[MIPS] Fix sigset_t endianess swapping issues in 32-bit compat code.
[linux-2.6/linux-mips.git] / kernel / sched.c
blob08f86178aa34da228080edbdd8649a2a5b3a9d71
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/nmi.h>
24 #include <linux/init.h>
25 #include <asm/uaccess.h>
26 #include <linux/highmem.h>
27 #include <linux/smp_lock.h>
28 #include <asm/mmu_context.h>
29 #include <linux/interrupt.h>
30 #include <linux/capability.h>
31 #include <linux/completion.h>
32 #include <linux/kernel_stat.h>
33 #include <linux/debug_locks.h>
34 #include <linux/security.h>
35 #include <linux/notifier.h>
36 #include <linux/profile.h>
37 #include <linux/freezer.h>
38 #include <linux/vmalloc.h>
39 #include <linux/blkdev.h>
40 #include <linux/delay.h>
41 #include <linux/smp.h>
42 #include <linux/threads.h>
43 #include <linux/timer.h>
44 #include <linux/rcupdate.h>
45 #include <linux/cpu.h>
46 #include <linux/cpuset.h>
47 #include <linux/percpu.h>
48 #include <linux/kthread.h>
49 #include <linux/seq_file.h>
50 #include <linux/syscalls.h>
51 #include <linux/times.h>
52 #include <linux/tsacct_kern.h>
53 #include <linux/kprobes.h>
54 #include <linux/delayacct.h>
55 #include <asm/tlb.h>
57 #include <asm/unistd.h>
60 * Scheduler clock - returns current time in nanosec units.
61 * This is default implementation.
62 * Architectures and sub-architectures can override this.
64 unsigned long long __attribute__((weak)) sched_clock(void)
66 return (unsigned long long)jiffies * (1000000000 / HZ);
70 * Convert user-nice values [ -20 ... 0 ... 19 ]
71 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
72 * and back.
74 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
75 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
76 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
79 * 'User priority' is the nice value converted to something we
80 * can work with better when scaling various scheduler parameters,
81 * it's a [ 0 ... 39 ] range.
83 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
84 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
85 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
88 * Some helpers for converting nanosecond timing to jiffy resolution
90 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
91 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
94 * These are the 'tuning knobs' of the scheduler:
96 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
97 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
98 * Timeslices get refilled after they expire.
100 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
101 #define DEF_TIMESLICE (100 * HZ / 1000)
102 #define ON_RUNQUEUE_WEIGHT 30
103 #define CHILD_PENALTY 95
104 #define PARENT_PENALTY 100
105 #define EXIT_WEIGHT 3
106 #define PRIO_BONUS_RATIO 25
107 #define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
108 #define INTERACTIVE_DELTA 2
109 #define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
110 #define STARVATION_LIMIT (MAX_SLEEP_AVG)
111 #define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
114 * If a task is 'interactive' then we reinsert it in the active
115 * array after it has expired its current timeslice. (it will not
116 * continue to run immediately, it will still roundrobin with
117 * other interactive tasks.)
119 * This part scales the interactivity limit depending on niceness.
121 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
122 * Here are a few examples of different nice levels:
124 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
125 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
126 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
127 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
128 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
130 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
131 * priority range a task can explore, a value of '1' means the
132 * task is rated interactive.)
134 * Ie. nice +19 tasks can never get 'interactive' enough to be
135 * reinserted into the active array. And only heavily CPU-hog nice -20
136 * tasks will be expired. Default nice 0 tasks are somewhere between,
137 * it takes some effort for them to get interactive, but it's not
138 * too hard.
141 #define CURRENT_BONUS(p) \
142 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
143 MAX_SLEEP_AVG)
145 #define GRANULARITY (10 * HZ / 1000 ? : 1)
147 #ifdef CONFIG_SMP
148 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
149 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
150 num_online_cpus())
151 #else
152 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
153 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
154 #endif
156 #define SCALE(v1,v1_max,v2_max) \
157 (v1) * (v2_max) / (v1_max)
159 #define DELTA(p) \
160 (SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
161 INTERACTIVE_DELTA)
163 #define TASK_INTERACTIVE(p) \
164 ((p)->prio <= (p)->static_prio - DELTA(p))
166 #define INTERACTIVE_SLEEP(p) \
167 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
168 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
170 #define TASK_PREEMPTS_CURR(p, rq) \
171 ((p)->prio < (rq)->curr->prio)
173 #define SCALE_PRIO(x, prio) \
174 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
176 static unsigned int static_prio_timeslice(int static_prio)
178 if (static_prio < NICE_TO_PRIO(0))
179 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
180 else
181 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
185 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
186 * to time slice values: [800ms ... 100ms ... 5ms]
188 * The higher a thread's priority, the bigger timeslices
189 * it gets during one round of execution. But even the lowest
190 * priority thread gets MIN_TIMESLICE worth of execution time.
193 static inline unsigned int task_timeslice(struct task_struct *p)
195 return static_prio_timeslice(p->static_prio);
199 * These are the runqueue data structures:
202 struct prio_array {
203 unsigned int nr_active;
204 DECLARE_BITMAP(bitmap, MAX_PRIO+1); /* include 1 bit for delimiter */
205 struct list_head queue[MAX_PRIO];
209 * This is the main, per-CPU runqueue data structure.
211 * Locking rule: those places that want to lock multiple runqueues
212 * (such as the load balancing or the thread migration code), lock
213 * acquire operations must be ordered by ascending &runqueue.
215 struct rq {
216 spinlock_t lock;
219 * nr_running and cpu_load should be in the same cacheline because
220 * remote CPUs use both these fields when doing load calculation.
222 unsigned long nr_running;
223 unsigned long raw_weighted_load;
224 #ifdef CONFIG_SMP
225 unsigned long cpu_load[3];
226 #endif
227 unsigned long long nr_switches;
230 * This is part of a global counter where only the total sum
231 * over all CPUs matters. A task can increase this counter on
232 * one CPU and if it got migrated afterwards it may decrease
233 * it on another CPU. Always updated under the runqueue lock:
235 unsigned long nr_uninterruptible;
237 unsigned long expired_timestamp;
238 /* Cached timestamp set by update_cpu_clock() */
239 unsigned long long most_recent_timestamp;
240 struct task_struct *curr, *idle;
241 unsigned long next_balance;
242 struct mm_struct *prev_mm;
243 struct prio_array *active, *expired, arrays[2];
244 int best_expired_prio;
245 atomic_t nr_iowait;
247 #ifdef CONFIG_SMP
248 struct sched_domain *sd;
250 /* For active balancing */
251 int active_balance;
252 int push_cpu;
253 int cpu; /* cpu of this runqueue */
255 struct task_struct *migration_thread;
256 struct list_head migration_queue;
257 #endif
259 #ifdef CONFIG_SCHEDSTATS
260 /* latency stats */
261 struct sched_info rq_sched_info;
263 /* sys_sched_yield() stats */
264 unsigned long yld_exp_empty;
265 unsigned long yld_act_empty;
266 unsigned long yld_both_empty;
267 unsigned long yld_cnt;
269 /* schedule() stats */
270 unsigned long sched_switch;
271 unsigned long sched_cnt;
272 unsigned long sched_goidle;
274 /* try_to_wake_up() stats */
275 unsigned long ttwu_cnt;
276 unsigned long ttwu_local;
277 #endif
278 struct lock_class_key rq_lock_key;
281 static DEFINE_PER_CPU(struct rq, runqueues);
283 static inline int cpu_of(struct rq *rq)
285 #ifdef CONFIG_SMP
286 return rq->cpu;
287 #else
288 return 0;
289 #endif
293 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
294 * See detach_destroy_domains: synchronize_sched for details.
296 * The domain tree of any CPU may only be accessed from within
297 * preempt-disabled sections.
299 #define for_each_domain(cpu, __sd) \
300 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
302 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
303 #define this_rq() (&__get_cpu_var(runqueues))
304 #define task_rq(p) cpu_rq(task_cpu(p))
305 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
307 #ifndef prepare_arch_switch
308 # define prepare_arch_switch(next) do { } while (0)
309 #endif
310 #ifndef finish_arch_switch
311 # define finish_arch_switch(prev) do { } while (0)
312 #endif
314 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
315 static inline int task_running(struct rq *rq, struct task_struct *p)
317 return rq->curr == p;
320 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
324 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
326 #ifdef CONFIG_DEBUG_SPINLOCK
327 /* this is a valid case when another task releases the spinlock */
328 rq->lock.owner = current;
329 #endif
331 * If we are tracking spinlock dependencies then we have to
332 * fix up the runqueue lock - which gets 'carried over' from
333 * prev into current:
335 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
337 spin_unlock_irq(&rq->lock);
340 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
341 static inline int task_running(struct rq *rq, struct task_struct *p)
343 #ifdef CONFIG_SMP
344 return p->oncpu;
345 #else
346 return rq->curr == p;
347 #endif
350 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
352 #ifdef CONFIG_SMP
354 * We can optimise this out completely for !SMP, because the
355 * SMP rebalancing from interrupt is the only thing that cares
356 * here.
358 next->oncpu = 1;
359 #endif
360 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
361 spin_unlock_irq(&rq->lock);
362 #else
363 spin_unlock(&rq->lock);
364 #endif
367 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
369 #ifdef CONFIG_SMP
371 * After ->oncpu is cleared, the task can be moved to a different CPU.
372 * We must ensure this doesn't happen until the switch is completely
373 * finished.
375 smp_wmb();
376 prev->oncpu = 0;
377 #endif
378 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
379 local_irq_enable();
380 #endif
382 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
385 * __task_rq_lock - lock the runqueue a given task resides on.
386 * Must be called interrupts disabled.
388 static inline struct rq *__task_rq_lock(struct task_struct *p)
389 __acquires(rq->lock)
391 struct rq *rq;
393 repeat_lock_task:
394 rq = task_rq(p);
395 spin_lock(&rq->lock);
396 if (unlikely(rq != task_rq(p))) {
397 spin_unlock(&rq->lock);
398 goto repeat_lock_task;
400 return rq;
404 * task_rq_lock - lock the runqueue a given task resides on and disable
405 * interrupts. Note the ordering: we can safely lookup the task_rq without
406 * explicitly disabling preemption.
408 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
409 __acquires(rq->lock)
411 struct rq *rq;
413 repeat_lock_task:
414 local_irq_save(*flags);
415 rq = task_rq(p);
416 spin_lock(&rq->lock);
417 if (unlikely(rq != task_rq(p))) {
418 spin_unlock_irqrestore(&rq->lock, *flags);
419 goto repeat_lock_task;
421 return rq;
424 static inline void __task_rq_unlock(struct rq *rq)
425 __releases(rq->lock)
427 spin_unlock(&rq->lock);
430 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
431 __releases(rq->lock)
433 spin_unlock_irqrestore(&rq->lock, *flags);
436 #ifdef CONFIG_SCHEDSTATS
438 * bump this up when changing the output format or the meaning of an existing
439 * format, so that tools can adapt (or abort)
441 #define SCHEDSTAT_VERSION 14
443 static int show_schedstat(struct seq_file *seq, void *v)
445 int cpu;
447 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
448 seq_printf(seq, "timestamp %lu\n", jiffies);
449 for_each_online_cpu(cpu) {
450 struct rq *rq = cpu_rq(cpu);
451 #ifdef CONFIG_SMP
452 struct sched_domain *sd;
453 int dcnt = 0;
454 #endif
456 /* runqueue-specific stats */
457 seq_printf(seq,
458 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
459 cpu, rq->yld_both_empty,
460 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
461 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
462 rq->ttwu_cnt, rq->ttwu_local,
463 rq->rq_sched_info.cpu_time,
464 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
466 seq_printf(seq, "\n");
468 #ifdef CONFIG_SMP
469 /* domain-specific stats */
470 preempt_disable();
471 for_each_domain(cpu, sd) {
472 enum idle_type itype;
473 char mask_str[NR_CPUS];
475 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
476 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
477 for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
478 itype++) {
479 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu "
480 "%lu",
481 sd->lb_cnt[itype],
482 sd->lb_balanced[itype],
483 sd->lb_failed[itype],
484 sd->lb_imbalance[itype],
485 sd->lb_gained[itype],
486 sd->lb_hot_gained[itype],
487 sd->lb_nobusyq[itype],
488 sd->lb_nobusyg[itype]);
490 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu"
491 " %lu %lu %lu\n",
492 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
493 sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
494 sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
495 sd->ttwu_wake_remote, sd->ttwu_move_affine,
496 sd->ttwu_move_balance);
498 preempt_enable();
499 #endif
501 return 0;
504 static int schedstat_open(struct inode *inode, struct file *file)
506 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
507 char *buf = kmalloc(size, GFP_KERNEL);
508 struct seq_file *m;
509 int res;
511 if (!buf)
512 return -ENOMEM;
513 res = single_open(file, show_schedstat, NULL);
514 if (!res) {
515 m = file->private_data;
516 m->buf = buf;
517 m->size = size;
518 } else
519 kfree(buf);
520 return res;
523 const struct file_operations proc_schedstat_operations = {
524 .open = schedstat_open,
525 .read = seq_read,
526 .llseek = seq_lseek,
527 .release = single_release,
531 * Expects runqueue lock to be held for atomicity of update
533 static inline void
534 rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies)
536 if (rq) {
537 rq->rq_sched_info.run_delay += delta_jiffies;
538 rq->rq_sched_info.pcnt++;
543 * Expects runqueue lock to be held for atomicity of update
545 static inline void
546 rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies)
548 if (rq)
549 rq->rq_sched_info.cpu_time += delta_jiffies;
551 # define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
552 # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
553 #else /* !CONFIG_SCHEDSTATS */
554 static inline void
555 rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies)
557 static inline void
558 rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies)
560 # define schedstat_inc(rq, field) do { } while (0)
561 # define schedstat_add(rq, field, amt) do { } while (0)
562 #endif
565 * this_rq_lock - lock this runqueue and disable interrupts.
567 static inline struct rq *this_rq_lock(void)
568 __acquires(rq->lock)
570 struct rq *rq;
572 local_irq_disable();
573 rq = this_rq();
574 spin_lock(&rq->lock);
576 return rq;
579 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
581 * Called when a process is dequeued from the active array and given
582 * the cpu. We should note that with the exception of interactive
583 * tasks, the expired queue will become the active queue after the active
584 * queue is empty, without explicitly dequeuing and requeuing tasks in the
585 * expired queue. (Interactive tasks may be requeued directly to the
586 * active queue, thus delaying tasks in the expired queue from running;
587 * see scheduler_tick()).
589 * This function is only called from sched_info_arrive(), rather than
590 * dequeue_task(). Even though a task may be queued and dequeued multiple
591 * times as it is shuffled about, we're really interested in knowing how
592 * long it was from the *first* time it was queued to the time that it
593 * finally hit a cpu.
595 static inline void sched_info_dequeued(struct task_struct *t)
597 t->sched_info.last_queued = 0;
601 * Called when a task finally hits the cpu. We can now calculate how
602 * long it was waiting to run. We also note when it began so that we
603 * can keep stats on how long its timeslice is.
605 static void sched_info_arrive(struct task_struct *t)
607 unsigned long now = jiffies, delta_jiffies = 0;
609 if (t->sched_info.last_queued)
610 delta_jiffies = now - t->sched_info.last_queued;
611 sched_info_dequeued(t);
612 t->sched_info.run_delay += delta_jiffies;
613 t->sched_info.last_arrival = now;
614 t->sched_info.pcnt++;
616 rq_sched_info_arrive(task_rq(t), delta_jiffies);
620 * Called when a process is queued into either the active or expired
621 * array. The time is noted and later used to determine how long we
622 * had to wait for us to reach the cpu. Since the expired queue will
623 * become the active queue after active queue is empty, without dequeuing
624 * and requeuing any tasks, we are interested in queuing to either. It
625 * is unusual but not impossible for tasks to be dequeued and immediately
626 * requeued in the same or another array: this can happen in sched_yield(),
627 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
628 * to runqueue.
630 * This function is only called from enqueue_task(), but also only updates
631 * the timestamp if it is already not set. It's assumed that
632 * sched_info_dequeued() will clear that stamp when appropriate.
634 static inline void sched_info_queued(struct task_struct *t)
636 if (unlikely(sched_info_on()))
637 if (!t->sched_info.last_queued)
638 t->sched_info.last_queued = jiffies;
642 * Called when a process ceases being the active-running process, either
643 * voluntarily or involuntarily. Now we can calculate how long we ran.
645 static inline void sched_info_depart(struct task_struct *t)
647 unsigned long delta_jiffies = jiffies - t->sched_info.last_arrival;
649 t->sched_info.cpu_time += delta_jiffies;
650 rq_sched_info_depart(task_rq(t), delta_jiffies);
654 * Called when tasks are switched involuntarily due, typically, to expiring
655 * their time slice. (This may also be called when switching to or from
656 * the idle task.) We are only called when prev != next.
658 static inline void
659 __sched_info_switch(struct task_struct *prev, struct task_struct *next)
661 struct rq *rq = task_rq(prev);
664 * prev now departs the cpu. It's not interesting to record
665 * stats about how efficient we were at scheduling the idle
666 * process, however.
668 if (prev != rq->idle)
669 sched_info_depart(prev);
671 if (next != rq->idle)
672 sched_info_arrive(next);
674 static inline void
675 sched_info_switch(struct task_struct *prev, struct task_struct *next)
677 if (unlikely(sched_info_on()))
678 __sched_info_switch(prev, next);
680 #else
681 #define sched_info_queued(t) do { } while (0)
682 #define sched_info_switch(t, next) do { } while (0)
683 #endif /* CONFIG_SCHEDSTATS || CONFIG_TASK_DELAY_ACCT */
686 * Adding/removing a task to/from a priority array:
688 static void dequeue_task(struct task_struct *p, struct prio_array *array)
690 array->nr_active--;
691 list_del(&p->run_list);
692 if (list_empty(array->queue + p->prio))
693 __clear_bit(p->prio, array->bitmap);
696 static void enqueue_task(struct task_struct *p, struct prio_array *array)
698 sched_info_queued(p);
699 list_add_tail(&p->run_list, array->queue + p->prio);
700 __set_bit(p->prio, array->bitmap);
701 array->nr_active++;
702 p->array = array;
706 * Put task to the end of the run list without the overhead of dequeue
707 * followed by enqueue.
709 static void requeue_task(struct task_struct *p, struct prio_array *array)
711 list_move_tail(&p->run_list, array->queue + p->prio);
714 static inline void
715 enqueue_task_head(struct task_struct *p, struct prio_array *array)
717 list_add(&p->run_list, array->queue + p->prio);
718 __set_bit(p->prio, array->bitmap);
719 array->nr_active++;
720 p->array = array;
724 * __normal_prio - return the priority that is based on the static
725 * priority but is modified by bonuses/penalties.
727 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
728 * into the -5 ... 0 ... +5 bonus/penalty range.
730 * We use 25% of the full 0...39 priority range so that:
732 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
733 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
735 * Both properties are important to certain workloads.
738 static inline int __normal_prio(struct task_struct *p)
740 int bonus, prio;
742 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
744 prio = p->static_prio - bonus;
745 if (prio < MAX_RT_PRIO)
746 prio = MAX_RT_PRIO;
747 if (prio > MAX_PRIO-1)
748 prio = MAX_PRIO-1;
749 return prio;
753 * To aid in avoiding the subversion of "niceness" due to uneven distribution
754 * of tasks with abnormal "nice" values across CPUs the contribution that
755 * each task makes to its run queue's load is weighted according to its
756 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
757 * scaled version of the new time slice allocation that they receive on time
758 * slice expiry etc.
762 * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
763 * If static_prio_timeslice() is ever changed to break this assumption then
764 * this code will need modification
766 #define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
767 #define LOAD_WEIGHT(lp) \
768 (((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
769 #define PRIO_TO_LOAD_WEIGHT(prio) \
770 LOAD_WEIGHT(static_prio_timeslice(prio))
771 #define RTPRIO_TO_LOAD_WEIGHT(rp) \
772 (PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + LOAD_WEIGHT(rp))
774 static void set_load_weight(struct task_struct *p)
776 if (has_rt_policy(p)) {
777 #ifdef CONFIG_SMP
778 if (p == task_rq(p)->migration_thread)
780 * The migration thread does the actual balancing.
781 * Giving its load any weight will skew balancing
782 * adversely.
784 p->load_weight = 0;
785 else
786 #endif
787 p->load_weight = RTPRIO_TO_LOAD_WEIGHT(p->rt_priority);
788 } else
789 p->load_weight = PRIO_TO_LOAD_WEIGHT(p->static_prio);
792 static inline void
793 inc_raw_weighted_load(struct rq *rq, const struct task_struct *p)
795 rq->raw_weighted_load += p->load_weight;
798 static inline void
799 dec_raw_weighted_load(struct rq *rq, const struct task_struct *p)
801 rq->raw_weighted_load -= p->load_weight;
804 static inline void inc_nr_running(struct task_struct *p, struct rq *rq)
806 rq->nr_running++;
807 inc_raw_weighted_load(rq, p);
810 static inline void dec_nr_running(struct task_struct *p, struct rq *rq)
812 rq->nr_running--;
813 dec_raw_weighted_load(rq, p);
817 * Calculate the expected normal priority: i.e. priority
818 * without taking RT-inheritance into account. Might be
819 * boosted by interactivity modifiers. Changes upon fork,
820 * setprio syscalls, and whenever the interactivity
821 * estimator recalculates.
823 static inline int normal_prio(struct task_struct *p)
825 int prio;
827 if (has_rt_policy(p))
828 prio = MAX_RT_PRIO-1 - p->rt_priority;
829 else
830 prio = __normal_prio(p);
831 return prio;
835 * Calculate the current priority, i.e. the priority
836 * taken into account by the scheduler. This value might
837 * be boosted by RT tasks, or might be boosted by
838 * interactivity modifiers. Will be RT if the task got
839 * RT-boosted. If not then it returns p->normal_prio.
841 static int effective_prio(struct task_struct *p)
843 p->normal_prio = normal_prio(p);
845 * If we are RT tasks or we were boosted to RT priority,
846 * keep the priority unchanged. Otherwise, update priority
847 * to the normal priority:
849 if (!rt_prio(p->prio))
850 return p->normal_prio;
851 return p->prio;
855 * __activate_task - move a task to the runqueue.
857 static void __activate_task(struct task_struct *p, struct rq *rq)
859 struct prio_array *target = rq->active;
861 if (batch_task(p))
862 target = rq->expired;
863 enqueue_task(p, target);
864 inc_nr_running(p, rq);
868 * __activate_idle_task - move idle task to the _front_ of runqueue.
870 static inline void __activate_idle_task(struct task_struct *p, struct rq *rq)
872 enqueue_task_head(p, rq->active);
873 inc_nr_running(p, rq);
877 * Recalculate p->normal_prio and p->prio after having slept,
878 * updating the sleep-average too:
880 static int recalc_task_prio(struct task_struct *p, unsigned long long now)
882 /* Caller must always ensure 'now >= p->timestamp' */
883 unsigned long sleep_time = now - p->timestamp;
885 if (batch_task(p))
886 sleep_time = 0;
888 if (likely(sleep_time > 0)) {
890 * This ceiling is set to the lowest priority that would allow
891 * a task to be reinserted into the active array on timeslice
892 * completion.
894 unsigned long ceiling = INTERACTIVE_SLEEP(p);
896 if (p->mm && sleep_time > ceiling && p->sleep_avg < ceiling) {
898 * Prevents user tasks from achieving best priority
899 * with one single large enough sleep.
901 p->sleep_avg = ceiling;
903 * Using INTERACTIVE_SLEEP() as a ceiling places a
904 * nice(0) task 1ms sleep away from promotion, and
905 * gives it 700ms to round-robin with no chance of
906 * being demoted. This is more than generous, so
907 * mark this sleep as non-interactive to prevent the
908 * on-runqueue bonus logic from intervening should
909 * this task not receive cpu immediately.
911 p->sleep_type = SLEEP_NONINTERACTIVE;
912 } else {
914 * Tasks waking from uninterruptible sleep are
915 * limited in their sleep_avg rise as they
916 * are likely to be waiting on I/O
918 if (p->sleep_type == SLEEP_NONINTERACTIVE && p->mm) {
919 if (p->sleep_avg >= ceiling)
920 sleep_time = 0;
921 else if (p->sleep_avg + sleep_time >=
922 ceiling) {
923 p->sleep_avg = ceiling;
924 sleep_time = 0;
929 * This code gives a bonus to interactive tasks.
931 * The boost works by updating the 'average sleep time'
932 * value here, based on ->timestamp. The more time a
933 * task spends sleeping, the higher the average gets -
934 * and the higher the priority boost gets as well.
