highest_vcn
);
2671 if (highest_vcn
> 0 &&
2672 old_alloc_size
>> vol
->cluster_size_bits
>
2675 * This attribute has multiple extents. Not yet
2678 ntfs_error(vol
->sb
, "Cannot truncate inode 0x%lx, "
2679 "attribute type 0x%x, because the "
2680 "attribute is highly fragmented (it "
2681 "consists of multiple extents) and "
2682 "this case is not implemented yet.",
2684 (unsigned)le32_to_cpu(ni
->type
));
2690 * If the size is shrinking, need to reduce the initialized_size and
2691 * the data_size before reducing the allocation.
2693 if (size_change
< 0) {
2695 * Make the valid size smaller (i_size is already up-to-date).
2697 write_lock_irqsave(&ni
->size_lock
, flags
);
2698 if (new_size
< ni
->initialized_size
) {
2699 ni
->initialized_size
= new_size
;
2700 a
->data
.non_resident
.initialized_size
=
2701 cpu_to_sle64(new_size
);
2703 a
->data
.non_resident
.data_size
= cpu_to_sle64(new_size
);
2704 write_unlock_irqrestore(&ni
->size_lock
, flags
);
2705 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
2706 mark_mft_record_dirty(ctx
->ntfs_ino
);
2707 /* If the allocated size is not changing, we are done. */
2711 * If the size is shrinking it makes no sense for the
2712 * allocation to be growing.
2714 BUG_ON(alloc_change
> 0);
2715 } else /* if (size_change >= 0) */ {
2717 * The file size is growing or staying the same but the
2718 * allocation can be shrinking, growing or staying the same.
2720 if (alloc_change
> 0) {
2722 * We need to extend the allocation and possibly update
2723 * the data size. If we are updating the data size,
2724 * since we are not touching the initialized_size we do
2725 * not need to worry about the actual data on disk.
2726 * And as far as the page cache is concerned, there
2727 * will be no pages beyond the old data size and any
2728 * partial region in the last page between the old and
2729 * new data size (or the end of the page if the new
2730 * data size is outside the page) does not need to be
2731 * modified as explained above for the resident
2732 * attribute truncate case. To do this, we simply drop
2733 * the locks we hold and leave all the work to our
2734 * friendly helper ntfs_attr_extend_allocation().
2736 ntfs_attr_put_search_ctx(ctx
);
2737 unmap_mft_record(base_ni
);
2738 up_write(&ni
->runlist
.lock
);
2739 err
= ntfs_attr_extend_allocation(ni
, new_size
,
2740 size_change
> 0 ? new_size
: -1, -1);
2742 * ntfs_attr_extend_allocation() will have done error
2750 /* alloc_change < 0 */
2751 /* Free the clusters. */
2752 nr_freed
= ntfs_cluster_free(ni
, new_alloc_size
>>
2753 vol
->cluster_size_bits
, -1, ctx
);
2756 if (unlikely(nr_freed
< 0)) {
2757 ntfs_error(vol
->sb
, "Failed to release cluster(s) (error code "
2758 "%lli). Unmount and run chkdsk to recover "
2759 "the lost cluster(s).", (long long)nr_freed
);
2763 /* Truncate the runlist. */
2764 err
= ntfs_rl_truncate_nolock(vol
, &ni
->runlist
,
2765 new_alloc_size
>> vol
->cluster_size_bits
);
2767 * If the runlist truncation failed and/or the search context is no
2768 * longer valid, we cannot resize the attribute record or build the
2769 * mapping pairs array thus we mark the inode bad so that no access to
2770 * the freed clusters can happen.
2772 if (unlikely(err
|| IS_ERR(m
))) {
2773 ntfs_error(vol
->sb
, "Failed to %s (error code %li).%s",
2775 "restore attribute search context" :
2776 "truncate attribute runlist",
2777 IS_ERR(m
) ? PTR_ERR(m
) : err
, es
);
2781 /* Get the size for the shrunk mapping pairs array for the runlist. */
2782 mp_size
= ntfs_get_size_for_mapping_pairs(vol
, ni
->runlist
.rl
, 0, -1);
2783 if (unlikely(mp_size
<= 0)) {
2784 ntfs_error(vol
->sb
, "Cannot shrink allocation of inode 0x%lx, "
2785 "attribute type 0x%x, because determining the "
2786 "size for the mapping pairs failed with error "
2787 "code %i.%s", vi
->i_ino
,
2788 (unsigned)le32_to_cpu(ni
->type
), mp_size
, es
);
2793 * Shrink the attribute record for the new mapping pairs array. Note,
2794 * this cannot fail since we are making the attribute smaller thus by
2795 * definition there is enough space to do so.