936 p->sleep_avg += sleep_time;
939 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
940 p->sleep_avg = NS_MAX_SLEEP_AVG;
943 return effective_prio(p);
947 * activate_task - move a task to the runqueue and do priority recalculation
949 * Update all the scheduling statistics stuff. (sleep average
950 * calculation, priority modifiers, etc.)
952 static void activate_task(struct task_struct *p, struct rq *rq, int local)
954 unsigned long long now;
956 if (rt_task(p))
957 goto out;
959 now = sched_clock();
960 #ifdef CONFIG_SMP
961 if (!local) {
962 /* Compensate for drifting sched_clock */
963 struct rq *this_rq = this_rq();
964 now = (now - this_rq->most_recent_timestamp)
965 + rq->most_recent_timestamp;
967 #endif
970 * Sleep time is in units of nanosecs, so shift by 20 to get a
971 * milliseconds-range estimation of the amount of time that the task
972 * spent sleeping:
974 if (unlikely(prof_on == SLEEP_PROFILING)) {
975 if (p->state == TASK_UNINTERRUPTIBLE)
976 profile_hits(SLEEP_PROFILING, (void *)get_wchan(p),
977 (now - p->timestamp) >> 20);
980 p->prio = recalc_task_prio(p, now);
983 * This checks to make sure it's not an uninterruptible task
984 * that is now waking up.
986 if (p->sleep_type == SLEEP_NORMAL) {
988 * Tasks which were woken up by interrupts (ie. hw events)
989 * are most likely of interactive nature. So we give them
990 * the credit of extending their sleep time to the period
991 * of time they spend on the runqueue, waiting for execution
992 * on a CPU, first time around:
994 if (in_interrupt())
995 p->sleep_type = SLEEP_INTERRUPTED;
996 else {
998 * Normal first-time wakeups get a credit too for
999 * on-runqueue time, but it will be weighted down:
1001 p->sleep_type = SLEEP_INTERACTIVE;
1004 p->timestamp = now;
1005 out:
1006 __activate_task(p, rq);
1010 * deactivate_task - remove a task from the runqueue.
1012 static void deactivate_task(struct task_struct *p, struct rq *rq)
1014 dec_nr_running(p, rq);
1015 dequeue_task(p, p->array);
1016 p->array = NULL;
1020 * resched_task - mark a task 'to be rescheduled now'.
1022 * On UP this means the setting of the need_resched flag, on SMP it
1023 * might also involve a cross-CPU call to trigger the scheduler on
1024 * the target CPU.
1026 #ifdef CONFIG_SMP
1028 #ifndef tsk_is_polling
1029 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1030 #endif
1032 static void resched_task(struct task_struct *p)
1034 int cpu;
1036 assert_spin_locked(&task_rq(p)->lock);
1038 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
1039 return;
1041 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
1043 cpu = task_cpu(p);
1044 if (cpu == smp_processor_id())
1045 return;
1047 /* NEED_RESCHED must be visible before we test polling */
1048 smp_mb();
1049 if (!tsk_is_polling(p))
1050 smp_send_reschedule(cpu);
1052 #else
1053 static inline void resched_task(struct task_struct *p)
1055 assert_spin_locked(&task_rq(p)->lock);
1056 set_tsk_need_resched(p);
1058 #endif
1061 * task_curr - is this task currently executing on a CPU?
1062 * @p: the task in question.
1064 inline int task_curr(const struct task_struct *p)
1066 return cpu_curr(task_cpu(p)) == p;
1069 /* Used instead of source_load when we know the type == 0 */
1070 unsigned long weighted_cpuload(const int cpu)
1072 return cpu_rq(cpu)->raw_weighted_load;
1075 #ifdef CONFIG_SMP
1076 struct migration_req {
1077 struct list_head list;
1079 struct task_struct *task;
1080 int dest_cpu;
1082 struct completion done;
1086 * The task's runqueue lock must be held.
1087 * Returns true if you have to wait for migration thread.
1089 static int
1090 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1092 struct rq *rq = task_rq(p);
1095 * If the task is not on a runqueue (and not running), then
1096 * it is sufficient to simply update the task's cpu field.
1098 if (!p->array && !task_running(rq, p)) {
1099 set_task_cpu(p, dest_cpu);
1100 return 0;
1103 init_completion(&req->done);
1104 req->task = p;
1105 req->dest_cpu = dest_cpu;
1106 list_add(&req->list, &rq->migration_queue);
1108 return 1;
1112 * wait_task_inactive - wait for a thread to unschedule.
1114 * The caller must ensure that the task *will* unschedule sometime soon,
1115 * else this function might spin for a *long* time. This function can't
1116 * be called with interrupts off, or it may introduce deadlock with
1117 * smp_call_function() if an IPI is sent by the same process we are
1118 * waiting to become inactive.
1120 void wait_task_inactive(struct task_struct *p)
1122 unsigned long flags;
1123 struct rq *rq;
1124 int preempted;
1126 repeat:
1127 rq = task_rq_lock(p, &flags);
1128 /* Must be off runqueue entirely, not preempted. */
1129 if (unlikely(p->array || task_running(rq, p))) {
1130 /* If it's preempted, we yield. It could be a while. */
1131 preempted = !task_running(rq, p);
1132 task_rq_unlock(rq, &flags);
1133 cpu_relax();
1134 if (preempted)
1135 yield();
1136 goto repeat;
1138 task_rq_unlock(rq, &flags);
1141 /***
1142 * kick_process - kick a running thread to enter/exit the kernel
1143 * @p: the to-be-kicked thread
1145 * Cause a process which is running on another CPU to enter
1146 * kernel-mode, without any delay. (to get signals handled.)
1148 * NOTE: this function doesnt have to take the runqueue lock,
1149 * because all it wants to ensure is that the remote task enters
1150 * the kernel. If the IPI races and the task has been migrated
1151 * to another CPU then no harm is done and the purpose has been
1152 * achieved as well.
1154 void kick_process(struct task_struct *p)
1156 int cpu;
1158 preempt_disable();
1159 cpu = task_cpu(p);
1160 if ((cpu != smp_processor_id()) && task_curr(p))
1161 smp_send_reschedule(cpu);
1162 preempt_enable();
1166 * Return a low guess at the load of a migration-source cpu weighted
1167 * according to the scheduling class and "nice" value.
1169 * We want to under-estimate the load of migration sources, to
1170 * balance conservatively.
1172 static inline unsigned long source_load(int cpu, int type)
1174 struct rq *rq = cpu_rq(cpu);
1176 if (type == 0)
1177 return rq->raw_weighted_load;
1179 return min(rq->cpu_load[type-1], rq->raw_weighted_load);
1183 * Return a high guess at the load of a migration-target cpu weighted
1184 * according to the scheduling class and "nice" value.
1186 static inline unsigned long target_load(int cpu, int type)
1188 struct rq *rq = cpu_rq(cpu);
1190 if (type == 0)
1191 return rq->raw_weighted_load;
1193 return max(rq->cpu_load[type-1], rq->raw_weighted_load);
1197 * Return the average load per task on the cpu's run queue
1199 static inline unsigned long cpu_avg_load_per_task(int cpu)
1201 struct rq *rq = cpu_rq(cpu);
1202 unsigned long n = rq->nr_running;
1204 return n ? rq->raw_weighted_load / n : SCHED_LOAD_SCALE;
1208 * find_idlest_group finds and returns the least busy CPU group within the
1209 * domain.
1211 static struct sched_group *
1212 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1214 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1215 unsigned long min_load = ULONG_MAX, this_load = 0;
1216 int load_idx = sd->forkexec_idx;
1217 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1219 do {
1220 unsigned long load, avg_load;
1221 int local_group;
1222 int i;
1224 /* Skip over this group if it has no CPUs allowed */
1225 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1226 goto nextgroup;
1228 local_group = cpu_isset(this_cpu, group->cpumask);
1230 /* Tally up the load of all CPUs in the group */
1231 avg_load = 0;
1233 for_each_cpu_mask(i, group->cpumask) {
1234 /* Bias balancing toward cpus of our domain */
1235 if (local_group)
1236 load = source_load(i, load_idx);
1237 else
1238 load = target_load(i, load_idx);
1240 avg_load += load;
1243 /* Adjust by relative CPU power of the group */
1244 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1246 if (local_group) {
1247 this_load = avg_load;
1248 this = group;
1249 } else if (avg_load < min_load) {
1250 min_load = avg_load;
1251 idlest = group;
1253 nextgroup:
1254 group = group->next;
1255 } while (group != sd->groups);
1257 if (!idlest || 100*this_load < imbalance*min_load)
1258 return NULL;
1259 return idlest;
1263 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1265 static int
1266 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1268 cpumask_t tmp;
1269 unsigned long load, min_load = ULONG_MAX;
1270 int idlest = -1;
1271 int i;
1273 /* Traverse only the allowed CPUs */
1274 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1276 for_each_cpu_mask(i, tmp) {
1277 load = weighted_cpuload(i);
1279 if (load < min_load || (load == min_load && i == this_cpu)) {
1280 min_load = load;
1281 idlest = i;
1285 return idlest;
1289 * sched_balance_self: balance the current task (running on cpu) in domains
1290 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1291 * SD_BALANCE_EXEC.
1293 * Balance, ie. select the least loaded group.
1295 * Returns the target CPU number, or the same CPU if no balancing is needed.
1297 * preempt must be disabled.
1299 static int sched_balance_self(int cpu, int flag)
1301 struct task_struct *t = current;
1302 struct sched_domain *tmp, *sd = NULL;
1304 for_each_domain(cpu, tmp) {
1306 * If power savings logic is enabled for a domain, stop there.
1308 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1309 break;
1310 if (tmp->flags & flag)
1311 sd = tmp;
1314 while (sd) {
1315 cpumask_t span;
1316 struct sched_group *group;
1317 int new_cpu, weight;
1319 if (!(sd->flags & flag)) {
1320 sd = sd->child;
1321 continue;
1324 span = sd->span;
1325 group = find_idlest_group(sd, t, cpu);
1326 if (!group) {
1327 sd = sd->child;
1328 continue;
1331 new_cpu = find_idlest_cpu(group, t, cpu);
1332 if (new_cpu == -1 || new_cpu == cpu) {
1333 /* Now try balancing at a lower domain level of cpu */
1334 sd = sd->child;
1335 continue;
1338 /* Now try balancing at a lower domain level of new_cpu */
1339 cpu = new_cpu;
1340 sd = NULL;
1341 weight = cpus_weight(span);
1342 for_each_domain(cpu, tmp) {
1343 if (weight <= cpus_weight(tmp->span))
1344 break;
1345 if (tmp->flags & flag)
1346 sd = tmp;
1348 /* while loop will break here if sd == NULL */
1351 return cpu;
1354 #endif /* CONFIG_SMP */
1357 * wake_idle() will wake a task on an idle cpu if task->cpu is
1358 * not idle and an idle cpu is available. The span of cpus to
1359 * search starts with cpus closest then further out as needed,
1360 * so we always favor a closer, idle cpu.
1362 * Returns the CPU we should wake onto.
1364 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1365 static int wake_idle(int cpu, struct task_struct *p)
1367 cpumask_t tmp;
1368 struct sched_domain *sd;
1369 int i;
1371 if (idle_cpu(cpu))
1372 return cpu;
1374 for_each_domain(cpu, sd) {
1375 if (sd->flags & SD_WAKE_IDLE) {
1376 cpus_and(tmp, sd->span, p->cpus_allowed);
1377 for_each_cpu_mask(i, tmp) {
1378 if (idle_cpu(i))
1379 return i;
1382 else
1383 break;
1385 return cpu;
1387 #else
1388 static inline int wake_idle(int cpu, struct task_struct *p)
1390 return cpu;
1392 #endif
1394 /***
1395 * try_to_wake_up - wake up a thread
1396 * @p: the to-be-woken-up thread
1397 * @state: the mask of task states that can be woken
1398 * @sync: do a synchronous wakeup?
1400 * Put it on the run-queue if it's not already there. The "current"
1401 * thread is always on the run-queue (except when the actual
1402 * re-schedule is in progress), and as such you're allowed to do
1403 * the simpler "current->state = TASK_RUNNING" to mark yourself
1404 * runnable without the overhead of this.
1406 * returns failure only if the task is already active.
1408 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1410 int cpu, this_cpu, success = 0;
1411 unsigned long flags;
1412 long old_state;
1413 struct rq *rq;
1414 #ifdef CONFIG_SMP
1415 struct sched_domain *sd, *this_sd = NULL;
1416 unsigned long load, this_load;
1417 int new_cpu;
1418 #endif
1420 rq = task_rq_lock(p, &flags);
1421 old_state = p->state;
1422 if (!(old_state & state))
1423 goto out;
1425 if (p->array)
1426 goto out_running;
1428 cpu = task_cpu(p);
1429 this_cpu = smp_processor_id();
1431 #ifdef CONFIG_SMP
1432 if (unlikely(task_running(rq, p)))
1433 goto out_activate;
1435 new_cpu = cpu;
1437 schedstat_inc(rq, ttwu_cnt);
1438 if (cpu == this_cpu) {
1439 schedstat_inc(rq, ttwu_local);
1440 goto out_set_cpu;
1443 for_each_domain(this_cpu, sd) {
1444 if (cpu_isset(cpu, sd->span)) {
1445 schedstat_inc(sd, ttwu_wake_remote);
1446 this_sd = sd;
1447 break;
1451 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1452 goto out_set_cpu;
1455 * Check for affine wakeup and passive balancing possibilities.
1457 if (this_sd) {
1458 int idx = this_sd->wake_idx;
1459 unsigned int imbalance;
1461 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1463 load = source_load(cpu, idx);
1464 this_load = target_load(this_cpu, idx);
1466 new_cpu = this_cpu; /* Wake to this CPU if we can */
1468 if (this_sd->flags & SD_WAKE_AFFINE) {
1469 unsigned long tl = this_load;
1470 unsigned long tl_per_task;
1472 tl_per_task = cpu_avg_load_per_task(this_cpu);
1475 * If sync wakeup then subtract the (maximum possible)
1476 * effect of the currently running task from the load
1477 * of the current CPU:
1479 if (sync)
1480 tl -= current->load_weight;
1482 if ((tl <= load &&
1483 tl + target_load(cpu, idx) <= tl_per_task) ||
1484 100*(tl + p->load_weight) <= imbalance*load) {
1486 * This domain has SD_WAKE_AFFINE and
1487 * p is cache cold in this domain, and
1488 * there is no bad imbalance.
1490 schedstat_inc(this_sd, ttwu_move_affine);
1491 goto out_set_cpu;
1496 * Start passive balancing when half the imbalance_pct
1497 * limit is reached.
1499 if (this_sd->flags & SD_WAKE_BALANCE) {
1500 if (imbalance*this_load <= 100*load) {
1501 schedstat_inc(this_sd, ttwu_move_balance);
1502 goto out_set_cpu;
1507 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1508 out_set_cpu:
1509 new_cpu = wake_idle(new_cpu, p);
1510 if (new_cpu != cpu) {
1511 set_task_cpu(p, new_cpu);
1512 task_rq_unlock(rq, &flags);
1513 /* might preempt at this point */
1514 rq = task_rq_lock(p, &flags);
1515 old_state = p->state;
1516 if (!(old_state & state))
1517 goto out;
1518 if (p->array)
1519 goto out_running;
1521 this_cpu = smp_processor_id();
1522 cpu = task_cpu(p);
1525 out_activate:
1526 #endif /* CONFIG_SMP */
1527 if (old_state == TASK_UNINTERRUPTIBLE) {
1528 rq->nr_uninterruptible--;
1530 * Tasks on involuntary sleep don't earn
1531 * sleep_avg beyond just interactive state.
1533 p->sleep_type = SLEEP_NONINTERACTIVE;
1534 } else
1537 * Tasks that have marked their sleep as noninteractive get
1538 * woken up with their sleep average not weighted in an
1539 * interactive way.
1541 if (old_state & TASK_NONINTERACTIVE)
1542 p->sleep_type = SLEEP_NONINTERACTIVE;
1545 activate_task(p, rq, cpu == this_cpu);
1547 * Sync wakeups (i.e. those types of wakeups where the waker
1548 * has indicated that it will leave the CPU in short order)
1549 * don't trigger a preemption, if the woken up task will run on
1550 * this cpu. (in this case the 'I will reschedule' promise of
1551 * the waker guarantees that the freshly woken up task is going
1552 * to be considered on this CPU.)
1554 if (!sync || cpu != this_cpu) {
1555 if (TASK_PREEMPTS_CURR(p, rq))
1556 resched_task(rq->curr);
1558 success = 1;
1560 out_running:
1561 p->state = TASK_RUNNING;
1562 out:
1563 task_rq_unlock(rq, &flags);
1565 return success;
1568 int fastcall wake_up_process(struct task_struct *p)
1570 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1571 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1573 EXPORT_SYMBOL(wake_up_process);
1575 int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1577 return try_to_wake_up(p, state, 0);
1580 static void task_running_tick(struct rq *rq, struct task_struct *p);
1582 * Perform scheduler related setup for a newly forked process p.
1583 * p is forked by current.
1585 void fastcall sched_fork(struct task_struct *p, int clone_flags)
1587 int cpu = get_cpu();
1589 #ifdef CONFIG_SMP
1590 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1591 #endif
1592 set_task_cpu(p, cpu);
1595 * We mark the process as running here, but have not actually
1596 * inserted it onto the runqueue yet. This guarantees that
1597 * nobody will actually run it, and a signal or other external
1598 * event cannot wake it up and insert it on the runqueue either.
1600 p->state = TASK_RUNNING;
1603 * Make sure we do not leak PI boosting priority to the child:
1605 p->prio = current->normal_prio;
1607 INIT_LIST_HEAD(&p->run_list);
1608 p->array = NULL;
1609 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1610 if (unlikely(sched_info_on()))
1611 memset(&p->sched_info, 0, sizeof(p->sched_info));
1612 #endif
1613 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1614 p->oncpu = 0;
1615 #endif
1616 #ifdef CONFIG_PREEMPT
1617 /* Want to start with kernel preemption disabled. */
1618 task_thread_info(p)->preempt_count = 1;
1619 #endif
1621 * Share the timeslice between parent and child, thus the
1622 * total amount of pending timeslices in the system doesn't change,
1623 * resulting in more scheduling fairness.
1625 local_irq_disable();
1626 p->time_slice = (current->time_slice + 1) >> 1;
1628 * The remainder of the first timeslice might be recovered by
1629 * the parent if the child exits early enough.
1631 p->first_time_slice = 1;
1632 current->time_slice >>= 1;
1633 p->timestamp = sched_clock();
1634 if (unlikely(!current->time_slice)) {
1636 * This case is rare, it happens when the parent has only
1637 * a single jiffy left from its timeslice. Taking the
1638 * runqueue lock is not a problem.
1640 current->time_slice = 1;
1641 task_running_tick(cpu_rq(cpu), current);
1643 local_irq_enable();
1644 put_cpu();
1648 * wake_up_new_task - wake up a newly created task for the first time.
1650 * This function will do some initial scheduler statistics housekeeping
1651 * that must be done for every newly created context, then puts the task
1652 * on the runqueue and wakes it.
1654 void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1656 struct rq *rq, *this_rq;
1657 unsigned long flags;
1658 int this_cpu, cpu;
1660 rq = task_rq_lock(p, &flags);
1661 BUG_ON(p->state != TASK_RUNNING);
1662 this_cpu = smp_processor_id();
1663 cpu = task_cpu(p);
1666 * We decrease the sleep average of forking parents
1667 * and children as well, to keep max-interactive tasks
1668 * from forking tasks that are max-interactive. The parent
1669 * (current) is done further down, under its lock.
1671 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1672 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1674 p->prio = effective_prio(p);
1676 if (likely(cpu == this_cpu)) {
1677 if (!(clone_flags & CLONE_VM)) {
1679 * The VM isn't cloned, so we're in a good position to
1680 * do child-runs-first in anticipation of an exec. This
1681 * usually avoids a lot of COW overhead.
1683 if (unlikely(!current->array))
1684 __activate_task(p, rq);
1685 else {
1686 p->prio = current->prio;
1687 p->normal_prio = current->normal_prio;
1688 list_add_tail(&p->run_list, &current->run_list);
1689 p->array = current->array;
1690 p->array->nr_active++;
1691 inc_nr_running(p, rq);
1693 set_need_resched();
1694 } else
1695 /* Run child last */
1696 __activate_task(p, rq);
1698 * We skip the following code due to cpu == this_cpu
1700 * task_rq_unlock(rq, &flags);
1701 * this_rq = task_rq_lock(current, &flags);
1703 this_rq = rq;
1704 } else {
1705 this_rq = cpu_rq(this_cpu);
1708 * Not the local CPU - must adjust timestamp. This should
1709 * get optimised away in the !CONFIG_SMP case.
1711 p->timestamp = (p->timestamp - this_rq->most_recent_timestamp)
1712 + rq->most_recent_timestamp;
1713 __activate_task(p, rq);
1714 if (TASK_PREEMPTS_CURR(p, rq))
1715 resched_task(rq->curr);
1718 * Parent and child are on different CPUs, now get the
1719 * parent runqueue to update the parent's ->sleep_avg:
1721 task_rq_unlock(rq, &flags);
1722 this_rq = task_rq_lock(current, &flags);
1724 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1725 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1726 task_rq_unlock(this_rq, &flags);
1730 * Potentially available exiting-child timeslices are
1731 * retrieved here - this way the parent does not get
1732 * penalized for creating too many threads.
1734 * (this cannot be used to 'generate' timeslices
1735 * artificially, because any timeslice recovered here
1736 * was given away by the parent in the first place.)
1738 void fastcall sched_exit(struct task_struct *p)
1740 unsigned long flags;
1741 struct rq *rq;
1744 * If the child was a (relative-) CPU hog then decrease
1745 * the sleep_avg of the parent as well.
1747 rq = task_rq_lock(p->parent, &flags);
1748 if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
1749 p->parent->time_slice += p->time_slice;
1750 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1751 p->parent->time_slice = task_timeslice(p);
1753 if (p->sleep_avg < p->parent->sleep_avg)
1754 p->parent->sleep_avg = p->parent->sleep_avg /
1755 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1756 (EXIT_WEIGHT + 1);
1757 task_rq_unlock(rq, &flags);
1761 * prepare_task_switch - prepare to switch tasks
1762 * @rq: the runqueue preparing to switch
1763 * @next: the task we are going to switch to.
1765 * This is called with the rq lock held and interrupts off. It must
1766 * be paired with a subsequent finish_task_switch after the context
1767 * switch.
1769 * prepare_task_switch sets up locking and calls architecture specific
1770 * hooks.
1772 static inline void prepare_task_switch(struct rq *rq, struct task_struct *next)
1774 prepare_lock_switch(rq, next);
1775 prepare_arch_switch(next);
1779 * finish_task_switch - clean up after a task-switch
1780 * @rq: runqueue associated with task-switch
1781 * @prev: the thread we just switched away from.
1783 * finish_task_switch must be called after the context switch, paired
1784 * with a prepare_task_switch call before the context switch.
1785 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1786 * and do any other architecture-specific cleanup actions.
1788 * Note that we may have delayed dropping an mm in context_switch(). If
1789 * so, we finish that here outside of the runqueue lock. (Doing it
1790 * with the lock held can cause deadlocks; see schedule() for
1791 * details.)
1793 static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
1794 __releases(rq->lock)
1796 struct mm_struct *mm = rq->prev_mm;
1797 long prev_state;
1799 rq->prev_mm = NULL;
1802 * A task struct has one reference for the use as "current".
1803 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1804 * schedule one last time. The schedule call will never return, and
1805 * the scheduled task must drop that reference.
1806 * The test for TASK_DEAD must occur while the runqueue locks are
1807 * still held, otherwise prev could be scheduled on another cpu, die
1808 * there before we look at prev->state, and then the reference would
1809 * be dropped twice.
1810 * Manfred Spraul <manfred@colorfullife.com>
1812 prev_state = prev->state;
1813 finish_arch_switch(prev);
1814 finish_lock_switch(rq, prev);
1815 if (mm)
1816 mmdrop(mm);
1817 if (unlikely(prev_state == TASK_DEAD)) {
1819 * Remove function-return probe instances associated with this
1820 * task and put them back on the free list.
1822 kprobe_flush_task(prev);
1823 put_task_struct(prev);
1828 * schedule_tail - first thing a freshly forked thread must call.
1829 * @prev: the thread we just switched away from.
1831 asmlinkage void schedule_tail(struct task_struct *prev)
1832 __releases(rq->lock)
1834 struct rq *rq = this_rq();
1836 finish_task_switch(rq, prev);
1837 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1838 /* In this case, finish_task_switch does not reenable preemption */
1839 preempt_enable();
1840 #endif
1841 if (current->set_child_tid)
1842 put_user(current->pid, current->set_child_tid);
1846 * context_switch - switch to the new MM and the new
1847 * thread's register state.