2797 attr_len
= le32_to_cpu(a
->length
);
2798 err
= ntfs_attr_record_resize(m
, a
, mp_size
+
2799 le16_to_cpu(a
->data
.non_resident
.mapping_pairs_offset
));
2802 * Generate the mapping pairs array directly into the attribute record.
2804 err
= ntfs_mapping_pairs_build(vol
, (u8
*)a
+
2805 le16_to_cpu(a
->data
.non_resident
.mapping_pairs_offset
),
2806 mp_size
, ni
->runlist
.rl
, 0, -1, NULL
);
2807 if (unlikely(err
)) {
2808 ntfs_error(vol
->sb
, "Cannot shrink allocation of inode 0x%lx, "
2809 "attribute type 0x%x, because building the "
2810 "mapping pairs failed with error code %i.%s",
2811 vi
->i_ino
, (unsigned)le32_to_cpu(ni
->type
),
2816 /* Update the allocated/compressed size as well as the highest vcn. */
2817 a
->data
.non_resident
.highest_vcn
= cpu_to_sle64((new_alloc_size
>>
2818 vol
->cluster_size_bits
) - 1);
2819 write_lock_irqsave(&ni
->size_lock
, flags
);
2820 ni
->allocated_size
= new_alloc_size
;
2821 a
->data
.non_resident
.allocated_size
= cpu_to_sle64(new_alloc_size
);
2822 if (NInoSparse(ni
) || NInoCompressed(ni
)) {
2824 ni
->itype
.compressed
.size
-= nr_freed
<<
2825 vol
->cluster_size_bits
;
2826 BUG_ON(ni
->itype
.compressed
.size
< 0);
2827 a
->data
.non_resident
.compressed_size
= cpu_to_sle64(
2828 ni
->itype
.compressed
.size
);
2829 vi
->i_blocks
= ni
->itype
.compressed
.size
>> 9;
2832 vi
->i_blocks
= new_alloc_size
>> 9;
2833 write_unlock_irqrestore(&ni
->size_lock
, flags
);
2835 * We have shrunk the allocation. If this is a shrinking truncate we
2836 * have already dealt with the initialized_size and the data_size above
2837 * and we are done. If the truncate is only changing the allocation
2838 * and not the data_size, we are also done. If this is an extending
2839 * truncate, need to extend the data_size now which is ensured by the
2840 * fact that @size_change is positive.
2844 * If the size is growing, need to update it now. If it is shrinking,
2845 * we have already updated it above (before the allocation change).
2847 if (size_change
> 0)
2848 a
->data
.non_resident
.data_size
= cpu_to_sle64(new_size
);
2849 /* Ensure the modified mft record is written out. */
2850 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
2851 mark_mft_record_dirty(ctx
->ntfs_ino
);
2853 ntfs_attr_put_search_ctx(ctx
);
2854 unmap_mft_record(base_ni
);
2855 up_write(&ni
->runlist
.lock
);
2857 /* Update the mtime and ctime on the base inode. */
2858 /* normally ->truncate shouldn't update ctime or mtime,
2859 * but ntfs did before so it got a copy & paste version
2860 * of file_update_time. one day someone should fix this
2863 if (!IS_NOCMTIME(VFS_I(base_ni
)) && !IS_RDONLY(VFS_I(base_ni
))) {
2864 struct timespec now
= current_fs_time(VFS_I(base_ni
)->i_sb
);
2867 if (!timespec_equal(&VFS_I(base_ni
)->i_mtime
, &now
) ||
2868 !timespec_equal(&VFS_I(base_ni
)->i_ctime
, &now
))
2870 VFS_I(base_ni
)->i_mtime
= now
;
2871 VFS_I(base_ni
)->i_ctime
= now
;
2874 mark_inode_dirty_sync(VFS_I(base_ni
));
2878 NInoClearTruncateFailed(ni
);
2879 ntfs_debug("Done.");
2885 if (err
!= -ENOMEM
&& err
!= -EOPNOTSUPP
)
2887 if (err
!= -EOPNOTSUPP
)
2888 NInoSetTruncateFailed(ni
);
2889 else if (old_size
>= 0)
2890 i_size_write(vi
, old_size
);
2893 ntfs_attr_put_search_ctx(ctx
);
2895 unmap_mft_record(base_ni
);
2896 up_write(&ni
->runlist
.lock
);
2898 ntfs_debug("Failed. Returning error code %i.", err
);
2901 if (err
!= -ENOMEM
&& err
!= -EOPNOTSUPP
)
2903 if (err
!= -EOPNOTSUPP
)
2904 NInoSetTruncateFailed(ni
);
2906 i_size_write(vi
, old_size
);
2911 * ntfs_truncate_vfs - wrapper for ntfs_truncate() that has no return value
2912 * @vi: inode for which the i_size was changed
2914 * Wrapper for ntfs_truncate() that has no return value.