1849 static inline struct task_struct *
1850 context_switch(struct rq *rq, struct task_struct *prev,
1851 struct task_struct *next)
1853 struct mm_struct *mm = next->mm;
1854 struct mm_struct *oldmm = prev->active_mm;
1856 if (!mm) {
1857 next->active_mm = oldmm;
1858 atomic_inc(&oldmm->mm_count);
1859 enter_lazy_tlb(oldmm, next);
1860 } else
1861 switch_mm(oldmm, mm, next);
1863 if (!prev->mm) {
1864 prev->active_mm = NULL;
1865 WARN_ON(rq->prev_mm);
1866 rq->prev_mm = oldmm;
1869 * Since the runqueue lock will be released by the next
1870 * task (which is an invalid locking op but in the case
1871 * of the scheduler it's an obvious special-case), so we
1872 * do an early lockdep release here:
1874 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1875 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1876 #endif
1878 /* Here we just switch the register state and the stack. */
1879 switch_to(prev, next, prev);
1881 return prev;
1885 * nr_running, nr_uninterruptible and nr_context_switches:
1887 * externally visible scheduler statistics: current number of runnable
1888 * threads, current number of uninterruptible-sleeping threads, total
1889 * number of context switches performed since bootup.
1891 unsigned long nr_running(void)
1893 unsigned long i, sum = 0;
1895 for_each_online_cpu(i)
1896 sum += cpu_rq(i)->nr_running;
1898 return sum;
1901 unsigned long nr_uninterruptible(void)
1903 unsigned long i, sum = 0;
1905 for_each_possible_cpu(i)
1906 sum += cpu_rq(i)->nr_uninterruptible;
1909 * Since we read the counters lockless, it might be slightly
1910 * inaccurate. Do not allow it to go below zero though:
1912 if (unlikely((long)sum < 0))
1913 sum = 0;
1915 return sum;
1918 unsigned long long nr_context_switches(void)
1920 int i;
1921 unsigned long long sum = 0;
1923 for_each_possible_cpu(i)
1924 sum += cpu_rq(i)->nr_switches;
1926 return sum;
1929 unsigned long nr_iowait(void)
1931 unsigned long i, sum = 0;
1933 for_each_possible_cpu(i)
1934 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1936 return sum;
1939 unsigned long nr_active(void)
1941 unsigned long i, running = 0, uninterruptible = 0;
1943 for_each_online_cpu(i) {
1944 running += cpu_rq(i)->nr_running;
1945 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1948 if (unlikely((long)uninterruptible < 0))
1949 uninterruptible = 0;
1951 return running + uninterruptible;
1954 #ifdef CONFIG_SMP
1957 * Is this task likely cache-hot:
1959 static inline int
1960 task_hot(struct task_struct *p, unsigned long long now, struct sched_domain *sd)
1962 return (long long)(now - p->last_ran) < (long long)sd->cache_hot_time;
1966 * double_rq_lock - safely lock two runqueues
1968 * Note this does not disable interrupts like task_rq_lock,
1969 * you need to do so manually before calling.
1971 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1972 __acquires(rq1->lock)
1973 __acquires(rq2->lock)
1975 BUG_ON(!irqs_disabled());
1976 if (rq1 == rq2) {
1977 spin_lock(&rq1->lock);
1978 __acquire(rq2->lock); /* Fake it out ;) */
1979 } else {
1980 if (rq1 < rq2) {
1981 spin_lock(&rq1->lock);
1982 spin_lock(&rq2->lock);
1983 } else {
1984 spin_lock(&rq2->lock);
1985 spin_lock(&rq1->lock);
1991 * double_rq_unlock - safely unlock two runqueues
1993 * Note this does not restore interrupts like task_rq_unlock,
1994 * you need to do so manually after calling.
1996 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1997 __releases(rq1->lock)
1998 __releases(rq2->lock)
2000 spin_unlock(&rq1->lock);
2001 if (rq1 != rq2)
2002 spin_unlock(&rq2->lock);
2003 else
2004 __release(rq2->lock);
2008 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2010 static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
2011 __releases(this_rq->lock)
2012 __acquires(busiest->lock)
2013 __acquires(this_rq->lock)
2015 if (unlikely(!irqs_disabled())) {
2016 /* printk() doesn't work good under rq->lock */
2017 spin_unlock(&this_rq->lock);
2018 BUG_ON(1);
2020 if (unlikely(!spin_trylock(&busiest->lock))) {
2021 if (busiest < this_rq) {
2022 spin_unlock(&this_rq->lock);
2023 spin_lock(&busiest->lock);
2024 spin_lock(&this_rq->lock);
2025 } else
2026 spin_lock(&busiest->lock);
2031 * If dest_cpu is allowed for this process, migrate the task to it.
2032 * This is accomplished by forcing the cpu_allowed mask to only
2033 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2034 * the cpu_allowed mask is restored.
2036 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2038 struct migration_req req;
2039 unsigned long flags;
2040 struct rq *rq;
2042 rq = task_rq_lock(p, &flags);
2043 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2044 || unlikely(cpu_is_offline(dest_cpu)))
2045 goto out;
2047 /* force the process onto the specified CPU */
2048 if (migrate_task(p, dest_cpu, &req)) {
2049 /* Need to wait for migration thread (might exit: take ref). */
2050 struct task_struct *mt = rq->migration_thread;
2052 get_task_struct(mt);
2053 task_rq_unlock(rq, &flags);
2054 wake_up_process(mt);
2055 put_task_struct(mt);
2056 wait_for_completion(&req.done);
2058 return;
2060 out:
2061 task_rq_unlock(rq, &flags);
2065 * sched_exec - execve() is a valuable balancing opportunity, because at
2066 * this point the task has the smallest effective memory and cache footprint.
2068 void sched_exec(void)
2070 int new_cpu, this_cpu = get_cpu();
2071 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2072 put_cpu();
2073 if (new_cpu != this_cpu)
2074 sched_migrate_task(current, new_cpu);
2078 * pull_task - move a task from a remote runqueue to the local runqueue.
2079 * Both runqueues must be locked.
2081 static void pull_task(struct rq *src_rq, struct prio_array *src_array,
2082 struct task_struct *p, struct rq *this_rq,
2083 struct prio_array *this_array, int this_cpu)
2085 dequeue_task(p, src_array);
2086 dec_nr_running(p, src_rq);
2087 set_task_cpu(p, this_cpu);
2088 inc_nr_running(p, this_rq);
2089 enqueue_task(p, this_array);
2090 p->timestamp = (p->timestamp - src_rq->most_recent_timestamp)
2091 + this_rq->most_recent_timestamp;
2093 * Note that idle threads have a prio of MAX_PRIO, for this test
2094 * to be always true for them.
2096 if (TASK_PREEMPTS_CURR(p, this_rq))
2097 resched_task(this_rq->curr);
2101 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2103 static
2104 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2105 struct sched_domain *sd, enum idle_type idle,
2106 int *all_pinned)
2109 * We do not migrate tasks that are:
2110 * 1) running (obviously), or
2111 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2112 * 3) are cache-hot on their current CPU.
2114 if (!cpu_isset(this_cpu, p->cpus_allowed))
2115 return 0;
2116 *all_pinned = 0;
2118 if (task_running(rq, p))
2119 return 0;
2122 * Aggressive migration if:
2123 * 1) task is cache cold, or
2124 * 2) too many balance attempts have failed.
2127 if (sd->nr_balance_failed > sd->cache_nice_tries) {
2128 #ifdef CONFIG_SCHEDSTATS
2129 if (task_hot(p, rq->most_recent_timestamp, sd))
2130 schedstat_inc(sd, lb_hot_gained[idle]);
2131 #endif
2132 return 1;
2135 if (task_hot(p, rq->most_recent_timestamp, sd))
2136 return 0;
2137 return 1;
2140 #define rq_best_prio(rq) min((rq)->curr->prio, (rq)->best_expired_prio)
2143 * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
2144 * load from busiest to this_rq, as part of a balancing operation within
2145 * "domain". Returns the number of tasks moved.
2147 * Called with both runqueues locked.
2149 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2150 unsigned long max_nr_move, unsigned long max_load_move,
2151 struct sched_domain *sd, enum idle_type idle,
2152 int *all_pinned)
2154 int idx, pulled = 0, pinned = 0, this_best_prio, best_prio,
2155 best_prio_seen, skip_for_load;
2156 struct prio_array *array, *dst_array;
2157 struct list_head *head, *curr;
2158 struct task_struct *tmp;
2159 long rem_load_move;
2161 if (max_nr_move == 0 || max_load_move == 0)
2162 goto out;
2164 rem_load_move = max_load_move;
2165 pinned = 1;
2166 this_best_prio = rq_best_prio(this_rq);
2167 best_prio = rq_best_prio(busiest);
2169 * Enable handling of the case where there is more than one task
2170 * with the best priority. If the current running task is one
2171 * of those with prio==best_prio we know it won't be moved
2172 * and therefore it's safe to override the skip (based on load) of
2173 * any task we find with that prio.
2175 best_prio_seen = best_prio == busiest->curr->prio;
2178 * We first consider expired tasks. Those will likely not be
2179 * executed in the near future, and they are most likely to
2180 * be cache-cold, thus switching CPUs has the least effect
2181 * on them.
2183 if (busiest->expired->nr_active) {
2184 array = busiest->expired;
2185 dst_array = this_rq->expired;
2186 } else {
2187 array = busiest->active;
2188 dst_array = this_rq->active;
2191 new_array:
2192 /* Start searching at priority 0: */
2193 idx = 0;
2194 skip_bitmap:
2195 if (!idx)
2196 idx = sched_find_first_bit(array->bitmap);
2197 else
2198 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
2199 if (idx >= MAX_PRIO) {
2200 if (array == busiest->expired && busiest->active->nr_active) {
2201 array = busiest->active;
2202 dst_array = this_rq->active;
2203 goto new_array;
2205 goto out;
2208 head = array->queue + idx;
2209 curr = head->prev;
2210 skip_queue:
2211 tmp = list_entry(curr, struct task_struct, run_list);
2213 curr = curr->prev;
2216 * To help distribute high priority tasks accross CPUs we don't
2217 * skip a task if it will be the highest priority task (i.e. smallest
2218 * prio value) on its new queue regardless of its load weight
2220 skip_for_load = tmp->load_weight > rem_load_move;
2221 if (skip_for_load && idx < this_best_prio)
2222 skip_for_load = !best_prio_seen && idx == best_prio;
2223 if (skip_for_load ||
2224 !can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
2226 best_prio_seen |= idx == best_prio;
2227 if (curr != head)
2228 goto skip_queue;
2229 idx++;
2230 goto skip_bitmap;
2233 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
2234 pulled++;
2235 rem_load_move -= tmp->load_weight;
2238 * We only want to steal up to the prescribed number of tasks
2239 * and the prescribed amount of weighted load.
2241 if (pulled < max_nr_move && rem_load_move > 0) {
2242 if (idx < this_best_prio)
2243 this_best_prio = idx;
2244 if (curr != head)
2245 goto skip_queue;
2246 idx++;
2247 goto skip_bitmap;
2249 out:
2251 * Right now, this is the only place pull_task() is called,
2252 * so we can safely collect pull_task() stats here rather than
2253 * inside pull_task().
2255 schedstat_add(sd, lb_gained[idle], pulled);
2257 if (all_pinned)
2258 *all_pinned = pinned;
2259 return pulled;
2263 * find_busiest_group finds and returns the busiest CPU group within the
2264 * domain. It calculates and returns the amount of weighted load which
2265 * should be moved to restore balance via the imbalance parameter.
2267 static struct sched_group *
2268 find_busiest_group(struct sched_domain *sd, int this_cpu,
2269 unsigned long *imbalance, enum idle_type idle, int *sd_idle,
2270 cpumask_t *cpus, int *balance)
2272 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2273 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2274 unsigned long max_pull;
2275 unsigned long busiest_load_per_task, busiest_nr_running;
2276 unsigned long this_load_per_task, this_nr_running;
2277 int load_idx;
2278 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2279 int power_savings_balance = 1;
2280 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2281 unsigned long min_nr_running = ULONG_MAX;
2282 struct sched_group *group_min = NULL, *group_leader = NULL;
2283 #endif
2285 max_load = this_load = total_load = total_pwr = 0;
2286 busiest_load_per_task = busiest_nr_running = 0;
2287 this_load_per_task = this_nr_running = 0;
2288 if (idle == NOT_IDLE)
2289 load_idx = sd->busy_idx;
2290 else if (idle == NEWLY_IDLE)
2291 load_idx = sd->newidle_idx;
2292 else
2293 load_idx = sd->idle_idx;
2295 do {
2296 unsigned long load, group_capacity;
2297 int local_group;
2298 int i;
2299 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2300 unsigned long sum_nr_running, sum_weighted_load;
2302 local_group = cpu_isset(this_cpu, group->cpumask);
2304 if (local_group)
2305 balance_cpu = first_cpu(group->cpumask);
2307 /* Tally up the load of all CPUs in the group */
2308 sum_weighted_load = sum_nr_running = avg_load = 0;
2310 for_each_cpu_mask(i, group->cpumask) {
2311 struct rq *rq;
2313 if (!cpu_isset(i, *cpus))
2314 continue;
2316 rq = cpu_rq(i);
2318 if (*sd_idle && !idle_cpu(i))
2319 *sd_idle = 0;
2321 /* Bias balancing toward cpus of our domain */
2322 if (local_group) {
2323 if (idle_cpu(i) && !first_idle_cpu) {
2324 first_idle_cpu = 1;
2325 balance_cpu = i;
2328 load = target_load(i, load_idx);
2329 } else
2330 load = source_load(i, load_idx);
2332 avg_load += load;
2333 sum_nr_running += rq->nr_running;
2334 sum_weighted_load += rq->raw_weighted_load;
2338 * First idle cpu or the first cpu(busiest) in this sched group
2339 * is eligible for doing load balancing at this and above
2340 * domains.
2342 if (local_group && balance_cpu != this_cpu && balance) {
2343 *balance = 0;
2344 goto ret;
2347 total_load += avg_load;
2348 total_pwr += group->cpu_power;
2350 /* Adjust by relative CPU power of the group */
2351 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
2353 group_capacity = group->cpu_power / SCHED_LOAD_SCALE;
2355 if (local_group) {
2356 this_load = avg_load;
2357 this = group;
2358 this_nr_running = sum_nr_running;
2359 this_load_per_task = sum_weighted_load;
2360 } else if (avg_load > max_load &&
2361 sum_nr_running > group_capacity) {
2362 max_load = avg_load;
2363 busiest = group;
2364 busiest_nr_running = sum_nr_running;
2365 busiest_load_per_task = sum_weighted_load;
2368 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2370 * Busy processors will not participate in power savings
2371 * balance.
2373 if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2374 goto group_next;
2377 * If the local group is idle or completely loaded
2378 * no need to do power savings balance at this domain
2380 if (local_group && (this_nr_running >= group_capacity ||
2381 !this_nr_running))
2382 power_savings_balance = 0;
2385 * If a group is already running at full capacity or idle,
2386 * don't include that group in power savings calculations
2388 if (!power_savings_balance || sum_nr_running >= group_capacity
2389 || !sum_nr_running)
2390 goto group_next;
2393 * Calculate the group which has the least non-idle load.
2394 * This is the group from where we need to pick up the load
2395 * for saving power
2397 if ((sum_nr_running < min_nr_running) ||
2398 (sum_nr_running == min_nr_running &&
2399 first_cpu(group->cpumask) <
2400 first_cpu(group_min->cpumask))) {
2401 group_min = group;
2402 min_nr_running = sum_nr_running;
2403 min_load_per_task = sum_weighted_load /
2404 sum_nr_running;
2408 * Calculate the group which is almost near its
2409 * capacity but still has some space to pick up some load
2410 * from other group and save more power
2412 if (sum_nr_running <= group_capacity - 1) {
2413 if (sum_nr_running > leader_nr_running ||
2414 (sum_nr_running == leader_nr_running &&
2415 first_cpu(group->cpumask) >
2416 first_cpu(group_leader->cpumask))) {
2417 group_leader = group;
2418 leader_nr_running = sum_nr_running;
2421 group_next:
2422 #endif
2423 group = group->next;
2424 } while (group != sd->groups);
2426 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2427 goto out_balanced;
2429 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2431 if (this_load >= avg_load ||
2432 100*max_load <= sd->imbalance_pct*this_load)
2433 goto out_balanced;
2435 busiest_load_per_task /= busiest_nr_running;
2437 * We're trying to get all the cpus to the average_load, so we don't
2438 * want to push ourselves above the average load, nor do we wish to
2439 * reduce the max loaded cpu below the average load, as either of these
2440 * actions would just result in more rebalancing later, and ping-pong
2441 * tasks around. Thus we look for the minimum possible imbalance.
2442 * Negative imbalances (*we* are more loaded than anyone else) will
2443 * be counted as no imbalance for these purposes -- we can't fix that
2444 * by pulling tasks to us. Be careful of negative numbers as they'll
2445 * appear as very large values with unsigned longs.
2447 if (max_load <= busiest_load_per_task)
2448 goto out_balanced;
2451 * In the presence of smp nice balancing, certain scenarios can have
2452 * max load less than avg load(as we skip the groups at or below
2453 * its cpu_power, while calculating max_load..)
2455 if (max_load < avg_load) {
2456 *imbalance = 0;
2457 goto small_imbalance;
2460 /* Don't want to pull so many tasks that a group would go idle */
2461 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2463 /* How much load to actually move to equalise the imbalance */
2464 *imbalance = min(max_pull * busiest->cpu_power,
2465 (avg_load - this_load) * this->cpu_power)
2466 / SCHED_LOAD_SCALE;
2469 * if *imbalance is less than the average load per runnable task
2470 * there is no gaurantee that any tasks will be moved so we'll have
2471 * a think about bumping its value to force at least one task to be
2472 * moved
2474 if (*imbalance < busiest_load_per_task) {
2475 unsigned long tmp, pwr_now, pwr_move;
2476 unsigned int imbn;
2478 small_imbalance:
2479 pwr_move = pwr_now = 0;
2480 imbn = 2;
2481 if (this_nr_running) {
2482 this_load_per_task /= this_nr_running;
2483 if (busiest_load_per_task > this_load_per_task)
2484 imbn = 1;
2485 } else
2486 this_load_per_task = SCHED_LOAD_SCALE;
2488 if (max_load - this_load >= busiest_load_per_task * imbn) {
2489 *imbalance = busiest_load_per_task;
2490 return busiest;
2494 * OK, we don't have enough imbalance to justify moving tasks,
2495 * however we may be able to increase total CPU power used by
2496 * moving them.
2499 pwr_now += busiest->cpu_power *
2500 min(busiest_load_per_task, max_load);
2501 pwr_now += this->cpu_power *
2502 min(this_load_per_task, this_load);
2503 pwr_now /= SCHED_LOAD_SCALE;
2505 /* Amount of load we'd subtract */
2506 tmp = busiest_load_per_task * SCHED_LOAD_SCALE /
2507 busiest->cpu_power;
2508 if (max_load > tmp)
2509 pwr_move += busiest->cpu_power *
2510 min(busiest_load_per_task, max_load - tmp);
2512 /* Amount of load we'd add */
2513 if (max_load * busiest->cpu_power <
2514 busiest_load_per_task * SCHED_LOAD_SCALE)
2515 tmp = max_load * busiest->cpu_power / this->cpu_power;
2516 else
2517 tmp = busiest_load_per_task * SCHED_LOAD_SCALE /
2518 this->cpu_power;
2519 pwr_move += this->cpu_power *
2520 min(this_load_per_task, this_load + tmp);
2521 pwr_move /= SCHED_LOAD_SCALE;
2523 /* Move if we gain throughput */
2524 if (pwr_move <= pwr_now)
2525 goto out_balanced;
2527 *imbalance = busiest_load_per_task;
2530 return busiest;
2532 out_balanced:
2533 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2534 if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2535 goto ret;
2537 if (this == group_leader && group_leader != group_min) {
2538 *imbalance = min_load_per_task;
2539 return group_min;
2541 #endif
2542 ret:
2543 *imbalance = 0;
2544 return NULL;
2548 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2550 static struct rq *
2551 find_busiest_queue(struct sched_group *group, enum idle_type idle,
2552 unsigned long imbalance, cpumask_t *cpus)
2554 struct rq *busiest = NULL, *rq;
2555 unsigned long max_load = 0;
2556 int i;
2558 for_each_cpu_mask(i, group->cpumask) {
2560 if (!cpu_isset(i, *cpus))
2561 continue;
2563 rq = cpu_rq(i);
2565 if (rq->nr_running == 1 && rq->raw_weighted_load > imbalance)
2566 continue;
2568 if (rq->raw_weighted_load > max_load) {
2569 max_load = rq->raw_weighted_load;
2570 busiest = rq;
2574 return busiest;
2578 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2579 * so long as it is large enough.
2581 #define MAX_PINNED_INTERVAL 512
2583 static inline unsigned long minus_1_or_zero(unsigned long n)
2585 return n > 0 ? n - 1 : 0;
2589 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2590 * tasks if there is an imbalance.
2592 static int load_balance(int this_cpu, struct rq *this_rq,
2593 struct sched_domain *sd, enum idle_type idle,
2594 int *balance)
2596 int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2597 struct sched_group *group;
2598 unsigned long imbalance;
2599 struct rq *busiest;
2600 cpumask_t cpus = CPU_MASK_ALL;
2601 unsigned long flags;
2604 * When power savings policy is enabled for the parent domain, idle
2605 * sibling can pick up load irrespective of busy siblings. In this case,
2606 * let the state of idle sibling percolate up as IDLE, instead of
2607 * portraying it as NOT_IDLE.
2609 if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2610 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2611 sd_idle = 1;
2613 schedstat_inc(sd, lb_cnt[idle]);
2615 redo:
2616 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2617 &cpus, balance);
2619 if (*balance == 0)
2620 goto out_balanced;
2622 if (!group) {
2623 schedstat_inc(sd, lb_nobusyg[idle]);
2624 goto out_balanced;
2627 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
2628 if (!busiest) {
2629 schedstat_inc(sd, lb_nobusyq[idle]);
2630 goto out_balanced;
2633 BUG_ON(busiest == this_rq);
2635 schedstat_add(sd, lb_imbalance[idle], imbalance);
2637 nr_moved = 0;
2638 if (busiest->nr_running > 1) {
2640 * Attempt to move tasks. If find_busiest_group has found
2641 * an imbalance but busiest->nr_running <= 1, the group is
2642 * still unbalanced. nr_moved simply stays zero, so it is
2643 * correctly treated as an imbalance.
2645 local_irq_save(flags);
2646 double_rq_lock(this_rq, busiest);
2647 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2648 minus_1_or_zero(busiest->nr_running),
2649 imbalance, sd, idle, &all_pinned);
2650 double_rq_unlock(this_rq, busiest);
2651 local_irq_restore(flags);
2653 /* All tasks on this runqueue were pinned by CPU affinity */
2654 if (unlikely(all_pinned)) {
2655 cpu_clear(cpu_of(busiest), cpus);
2656 if (!cpus_empty(cpus))
2657 goto redo;
2658 goto out_balanced;
2662 if (!nr_moved) {
2663 schedstat_inc(sd, lb_failed[idle]);
2664 sd->nr_balance_failed++;
2666 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2668 spin_lock_irqsave(&busiest->lock, flags);
2670 /* don't kick the migration_thread, if the curr
2671 * task on busiest cpu can't be moved to this_cpu
2673 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2674 spin_unlock_irqrestore(&busiest->lock, flags);
2675 all_pinned = 1;
2676 goto out_one_pinned;
2679 if (!busiest->active_balance) {
2680 busiest->active_balance = 1;
2681 busiest->push_cpu = this_cpu;
2682 active_balance = 1;
2684 spin_unlock_irqrestore(&busiest->lock, flags);
2685 if (active_balance)
2686 wake_up_process(busiest->migration_thread);
2689 * We've kicked active balancing, reset the failure
2690 * counter.
2692 sd->nr_balance_failed = sd->cache_nice_tries+1;
2694 } else
2695 sd->nr_balance_failed = 0;
2697 if (likely(!active_balance)) {
2698 /* We were unbalanced, so reset the balancing interval */
2699 sd->balance_interval = sd->min_interval;
2700 } else {
2702 * If we've begun active balancing, start to back off. This
2703 * case may not be covered by the all_pinned logic if there
2704 * is only 1 task on the busy runqueue (because we don't call
2705 * move_tasks).
2707 if (sd->balance_interval < sd->max_interval)
2708 sd->balance_interval *= 2;
2711 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2712 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2713 return -1;
2714 return nr_moved;
2716 out_balanced:
2717 schedstat_inc(sd, lb_balanced[idle]);
2719 sd->nr_balance_failed = 0;
2721 out_one_pinned:
2722 /* tune up the balancing interval */
2723 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2724 (sd->balance_interval < sd->max_interval))
2725 sd->balance_interval *= 2;
2727 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2728 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2729 return -1;
2730 return 0;
2734 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2735 * tasks if there is an imbalance.
2737 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2738 * this_rq is locked.
2740 static int
2741 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
2743 struct sched_group *group;
2744 struct rq *busiest = NULL;
2745 unsigned long imbalance;
2746 int nr_moved = 0;
2747 int sd_idle = 0;
2748 cpumask_t cpus = CPU_MASK_ALL;
2751 * When power savings policy is enabled for the parent domain, idle
2752 * sibling can pick up load irrespective of busy siblings. In this case,
2753 * let the state of idle sibling percolate up as IDLE, instead of
2754 * portraying it as NOT_IDLE.
2756 if (sd->flags & SD_SHARE_CPUPOWER &&
2757 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2758 sd_idle = 1;
2760 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
2761 redo:
2762 group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE,
2763 &sd_idle, &cpus, NULL);
2764 if (!group) {
2765 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
2766 goto out_balanced;
2769 busiest = find_busiest_queue(group, NEWLY_IDLE, imbalance,
2770 &cpus);
2771 if (!busiest) {
2772 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
2773 goto out_balanced;
2776 BUG_ON(busiest == this_rq);
2778 schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
2780 nr_moved = 0;
2781 if (busiest->nr_running > 1) {
2782 /* Attempt to move tasks */
2783 double_lock_balance(this_rq, busiest);
2784 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2785 minus_1_or_zero(busiest->nr_running),
2786 imbalance, sd, NEWLY_IDLE, NULL);
2787 spin_unlock(&busiest->lock);
2789 if (!nr_moved) {
2790 cpu_clear(cpu_of(busiest), cpus);
2791 if (!cpus_empty(cpus))
2792 goto redo;
2796 if (!nr_moved) {
2797 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
2798 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2799 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2800 return -1;
2801 } else
2802 sd->nr_balance_failed = 0;
2804 return nr_moved;
2806 out_balanced:
2807 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
2808 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2809 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2810 return -1;
2811 sd->nr_balance_failed = 0;
2813 return 0;
2817 * idle_balance is called by schedule() if this_cpu is about to become
2818 * idle. Attempts to pull tasks from other CPUs.
2820 static void idle_balance(int this_cpu, struct rq *this_rq)
2822 struct sched_domain *sd;
2823 int pulled_task = 0;
2824 unsigned long next_balance = jiffies + 60 * HZ;
2826 for_each_domain(this_cpu, sd) {
2827 if (sd->flags & SD_BALANCE_NEWIDLE) {
2828 /* If we've pulled tasks over stop searching: */
2829 pulled_task = load_balance_newidle(this_cpu,
2830 this_rq, sd);
2831 if (time_after(next_balance,
2832 sd->last_balance + sd->balance_interval))
2833 next_balance = sd->last_balance
2834 + sd->balance_interval;
2835 if (pulled_task)
2836 break;
2839 if (!pulled_task)
2841 * We are going idle. next_balance may be set based on
2842 * a busy processor. So reset next_balance.
2844 this_rq->next_balance = next_balance;
2848 * active_load_balance is run by migration threads. It pushes running tasks
2849 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2850 * running on each physical CPU where possible, and avoids physical /
2851 * logical imbalances.
2853 * Called with busiest_rq locked.
2855 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
2857 int target_cpu = busiest_rq->push_cpu;
2858 struct sched_domain *sd;
2859 struct rq *target_rq;
2861 /* Is there any task to move? */
2862 if (busiest_rq->nr_running <= 1)
2863 return;
2865 target_rq = cpu_rq(target_cpu);
2868 * This condition is "impossible", if it occurs
2869 * we need to fix it. Originally reported by
2870 * Bjorn Helgaas on a 128-cpu setup.
2872 BUG_ON(busiest_rq == target_rq);
2874 /* move a task from busiest_rq to target_rq */
2875 double_lock_balance(busiest_rq, target_rq);
2877 /* Search for an sd spanning us and the target CPU. */
2878 for_each_domain(target_cpu, sd) {
2879 if ((sd->flags & SD_LOAD_BALANCE) &&
2880 cpu_isset(busiest_cpu, sd->span))
2881 break;
2884 if (likely(sd)) {
2885 schedstat_inc(sd, alb_cnt);
2887 if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
2888 RTPRIO_TO_LOAD_WEIGHT(100), sd, SCHED_IDLE,
2889 NULL))
2890 schedstat_inc(sd, alb_pushed);
2891 else
2892 schedstat_inc(sd, alb_failed);
2894 spin_unlock(&target_rq->lock);
2897 static void update_load(struct rq *this_rq)
2899 unsigned long this_load;
2900 unsigned int i, scale;
2902 this_load = this_rq->raw_weighted_load;
2904 /* Update our load: */
2905 for (i = 0, scale = 1; i < 3; i++, scale += scale) {
2906 unsigned long old_load, new_load;
2908 /* scale is effectively 1 << i now, and >> i divides by scale */
2910 old_load = this_rq->cpu_load[i];
2911 new_load = this_load;
2913 * Round up the averaging division if load is increasing. This
2914 * prevents us from getting stuck on 9 if the load is 10, for
2915 * example.
2917 if (new_load > old_load)
2918 new_load += scale-1;
2919 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2924 * run_rebalance_domains is triggered when needed from the scheduler tick.
2926 * It checks each scheduling domain to see if it is due to be balanced,
2927 * and initiates a balancing operation if so.
2929 * Balancing parameters are set up in arch_init_sched_domains.
2931 static DEFINE_SPINLOCK(balancing);
2933 static void run_rebalance_domains(struct softirq_action *h)
2935 int this_cpu = smp_processor_id(), balance = 1;
2936 struct rq *this_rq = cpu_rq(this_cpu);
2937 unsigned long interval;
2938 struct sched_domain *sd;
2940 * We are idle if there are no processes running. This
2941 * is valid even if we are the idle process (SMT).
2943 enum idle_type idle = !this_rq->nr_running ?
2944 SCHED_IDLE : NOT_IDLE;
2945 /* Earliest time when we have to call run_rebalance_domains again */
2946 unsigned long next_balance = jiffies + 60*HZ;
2948 for_each_domain(this_cpu, sd) {
2949 if (!(sd->flags & SD_LOAD_BALANCE))
2950 continue;
2952 interval = sd->balance_interval;
2953 if (idle != SCHED_IDLE)
2954 interval *= sd->busy_factor;
2956 /* scale ms to jiffies */
2957 interval = msecs_to_jiffies(interval);
2958 if (unlikely(!interval))
2959 interval = 1;
2961 if (sd->flags & SD_SERIALIZE) {
2962 if (!spin_trylock(&balancing))
2963 goto out;
2966 if (time_after_eq(jiffies, sd->last_balance + interval)) {
2967 if (load_balance(this_cpu, this_rq, sd, idle, &balance)) {
2969 * We've pulled tasks over so either we're no
2970 * longer idle, or one of our SMT siblings is
2971 * not idle.
2973 idle = NOT_IDLE;
2975 sd->last_balance = jiffies;
2977 if (sd->flags & SD_SERIALIZE)
2978 spin_unlock(&balancing);
2979 out:
2980 if (time_after(next_balance, sd->last_balance + interval))
2981 next_balance = sd->last_balance + interval;
2984 * Stop the load balance at this level. There is another
2985 * CPU in our sched group which is doing load balancing more
2986 * actively.
2988 if (!balance)
2989 break;
2991 this_rq->next_balance = next_balance;
2993 #else
2995 * on UP we do not need to balance between CPUs:
2997 static inline void idle_balance(int cpu, struct rq *rq)
3000 #endif
3002 static inline void wake_priority_sleeper(struct rq *rq)
3004 #ifdef CONFIG_SCHED_SMT
3005 if (!rq->nr_running)
3006 return;
3008 spin_lock(&rq->lock);
3010 * If an SMT sibling task has been put to sleep for priority
3011 * reasons reschedule the idle task to see if it can now run.
3013 if (rq->nr_running)
3014 resched_task(rq->idle);
3015 spin_unlock(&rq->lock);
3016 #endif
3019 DEFINE_PER_CPU(struct kernel_stat, kstat);
3021 EXPORT_PER_CPU_SYMBOL(kstat);
3024 * This is called on clock ticks and on context switches.
3025 * Bank in p->sched_time the ns elapsed since the last tick or switch.
3027 static inline void
3028 update_cpu_clock(struct task_struct *p, struct rq *rq, unsigned long long now)
3030 p->sched_time += now - p->last_ran;
3031 p->last_ran = rq->most_recent_timestamp = now;
3035 * Return current->sched_time plus any more ns on the sched_clock
3036 * that have not yet been banked.
3038 unsigned long long current_sched_time(const struct task_struct *p)
3040 unsigned long long ns;
3041 unsigned long flags;
3043 local_irq_save(flags);
3044 ns = p->sched_time + sched_clock() - p->last_ran;
3045 local_irq_restore(flags);
3047 return ns;
3051 * We place interactive tasks back into the active array, if possible.
3053 * To guarantee that this does not starve expired tasks we ignore the
3054 * interactivity of a task if the first expired task had to wait more
3055 * than a 'reasonable' amount of time. This deadline timeout is
3056 * load-dependent, as the frequency of array switched decreases with
3057 * increasing number of running tasks. We also ignore the interactivity
3058 * if a better static_prio task has expired:
3060 static inline int expired_starving(struct rq *rq)
3062 if (rq->curr->static_prio > rq->best_expired_prio)
3063 return 1;
3064 if (!STARVATION_LIMIT || !rq->expired_timestamp)
3065 return 0;
3066 if (jiffies - rq->expired_timestamp > STARVATION_LIMIT * rq->nr_running)
3067 return 1;
3068 return 0;
3072 * Account user cpu time to a process.
3073 * @p: the process that the cpu time gets accounted to
3074 * @hardirq_offset: the offset to subtract from hardirq_count()
3075 * @cputime: the cpu time spent in user space since the last update
3077 void account_user_time(struct task_struct *p, cputime_t cputime)
3079 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3080 cputime64_t tmp;
3082 p->utime = cputime_add(p->utime, cputime);
3084 /* Add user time to cpustat. */
3085 tmp = cputime_to_cputime64(cputime);
3086 if (TASK_NICE(p) > 0)
3087 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3088 else
3089 cpustat->user = cputime64_add(cpustat->user, tmp);
3093 * Account system cpu time to a process.
3094 * @p: the process that the cpu time gets accounted to
3095 * @hardirq_offset: the offset to subtract from hardirq_count()
3096 * @cputime: the cpu time spent in kernel space since the last update
3098 void account_system_time(struct task_struct *p, int hardirq_offset,
3099 cputime_t cputime)
3101 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3102 struct rq *rq = this_rq();
3103 cputime64_t tmp;
3105 p->stime = cputime_add(p->stime, cputime);
3107 /* Add system time to cpustat. */
3108 tmp = cputime_to_cputime64(cputime);
3109 if (hardirq_count() - hardirq_offset)
3110 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3111 else if (softirq_count())
3112 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3113 else if (p != rq->idle)
3114 cpustat->system = cputime64_add(cpustat->system, tmp);
3115 else if (atomic_read(&rq->nr_iowait) > 0)
3116 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3117 else
3118 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3119 /* Account for system time used */
3120 acct_update_integrals(p);
3124 * Account for involuntary wait time.
3125 * @p: the process from which the cpu time has been stolen
3126 * @steal: the cpu time spent in involuntary wait
3128 void account_steal_time(struct task_struct *p, cputime_t steal)
3130 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3131 cputime64_t tmp = cputime_to_cputime64(steal);
3132 struct rq *rq = this_rq();
3134 if (p == rq->idle) {
3135 p->stime = cputime_add(p->stime, steal);
3136 if (atomic_read(&rq->nr_iowait) > 0)
3137 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3138 else
3139 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3140 } else
3141 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3144 static void task_running_tick(struct rq *rq, struct task_struct *p)
3146 if (p->array != rq->active) {
3147 /* Task has expired but was not scheduled yet */
3148 set_tsk_need_resched(p);
3149 return;
3151 spin_lock(&rq->lock);
3153 * The task was running during this tick - update the
3154 * time slice counter. Note: we do not update a thread's
3155 * priority until it either goes to sleep or uses up its
3156 * timeslice. This makes it possible for interactive tasks
3157 * to use up their timeslices at their highest priority levels.
3159 if (rt_task(p)) {
3161 * RR tasks need a special form of timeslice management.
3162 * FIFO tasks have no timeslices.
3164 if ((p->policy == SCHED_RR) && !--p->time_slice) {
3165 p->time_slice = task_timeslice(p);
3166 p->first_time_slice = 0;
3167 set_tsk_need_resched(p);
3169 /* put it at the end of the queue: */
3170 requeue_task(p, rq->active);
3172 goto out_unlock;
3174 if (!--p->time_slice) {
3175 dequeue_task(p, rq->active);
3176 set_tsk_need_resched(p);
3177 p->prio = effective_prio(p);
3178 p->time_slice = task_timeslice(p);
3179 p->first_time_slice = 0;
3181 if (!rq->expired_timestamp)
3182 rq->expired_timestamp = jiffies;
3183 if (!TASK_INTERACTIVE(p) || expired_starving(rq)) {
3184 enqueue_task(p, rq->expired);
3185 if (p->static_prio < rq->best_expired_prio)
3186 rq->best_expired_prio = p->static_prio;
3187 } else
3188 enqueue_task(p, rq->active);
3189 } else {
3191 * Prevent a too long timeslice allowing a task to monopolize
3192 * the CPU. We do this by splitting up the timeslice into
3193 * smaller pieces.
3195 * Note: this does not mean the task's timeslices expire or
3196 * get lost in any way, they just might be preempted by
3197 * another task of equal priority. (one with higher
3198 * priority would have preempted this task already.) We
3199 * requeue this task to the end of the list on this priority
3200 * level, which is in essence a round-robin of tasks with
3201 * equal priority.
3203 * This only applies to tasks in the interactive
3204 * delta range with at least TIMESLICE_GRANULARITY to requeue.
3206 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
3207 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
3208 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
3209 (p->array == rq->active)) {
3211 requeue_task(p, rq->active);
3212 set_tsk_need_resched(p);
3215 out_unlock:
3216 spin_unlock(&rq->lock);
3220 * This function gets called by the timer code, with HZ frequency.
3221 * We call it with interrupts disabled.
3223 * It also gets called by the fork code, when changing the parent's
3224 * timeslices.
3226 void scheduler_tick(void)
3228 unsigned long long now = sched_clock();
3229 struct task_struct *p = current;
3230 int cpu = smp_processor_id();
3231 struct rq *rq = cpu_rq(cpu);
3233 update_cpu_clock(p, rq, now);
3235 if (p == rq->idle)
3236 /* Task on the idle queue */
3237 wake_priority_sleeper(rq);
3238 else
3239 task_running_tick(rq, p);
3240 #ifdef CONFIG_SMP
3241 update_load(rq);
3242 if (time_after_eq(jiffies, rq->next_balance))
3243 raise_softirq(SCHED_SOFTIRQ);
3244 #endif
3247 #ifdef CONFIG_SCHED_SMT
3248 static inline void wakeup_busy_runqueue(struct rq *rq)
3250 /* If an SMT runqueue is sleeping due to priority reasons wake it up */
3251 if (rq->curr == rq->idle && rq->nr_running)
3252 resched_task(rq->idle);
3256 * Called with interrupt disabled and this_rq's runqueue locked.
3258 static void wake_sleeping_dependent(int this_cpu)
3260 struct sched_domain *tmp, *sd = NULL;
3261 int i;
3263 for_each_domain(this_cpu, tmp) {
3264 if (tmp->flags & SD_SHARE_CPUPOWER) {
3265 sd = tmp;
3266 break;
3270 if (!sd)
3271 return;
3273 for_each_cpu_mask(i, sd->span) {
3274 struct rq *smt_rq = cpu_rq(i);
3276 if (i == this_cpu)
3277 continue;
3278 if (unlikely(!spin_trylock(&smt_rq->lock)))
3279 continue;
3281 wakeup_busy_runqueue(smt_rq);
3282 spin_unlock(&smt_rq->lock);
3287 * number of 'lost' timeslices this task wont be able to fully
3288 * utilize, if another task runs on a sibling. This models the
3289 * slowdown effect of other tasks running on siblings:
3291 static inline unsigned long
3292 smt_slice(struct task_struct *p, struct sched_domain *sd)
3294 return p->time_slice * (100 - sd->per_cpu_gain) / 100;
3298 * To minimise lock contention and not have to drop this_rq's runlock we only
3299 * trylock the sibling runqueues and bypass those runqueues if we fail to
3300 * acquire their lock. As we only trylock the normal locking order does not
3301 * need to be obeyed.
3303 static int
3304 dependent_sleeper(int this_cpu, struct rq *this_rq, struct task_struct *p)
3306 struct sched_domain *tmp, *sd = NULL;
3307 int ret = 0, i;
3309 /* kernel/rt threads do not participate in dependent sleeping */
3310 if (!p->mm || rt_task(p))
3311 return 0;
3313 for_each_domain(this_cpu, tmp) {
3314 if (tmp->flags & SD_SHARE_CPUPOWER) {
3315 sd = tmp;
3316 break;
3320 if (!sd)
3321 return 0;
3323 for_each_cpu_mask(i, sd->span) {
3324 struct task_struct *smt_curr;
3325 struct rq *smt_rq;
3327 if (i == this_cpu)
3328 continue;
3330 smt_rq = cpu_rq(i);
3331 if (unlikely(!spin_trylock(&smt_rq->lock)))
3332 continue;
3334 smt_curr = smt_rq->curr;
3336 if (!smt_curr->mm)
3337 goto unlock;
3340 * If a user task with lower static priority than the
3341 * running task on the SMT sibling is trying to schedule,
3342 * delay it till there is proportionately less timeslice
3343 * left of the sibling task to prevent a lower priority
3344 * task from using an unfair proportion of the
3345 * physical cpu's resources. -ck
3347 if (rt_task(smt_curr)) {
3349 * With real time tasks we run non-rt tasks only
3350 * per_cpu_gain% of the time.
3352 if ((jiffies % DEF_TIMESLICE) >
3353 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
3354 ret = 1;
3355 } else {
3356 if (smt_curr->static_prio < p->static_prio &&
3357 !TASK_PREEMPTS_CURR(p, smt_rq) &&
3358 smt_slice(smt_curr, sd) > task_timeslice(p))
3359 ret = 1;
3361 unlock:
3362 spin_unlock(&smt_rq->lock);
3364 return ret;
3366 #else
3367 static inline void wake_sleeping_dependent(int this_cpu)
3370 static inline int
3371 dependent_sleeper(int this_cpu, struct rq *this_rq, struct task_struct *p)
3373 return 0;
3375 #endif
3377 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3379 void fastcall add_preempt_count(int val)
3382 * Underflow?
3384 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3385 return;
3386 preempt_count() += val;
3388 * Spinlock count overflowing soon?
3390 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3391 PREEMPT_MASK - 10);
3393 EXPORT_SYMBOL(add_preempt_count);
3395 void fastcall sub_preempt_count(int val)
3398 * Underflow?
3400 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3401 return;
3403 * Is the spinlock portion underflowing?
3405 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3406 !(preempt_count() & PREEMPT_MASK)))
3407 return;
3409 preempt_count() -= val;
3411 EXPORT_SYMBOL(sub_preempt_count);
3413 #endif
3415 static inline int interactive_sleep(enum sleep_type sleep_type)
3417 return (sleep_type == SLEEP_INTERACTIVE ||
3418 sleep_type == SLEEP_INTERRUPTED);
3422 * schedule() is the main scheduler function.
3424 asmlinkage void __sched schedule(void)
3426 struct task_struct *prev, *next;
3427 struct prio_array *array;
3428 struct list_head *queue;
3429 unsigned long long now;
3430 unsigned long run_time;
3431 int cpu, idx, new_prio;
3432 long *switch_count;
3433 struct rq *rq;
3436 * Test if we are atomic. Since do_exit() needs to call into
3437 * schedule() atomically, we ignore that path for now.
3438 * Otherwise, whine if we are scheduling when we should not be.
3440 if (unlikely(in_atomic() && !current->exit_state)) {
3441 printk(KERN_ERR "BUG: scheduling while atomic: "
3442 "%s/0x%08x/%d\n",
3443 current->comm, preempt_count(), current->pid);
3444 debug_show_held_locks(current);
3445 if (irqs_disabled())
3446 print_irqtrace_events(current);
3447 dump_stack();
3449 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3451 need_resched:
3452 preempt_disable();
3453 prev = current;
3454 release_kernel_lock(prev);
3455 need_resched_nonpreemptible:
3456 rq = this_rq();
3459 * The idle thread is not allowed to schedule!
3460 * Remove this check after it has been exercised a bit.
3462 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
3463 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
3464 dump_stack();
3467 schedstat_inc(rq, sched_cnt);
3468 now = sched_clock();
3469 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
3470 run_time = now - prev->timestamp;
3471 if (unlikely((long long)(now - prev->timestamp) < 0))
3472 run_time = 0;
3473 } else
3474 run_time = NS_MAX_SLEEP_AVG;
3477 * Tasks charged proportionately less run_time at high sleep_avg to
3478 * delay them losing their interactive status
3480 run_time /= (CURRENT_BONUS(prev) ? : 1);
3482 spin_lock_irq(&rq->lock);
3484 switch_count = &prev->nivcsw;
3485 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3486 switch_count = &prev->nvcsw;
3487 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3488 unlikely(signal_pending(prev))))
3489 prev->state = TASK_RUNNING;
3490 else {
3491 if (prev->state == TASK_UNINTERRUPTIBLE)
3492 rq->nr_uninterruptible++;
3493 deactivate_task(prev, rq);
3497 cpu = smp_processor_id();
3498 if (unlikely(!rq->nr_running)) {
3499 idle_balance(cpu, rq);
3500 if (!rq->nr_running) {
3501 next = rq->idle;
3502 rq->expired_timestamp = 0;
3503 wake_sleeping_dependent(cpu);
3504 goto switch_tasks;
3508 array = rq->active;
3509 if (unlikely(!array->nr_active)) {
3511 * Switch the active and expired arrays.
3513 schedstat_inc(rq, sched_switch);
3514 rq->active = rq->expired;
3515 rq->expired = array;
3516 array = rq->active;
3517 rq->expired_timestamp = 0;
3518 rq->best_expired_prio = MAX_PRIO;
3521 idx = sched_find_first_bit(array->bitmap);
3522 queue = array->queue + idx;
3523 next = list_entry(queue->next, struct task_struct, run_list);
3525 if (!rt_task(next) && interactive_sleep(next->sleep_type)) {
3526 unsigned long long delta = now - next->timestamp;
3527 if (unlikely((long long)(now - next->timestamp) < 0))
3528 delta = 0;
3530 if (next->sleep_type == SLEEP_INTERACTIVE)
3531 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
3533 array = next->array;
3534 new_prio = recalc_task_prio(next, next->timestamp + delta);
3536 if (unlikely(next->prio != new_prio)) {
3537 dequeue_task(next, array);
3538 next->prio = new_prio;
3539 enqueue_task(next, array);
3542 next->sleep_type = SLEEP_NORMAL;
3543 if (dependent_sleeper(cpu, rq, next))
3544 next = rq->idle;
3545 switch_tasks:
3546 if (next == rq->idle)
3547 schedstat_inc(rq, sched_goidle);
3548 prefetch(next);
3549 prefetch_stack(next);
3550 clear_tsk_need_resched(prev);
3551 rcu_qsctr_inc(task_cpu(prev));
3553 update_cpu_clock(prev, rq, now);
3555 prev->sleep_avg -= run_time;
3556 if ((long)prev->sleep_avg <= 0)
3557 prev->sleep_avg = 0;
3558 prev->timestamp = prev->last_ran = now;
3560 sched_info_switch(prev, next);
3561 if (likely(prev != next)) {
3562 next->timestamp = now;
3563 rq->nr_switches++;
3564 rq->curr = next;
3565 ++*switch_count;
3567 prepare_task_switch(rq, next);
3568 prev = context_switch(rq, prev, next);
3569 barrier();
3571 * this_rq must be evaluated again because prev may have moved
3572 * CPUs since it called schedule(), thus the 'rq' on its stack
3573 * frame will be invalid.