2916 * See ntfs_truncate() description above for details.
2918 void ntfs_truncate_vfs(struct inode
*vi
) {
2923 * ntfs_setattr - called from notify_change() when an attribute is being changed
2924 * @dentry: dentry whose attributes to change
2925 * @attr: structure describing the attributes and the changes
2927 * We have to trap VFS attempts to truncate the file described by @dentry as
2928 * soon as possible, because we do not implement changes in i_size yet. So we
2929 * abort all i_size changes here.
2931 * We also abort all changes of user, group, and mode as we do not implement
2932 * the NTFS ACLs yet.
2934 * Called with ->i_mutex held. For the ATTR_SIZE (i.e. ->truncate) case, also
2935 * called with ->i_alloc_sem held for writing.
2937 * Basically this is a copy of generic notify_change() and inode_setattr()
2938 * functionality, except we intercept and abort changes in i_size.
2940 int ntfs_setattr(struct dentry
*dentry
, struct iattr
*attr
)
2942 struct inode
*vi
= dentry
->d_inode
;
2944 unsigned int ia_valid
= attr
->ia_valid
;
2946 err
= inode_change_ok(vi
, attr
);
2949 /* We do not support NTFS ACLs yet. */
2950 if (ia_valid
& (ATTR_UID
| ATTR_GID
| ATTR_MODE
)) {
2951 ntfs_warning(vi
->i_sb
, "Changes in user/group/mode are not "
2952 "supported yet, ignoring.");
2956 if (ia_valid
& ATTR_SIZE
) {
2957 if (attr
->ia_size
!= i_size_read(vi
)) {
2958 ntfs_inode
*ni
= NTFS_I(vi
);
2960 * FIXME: For now we do not support resizing of
2961 * compressed or encrypted files yet.
2963 if (NInoCompressed(ni
) || NInoEncrypted(ni
)) {
2964 ntfs_warning(vi
->i_sb
, "Changes in inode size "
2965 "are not supported yet for "
2966 "%s files, ignoring.",
2967 NInoCompressed(ni
) ?
2968 "compressed" : "encrypted");
2971 err
= vmtruncate(vi
, attr
->ia_size
);
2972 if (err
|| ia_valid
== ATTR_SIZE
)
2976 * We skipped the truncate but must still update
2979 ia_valid
|= ATTR_MTIME
| ATTR_CTIME
;
2982 if (ia_valid
& ATTR_ATIME
)
2983 vi
->i_atime
= timespec_trunc(attr
->ia_atime
,
2984 vi
->i_sb
->s_time_gran
);
2985 if (ia_valid
& ATTR_MTIME
)
2986 vi
->i_mtime
= timespec_trunc(attr
->ia_mtime
,
2987 vi
->i_sb
->s_time_gran
);
2988 if (ia_valid
& ATTR_CTIME
)
2989 vi
->i_ctime
= timespec_trunc(attr
->ia_ctime
,
2990 vi
->i_sb
->s_time_gran
);
2991 mark_inode_dirty(vi
);
2997 * ntfs_write_inode - write out a dirty inode
2998 * @vi: inode to write out
2999 * @sync: if true, write out synchronously
3001 * Write out a dirty inode to disk including any extent inodes if present.
3003 * If @sync is true, commit the inode to disk and wait for io completion. This
3004 * is done using write_mft_record().
3006 * If @sync is false, just schedule the write to happen but do not wait for i/o
3007 * completion. In 2.6 kernels, scheduling usually happens just by virtue of
3008 * marking the page (and in this case mft record) dirty but we do not implement
3009 * this yet as write_mft_record() largely ignores the @sync parameter and
3010 * always performs synchronous writes.
3012 * Return 0 on success and -errno on error.
3014 int ntfs_write_inode(struct inode
*vi
, int sync
)
3017 ntfs_inode
*ni
= NTFS_I(vi
);
3018 ntfs_attr_search_ctx
*ctx
;
3020 STANDARD_INFORMATION
*si
;
3022 BOOL modified
= FALSE
;
3024 ntfs_debug("Entering for %sinode 0x%lx.", NInoAttr(ni
) ? "attr " : "",
3027 * Dirty attribute inodes are written via their real inodes so just
3028 * clean them here. Access time updates are taken care off when the
3029 * real inode is written.