3575 finish_task_switch(this_rq(), prev);
3576 } else
3577 spin_unlock_irq(&rq->lock);
3579 prev = current;
3580 if (unlikely(reacquire_kernel_lock(prev) < 0))
3581 goto need_resched_nonpreemptible;
3582 preempt_enable_no_resched();
3583 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3584 goto need_resched;
3586 EXPORT_SYMBOL(schedule);
3588 #ifdef CONFIG_PREEMPT
3590 * this is the entry point to schedule() from in-kernel preemption
3591 * off of preempt_enable. Kernel preemptions off return from interrupt
3592 * occur there and call schedule directly.
3594 asmlinkage void __sched preempt_schedule(void)
3596 struct thread_info *ti = current_thread_info();
3597 #ifdef CONFIG_PREEMPT_BKL
3598 struct task_struct *task = current;
3599 int saved_lock_depth;
3600 #endif
3602 * If there is a non-zero preempt_count or interrupts are disabled,
3603 * we do not want to preempt the current task. Just return..
3605 if (likely(ti->preempt_count || irqs_disabled()))
3606 return;
3608 need_resched:
3609 add_preempt_count(PREEMPT_ACTIVE);
3611 * We keep the big kernel semaphore locked, but we
3612 * clear ->lock_depth so that schedule() doesnt
3613 * auto-release the semaphore:
3615 #ifdef CONFIG_PREEMPT_BKL
3616 saved_lock_depth = task->lock_depth;
3617 task->lock_depth = -1;
3618 #endif
3619 schedule();
3620 #ifdef CONFIG_PREEMPT_BKL
3621 task->lock_depth = saved_lock_depth;
3622 #endif
3623 sub_preempt_count(PREEMPT_ACTIVE);
3625 /* we could miss a preemption opportunity between schedule and now */
3626 barrier();
3627 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3628 goto need_resched;
3630 EXPORT_SYMBOL(preempt_schedule);
3633 * this is the entry point to schedule() from kernel preemption
3634 * off of irq context.
3635 * Note, that this is called and return with irqs disabled. This will
3636 * protect us against recursive calling from irq.
3638 asmlinkage void __sched preempt_schedule_irq(void)
3640 struct thread_info *ti = current_thread_info();
3641 #ifdef CONFIG_PREEMPT_BKL
3642 struct task_struct *task = current;
3643 int saved_lock_depth;
3644 #endif
3645 /* Catch callers which need to be fixed */
3646 BUG_ON(ti->preempt_count || !irqs_disabled());
3648 need_resched:
3649 add_preempt_count(PREEMPT_ACTIVE);
3651 * We keep the big kernel semaphore locked, but we
3652 * clear ->lock_depth so that schedule() doesnt
3653 * auto-release the semaphore:
3655 #ifdef CONFIG_PREEMPT_BKL
3656 saved_lock_depth = task->lock_depth;
3657 task->lock_depth = -1;
3658 #endif
3659 local_irq_enable();
3660 schedule();
3661 local_irq_disable();
3662 #ifdef CONFIG_PREEMPT_BKL
3663 task->lock_depth = saved_lock_depth;
3664 #endif
3665 sub_preempt_count(PREEMPT_ACTIVE);
3667 /* we could miss a preemption opportunity between schedule and now */
3668 barrier();
3669 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3670 goto need_resched;
3673 #endif /* CONFIG_PREEMPT */
3675 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3676 void *key)
3678 return try_to_wake_up(curr->private, mode, sync);
3680 EXPORT_SYMBOL(default_wake_function);
3683 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3684 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3685 * number) then we wake all the non-exclusive tasks and one exclusive task.
3687 * There are circumstances in which we can try to wake a task which has already
3688 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3689 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3691 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3692 int nr_exclusive, int sync, void *key)
3694 struct list_head *tmp, *next;
3696 list_for_each_safe(tmp, next, &q->task_list) {
3697 wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
3698 unsigned flags = curr->flags;
3700 if (curr->func(curr, mode, sync, key) &&
3701 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3702 break;
3707 * __wake_up - wake up threads blocked on a waitqueue.
3708 * @q: the waitqueue
3709 * @mode: which threads
3710 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3711 * @key: is directly passed to the wakeup function
3713 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3714 int nr_exclusive, void *key)
3716 unsigned long flags;
3718 spin_lock_irqsave(&q->lock, flags);
3719 __wake_up_common(q, mode, nr_exclusive, 0, key);
3720 spin_unlock_irqrestore(&q->lock, flags);
3722 EXPORT_SYMBOL(__wake_up);
3725 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3727 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3729 __wake_up_common(q, mode, 1, 0, NULL);
3733 * __wake_up_sync - wake up threads blocked on a waitqueue.
3734 * @q: the waitqueue
3735 * @mode: which threads
3736 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3738 * The sync wakeup differs that the waker knows that it will schedule
3739 * away soon, so while the target thread will be woken up, it will not
3740 * be migrated to another CPU - ie. the two threads are 'synchronized'
3741 * with each other. This can prevent needless bouncing between CPUs.
3743 * On UP it can prevent extra preemption.
3745 void fastcall
3746 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3748 unsigned long flags;
3749 int sync = 1;
3751 if (unlikely(!q))
3752 return;
3754 if (unlikely(!nr_exclusive))
3755 sync = 0;
3757 spin_lock_irqsave(&q->lock, flags);
3758 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3759 spin_unlock_irqrestore(&q->lock, flags);
3761 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3763 void fastcall complete(struct completion *x)
3765 unsigned long flags;
3767 spin_lock_irqsave(&x->wait.lock, flags);
3768 x->done++;
3769 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3770 1, 0, NULL);
3771 spin_unlock_irqrestore(&x->wait.lock, flags);
3773 EXPORT_SYMBOL(complete);
3775 void fastcall complete_all(struct completion *x)
3777 unsigned long flags;
3779 spin_lock_irqsave(&x->wait.lock, flags);
3780 x->done += UINT_MAX/2;
3781 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3782 0, 0, NULL);
3783 spin_unlock_irqrestore(&x->wait.lock, flags);
3785 EXPORT_SYMBOL(complete_all);
3787 void fastcall __sched wait_for_completion(struct completion *x)
3789 might_sleep();
3791 spin_lock_irq(&x->wait.lock);
3792 if (!x->done) {
3793 DECLARE_WAITQUEUE(wait, current);
3795 wait.flags |= WQ_FLAG_EXCLUSIVE;
3796 __add_wait_queue_tail(&x->wait, &wait);
3797 do {
3798 __set_current_state(TASK_UNINTERRUPTIBLE);
3799 spin_unlock_irq(&x->wait.lock);
3800 schedule();
3801 spin_lock_irq(&x->wait.lock);
3802 } while (!x->done);
3803 __remove_wait_queue(&x->wait, &wait);
3805 x->done--;
3806 spin_unlock_irq(&x->wait.lock);
3808 EXPORT_SYMBOL(wait_for_completion);
3810 unsigned long fastcall __sched
3811 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3813 might_sleep();
3815 spin_lock_irq(&x->wait.lock);
3816 if (!x->done) {
3817 DECLARE_WAITQUEUE(wait, current);
3819 wait.flags |= WQ_FLAG_EXCLUSIVE;
3820 __add_wait_queue_tail(&x->wait, &wait);
3821 do {
3822 __set_current_state(TASK_UNINTERRUPTIBLE);
3823 spin_unlock_irq(&x->wait.lock);
3824 timeout = schedule_timeout(timeout);
3825 spin_lock_irq(&x->wait.lock);
3826 if (!timeout) {
3827 __remove_wait_queue(&x->wait, &wait);
3828 goto out;
3830 } while (!x->done);
3831 __remove_wait_queue(&x->wait, &wait);
3833 x->done--;
3834 out:
3835 spin_unlock_irq(&x->wait.lock);
3836 return timeout;
3838 EXPORT_SYMBOL(wait_for_completion_timeout);
3840 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3842 int ret = 0;
3844 might_sleep();
3846 spin_lock_irq(&x->wait.lock);
3847 if (!x->done) {
3848 DECLARE_WAITQUEUE(wait, current);
3850 wait.flags |= WQ_FLAG_EXCLUSIVE;
3851 __add_wait_queue_tail(&x->wait, &wait);
3852 do {
3853 if (signal_pending(current)) {
3854 ret = -ERESTARTSYS;
3855 __remove_wait_queue(&x->wait, &wait);
3856 goto out;
3858 __set_current_state(TASK_INTERRUPTIBLE);
3859 spin_unlock_irq(&x->wait.lock);
3860 schedule();
3861 spin_lock_irq(&x->wait.lock);
3862 } while (!x->done);
3863 __remove_wait_queue(&x->wait, &wait);
3865 x->done--;
3866 out:
3867 spin_unlock_irq(&x->wait.lock);
3869 return ret;
3871 EXPORT_SYMBOL(wait_for_completion_interruptible);
3873 unsigned long fastcall __sched
3874 wait_for_completion_interruptible_timeout(struct completion *x,
3875 unsigned long timeout)
3877 might_sleep();
3879 spin_lock_irq(&x->wait.lock);
3880 if (!x->done) {
3881 DECLARE_WAITQUEUE(wait, current);
3883 wait.flags |= WQ_FLAG_EXCLUSIVE;
3884 __add_wait_queue_tail(&x->wait, &wait);
3885 do {
3886 if (signal_pending(current)) {
3887 timeout = -ERESTARTSYS;
3888 __remove_wait_queue(&x->wait, &wait);
3889 goto out;
3891 __set_current_state(TASK_INTERRUPTIBLE);
3892 spin_unlock_irq(&x->wait.lock);
3893 timeout = schedule_timeout(timeout);
3894 spin_lock_irq(&x->wait.lock);
3895 if (!timeout) {
3896 __remove_wait_queue(&x->wait, &wait);
3897 goto out;
3899 } while (!x->done);
3900 __remove_wait_queue(&x->wait, &wait);
3902 x->done--;
3903 out:
3904 spin_unlock_irq(&x->wait.lock);
3905 return timeout;
3907 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3910 #define SLEEP_ON_VAR \
3911 unsigned long flags; \
3912 wait_queue_t wait; \
3913 init_waitqueue_entry(&wait, current);
3915 #define SLEEP_ON_HEAD \
3916 spin_lock_irqsave(&q->lock,flags); \
3917 __add_wait_queue(q, &wait); \
3918 spin_unlock(&q->lock);
3920 #define SLEEP_ON_TAIL \
3921 spin_lock_irq(&q->lock); \
3922 __remove_wait_queue(q, &wait); \
3923 spin_unlock_irqrestore(&q->lock, flags);
3925 void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3927 SLEEP_ON_VAR
3929 current->state = TASK_INTERRUPTIBLE;
3931 SLEEP_ON_HEAD
3932 schedule();
3933 SLEEP_ON_TAIL
3935 EXPORT_SYMBOL(interruptible_sleep_on);
3937 long fastcall __sched
3938 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3940 SLEEP_ON_VAR
3942 current->state = TASK_INTERRUPTIBLE;
3944 SLEEP_ON_HEAD
3945 timeout = schedule_timeout(timeout);
3946 SLEEP_ON_TAIL
3948 return timeout;
3950 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3952 void fastcall __sched sleep_on(wait_queue_head_t *q)
3954 SLEEP_ON_VAR
3956 current->state = TASK_UNINTERRUPTIBLE;
3958 SLEEP_ON_HEAD
3959 schedule();
3960 SLEEP_ON_TAIL
3962 EXPORT_SYMBOL(sleep_on);
3964 long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3966 SLEEP_ON_VAR
3968 current->state = TASK_UNINTERRUPTIBLE;
3970 SLEEP_ON_HEAD
3971 timeout = schedule_timeout(timeout);
3972 SLEEP_ON_TAIL
3974 return timeout;
3977 EXPORT_SYMBOL(sleep_on_timeout);
3979 #ifdef CONFIG_RT_MUTEXES
3982 * rt_mutex_setprio - set the current priority of a task
3983 * @p: task
3984 * @prio: prio value (kernel-internal form)
3986 * This function changes the 'effective' priority of a task. It does
3987 * not touch ->normal_prio like __setscheduler().
3989 * Used by the rt_mutex code to implement priority inheritance logic.
3991 void rt_mutex_setprio(struct task_struct *p, int prio)
3993 struct prio_array *array;
3994 unsigned long flags;
3995 struct rq *rq;
3996 int oldprio;
3998 BUG_ON(prio < 0 || prio > MAX_PRIO);
4000 rq = task_rq_lock(p, &flags);
4002 oldprio = p->prio;
4003 array = p->array;
4004 if (array)
4005 dequeue_task(p, array);
4006 p->prio = prio;
4008 if (array) {
4010 * If changing to an RT priority then queue it
4011 * in the active array!
4013 if (rt_task(p))
4014 array = rq->active;
4015 enqueue_task(p, array);
4017 * Reschedule if we are currently running on this runqueue and
4018 * our priority decreased, or if we are not currently running on
4019 * this runqueue and our priority is higher than the current's
4021 if (task_running(rq, p)) {
4022 if (p->prio > oldprio)
4023 resched_task(rq->curr);
4024 } else if (TASK_PREEMPTS_CURR(p, rq))
4025 resched_task(rq->curr);
4027 task_rq_unlock(rq, &flags);
4030 #endif
4032 void set_user_nice(struct task_struct *p, long nice)
4034 struct prio_array *array;
4035 int old_prio, delta;
4036 unsigned long flags;
4037 struct rq *rq;
4039 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4040 return;
4042 * We have to be careful, if called from sys_setpriority(),
4043 * the task might be in the middle of scheduling on another CPU.
4045 rq = task_rq_lock(p, &flags);
4047 * The RT priorities are set via sched_setscheduler(), but we still
4048 * allow the 'normal' nice value to be set - but as expected
4049 * it wont have any effect on scheduling until the task is
4050 * not SCHED_NORMAL/SCHED_BATCH:
4052 if (has_rt_policy(p)) {
4053 p->static_prio = NICE_TO_PRIO(nice);
4054 goto out_unlock;
4056 array = p->array;
4057 if (array) {
4058 dequeue_task(p, array);
4059 dec_raw_weighted_load(rq, p);
4062 p->static_prio = NICE_TO_PRIO(nice);
4063 set_load_weight(p);
4064 old_prio = p->prio;
4065 p->prio = effective_prio(p);
4066 delta = p->prio - old_prio;
4068 if (array) {
4069 enqueue_task(p, array);
4070 inc_raw_weighted_load(rq, p);
4072 * If the task increased its priority or is running and
4073 * lowered its priority, then reschedule its CPU:
4075 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4076 resched_task(rq->curr);
4078 out_unlock:
4079 task_rq_unlock(rq, &flags);
4081 EXPORT_SYMBOL(set_user_nice);
4084 * can_nice - check if a task can reduce its nice value
4085 * @p: task
4086 * @nice: nice value
4088 int can_nice(const struct task_struct *p, const int nice)
4090 /* convert nice value [19,-20] to rlimit style value [1,40] */
4091 int nice_rlim = 20 - nice;
4093 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4094 capable(CAP_SYS_NICE));
4097 #ifdef __ARCH_WANT_SYS_NICE
4100 * sys_nice - change the priority of the current process.
4101 * @increment: priority increment
4103 * sys_setpriority is a more generic, but much slower function that
4104 * does similar things.
4106 asmlinkage long sys_nice(int increment)
4108 long nice, retval;
4111 * Setpriority might change our priority at the same moment.
4112 * We don't have to worry. Conceptually one call occurs first
4113 * and we have a single winner.
4115 if (increment < -40)
4116 increment = -40;
4117 if (increment > 40)
4118 increment = 40;
4120 nice = PRIO_TO_NICE(current->static_prio) + increment;
4121 if (nice < -20)
4122 nice = -20;
4123 if (nice > 19)
4124 nice = 19;
4126 if (increment < 0 && !can_nice(current, nice))
4127 return -EPERM;
4129 retval = security_task_setnice(current, nice);
4130 if (retval)
4131 return retval;
4133 set_user_nice(current, nice);
4134 return 0;
4137 #endif
4140 * task_prio - return the priority value of a given task.
4141 * @p: the task in question.
4143 * This is the priority value as seen by users in /proc.
4144 * RT tasks are offset by -200. Normal tasks are centered
4145 * around 0, value goes from -16 to +15.
4147 int task_prio(const struct task_struct *p)
4149 return p->prio - MAX_RT_PRIO;
4153 * task_nice - return the nice value of a given task.
4154 * @p: the task in question.
4156 int task_nice(const struct task_struct *p)
4158 return TASK_NICE(p);
4160 EXPORT_SYMBOL_GPL(task_nice);
4163 * idle_cpu - is a given cpu idle currently?
4164 * @cpu: the processor in question.
4166 int idle_cpu(int cpu)
4168 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4172 * idle_task - return the idle task for a given cpu.
4173 * @cpu: the processor in question.
4175 struct task_struct *idle_task(int cpu)
4177 return cpu_rq(cpu)->idle;
4181 * find_process_by_pid - find a process with a matching PID value.
4182 * @pid: the pid in question.
4184 static inline struct task_struct *find_process_by_pid(pid_t pid)
4186 return pid ? find_task_by_pid(pid) : current;
4189 /* Actually do priority change: must hold rq lock. */
4190 static void __setscheduler(struct task_struct *p, int policy, int prio)
4192 BUG_ON(p->array);
4194 p->policy = policy;
4195 p->rt_priority = prio;
4196 p->normal_prio = normal_prio(p);
4197 /* we are holding p->pi_lock already */
4198 p->prio = rt_mutex_getprio(p);
4200 * SCHED_BATCH tasks are treated as perpetual CPU hogs:
4202 if (policy == SCHED_BATCH)
4203 p->sleep_avg = 0;
4204 set_load_weight(p);
4208 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4209 * @p: the task in question.
4210 * @policy: new policy.
4211 * @param: structure containing the new RT priority.
4213 * NOTE that the task may be already dead.
4215 int sched_setscheduler(struct task_struct *p, int policy,
4216 struct sched_param *param)
4218 int retval, oldprio, oldpolicy = -1;
4219 struct prio_array *array;
4220 unsigned long flags;
4221 struct rq *rq;
4223 /* may grab non-irq protected spin_locks */
4224 BUG_ON(in_interrupt());
4225 recheck:
4226 /* double check policy once rq lock held */
4227 if (policy < 0)
4228 policy = oldpolicy = p->policy;
4229 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4230 policy != SCHED_NORMAL && policy != SCHED_BATCH)
4231 return -EINVAL;
4233 * Valid priorities for SCHED_FIFO and SCHED_RR are
4234 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
4235 * SCHED_BATCH is 0.
4237 if (param->sched_priority < 0 ||
4238 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4239 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4240 return -EINVAL;
4241 if (is_rt_policy(policy) != (param->sched_priority != 0))
4242 return -EINVAL;
4245 * Allow unprivileged RT tasks to decrease priority:
4247 if (!capable(CAP_SYS_NICE)) {
4248 if (is_rt_policy(policy)) {
4249 unsigned long rlim_rtprio;
4250 unsigned long flags;
4252 if (!lock_task_sighand(p, &flags))
4253 return -ESRCH;
4254 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4255 unlock_task_sighand(p, &flags);
4257 /* can't set/change the rt policy */
4258 if (policy != p->policy && !rlim_rtprio)
4259 return -EPERM;
4261 /* can't increase priority */
4262 if (param->sched_priority > p->rt_priority &&
4263 param->sched_priority > rlim_rtprio)
4264 return -EPERM;
4267 /* can't change other user's priorities */
4268 if ((current->euid != p->euid) &&
4269 (current->euid != p->uid))
4270 return -EPERM;
4273 retval = security_task_setscheduler(p, policy, param);
4274 if (retval)
4275 return retval;
4277 * make sure no PI-waiters arrive (or leave) while we are
4278 * changing the priority of the task:
4280 spin_lock_irqsave(&p->pi_lock, flags);
4282 * To be able to change p->policy safely, the apropriate
4283 * runqueue lock must be held.
4285 rq = __task_rq_lock(p);
4286 /* recheck policy now with rq lock held */
4287 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4288 policy = oldpolicy = -1;
4289 __task_rq_unlock(rq);
4290 spin_unlock_irqrestore(&p->pi_lock, flags);
4291 goto recheck;
4293 array = p->array;
4294 if (array)
4295 deactivate_task(p, rq);
4296 oldprio = p->prio;
4297 __setscheduler(p, policy, param->sched_priority);
4298 if (array) {
4299 __activate_task(p, rq);
4301 * Reschedule if we are currently running on this runqueue and
4302 * our priority decreased, or if we are not currently running on
4303 * this runqueue and our priority is higher than the current's
4305 if (task_running(rq, p)) {
4306 if (p->prio > oldprio)
4307 resched_task(rq->curr);
4308 } else if (TASK_PREEMPTS_CURR(p, rq))
4309 resched_task(rq->curr);
4311 __task_rq_unlock(rq);
4312 spin_unlock_irqrestore(&p->pi_lock, flags);
4314 rt_mutex_adjust_pi(p);
4316 return 0;
4318 EXPORT_SYMBOL_GPL(sched_setscheduler);
4320 static int
4321 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4323 struct sched_param lparam;
4324 struct task_struct *p;
4325 int retval;
4327 if (!param || pid < 0)
4328 return -EINVAL;
4329 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4330 return -EFAULT;
4332 rcu_read_lock();
4333 retval = -ESRCH;
4334 p = find_process_by_pid(pid);
4335 if (p != NULL)
4336 retval = sched_setscheduler(p, policy, &lparam);
4337 rcu_read_unlock();
4339 return retval;
4343 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4344 * @pid: the pid in question.
4345 * @policy: new policy.
4346 * @param: structure containing the new RT priority.
4348 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4349 struct sched_param __user *param)
4351 /* negative values for policy are not valid */
4352 if (policy < 0)
4353 return -EINVAL;
4355 return do_sched_setscheduler(pid, policy, param);
4359 * sys_sched_setparam - set/change the RT priority of a thread
4360 * @pid: the pid in question.
4361 * @param: structure containing the new RT priority.
4363 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4365 return do_sched_setscheduler(pid, -1, param);
4369 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4370 * @pid: the pid in question.
4372 asmlinkage long sys_sched_getscheduler(pid_t pid)
4374 struct task_struct *p;
4375 int retval = -EINVAL;
4377 if (pid < 0)
4378 goto out_nounlock;
4380 retval = -ESRCH;
4381 read_lock(&tasklist_lock);
4382 p = find_process_by_pid(pid);
4383 if (p) {
4384 retval = security_task_getscheduler(p);
4385 if (!retval)
4386 retval = p->policy;
4388 read_unlock(&tasklist_lock);
4390 out_nounlock:
4391 return retval;
4395 * sys_sched_getscheduler - get the RT priority of a thread
4396 * @pid: the pid in question.
4397 * @param: structure containing the RT priority.
4399 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4401 struct sched_param lp;
4402 struct task_struct *p;
4403 int retval = -EINVAL;
4405 if (!param || pid < 0)
4406 goto out_nounlock;
4408 read_lock(&tasklist_lock);
4409 p = find_process_by_pid(pid);
4410 retval = -ESRCH;
4411 if (!p)
4412 goto out_unlock;
4414 retval = security_task_getscheduler(p);
4415 if (retval)
4416 goto out_unlock;
4418 lp.sched_priority = p->rt_priority;
4419 read_unlock(&tasklist_lock);
4422 * This one might sleep, we cannot do it with a spinlock held ...
4424 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4426 out_nounlock:
4427 return retval;
4429 out_unlock:
4430 read_unlock(&tasklist_lock);
4431 return retval;
4434 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4436 cpumask_t cpus_allowed;
4437 struct task_struct *p;
4438 int retval;
4440 lock_cpu_hotplug();
4441 read_lock(&tasklist_lock);
4443 p = find_process_by_pid(pid);
4444 if (!p) {
4445 read_unlock(&tasklist_lock);
4446 unlock_cpu_hotplug();
4447 return -ESRCH;
4451 * It is not safe to call set_cpus_allowed with the
4452 * tasklist_lock held. We will bump the task_struct's
4453 * usage count and then drop tasklist_lock.
4455 get_task_struct(p);
4456 read_unlock(&tasklist_lock);
4458 retval = -EPERM;
4459 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4460 !capable(CAP_SYS_NICE))
4461 goto out_unlock;
4463 retval = security_task_setscheduler(p, 0, NULL);
4464 if (retval)
4465 goto out_unlock;
4467 cpus_allowed = cpuset_cpus_allowed(p);
4468 cpus_and(new_mask, new_mask, cpus_allowed);
4469 retval = set_cpus_allowed(p, new_mask);
4471 out_unlock:
4472 put_task_struct(p);
4473 unlock_cpu_hotplug();
4474 return retval;
4477 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4478 cpumask_t *new_mask)
4480 if (len < sizeof(cpumask_t)) {
4481 memset(new_mask, 0, sizeof(cpumask_t));
4482 } else if (len > sizeof(cpumask_t)) {
4483 len = sizeof(cpumask_t);
4485 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4489 * sys_sched_setaffinity - set the cpu affinity of a process
4490 * @pid: pid of the process
4491 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4492 * @user_mask_ptr: user-space pointer to the new cpu mask
4494 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4495 unsigned long __user *user_mask_ptr)
4497 cpumask_t new_mask;
4498 int retval;
4500 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4501 if (retval)
4502 return retval;
4504 return sched_setaffinity(pid, new_mask);
4508 * Represents all cpu's present in the system
4509 * In systems capable of hotplug, this map could dynamically grow
4510 * as new cpu's are detected in the system via any platform specific
4511 * method, such as ACPI for e.g.
4514 cpumask_t cpu_present_map __read_mostly;
4515 EXPORT_SYMBOL(cpu_present_map);
4517 #ifndef CONFIG_SMP
4518 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4519 EXPORT_SYMBOL(cpu_online_map);
4521 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4522 EXPORT_SYMBOL(cpu_possible_map);
4523 #endif
4525 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4527 struct task_struct *p;
4528 int retval;
4530 lock_cpu_hotplug();
4531 read_lock(&tasklist_lock);
4533 retval = -ESRCH;
4534 p = find_process_by_pid(pid);
4535 if (!p)
4536 goto out_unlock;
4538 retval = security_task_getscheduler(p);
4539 if (retval)
4540 goto out_unlock;
4542 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4544 out_unlock:
4545 read_unlock(&tasklist_lock);
4546 unlock_cpu_hotplug();
4547 if (retval)
4548 return retval;
4550 return 0;
4554 * sys_sched_getaffinity - get the cpu affinity of a process
4555 * @pid: pid of the process
4556 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4557 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4559 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4560 unsigned long __user *user_mask_ptr)
4562 int ret;
4563 cpumask_t mask;
4565 if (len < sizeof(cpumask_t))
4566 return -EINVAL;
4568 ret = sched_getaffinity(pid, &mask);
4569 if (ret < 0)
4570 return ret;
4572 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4573 return -EFAULT;
4575 return sizeof(cpumask_t);
4579 * sys_sched_yield - yield the current processor to other threads.
4581 * This function yields the current CPU by moving the calling thread
4582 * to the expired array. If there are no other threads running on this
4583 * CPU then this function will return.
4585 asmlinkage long sys_sched_yield(void)
4587 struct rq *rq = this_rq_lock();
4588 struct prio_array *array = current->array, *target = rq->expired;
4590 schedstat_inc(rq, yld_cnt);
4592 * We implement yielding by moving the task into the expired
4593 * queue.
4595 * (special rule: RT tasks will just roundrobin in the active
4596 * array.)
4598 if (rt_task(current))
4599 target = rq->active;
4601 if (array->nr_active == 1) {
4602 schedstat_inc(rq, yld_act_empty);
4603 if (!rq->expired->nr_active)
4604 schedstat_inc(rq, yld_both_empty);
4605 } else if (!rq->expired->nr_active)
4606 schedstat_inc(rq, yld_exp_empty);
4608 if (array != target) {
4609 dequeue_task(current, array);
4610 enqueue_task(current, target);
4611 } else
4613 * requeue_task is cheaper so perform that if possible.
4615 requeue_task(current, array);
4618 * Since we are going to call schedule() anyway, there's
4619 * no need to preempt or enable interrupts:
4621 __release(rq->lock);
4622 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4623 _raw_spin_unlock(&rq->lock);
4624 preempt_enable_no_resched();
4626 schedule();
4628 return 0;
4631 static void __cond_resched(void)
4633 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4634 __might_sleep(__FILE__, __LINE__);
4635 #endif
4637 * The BKS might be reacquired before we have dropped
4638 * PREEMPT_ACTIVE, which could trigger a second
4639 * cond_resched() call.
4641 do {
4642 add_preempt_count(PREEMPT_ACTIVE);
4643 schedule();
4644 sub_preempt_count(PREEMPT_ACTIVE);
4645 } while (need_resched());
4648 int __sched cond_resched(void)
4650 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4651 system_state == SYSTEM_RUNNING) {
4652 __cond_resched();
4653 return 1;
4655 return 0;
4657 EXPORT_SYMBOL(cond_resched);
4660 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4661 * call schedule, and on return reacquire the lock.
4663 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4664 * operations here to prevent schedule() from being called twice (once via
4665 * spin_unlock(), once by hand).
4667 int cond_resched_lock(spinlock_t *lock)
4669 int ret = 0;
4671 if (need_lockbreak(lock)) {
4672 spin_unlock(lock);
4673 cpu_relax();
4674 ret = 1;
4675 spin_lock(lock);
4677 if (need_resched() && system_state == SYSTEM_RUNNING) {
4678 spin_release(&lock->dep_map, 1, _THIS_IP_);
4679 _raw_spin_unlock(lock);
4680 preempt_enable_no_resched();
4681 __cond_resched();
4682 ret = 1;
4683 spin_lock(lock);
4685 return ret;
4687 EXPORT_SYMBOL(cond_resched_lock);
4689 int __sched cond_resched_softirq(void)
4691 BUG_ON(!in_softirq());
4693 if (need_resched() && system_state == SYSTEM_RUNNING) {
4694 raw_local_irq_disable();
4695 _local_bh_enable();
4696 raw_local_irq_enable();
4697 __cond_resched();
4698 local_bh_disable();
4699 return 1;
4701 return 0;
4703 EXPORT_SYMBOL(cond_resched_softirq);
4706 * yield - yield the current processor to other threads.
4708 * This is a shortcut for kernel-space yielding - it marks the
4709 * thread runnable and calls sys_sched_yield().
4711 void __sched yield(void)
4713 set_current_state(TASK_RUNNING);
4714 sys_sched_yield();
4716 EXPORT_SYMBOL(yield);
4719 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4720 * that process accounting knows that this is a task in IO wait state.
4722 * But don't do that if it is a deliberate, throttling IO wait (this task
4723 * has set its backing_dev_info: the queue against which it should throttle)
4725 void __sched io_schedule(void)
4727 struct rq *rq = &__raw_get_cpu_var(runqueues);
4729 delayacct_blkio_start();
4730 atomic_inc(&rq->nr_iowait);
4731 schedule();
4732 atomic_dec(&rq->nr_iowait);
4733 delayacct_blkio_end();
4735 EXPORT_SYMBOL(io_schedule);
4737 long __sched io_schedule_timeout(long timeout)
4739 struct rq *rq = &__raw_get_cpu_var(runqueues);
4740 long ret;
4742 delayacct_blkio_start();
4743 atomic_inc(&rq->nr_iowait);
4744 ret = schedule_timeout(timeout);
4745 atomic_dec(&rq->nr_iowait);
4746 delayacct_blkio_end();
4747 return ret;
4751 * sys_sched_get_priority_max - return maximum RT priority.
4752 * @policy: scheduling class.
4754 * this syscall returns the maximum rt_priority that can be used
4755 * by a given scheduling class.
4757 asmlinkage long sys_sched_get_priority_max(int policy)
4759 int ret = -EINVAL;
4761 switch (policy) {
4762 case SCHED_FIFO:
4763 case SCHED_RR:
4764 ret = MAX_USER_RT_PRIO-1;
4765 break;
4766 case SCHED_NORMAL:
4767 case SCHED_BATCH:
4768 ret = 0;
4769 break;
4771 return ret;
4775 * sys_sched_get_priority_min - return minimum RT priority.
4776 * @policy: scheduling class.
4778 * this syscall returns the minimum rt_priority that can be used
4779 * by a given scheduling class.
4781 asmlinkage long sys_sched_get_priority_min(int policy)
4783 int ret = -EINVAL;
4785 switch (policy) {
4786 case SCHED_FIFO:
4787 case SCHED_RR:
4788 ret = 1;
4789 break;
4790 case SCHED_NORMAL:
4791 case SCHED_BATCH:
4792 ret = 0;
4794 return ret;
4798 * sys_sched_rr_get_interval - return the default timeslice of a process.
4799 * @pid: pid of the process.
4800 * @interval: userspace pointer to the timeslice value.
4802 * this syscall writes the default timeslice value of a given process
4803 * into the user-space timespec buffer. A value of '0' means infinity.
4805 asmlinkage
4806 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4808 struct task_struct *p;
4809 int retval = -EINVAL;
4810 struct timespec t;
4812 if (pid < 0)
4813 goto out_nounlock;
4815 retval = -ESRCH;
4816 read_lock(&tasklist_lock);
4817 p = find_process_by_pid(pid);
4818 if (!p)
4819 goto out_unlock;
4821 retval = security_task_getscheduler(p);
4822 if (retval)
4823 goto out_unlock;
4825 jiffies_to_timespec(p->policy == SCHED_FIFO ?
4826 0 : task_timeslice(p), &t);
4827 read_unlock(&tasklist_lock);
4828 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4829 out_nounlock:
4830 return retval;
4831 out_unlock:
4832 read_unlock(&tasklist_lock);
4833 return retval;
4836 static inline struct task_struct *eldest_child(struct task_struct *p)
4838 if (list_empty(&p->children))
4839 return NULL;
4840 return list_entry(p->children.next,struct task_struct,sibling);
4843 static inline struct task_struct *older_sibling(struct task_struct *p)
4845 if (p->sibling.prev==&p->parent->children)
4846 return NULL;
4847 return list_entry(p->sibling.prev,struct task_struct,sibling);
4850 static inline struct task_struct *younger_sibling(struct task_struct *p)
4852 if (p->sibling.next==&p->parent->children)
4853 return NULL;
4854 return list_entry(p->sibling.next,struct task_struct,sibling);
4857 static const char stat_nam[] = "RSDTtZX";
4859 static void show_task(struct task_struct *p)
4861 struct task_struct *relative;
4862 unsigned long free = 0;
4863 unsigned state;
4865 state = p->state ? __ffs(p->state) + 1 : 0;
4866 printk("%-13.13s %c", p->comm,
4867 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4868 #if (BITS_PER_LONG == 32)
4869 if (state == TASK_RUNNING)
4870 printk(" running ");
4871 else
4872 printk(" %08lX ", thread_saved_pc(p));
4873 #else
4874 if (state == TASK_RUNNING)
4875 printk(" running task ");
4876 else
4877 printk(" %016lx ", thread_saved_pc(p));
4878 #endif
4879 #ifdef CONFIG_DEBUG_STACK_USAGE
4881 unsigned long *n = end_of_stack(p);
4882 while (!*n)
4883 n++;
4884 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4886 #endif
4887 printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4888 if ((relative = eldest_child(p)))
4889 printk("%5d ", relative->pid);
4890 else
4891 printk(" ");
4892 if ((relative = younger_sibling(p)))
4893 printk("%7d", relative->pid);
4894 else
4895 printk(" ");
4896 if ((relative = older_sibling(p)))
4897 printk(" %5d", relative->pid);
4898 else
4899 printk(" ");
4900 if (!p->mm)
4901 printk(" (L-TLB)\n");
4902 else
4903 printk(" (NOTLB)\n");
4905 if (state != TASK_RUNNING)
4906 show_stack(p, NULL);
4909 void show_state_filter(unsigned long state_filter)
4911 struct task_struct *g, *p;
4913 #if (BITS_PER_LONG == 32)
4914 printk("\n"
4915 " free sibling\n");
4916 printk(" task PC stack pid father child younger older\n");
4917 #else
4918 printk("\n"
4919 " free sibling\n");
4920 printk(" task PC stack pid father child younger older\n");
4921 #endif
4922 read_lock(&tasklist_lock);
4923 do_each_thread(g, p) {
4925 * reset the NMI-timeout, listing all files on a slow
4926 * console might take alot of time:
4928 touch_nmi_watchdog();
4929 if (p->state & state_filter)
4930 show_task(p);
4931 } while_each_thread(g, p);
4933 read_unlock(&tasklist_lock);
4935 * Only show locks if all tasks are dumped:
4937 if (state_filter == -1)
4938 debug_show_all_locks();
4942 * init_idle - set up an idle thread for a given CPU
4943 * @idle: task in question
4944 * @cpu: cpu the idle task belongs to
4946 * NOTE: this function does not set the idle thread's NEED_RESCHED
4947 * flag, to make booting more robust.
4949 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4951 struct rq *rq = cpu_rq(cpu);
4952 unsigned long flags;
4954 idle->timestamp = sched_clock();
4955 idle->sleep_avg = 0;
4956 idle->array = NULL;
4957 idle->prio = idle->normal_prio = MAX_PRIO;
4958 idle->state = TASK_RUNNING;
4959 idle->cpus_allowed = cpumask_of_cpu(cpu);
4960 set_task_cpu(idle, cpu);
4962 spin_lock_irqsave(&rq->lock, flags);
4963 rq->curr = rq->idle = idle;
4964 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4965 idle->oncpu = 1;
4966 #endif
4967 spin_unlock_irqrestore(&rq->lock, flags);
4969 /* Set the preempt count _outside_ the spinlocks! */
4970 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4971 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4972 #else
4973 task_thread_info(idle)->preempt_count = 0;
4974 #endif
4978 * In a system that switches off the HZ timer nohz_cpu_mask
4979 * indicates which cpus entered this state. This is used
4980 * in the rcu update to wait only for active cpus. For system
4981 * which do not switch off the HZ timer nohz_cpu_mask should
4982 * always be CPU_MASK_NONE.
4984 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4986 #ifdef CONFIG_SMP
4988 * This is how migration works:
4990 * 1) we queue a struct migration_req structure in the source CPU's
4991 * runqueue and wake up that CPU's migration thread.
4992 * 2) we down() the locked semaphore => thread blocks.
4993 * 3) migration thread wakes up (implicitly it forces the migrated
4994 * thread off the CPU)
4995 * 4) it gets the migration request and checks whether the migrated
4996 * task is still in the wrong runqueue.
4997 * 5) if it's in the wrong runqueue then the migration thread removes
4998 * it and puts it into the right queue.
4999 * 6) migration thread up()s the semaphore.
5000 * 7) we wake up and the migration is done.
5004 * Change a given task's CPU affinity. Migrate the thread to a
5005 * proper CPU and schedule it away if the CPU it's executing on
5006 * is removed from the allowed bitmask.
5008 * NOTE: the caller must have a valid reference to the task, the
5009 * task must not exit() & deallocate itself prematurely. The
5010 * call is not atomic; no spinlocks may be held.
5012 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
5014 struct migration_req req;
5015 unsigned long flags;
5016 struct rq *rq;
5017 int ret = 0;
5019 rq = task_rq_lock(p, &flags);
5020 if (!cpus_intersects(new_mask, cpu_online_map)) {
5021 ret = -EINVAL;
5022 goto out;
5025 p->cpus_allowed = new_mask;
5026 /* Can the task run on the task's current CPU? If so, we're done */
5027 if (cpu_isset(task_cpu(p), new_mask))
5028 goto out;
5030 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
5031 /* Need help from migration thread: drop lock and wait. */
5032 task_rq_unlock(rq, &flags);
5033 wake_up_process(rq->migration_thread);
5034 wait_for_completion(&req.done);
5035 tlb_migrate_finish(p->mm);
5036 return 0;
5038 out:
5039 task_rq_unlock(rq, &flags);
5041 return ret;
5043 EXPORT_SYMBOL_GPL(set_cpus_allowed);
5046 * Move (not current) task off this cpu, onto dest cpu. We're doing
5047 * this because either it can't run here any more (set_cpus_allowed()
5048 * away from this CPU, or CPU going down), or because we're
5049 * attempting to rebalance this task on exec (sched_exec).
5051 * So we race with normal scheduler movements, but that's OK, as long
5052 * as the task is no longer on this CPU.
5054 * Returns non-zero if task was successfully migrated.
5056 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5058 struct rq *rq_dest, *rq_src;
5059 int ret = 0;
5061 if (unlikely(cpu_is_offline(dest_cpu)))
5062 return ret;
5064 rq_src = cpu_rq(src_cpu);
5065 rq_dest = cpu_rq(dest_cpu);
5067 double_rq_lock(rq_src, rq_dest);
5068 /* Already moved. */
5069 if (task_cpu(p) != src_cpu)
5070 goto out;
5071 /* Affinity changed (again). */
5072 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5073 goto out;
5075 set_task_cpu(p, dest_cpu);
5076 if (p->array) {
5078 * Sync timestamp with rq_dest's before activating.
5079 * The same thing could be achieved by doing this step
5080 * afterwards, and pretending it was a local activate.
5081 * This way is cleaner and logically correct.
5083 p->timestamp = p->timestamp - rq_src->most_recent_timestamp
5084 + rq_dest->most_recent_timestamp;
5085 deactivate_task(p, rq_src);
5086 __activate_task(p, rq_dest);
5087 if (TASK_PREEMPTS_CURR(p, rq_dest))
5088 resched_task(rq_dest->curr);
5090 ret = 1;
5091 out:
5092 double_rq_unlock(rq_src, rq_dest);
5093 return ret;
5097 * migration_thread - this is a highprio system thread that performs
5098 * thread migration by bumping thread off CPU then 'pushing' onto
5099 * another runqueue.
5101 static int migration_thread(void *data)
5103 int cpu = (long)data;
5104 struct rq *rq;
5106 rq = cpu_rq(cpu);
5107 BUG_ON(rq->migration_thread != current);
5109 set_current_state(TASK_INTERRUPTIBLE);
5110 while (!kthread_should_stop()) {
5111 struct migration_req *req;
5112 struct list_head *head;
5114 try_to_freeze();
5116 spin_lock_irq(&rq->lock);
5118 if (cpu_is_offline(cpu)) {
5119 spin_unlock_irq(&rq->lock);
5120 goto wait_to_die;
5123 if (rq->active_balance) {
5124 active_load_balance(rq, cpu);
5125 rq->active_balance = 0;
5128 head = &rq->migration_queue;
5130 if (list_empty(head)) {
5131 spin_unlock_irq(&rq->lock);
5132 schedule();
5133 set_current_state(TASK_INTERRUPTIBLE);
5134 continue;
5136 req = list_entry(head->next, struct migration_req, list);
5137 list_del_init(head->next);
5139 spin_unlock(&rq->lock);
5140 __migrate_task(req->task, cpu, req->dest_cpu);
5141 local_irq_enable();
5143 complete(&req->done);
5145 __set_current_state(TASK_RUNNING);
5146 return 0;
5148 wait_to_die:
5149 /* Wait for kthread_stop */
5150 set_current_state(TASK_INTERRUPTIBLE);
5151 while (!kthread_should_stop()) {
5152 schedule();
5153 set_current_state(TASK_INTERRUPTIBLE);
5155 __set_current_state(TASK_RUNNING);
5156 return 0;
5159 #ifdef CONFIG_HOTPLUG_CPU
5161 * Figure out where task on dead CPU should go, use force if neccessary.
5162 * NOTE: interrupts should be disabled by the caller
5164 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5166 unsigned long flags;
5167 cpumask_t mask;
5168 struct rq *rq;
5169 int dest_cpu;
5171 restart:
5172 /* On same node? */
5173 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5174 cpus_and(mask, mask, p->cpus_allowed);
5175 dest_cpu = any_online_cpu(mask);
5177 /* On any allowed CPU? */
5178 if (dest_cpu == NR_CPUS)
5179 dest_cpu = any_online_cpu(p->cpus_allowed);
5181 /* No more Mr. Nice Guy. */
5182 if (dest_cpu == NR_CPUS) {
5183 rq = task_rq_lock(p, &flags);
5184 cpus_setall(p->cpus_allowed);
5185 dest_cpu = any_online_cpu(p->cpus_allowed);
5186 task_rq_unlock(rq, &flags);
5189 * Don't tell them about moving exiting tasks or
5190 * kernel threads (both mm NULL), since they never
5191 * leave kernel.
5193 if (p->mm && printk_ratelimit())
5194 printk(KERN_INFO "process %d (%s) no "
5195 "longer affine to cpu%d\n",
5196 p->pid, p->comm, dead_cpu);
5198 if (!__migrate_task(p, dead_cpu, dest_cpu))
5199 goto restart;
5203 * While a dead CPU has no uninterruptible tasks queued at this point,
5204 * it might still have a nonzero ->nr_uninterruptible counter, because
5205 * for performance reasons the counter is not stricly tracking tasks to
5206 * their home CPUs. So we just add the counter to another CPU's counter,
5207 * to keep the global sum constant after CPU-down:
5209 static void migrate_nr_uninterruptible(struct rq *rq_src)
5211 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5212 unsigned long flags;
5214 local_irq_save(flags);
5215 double_rq_lock(rq_src, rq_dest);
5216 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5217 rq_src->nr_uninterruptible = 0;
5218 double_rq_unlock(rq_src, rq_dest);
5219 local_irq_restore(flags);
5222 /* Run through task list and migrate tasks from the dead cpu. */
5223 static void migrate_live_tasks(int src_cpu)
5225 struct task_struct *p, *t;
5227 write_lock_irq(&tasklist_lock);
5229 do_each_thread(t, p) {
5230 if (p == current)
5231 continue;
5233 if (task_cpu(p) == src_cpu)
5234 move_task_off_dead_cpu(src_cpu, p);
5235 } while_each_thread(t, p);
5237 write_unlock_irq(&tasklist_lock);
5240 /* Schedules idle task to be the next runnable task on current CPU.
5241 * It does so by boosting its priority to highest possible and adding it to
5242 * the _front_ of the runqueue. Used by CPU offline code.
5244 void sched_idle_next(void)
5246 int this_cpu = smp_processor_id();
5247 struct rq *rq = cpu_rq(this_cpu);
5248 struct task_struct *p = rq->idle;
5249 unsigned long flags;
5251 /* cpu has to be offline */
5252 BUG_ON(cpu_online(this_cpu));
5255 * Strictly not necessary since rest of the CPUs are stopped by now
5256 * and interrupts disabled on the current cpu.
5258 spin_lock_irqsave(&rq->lock, flags);
5260 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
5262 /* Add idle task to the _front_ of its priority queue: */
5263 __activate_idle_task(p, rq);
5265 spin_unlock_irqrestore(&rq->lock, flags);
5269 * Ensures that the idle task is using init_mm right before its cpu goes
5270 * offline.
5272 void idle_task_exit(void)
5274 struct mm_struct *mm = current->active_mm;
5276 BUG_ON(cpu_online(smp_processor_id()));
5278 if (mm != &init_mm)
5279 switch_mm(mm, &init_mm, current);
5280 mmdrop(mm);
5283 /* called under rq->lock with disabled interrupts */
5284 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5286 struct rq *rq = cpu_rq(dead_cpu);
5288 /* Must be exiting, otherwise would be on tasklist. */
5289 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
5291 /* Cannot have done final schedule yet: would have vanished. */
5292 BUG_ON(p->state == TASK_DEAD);
5294 get_task_struct(p);
5297 * Drop lock around migration; if someone else moves it,
5298 * that's OK. No task can be added to this CPU, so iteration is
5299 * fine.
5300 * NOTE: interrupts should be left disabled --dev@
5302 spin_unlock(&rq->lock);
5303 move_task_off_dead_cpu(dead_cpu, p);
5304 spin_lock(&rq->lock);
5306 put_task_struct(p);
5309 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5310 static void migrate_dead_tasks(unsigned int dead_cpu)
5312 struct rq *rq = cpu_rq(dead_cpu);
5313 unsigned int arr, i;
5315 for (arr = 0; arr < 2; arr++) {
5316 for (i = 0; i < MAX_PRIO; i++) {
5317 struct list_head *list = &rq->arrays[arr].queue[i];
5319 while (!list_empty(list))
5320 migrate_dead(dead_cpu, list_entry(list->next,
5321 struct task_struct, run_list));
5325 #endif /* CONFIG_HOTPLUG_CPU */
5328 * migration_call - callback that gets triggered when a CPU is added.
5329 * Here we can start up the necessary migration thread for the new CPU.