3033 ntfs_debug("Done.");
3036 /* Map, pin, and lock the mft record belonging to the inode. */
3037 m
= map_mft_record(ni
);
3042 /* Update the access times in the standard information attribute. */
3043 ctx
= ntfs_attr_get_search_ctx(ni
, m
);
3044 if (unlikely(!ctx
)) {
3048 err
= ntfs_attr_lookup(AT_STANDARD_INFORMATION
, NULL
, 0,
3049 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
3050 if (unlikely(err
)) {
3051 ntfs_attr_put_search_ctx(ctx
);
3054 si
= (STANDARD_INFORMATION
*)((u8
*)ctx
->attr
+
3055 le16_to_cpu(ctx
->attr
->data
.resident
.value_offset
));
3056 /* Update the access times if they have changed. */
3057 nt
= utc2ntfs(vi
->i_mtime
);
3058 if (si
->last_data_change_time
!= nt
) {
3059 ntfs_debug("Updating mtime for inode 0x%lx: old = 0x%llx, "
3060 "new = 0x%llx", vi
->i_ino
, (long long)
3061 sle64_to_cpu(si
->last_data_change_time
),
3062 (long long)sle64_to_cpu(nt
));
3063 si
->last_data_change_time
= nt
;
3066 nt
= utc2ntfs(vi
->i_ctime
);
3067 if (si
->last_mft_change_time
!= nt
) {
3068 ntfs_debug("Updating ctime for inode 0x%lx: old = 0x%llx, "
3069 "new = 0x%llx", vi
->i_ino
, (long long)
3070 sle64_to_cpu(si
->last_mft_change_time
),
3071 (long long)sle64_to_cpu(nt
));
3072 si
->last_mft_change_time
= nt
;
3075 nt
= utc2ntfs(vi
->i_atime
);
3076 if (si
->last_access_time
!= nt
) {
3077 ntfs_debug("Updating atime for inode 0x%lx: old = 0x%llx, "
3078 "new = 0x%llx", vi
->i_ino
,
3079 (long long)sle64_to_cpu(si
->last_access_time
),
3080 (long long)sle64_to_cpu(nt
));
3081 si
->last_access_time
= nt
;
3085 * If we just modified the standard information attribute we need to
3086 * mark the mft record it is in dirty. We do this manually so that
3087 * mark_inode_dirty() is not called which would redirty the inode and
3088 * hence result in an infinite loop of trying to write the inode.
3089 * There is no need to mark the base inode nor the base mft record
3090 * dirty, since we are going to write this mft record below in any case
3091 * and the base mft record may actually not have been modified so it
3092 * might not need to be written out.
3093 * NOTE: It is not a problem when the inode for $MFT itself is being
3094 * written out as mark_ntfs_record_dirty() will only set I_DIRTY_PAGES
3095 * on the $MFT inode and hence ntfs_write_inode() will not be
3096 * re-invoked because of it which in turn is ok since the dirtied mft
3097 * record will be cleaned and written out to disk below, i.e. before
3098 * this function returns.
3101 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
3102 if (!NInoTestSetDirty(ctx
->ntfs_ino
))
3103 mark_ntfs_record_dirty(ctx
->ntfs_ino
->page
,
3104 ctx
->ntfs_ino
->page_ofs
);
3106 ntfs_attr_put_search_ctx(ctx
);
3107 /* Now the access times are updated, write the base mft record. */
3109 err
= write_mft_record(ni
, m
, sync
);
3110 /* Write all attached extent mft records. */
3111 mutex_lock(&ni
->extent_lock
);
3112 if (ni
->nr_extents
> 0) {
3113 ntfs_inode
**extent_nis
= ni
->ext
.extent_ntfs_inos
;
3116 ntfs_debug("Writing %i extent inodes.", ni
->nr_extents
);
3117 for (i
= 0; i
< ni
->nr_extents
; i
++) {
3118 ntfs_inode
*tni
= extent_nis
[i
];
3120 if (NInoDirty(tni
)) {
3121 MFT_RECORD
*tm
= map_mft_record(tni
);
3125 if (!err
|| err
== -ENOMEM
)
3129 ret
= write_mft_record(tni
, tm
, sync
);
3130 unmap_mft_record(tni
);
3131 if (unlikely(ret
)) {
3132 if (!err
|| err
== -ENOMEM
)
3138 mutex_unlock(&ni
->extent_lock
);
3139 unmap_mft_record(ni
);
3142 ntfs_debug("Done.");
3145 unmap_mft_record(ni
);
3147 if (err
== -ENOMEM
) {
3148 ntfs_warning(vi
->i_sb
, "Not enough memory to write inode. "
3149 "Marking the inode dirty again, so the VFS "
3151 mark_inode_dirty(vi
);
3153 ntfs_error(vi
->i_sb
, "Failed (error %i): Run chkdsk.", -err
);
3154 NVolSetErrors(ni
->vol
);
3159 #endif /* NTFS_RW */