5331 static int __cpuinit
5332 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5334 struct task_struct *p;
5335 int cpu = (long)hcpu;
5336 unsigned long flags;
5337 struct rq *rq;
5339 switch (action) {
5340 case CPU_UP_PREPARE:
5341 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
5342 if (IS_ERR(p))
5343 return NOTIFY_BAD;
5344 p->flags |= PF_NOFREEZE;
5345 kthread_bind(p, cpu);
5346 /* Must be high prio: stop_machine expects to yield to it. */
5347 rq = task_rq_lock(p, &flags);
5348 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
5349 task_rq_unlock(rq, &flags);
5350 cpu_rq(cpu)->migration_thread = p;
5351 break;
5353 case CPU_ONLINE:
5354 /* Strictly unneccessary, as first user will wake it. */
5355 wake_up_process(cpu_rq(cpu)->migration_thread);
5356 break;
5358 #ifdef CONFIG_HOTPLUG_CPU
5359 case CPU_UP_CANCELED:
5360 if (!cpu_rq(cpu)->migration_thread)
5361 break;
5362 /* Unbind it from offline cpu so it can run. Fall thru. */
5363 kthread_bind(cpu_rq(cpu)->migration_thread,
5364 any_online_cpu(cpu_online_map));
5365 kthread_stop(cpu_rq(cpu)->migration_thread);
5366 cpu_rq(cpu)->migration_thread = NULL;
5367 break;
5369 case CPU_DEAD:
5370 migrate_live_tasks(cpu);
5371 rq = cpu_rq(cpu);
5372 kthread_stop(rq->migration_thread);
5373 rq->migration_thread = NULL;
5374 /* Idle task back to normal (off runqueue, low prio) */
5375 rq = task_rq_lock(rq->idle, &flags);
5376 deactivate_task(rq->idle, rq);
5377 rq->idle->static_prio = MAX_PRIO;
5378 __setscheduler(rq->idle, SCHED_NORMAL, 0);
5379 migrate_dead_tasks(cpu);
5380 task_rq_unlock(rq, &flags);
5381 migrate_nr_uninterruptible(rq);
5382 BUG_ON(rq->nr_running != 0);
5384 /* No need to migrate the tasks: it was best-effort if
5385 * they didn't do lock_cpu_hotplug(). Just wake up
5386 * the requestors. */
5387 spin_lock_irq(&rq->lock);
5388 while (!list_empty(&rq->migration_queue)) {
5389 struct migration_req *req;
5391 req = list_entry(rq->migration_queue.next,
5392 struct migration_req, list);
5393 list_del_init(&req->list);
5394 complete(&req->done);
5396 spin_unlock_irq(&rq->lock);
5397 break;
5398 #endif
5400 return NOTIFY_OK;
5403 /* Register at highest priority so that task migration (migrate_all_tasks)
5404 * happens before everything else.
5406 static struct notifier_block __cpuinitdata migration_notifier = {
5407 .notifier_call = migration_call,
5408 .priority = 10
5411 int __init migration_init(void)
5413 void *cpu = (void *)(long)smp_processor_id();
5414 int err;
5416 /* Start one for the boot CPU: */
5417 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5418 BUG_ON(err == NOTIFY_BAD);
5419 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5420 register_cpu_notifier(&migration_notifier);
5422 return 0;
5424 #endif
5426 #ifdef CONFIG_SMP
5427 #undef SCHED_DOMAIN_DEBUG
5428 #ifdef SCHED_DOMAIN_DEBUG
5429 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5431 int level = 0;
5433 if (!sd) {
5434 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5435 return;
5438 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5440 do {
5441 int i;
5442 char str[NR_CPUS];
5443 struct sched_group *group = sd->groups;
5444 cpumask_t groupmask;
5446 cpumask_scnprintf(str, NR_CPUS, sd->span);
5447 cpus_clear(groupmask);
5449 printk(KERN_DEBUG);
5450 for (i = 0; i < level + 1; i++)
5451 printk(" ");
5452 printk("domain %d: ", level);
5454 if (!(sd->flags & SD_LOAD_BALANCE)) {
5455 printk("does not load-balance\n");
5456 if (sd->parent)
5457 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5458 " has parent");
5459 break;
5462 printk("span %s\n", str);
5464 if (!cpu_isset(cpu, sd->span))
5465 printk(KERN_ERR "ERROR: domain->span does not contain "
5466 "CPU%d\n", cpu);
5467 if (!cpu_isset(cpu, group->cpumask))
5468 printk(KERN_ERR "ERROR: domain->groups does not contain"
5469 " CPU%d\n", cpu);
5471 printk(KERN_DEBUG);
5472 for (i = 0; i < level + 2; i++)
5473 printk(" ");
5474 printk("groups:");
5475 do {
5476 if (!group) {
5477 printk("\n");
5478 printk(KERN_ERR "ERROR: group is NULL\n");
5479 break;
5482 if (!group->cpu_power) {
5483 printk("\n");
5484 printk(KERN_ERR "ERROR: domain->cpu_power not "
5485 "set\n");
5488 if (!cpus_weight(group->cpumask)) {
5489 printk("\n");
5490 printk(KERN_ERR "ERROR: empty group\n");
5493 if (cpus_intersects(groupmask, group->cpumask)) {
5494 printk("\n");
5495 printk(KERN_ERR "ERROR: repeated CPUs\n");
5498 cpus_or(groupmask, groupmask, group->cpumask);
5500 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5501 printk(" %s", str);
5503 group = group->next;
5504 } while (group != sd->groups);
5505 printk("\n");
5507 if (!cpus_equal(sd->span, groupmask))
5508 printk(KERN_ERR "ERROR: groups don't span "
5509 "domain->span\n");
5511 level++;
5512 sd = sd->parent;
5513 if (!sd)
5514 continue;
5516 if (!cpus_subset(groupmask, sd->span))
5517 printk(KERN_ERR "ERROR: parent span is not a superset "
5518 "of domain->span\n");
5520 } while (sd);
5522 #else
5523 # define sched_domain_debug(sd, cpu) do { } while (0)
5524 #endif
5526 static int sd_degenerate(struct sched_domain *sd)
5528 if (cpus_weight(sd->span) == 1)
5529 return 1;
5531 /* Following flags need at least 2 groups */
5532 if (sd->flags & (SD_LOAD_BALANCE |
5533 SD_BALANCE_NEWIDLE |
5534 SD_BALANCE_FORK |
5535 SD_BALANCE_EXEC |
5536 SD_SHARE_CPUPOWER |
5537 SD_SHARE_PKG_RESOURCES)) {
5538 if (sd->groups != sd->groups->next)
5539 return 0;
5542 /* Following flags don't use groups */
5543 if (sd->flags & (SD_WAKE_IDLE |
5544 SD_WAKE_AFFINE |
5545 SD_WAKE_BALANCE))
5546 return 0;
5548 return 1;
5551 static int
5552 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5554 unsigned long cflags = sd->flags, pflags = parent->flags;
5556 if (sd_degenerate(parent))
5557 return 1;
5559 if (!cpus_equal(sd->span, parent->span))
5560 return 0;
5562 /* Does parent contain flags not in child? */
5563 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5564 if (cflags & SD_WAKE_AFFINE)
5565 pflags &= ~SD_WAKE_BALANCE;
5566 /* Flags needing groups don't count if only 1 group in parent */
5567 if (parent->groups == parent->groups->next) {
5568 pflags &= ~(SD_LOAD_BALANCE |
5569 SD_BALANCE_NEWIDLE |
5570 SD_BALANCE_FORK |
5571 SD_BALANCE_EXEC |
5572 SD_SHARE_CPUPOWER |
5573 SD_SHARE_PKG_RESOURCES);
5575 if (~cflags & pflags)
5576 return 0;
5578 return 1;
5582 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5583 * hold the hotplug lock.
5585 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
5587 struct rq *rq = cpu_rq(cpu);
5588 struct sched_domain *tmp;
5590 /* Remove the sched domains which do not contribute to scheduling. */
5591 for (tmp = sd; tmp; tmp = tmp->parent) {
5592 struct sched_domain *parent = tmp->parent;
5593 if (!parent)
5594 break;
5595 if (sd_parent_degenerate(tmp, parent)) {
5596 tmp->parent = parent->parent;
5597 if (parent->parent)
5598 parent->parent->child = tmp;
5602 if (sd && sd_degenerate(sd)) {
5603 sd = sd->parent;
5604 if (sd)
5605 sd->child = NULL;
5608 sched_domain_debug(sd, cpu);
5610 rcu_assign_pointer(rq->sd, sd);
5613 /* cpus with isolated domains */
5614 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
5616 /* Setup the mask of cpus configured for isolated domains */
5617 static int __init isolated_cpu_setup(char *str)
5619 int ints[NR_CPUS], i;
5621 str = get_options(str, ARRAY_SIZE(ints), ints);
5622 cpus_clear(cpu_isolated_map);
5623 for (i = 1; i <= ints[0]; i++)
5624 if (ints[i] < NR_CPUS)
5625 cpu_set(ints[i], cpu_isolated_map);
5626 return 1;
5629 __setup ("isolcpus=", isolated_cpu_setup);
5632 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5633 * to a function which identifies what group(along with sched group) a CPU
5634 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5635 * (due to the fact that we keep track of groups covered with a cpumask_t).
5637 * init_sched_build_groups will build a circular linked list of the groups
5638 * covered by the given span, and will set each group's ->cpumask correctly,
5639 * and ->cpu_power to 0.
5641 static void
5642 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5643 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5644 struct sched_group **sg))
5646 struct sched_group *first = NULL, *last = NULL;
5647 cpumask_t covered = CPU_MASK_NONE;
5648 int i;
5650 for_each_cpu_mask(i, span) {
5651 struct sched_group *sg;
5652 int group = group_fn(i, cpu_map, &sg);
5653 int j;
5655 if (cpu_isset(i, covered))
5656 continue;
5658 sg->cpumask = CPU_MASK_NONE;
5659 sg->cpu_power = 0;
5661 for_each_cpu_mask(j, span) {
5662 if (group_fn(j, cpu_map, NULL) != group)
5663 continue;
5665 cpu_set(j, covered);
5666 cpu_set(j, sg->cpumask);
5668 if (!first)
5669 first = sg;
5670 if (last)
5671 last->next = sg;
5672 last = sg;
5674 last->next = first;
5677 #define SD_NODES_PER_DOMAIN 16
5680 * Self-tuning task migration cost measurement between source and target CPUs.
5682 * This is done by measuring the cost of manipulating buffers of varying
5683 * sizes. For a given buffer-size here are the steps that are taken:
5685 * 1) the source CPU reads+dirties a shared buffer
5686 * 2) the target CPU reads+dirties the same shared buffer
5688 * We measure how long they take, in the following 4 scenarios:
5690 * - source: CPU1, target: CPU2 | cost1
5691 * - source: CPU2, target: CPU1 | cost2
5692 * - source: CPU1, target: CPU1 | cost3
5693 * - source: CPU2, target: CPU2 | cost4
5695 * We then calculate the cost3+cost4-cost1-cost2 difference - this is
5696 * the cost of migration.
5698 * We then start off from a small buffer-size and iterate up to larger
5699 * buffer sizes, in 5% steps - measuring each buffer-size separately, and
5700 * doing a maximum search for the cost. (The maximum cost for a migration
5701 * normally occurs when the working set size is around the effective cache
5702 * size.)
5704 #define SEARCH_SCOPE 2
5705 #define MIN_CACHE_SIZE (64*1024U)
5706 #define DEFAULT_CACHE_SIZE (5*1024*1024U)
5707 #define ITERATIONS 1
5708 #define SIZE_THRESH 130
5709 #define COST_THRESH 130
5712 * The migration cost is a function of 'domain distance'. Domain
5713 * distance is the number of steps a CPU has to iterate down its
5714 * domain tree to share a domain with the other CPU. The farther
5715 * two CPUs are from each other, the larger the distance gets.
5717 * Note that we use the distance only to cache measurement results,
5718 * the distance value is not used numerically otherwise. When two
5719 * CPUs have the same distance it is assumed that the migration
5720 * cost is the same. (this is a simplification but quite practical)
5722 #define MAX_DOMAIN_DISTANCE 32
5724 static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] =
5725 { [ 0 ... MAX_DOMAIN_DISTANCE-1 ] =
5727 * Architectures may override the migration cost and thus avoid
5728 * boot-time calibration. Unit is nanoseconds. Mostly useful for
5729 * virtualized hardware:
5731 #ifdef CONFIG_DEFAULT_MIGRATION_COST
5732 CONFIG_DEFAULT_MIGRATION_COST
5733 #else
5734 -1LL
5735 #endif
5739 * Allow override of migration cost - in units of microseconds.
5740 * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
5741 * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
5743 static int __init migration_cost_setup(char *str)
5745 int ints[MAX_DOMAIN_DISTANCE+1], i;
5747 str = get_options(str, ARRAY_SIZE(ints), ints);
5749 printk("#ints: %d\n", ints[0]);
5750 for (i = 1; i <= ints[0]; i++) {
5751 migration_cost[i-1] = (unsigned long long)ints[i]*1000;
5752 printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]);
5754 return 1;
5757 __setup ("migration_cost=", migration_cost_setup);
5760 * Global multiplier (divisor) for migration-cutoff values,
5761 * in percentiles. E.g. use a value of 150 to get 1.5 times
5762 * longer cache-hot cutoff times.
5764 * (We scale it from 100 to 128 to long long handling easier.)
5767 #define MIGRATION_FACTOR_SCALE 128
5769 static unsigned int migration_factor = MIGRATION_FACTOR_SCALE;
5771 static int __init setup_migration_factor(char *str)
5773 get_option(&str, &migration_factor);
5774 migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100;
5775 return 1;
5778 __setup("migration_factor=", setup_migration_factor);
5781 * Estimated distance of two CPUs, measured via the number of domains
5782 * we have to pass for the two CPUs to be in the same span:
5784 static unsigned long domain_distance(int cpu1, int cpu2)
5786 unsigned long distance = 0;
5787 struct sched_domain *sd;
5789 for_each_domain(cpu1, sd) {
5790 WARN_ON(!cpu_isset(cpu1, sd->span));
5791 if (cpu_isset(cpu2, sd->span))
5792 return distance;
5793 distance++;
5795 if (distance >= MAX_DOMAIN_DISTANCE) {
5796 WARN_ON(1);
5797 distance = MAX_DOMAIN_DISTANCE-1;
5800 return distance;
5803 static unsigned int migration_debug;
5805 static int __init setup_migration_debug(char *str)
5807 get_option(&str, &migration_debug);
5808 return 1;
5811 __setup("migration_debug=", setup_migration_debug);
5814 * Maximum cache-size that the scheduler should try to measure.
5815 * Architectures with larger caches should tune this up during
5816 * bootup. Gets used in the domain-setup code (i.e. during SMP
5817 * bootup).
5819 unsigned int max_cache_size;
5821 static int __init setup_max_cache_size(char *str)
5823 get_option(&str, &max_cache_size);
5824 return 1;
5827 __setup("max_cache_size=", setup_max_cache_size);
5830 * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
5831 * is the operation that is timed, so we try to generate unpredictable
5832 * cachemisses that still end up filling the L2 cache:
5834 static void touch_cache(void *__cache, unsigned long __size)
5836 unsigned long size = __size / sizeof(long);
5837 unsigned long chunk1 = size / 3;
5838 unsigned long chunk2 = 2 * size / 3;
5839 unsigned long *cache = __cache;
5840 int i;
5842 for (i = 0; i < size/6; i += 8) {
5843 switch (i % 6) {
5844 case 0: cache[i]++;
5845 case 1: cache[size-1-i]++;
5846 case 2: cache[chunk1-i]++;
5847 case 3: cache[chunk1+i]++;
5848 case 4: cache[chunk2-i]++;
5849 case 5: cache[chunk2+i]++;
5855 * Measure the cache-cost of one task migration. Returns in units of nsec.
5857 static unsigned long long
5858 measure_one(void *cache, unsigned long size, int source, int target)
5860 cpumask_t mask, saved_mask;
5861 unsigned long long t0, t1, t2, t3, cost;
5863 saved_mask = current->cpus_allowed;
5866 * Flush source caches to RAM and invalidate them:
5868 sched_cacheflush();
5871 * Migrate to the source CPU:
5873 mask = cpumask_of_cpu(source);
5874 set_cpus_allowed(current, mask);
5875 WARN_ON(smp_processor_id() != source);
5878 * Dirty the working set:
5880 t0 = sched_clock();
5881 touch_cache(cache, size);
5882 t1 = sched_clock();
5885 * Migrate to the target CPU, dirty the L2 cache and access
5886 * the shared buffer. (which represents the working set
5887 * of a migrated task.)
5889 mask = cpumask_of_cpu(target);
5890 set_cpus_allowed(current, mask);
5891 WARN_ON(smp_processor_id() != target);
5893 t2 = sched_clock();
5894 touch_cache(cache, size);
5895 t3 = sched_clock();
5897 cost = t1-t0 + t3-t2;
5899 if (migration_debug >= 2)
5900 printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
5901 source, target, t1-t0, t1-t0, t3-t2, cost);
5903 * Flush target caches to RAM and invalidate them:
5905 sched_cacheflush();
5907 set_cpus_allowed(current, saved_mask);
5909 return cost;
5913 * Measure a series of task migrations and return the average
5914 * result. Since this code runs early during bootup the system
5915 * is 'undisturbed' and the average latency makes sense.
5917 * The algorithm in essence auto-detects the relevant cache-size,
5918 * so it will properly detect different cachesizes for different
5919 * cache-hierarchies, depending on how the CPUs are connected.
5921 * Architectures can prime the upper limit of the search range via
5922 * max_cache_size, otherwise the search range defaults to 20MB...64K.
5924 static unsigned long long
5925 measure_cost(int cpu1, int cpu2, void *cache, unsigned int size)
5927 unsigned long long cost1, cost2;
5928 int i;
5931 * Measure the migration cost of 'size' bytes, over an
5932 * average of 10 runs:
5934 * (We perturb the cache size by a small (0..4k)
5935 * value to compensate size/alignment related artifacts.
5936 * We also subtract the cost of the operation done on
5937 * the same CPU.)
5939 cost1 = 0;
5942 * dry run, to make sure we start off cache-cold on cpu1,
5943 * and to get any vmalloc pagefaults in advance:
5945 measure_one(cache, size, cpu1, cpu2);
5946 for (i = 0; i < ITERATIONS; i++)
5947 cost1 += measure_one(cache, size - i * 1024, cpu1, cpu2);
5949 measure_one(cache, size, cpu2, cpu1);
5950 for (i = 0; i < ITERATIONS; i++)
5951 cost1 += measure_one(cache, size - i * 1024, cpu2, cpu1);
5954 * (We measure the non-migrating [cached] cost on both
5955 * cpu1 and cpu2, to handle CPUs with different speeds)
5957 cost2 = 0;
5959 measure_one(cache, size, cpu1, cpu1);
5960 for (i = 0; i < ITERATIONS; i++)
5961 cost2 += measure_one(cache, size - i * 1024, cpu1, cpu1);
5963 measure_one(cache, size, cpu2, cpu2);
5964 for (i = 0; i < ITERATIONS; i++)
5965 cost2 += measure_one(cache, size - i * 1024, cpu2, cpu2);
5968 * Get the per-iteration migration cost:
5970 do_div(cost1, 2 * ITERATIONS);
5971 do_div(cost2, 2 * ITERATIONS);
5973 return cost1 - cost2;
5976 static unsigned long long measure_migration_cost(int cpu1, int cpu2)
5978 unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0;
5979 unsigned int max_size, size, size_found = 0;
5980 long long cost = 0, prev_cost;
5981 void *cache;
5984 * Search from max_cache_size*5 down to 64K - the real relevant
5985 * cachesize has to lie somewhere inbetween.
5987 if (max_cache_size) {
5988 max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE);
5989 size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE);
5990 } else {
5992 * Since we have no estimation about the relevant
5993 * search range
5995 max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE;
5996 size = MIN_CACHE_SIZE;
5999 if (!cpu_online(cpu1) || !cpu_online(cpu2)) {
6000 printk("cpu %d and %d not both online!\n", cpu1, cpu2);
6001 return 0;
6005 * Allocate the working set:
6007 cache = vmalloc(max_size);
6008 if (!cache) {
6009 printk("could not vmalloc %d bytes for cache!\n", 2 * max_size);
6010 return 1000000; /* return 1 msec on very small boxen */
6013 while (size <= max_size) {
6014 prev_cost = cost;
6015 cost = measure_cost(cpu1, cpu2, cache, size);
6018 * Update the max:
6020 if (cost > 0) {
6021 if (max_cost < cost) {
6022 max_cost = cost;
6023 size_found = size;
6027 * Calculate average fluctuation, we use this to prevent
6028 * noise from triggering an early break out of the loop:
6030 fluct = abs(cost - prev_cost);
6031 avg_fluct = (avg_fluct + fluct)/2;
6033 if (migration_debug)
6034 printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): "
6035 "(%8Ld %8Ld)\n",
6036 cpu1, cpu2, size,
6037 (long)cost / 1000000,
6038 ((long)cost / 100000) % 10,
6039 (long)max_cost / 1000000,
6040 ((long)max_cost / 100000) % 10,
6041 domain_distance(cpu1, cpu2),
6042 cost, avg_fluct);
6045 * If we iterated at least 20% past the previous maximum,
6046 * and the cost has dropped by more than 20% already,
6047 * (taking fluctuations into account) then we assume to
6048 * have found the maximum and break out of the loop early:
6050 if (size_found && (size*100 > size_found*SIZE_THRESH))
6051 if (cost+avg_fluct <= 0 ||
6052 max_cost*100 > (cost+avg_fluct)*COST_THRESH) {
6054 if (migration_debug)
6055 printk("-> found max.\n");
6056 break;
6059 * Increase the cachesize in 10% steps:
6061 size = size * 10 / 9;
6064 if (migration_debug)
6065 printk("[%d][%d] working set size found: %d, cost: %Ld\n",
6066 cpu1, cpu2, size_found, max_cost);
6068 vfree(cache);
6071 * A task is considered 'cache cold' if at least 2 times
6072 * the worst-case cost of migration has passed.
6074 * (this limit is only listened to if the load-balancing
6075 * situation is 'nice' - if there is a large imbalance we
6076 * ignore it for the sake of CPU utilization and
6077 * processing fairness.)
6079 return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE;
6082 static void calibrate_migration_costs(const cpumask_t *cpu_map)
6084 int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id();
6085 unsigned long j0, j1, distance, max_distance = 0;
6086 struct sched_domain *sd;
6088 j0 = jiffies;
6091 * First pass - calculate the cacheflush times:
6093 for_each_cpu_mask(cpu1, *cpu_map) {
6094 for_each_cpu_mask(cpu2, *cpu_map) {
6095 if (cpu1 == cpu2)
6096 continue;
6097 distance = domain_distance(cpu1, cpu2);
6098 max_distance = max(max_distance, distance);
6100 * No result cached yet?
6102 if (migration_cost[distance] == -1LL)
6103 migration_cost[distance] =
6104 measure_migration_cost(cpu1, cpu2);
6108 * Second pass - update the sched domain hierarchy with
6109 * the new cache-hot-time estimations:
6111 for_each_cpu_mask(cpu, *cpu_map) {
6112 distance = 0;
6113 for_each_domain(cpu, sd) {
6114 sd->cache_hot_time = migration_cost[distance];
6115 distance++;
6119 * Print the matrix:
6121 if (migration_debug)
6122 printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
6123 max_cache_size,
6124 #ifdef CONFIG_X86
6125 cpu_khz/1000
6126 #else
6128 #endif
6130 if (system_state == SYSTEM_BOOTING && num_online_cpus() > 1) {
6131 printk("migration_cost=");
6132 for (distance = 0; distance <= max_distance; distance++) {
6133 if (distance)
6134 printk(",");
6135 printk("%ld", (long)migration_cost[distance] / 1000);
6137 printk("\n");
6139 j1 = jiffies;
6140 if (migration_debug)
6141 printk("migration: %ld seconds\n", (j1-j0) / HZ);
6144 * Move back to the original CPU. NUMA-Q gets confused
6145 * if we migrate to another quad during bootup.
6147 if (raw_smp_processor_id() != orig_cpu) {
6148 cpumask_t mask = cpumask_of_cpu(orig_cpu),
6149 saved_mask = current->cpus_allowed;
6151 set_cpus_allowed(current, mask);
6152 set_cpus_allowed(current, saved_mask);
6156 #ifdef CONFIG_NUMA
6159 * find_next_best_node - find the next node to include in a sched_domain
6160 * @node: node whose sched_domain we're building
6161 * @used_nodes: nodes already in the sched_domain
6163 * Find the next node to include in a given scheduling domain. Simply
6164 * finds the closest node not already in the @used_nodes map.
6166 * Should use nodemask_t.
6168 static int find_next_best_node(int node, unsigned long *used_nodes)
6170 int i, n, val, min_val, best_node = 0;
6172 min_val = INT_MAX;
6174 for (i = 0; i < MAX_NUMNODES; i++) {
6175 /* Start at @node */
6176 n = (node + i) % MAX_NUMNODES;
6178 if (!nr_cpus_node(n))
6179 continue;
6181 /* Skip already used nodes */
6182 if (test_bit(n, used_nodes))
6183 continue;
6185 /* Simple min distance search */
6186 val = node_distance(node, n);
6188 if (val < min_val) {
6189 min_val = val;
6190 best_node = n;
6194 set_bit(best_node, used_nodes);
6195 return best_node;
6199 * sched_domain_node_span - get a cpumask for a node's sched_domain
6200 * @node: node whose cpumask we're constructing
6201 * @size: number of nodes to include in this span
6203 * Given a node, construct a good cpumask for its sched_domain to span. It
6204 * should be one that prevents unnecessary balancing, but also spreads tasks
6205 * out optimally.
6207 static cpumask_t sched_domain_node_span(int node)
6209 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
6210 cpumask_t span, nodemask;
6211 int i;
6213 cpus_clear(span);
6214 bitmap_zero(used_nodes, MAX_NUMNODES);
6216 nodemask = node_to_cpumask(node);
6217 cpus_or(span, span, nodemask);
6218 set_bit(node, used_nodes);
6220 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6221 int next_node = find_next_best_node(node, used_nodes);
6223 nodemask = node_to_cpumask(next_node);
6224 cpus_or(span, span, nodemask);
6227 return span;
6229 #endif
6231 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6234 * SMT sched-domains:
6236 #ifdef CONFIG_SCHED_SMT
6237 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6238 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6240 static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
6241 struct sched_group **sg)
6243 if (sg)
6244 *sg = &per_cpu(sched_group_cpus, cpu);
6245 return cpu;
6247 #endif
6250 * multi-core sched-domains:
6252 #ifdef CONFIG_SCHED_MC
6253 static DEFINE_PER_CPU(struct sched_domain, core_domains);
6254 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6255 #endif
6257 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6258 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
6259 struct sched_group **sg)
6261 int group;
6262 cpumask_t mask = cpu_sibling_map[cpu];
6263 cpus_and(mask, mask, *cpu_map);
6264 group = first_cpu(mask);
6265 if (sg)
6266 *sg = &per_cpu(sched_group_core, group);
6267 return group;
6269 #elif defined(CONFIG_SCHED_MC)
6270 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
6271 struct sched_group **sg)
6273 if (sg)
6274 *sg = &per_cpu(sched_group_core, cpu);
6275 return cpu;
6277 #endif
6279 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6280 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6282 static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
6283 struct sched_group **sg)
6285 int group;
6286 #ifdef CONFIG_SCHED_MC
6287 cpumask_t mask = cpu_coregroup_map(cpu);
6288 cpus_and(mask, mask, *cpu_map);
6289 group = first_cpu(mask);
6290 #elif defined(CONFIG_SCHED_SMT)
6291 cpumask_t mask = cpu_sibling_map[cpu];
6292 cpus_and(mask, mask, *cpu_map);
6293 group = first_cpu(mask);
6294 #else
6295 group = cpu;
6296 #endif
6297 if (sg)
6298 *sg = &per_cpu(sched_group_phys, group);
6299 return group;
6302 #ifdef CONFIG_NUMA
6304 * The init_sched_build_groups can't handle what we want to do with node
6305 * groups, so roll our own. Now each node has its own list of groups which
6306 * gets dynamically allocated.
6308 static DEFINE_PER_CPU(struct sched_domain, node_domains);
6309 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
6311 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6312 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6314 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6315 struct sched_group **sg)
6317 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
6318 int group;
6320 cpus_and(nodemask, nodemask, *cpu_map);
6321 group = first_cpu(nodemask);
6323 if (sg)
6324 *sg = &per_cpu(sched_group_allnodes, group);
6325 return group;
6328 static void init_numa_sched_groups_power(struct sched_group *group_head)
6330 struct sched_group *sg = group_head;
6331 int j;
6333 if (!sg)
6334 return;
6335 next_sg:
6336 for_each_cpu_mask(j, sg->cpumask) {
6337 struct sched_domain *sd;
6339 sd = &per_cpu(phys_domains, j);
6340 if (j != first_cpu(sd->groups->cpumask)) {
6342 * Only add "power" once for each
6343 * physical package.
6345 continue;
6348 sg->cpu_power += sd->groups->cpu_power;
6350 sg = sg->next;
6351 if (sg != group_head)
6352 goto next_sg;
6354 #endif
6356 #ifdef CONFIG_NUMA
6357 /* Free memory allocated for various sched_group structures */
6358 static void free_sched_groups(const cpumask_t *cpu_map)
6360 int cpu, i;
6362 for_each_cpu_mask(cpu, *cpu_map) {
6363 struct sched_group **sched_group_nodes
6364 = sched_group_nodes_bycpu[cpu];
6366 if (!sched_group_nodes)
6367 continue;
6369 for (i = 0; i < MAX_NUMNODES; i++) {
6370 cpumask_t nodemask = node_to_cpumask(i);
6371 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6373 cpus_and(nodemask, nodemask, *cpu_map);
6374 if (cpus_empty(nodemask))
6375 continue;
6377 if (sg == NULL)
6378 continue;
6379 sg = sg->next;
6380 next_sg:
6381 oldsg = sg;
6382 sg = sg->next;
6383 kfree(oldsg);
6384 if (oldsg != sched_group_nodes[i])
6385 goto next_sg;
6387 kfree(sched_group_nodes);
6388 sched_group_nodes_bycpu[cpu] = NULL;
6391 #else
6392 static void free_sched_groups(const cpumask_t *cpu_map)
6395 #endif
6398 * Initialize sched groups cpu_power.
6400 * cpu_power indicates the capacity of sched group, which is used while
6401 * distributing the load between different sched groups in a sched domain.
6402 * Typically cpu_power for all the groups in a sched domain will be same unless
6403 * there are asymmetries in the topology. If there are asymmetries, group
6404 * having more cpu_power will pickup more load compared to the group having
6405 * less cpu_power.
6407 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6408 * the maximum number of tasks a group can handle in the presence of other idle
6409 * or lightly loaded groups in the same sched domain.
6411 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6413 struct sched_domain *child;
6414 struct sched_group *group;
6416 WARN_ON(!sd || !sd->groups);
6418 if (cpu != first_cpu(sd->groups->cpumask))
6419 return;
6421 child = sd->child;
6424 * For perf policy, if the groups in child domain share resources
6425 * (for example cores sharing some portions of the cache hierarchy
6426 * or SMT), then set this domain groups cpu_power such that each group
6427 * can handle only one task, when there are other idle groups in the
6428 * same sched domain.
6430 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6431 (child->flags &
6432 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6433 sd->groups->cpu_power = SCHED_LOAD_SCALE;
6434 return;
6437 sd->groups->cpu_power = 0;
6440 * add cpu_power of each child group to this groups cpu_power
6442 group = child->groups;
6443 do {
6444 sd->groups->cpu_power += group->cpu_power;
6445 group = group->next;
6446 } while (group != child->groups);
6450 * Build sched domains for a given set of cpus and attach the sched domains
6451 * to the individual cpus
6453 static int build_sched_domains(const cpumask_t *cpu_map)
6455 int i;
6456 struct sched_domain *sd;
6457 #ifdef CONFIG_NUMA
6458 struct sched_group **sched_group_nodes = NULL;
6459 int sd_allnodes = 0;
6462 * Allocate the per-node list of sched groups
6464 sched_group_nodes = kzalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
6465 GFP_KERNEL);
6466 if (!sched_group_nodes) {
6467 printk(KERN_WARNING "Can not alloc sched group node list\n");
6468 return -ENOMEM;
6470 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6471 #endif
6474 * Set up domains for cpus specified by the cpu_map.
6476 for_each_cpu_mask(i, *cpu_map) {
6477 struct sched_domain *sd = NULL, *p;
6478 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6480 cpus_and(nodemask, nodemask, *cpu_map);
6482 #ifdef CONFIG_NUMA
6483 if (cpus_weight(*cpu_map)
6484 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6485 sd = &per_cpu(allnodes_domains, i);
6486 *sd = SD_ALLNODES_INIT;
6487 sd->span = *cpu_map;
6488 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6489 p = sd;
6490 sd_allnodes = 1;
6491 } else
6492 p = NULL;
6494 sd = &per_cpu(node_domains, i);
6495 *sd = SD_NODE_INIT;
6496 sd->span = sched_domain_node_span(cpu_to_node(i));
6497 sd->parent = p;
6498 if (p)
6499 p->child = sd;
6500 cpus_and(sd->span, sd->span, *cpu_map);
6501 #endif
6503 p = sd;
6504 sd = &per_cpu(phys_domains, i);
6505 *sd = SD_CPU_INIT;
6506 sd->span = nodemask;
6507 sd->parent = p;
6508 if (p)
6509 p->child = sd;
6510 cpu_to_phys_group(i, cpu_map, &sd->groups);
6512 #ifdef CONFIG_SCHED_MC
6513 p = sd;
6514 sd = &per_cpu(core_domains, i);
6515 *sd = SD_MC_INIT;
6516 sd->span = cpu_coregroup_map(i);
6517 cpus_and(sd->span, sd->span, *cpu_map);
6518 sd->parent = p;
6519 p->child = sd;
6520 cpu_to_core_group(i, cpu_map, &sd->groups);
6521 #endif
6523 #ifdef CONFIG_SCHED_SMT
6524 p = sd;
6525 sd = &per_cpu(cpu_domains, i);
6526 *sd = SD_SIBLING_INIT;
6527 sd->span = cpu_sibling_map[i];
6528 cpus_and(sd->span, sd->span, *cpu_map);
6529 sd->parent = p;
6530 p->child = sd;
6531 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6532 #endif
6535 #ifdef CONFIG_SCHED_SMT
6536 /* Set up CPU (sibling) groups */
6537 for_each_cpu_mask(i, *cpu_map) {
6538 cpumask_t this_sibling_map = cpu_sibling_map[i];
6539 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6540 if (i != first_cpu(this_sibling_map))
6541 continue;
6543 init_sched_build_groups(this_sibling_map, cpu_map, &cpu_to_cpu_group);
6545 #endif
6547 #ifdef CONFIG_SCHED_MC
6548 /* Set up multi-core groups */
6549 for_each_cpu_mask(i, *cpu_map) {
6550 cpumask_t this_core_map = cpu_coregroup_map(i);
6551 cpus_and(this_core_map, this_core_map, *cpu_map);
6552 if (i != first_cpu(this_core_map))
6553 continue;
6554 init_sched_build_groups(this_core_map, cpu_map, &cpu_to_core_group);
6556 #endif
6559 /* Set up physical groups */
6560 for (i = 0; i < MAX_NUMNODES; i++) {
6561 cpumask_t nodemask = node_to_cpumask(i);
6563 cpus_and(nodemask, nodemask, *cpu_map);
6564 if (cpus_empty(nodemask))
6565 continue;
6567 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6570 #ifdef CONFIG_NUMA
6571 /* Set up node groups */
6572 if (sd_allnodes)
6573 init_sched_build_groups(*cpu_map, cpu_map, &cpu_to_allnodes_group);
6575 for (i = 0; i < MAX_NUMNODES; i++) {
6576 /* Set up node groups */
6577 struct sched_group *sg, *prev;
6578 cpumask_t nodemask = node_to_cpumask(i);
6579 cpumask_t domainspan;
6580 cpumask_t covered = CPU_MASK_NONE;
6581 int j;
6583 cpus_and(nodemask, nodemask, *cpu_map);
6584 if (cpus_empty(nodemask)) {
6585 sched_group_nodes[i] = NULL;
6586 continue;
6589 domainspan = sched_domain_node_span(i);
6590 cpus_and(domainspan, domainspan, *cpu_map);
6592 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6593 if (!sg) {
6594 printk(KERN_WARNING "Can not alloc domain group for "
6595 "node %d\n", i);
6596 goto error;
6598 sched_group_nodes[i] = sg;
6599 for_each_cpu_mask(j, nodemask) {
6600 struct sched_domain *sd;
6601 sd = &per_cpu(node_domains, j);
6602 sd->groups = sg;
6604 sg->cpu_power = 0;
6605 sg->cpumask = nodemask;
6606 sg->next = sg;
6607 cpus_or(covered, covered, nodemask);
6608 prev = sg;
6610 for (j = 0; j < MAX_NUMNODES; j++) {
6611 cpumask_t tmp, notcovered;
6612 int n = (i + j) % MAX_NUMNODES;
6614 cpus_complement(notcovered, covered);
6615 cpus_and(tmp, notcovered, *cpu_map);
6616 cpus_and(tmp, tmp, domainspan);
6617 if (cpus_empty(tmp))
6618 break;
6620 nodemask = node_to_cpumask(n);
6621 cpus_and(tmp, tmp, nodemask);
6622 if (cpus_empty(tmp))
6623 continue;
6625 sg = kmalloc_node(sizeof(struct sched_group),
6626 GFP_KERNEL, i);
6627 if (!sg) {
6628 printk(KERN_WARNING
6629 "Can not alloc domain group for node %d\n", j);
6630 goto error;
6632 sg->cpu_power = 0;
6633 sg->cpumask = tmp;
6634 sg->next = prev->next;
6635 cpus_or(covered, covered, tmp);
6636 prev->next = sg;
6637 prev = sg;
6640 #endif
6642 /* Calculate CPU power for physical packages and nodes */
6643 #ifdef CONFIG_SCHED_SMT
6644 for_each_cpu_mask(i, *cpu_map) {
6645 sd = &per_cpu(cpu_domains, i);
6646 init_sched_groups_power(i, sd);
6648 #endif
6649 #ifdef CONFIG_SCHED_MC
6650 for_each_cpu_mask(i, *cpu_map) {
6651 sd = &per_cpu(core_domains, i);
6652 init_sched_groups_power(i, sd);
6654 #endif
6656 for_each_cpu_mask(i, *cpu_map) {
6657 sd = &per_cpu(phys_domains, i);
6658 init_sched_groups_power(i, sd);
6661 #ifdef CONFIG_NUMA
6662 for (i = 0; i < MAX_NUMNODES; i++)
6663 init_numa_sched_groups_power(sched_group_nodes[i]);
6665 if (sd_allnodes) {
6666 struct sched_group *sg;
6668 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6669 init_numa_sched_groups_power(sg);
6671 #endif
6673 /* Attach the domains */
6674 for_each_cpu_mask(i, *cpu_map) {
6675 struct sched_domain *sd;
6676 #ifdef CONFIG_SCHED_SMT
6677 sd = &per_cpu(cpu_domains, i);
6678 #elif defined(CONFIG_SCHED_MC)
6679 sd = &per_cpu(core_domains, i);
6680 #else
6681 sd = &per_cpu(phys_domains, i);
6682 #endif
6683 cpu_attach_domain(sd, i);
6686 * Tune cache-hot values:
6688 calibrate_migration_costs(cpu_map);
6690 return 0;
6692 #ifdef CONFIG_NUMA
6693 error:
6694 free_sched_groups(cpu_map);
6695 return -ENOMEM;
6696 #endif
6699 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6701 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6703 cpumask_t cpu_default_map;
6704 int err;
6707 * Setup mask for cpus without special case scheduling requirements.
6708 * For now this just excludes isolated cpus, but could be used to
6709 * exclude other special cases in the future.
6711 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6713 err = build_sched_domains(&cpu_default_map);
6715 return err;
6718 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6720 free_sched_groups(cpu_map);
6724 * Detach sched domains from a group of cpus specified in cpu_map
6725 * These cpus will now be attached to the NULL domain
6727 static void detach_destroy_domains(const cpumask_t *cpu_map)
6729 int i;
6731 for_each_cpu_mask(i, *cpu_map)
6732 cpu_attach_domain(NULL, i);
6733 synchronize_sched();
6734 arch_destroy_sched_domains(cpu_map);
6738 * Partition sched domains as specified by the cpumasks below.
6739 * This attaches all cpus from the cpumasks to the NULL domain,
6740 * waits for a RCU quiescent period, recalculates sched
6741 * domain information and then attaches them back to the
6742 * correct sched domains
6743 * Call with hotplug lock held
6745 int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6747 cpumask_t change_map;
6748 int err = 0;
6750 cpus_and(*partition1, *partition1, cpu_online_map);
6751 cpus_and(*partition2, *partition2, cpu_online_map);
6752 cpus_or(change_map, *partition1, *partition2);
6754 /* Detach sched domains from all of the affected cpus */
6755 detach_destroy_domains(&change_map);
6756 if (!cpus_empty(*partition1))
6757 err = build_sched_domains(partition1);
6758 if (!err && !cpus_empty(*partition2))
6759 err = build_sched_domains(partition2);
6761 return err;
6764 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6765 int arch_reinit_sched_domains(void)
6767 int err;
6769 lock_cpu_hotplug();
6770 detach_destroy_domains(&cpu_online_map);
6771 err = arch_init_sched_domains(&cpu_online_map);
6772 unlock_cpu_hotplug();
6774 return err;
6777 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6779 int ret;
6781 if (buf[0] != '0' && buf[0] != '1')
6782 return -EINVAL;
6784 if (smt)
6785 sched_smt_power_savings = (buf[0] == '1');
6786 else
6787 sched_mc_power_savings = (buf[0] == '1');
6789 ret = arch_reinit_sched_domains();
6791 return ret ? ret : count;
6794 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6796 int err = 0;
6798 #ifdef CONFIG_SCHED_SMT
6799 if (smt_capable())
6800 err = sysfs_create_file(&cls->kset.kobj,
6801 &attr_sched_smt_power_savings.attr);
6802 #endif
6803 #ifdef CONFIG_SCHED_MC
6804 if (!err && mc_capable())
6805 err = sysfs_create_file(&cls->kset.kobj,
6806 &attr_sched_mc_power_savings.attr);
6807 #endif
6808 return err;
6810 #endif
6812 #ifdef CONFIG_SCHED_MC
6813 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6815 return sprintf(page, "%u\n", sched_mc_power_savings);
6817 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6818 const char *buf, size_t count)
6820 return sched_power_savings_store(buf, count, 0);
6822 SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6823 sched_mc_power_savings_store);
6824 #endif
6826 #ifdef CONFIG_SCHED_SMT
6827 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6829 return sprintf(page, "%u\n", sched_smt_power_savings);
6831 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6832 const char *buf, size_t count)
6834 return sched_power_savings_store(buf, count, 1);
6836 SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6837 sched_smt_power_savings_store);
6838 #endif
6841 * Force a reinitialization of the sched domains hierarchy. The domains
6842 * and groups cannot be updated in place without racing with the balancing
6843 * code, so we temporarily attach all running cpus to the NULL domain
6844 * which will prevent rebalancing while the sched domains are recalculated.
6846 static int update_sched_domains(struct notifier_block *nfb,
6847 unsigned long action, void *hcpu)
6849 switch (action) {
6850 case CPU_UP_PREPARE:
6851 case CPU_DOWN_PREPARE:
6852 detach_destroy_domains(&cpu_online_map);
6853 return NOTIFY_OK;
6855 case CPU_UP_CANCELED:
6856 case CPU_DOWN_FAILED:
6857 case CPU_ONLINE:
6858 case CPU_DEAD:
6860 * Fall through and re-initialise the domains.
6862 break;
6863 default:
6864 return NOTIFY_DONE;
6867 /* The hotplug lock is already held by cpu_up/cpu_down */
6868 arch_init_sched_domains(&cpu_online_map);
6870 return NOTIFY_OK;
6873 void __init sched_init_smp(void)
6875 cpumask_t non_isolated_cpus;
6877 lock_cpu_hotplug();
6878 arch_init_sched_domains(&cpu_online_map);
6879 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6880 if (cpus_empty(non_isolated_cpus))
6881 cpu_set(smp_processor_id(), non_isolated_cpus);
6882 unlock_cpu_hotplug();
6883 /* XXX: Theoretical race here - CPU may be hotplugged now */
6884 hotcpu_notifier(update_sched_domains, 0);
6886 /* Move init over to a non-isolated CPU */
6887 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6888 BUG();
6890 #else
6891 void __init sched_init_smp(void)
6894 #endif /* CONFIG_SMP */
6896 int in_sched_functions(unsigned long addr)
6898 /* Linker adds these: start and end of __sched functions */
6899 extern char __sched_text_start[], __sched_text_end[];
6901 return in_lock_functions(addr) ||
6902 (addr >= (unsigned long)__sched_text_start
6903 && addr < (unsigned long)__sched_text_end);
6906 void __init sched_init(void)
6908 int i, j, k;
6910 for_each_possible_cpu(i) {
6911 struct prio_array *array;
6912 struct rq *rq;
6914 rq = cpu_rq(i);
6915 spin_lock_init(&rq->lock);
6916 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
6917 rq->nr_running = 0;
6918 rq->active = rq->arrays;
6919 rq->expired = rq->arrays + 1;
6920 rq->best_expired_prio = MAX_PRIO;
6922 #ifdef CONFIG_SMP
6923 rq->sd = NULL;
6924 for (j = 1; j < 3; j++)
6925 rq->cpu_load[j] = 0;
6926 rq->active_balance = 0;
6927 rq->push_cpu = 0;
6928 rq->cpu = i;
6929 rq->migration_thread = NULL;
6930 INIT_LIST_HEAD(&rq->migration_queue);
6931 #endif
6932 atomic_set(&rq->nr_iowait, 0);
6934 for (j = 0; j < 2; j++) {
6935 array = rq->arrays + j;
6936 for (k = 0; k < MAX_PRIO; k++) {
6937 INIT_LIST_HEAD(array->queue + k);
6938 __clear_bit(k, array->bitmap);
6940 // delimiter for bitsearch
6941 __set_bit(MAX_PRIO, array->bitmap);
6945 set_load_weight(&init_task);
6947 #ifdef CONFIG_SMP
6948 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6949 #endif
6951 #ifdef CONFIG_RT_MUTEXES
6952 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6953 #endif
6956 * The boot idle thread does lazy MMU switching as well:
6958 atomic_inc(&init_mm.mm_count);
6959 enter_lazy_tlb(&init_mm, current);
6962 * Make us the idle thread. Technically, schedule() should not be
6963 * called from this thread, however somewhere below it might be,
6964 * but because we are the idle thread, we just pick up running again
6965 * when this runqueue becomes "idle".
6967 init_idle(current, smp_processor_id());
6970 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6971 void __might_sleep(char *file, int line)
6973 #ifdef in_atomic
6974 static unsigned long prev_jiffy; /* ratelimiting */
6976 if ((in_atomic() || irqs_disabled()) &&
6977 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6978 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6979 return;
6980 prev_jiffy = jiffies;
6981 printk(KERN_ERR "BUG: sleeping function called from invalid"
6982 " context at %s:%d\n", file, line);
6983 printk("in_atomic():%d, irqs_disabled():%d\n",
6984 in_atomic(), irqs_disabled());
6985 debug_show_held_locks(current);
6986 if (irqs_disabled())
6987 print_irqtrace_events(current);
6988 dump_stack();
6990 #endif
6992 EXPORT_SYMBOL(__might_sleep);
6993 #endif
6995 #ifdef CONFIG_MAGIC_SYSRQ
6996 void normalize_rt_tasks(void)
6998 struct prio_array *array;
6999 struct task_struct *p;
7000 unsigned long flags;
7001 struct rq *rq;
7003 read_lock_irq(&tasklist_lock);
7004 for_each_process(p) {
7005 if (!rt_task(p))
7006 continue;
7008 spin_lock_irqsave(&p->pi_lock, flags);
7009 rq = __task_rq_lock(p);
7011 array = p->array;
7012 if (array)
7013 deactivate_task(p, task_rq(p));
7014 __setscheduler(p, SCHED_NORMAL, 0);
7015 if (array) {
7016 __activate_task(p, task_rq(p));
7017 resched_task(rq->curr);
7020 __task_rq_unlock(rq);
7021 spin_unlock_irqrestore(&p->pi_lock, flags);
7023 read_unlock_irq(&tasklist_lock);
7026 #endif /* CONFIG_MAGIC_SYSRQ */
7028 #ifdef CONFIG_IA64
7030 * These functions are only useful for the IA64 MCA handling.
7032 * They can only be called when the whole system has been
7033 * stopped - every CPU needs to be quiescent, and no scheduling
7034 * activity can take place. Using them for anything else would
7035 * be a serious bug, and as a result, they aren't even visible
7036 * under any other configuration.
7040 * curr_task - return the current task for a given cpu.
7041 * @cpu: the processor in question.
7043 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7045 struct task_struct *curr_task(int cpu)
7047 return cpu_curr(cpu);
7051 * set_curr_task - set the current task for a given cpu.
7052 * @cpu: the processor in question.
7053 * @p: the task pointer to set.
7055 * Description: This function must only be used when non-maskable interrupts
7056 * are serviced on a separate stack. It allows the architecture to switch the
7057 * notion of the current task on a cpu in a non-blocking manner. This function
7058 * must be called with all CPU's synchronized, and interrupts disabled, the
7059 * and caller must save the original value of the current task (see
7060 * curr_task() above) and restore that value before reenabling interrupts and
7061 * re-starting the system.
7063 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7065 void set_curr_task(int cpu, struct task_struct *p)
7067 cpu_curr(cpu) = p;
7070 #endif