2 * Implement CPU time clocks for the POSIX clock interface.
5 #include <linux/sched.h>
6 #include <linux/posix-timers.h>
7 #include <asm/uaccess.h>
8 #include <linux/errno.h>
10 static int check_clock(const clockid_t which_clock
)
13 struct task_struct
*p
;
14 const pid_t pid
= CPUCLOCK_PID(which_clock
);
16 if (CPUCLOCK_WHICH(which_clock
) >= CPUCLOCK_MAX
)
22 read_lock(&tasklist_lock
);
23 p
= find_task_by_pid(pid
);
24 if (!p
|| (CPUCLOCK_PERTHREAD(which_clock
) ?
25 p
->tgid
!= current
->tgid
: p
->tgid
!= pid
)) {
28 read_unlock(&tasklist_lock
);
33 static inline union cpu_time_count
34 timespec_to_sample(const clockid_t which_clock
, const struct timespec
*tp
)
36 union cpu_time_count ret
;
37 ret
.sched
= 0; /* high half always zero when .cpu used */
38 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
39 ret
.sched
= (unsigned long long)tp
->tv_sec
* NSEC_PER_SEC
+ tp
->tv_nsec
;
41 ret
.cpu
= timespec_to_cputime(tp
);
46 static void sample_to_timespec(const clockid_t which_clock
,
47 union cpu_time_count cpu
,
50 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
51 tp
->tv_sec
= div_long_long_rem(cpu
.sched
,
52 NSEC_PER_SEC
, &tp
->tv_nsec
);
54 cputime_to_timespec(cpu
.cpu
, tp
);
58 static inline int cpu_time_before(const clockid_t which_clock
,
59 union cpu_time_count now
,
60 union cpu_time_count then
)
62 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
63 return now
.sched
< then
.sched
;
65 return cputime_lt(now
.cpu
, then
.cpu
);
68 static inline void cpu_time_add(const clockid_t which_clock
,
69 union cpu_time_count
*acc
,
70 union cpu_time_count val
)
72 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
73 acc
->sched
+= val
.sched
;
75 acc
->cpu
= cputime_add(acc
->cpu
, val
.cpu
);
78 static inline union cpu_time_count
cpu_time_sub(const clockid_t which_clock
,
79 union cpu_time_count a
,
80 union cpu_time_count b
)
82 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
85 a
.cpu
= cputime_sub(a
.cpu
, b
.cpu
);
91 * Update expiry time from increment, and increase overrun count,
92 * given the current clock sample.
94 static void bump_cpu_timer(struct k_itimer
*timer
,
95 union cpu_time_count now
)
99 if (timer
->it
.cpu
.incr
.sched
== 0)
102 if (CPUCLOCK_WHICH(timer
->it_clock
) == CPUCLOCK_SCHED
) {
103 unsigned long long delta
, incr
;
105 if (now
.sched
< timer
->it
.cpu
.expires
.sched
)
107 incr
= timer
->it
.cpu
.incr
.sched
;
108 delta
= now
.sched
+ incr
- timer
->it
.cpu
.expires
.sched
;
109 /* Don't use (incr*2 < delta), incr*2 might overflow. */
110 for (i
= 0; incr
< delta
- incr
; i
++)
112 for (; i
>= 0; incr
>>= 1, i
--) {
115 timer
->it
.cpu
.expires
.sched
+= incr
;
116 timer
->it_overrun
+= 1 << i
;
120 cputime_t delta
, incr
;
122 if (cputime_lt(now
.cpu
, timer
->it
.cpu
.expires
.cpu
))
124 incr
= timer
->it
.cpu
.incr
.cpu
;
125 delta
= cputime_sub(cputime_add(now
.cpu
, incr
),
126 timer
->it
.cpu
.expires
.cpu
);
127 /* Don't use (incr*2 < delta), incr*2 might overflow. */
128 for (i
= 0; cputime_lt(incr
, cputime_sub(delta
, incr
)); i
++)
129 incr
= cputime_add(incr
, incr
);
130 for (; i
>= 0; incr
= cputime_halve(incr
), i
--) {
131 if (cputime_lt(delta
, incr
))
133 timer
->it
.cpu
.expires
.cpu
=
134 cputime_add(timer
->it
.cpu
.expires
.cpu
, incr
);
135 timer
->it_overrun
+= 1 << i
;
136 delta
= cputime_sub(delta
, incr
);
141 static inline cputime_t
prof_ticks(struct task_struct
*p
)
143 return cputime_add(p
->utime
, p
->stime
);
145 static inline cputime_t
virt_ticks(struct task_struct
*p
)
149 static inline unsigned long long sched_ns(struct task_struct
*p
)
151 return (p
== current
) ? current_sched_time(p
) : p
->sched_time
;
154 int posix_cpu_clock_getres(const clockid_t which_clock
, struct timespec
*tp
)
156 int error
= check_clock(which_clock
);
159 tp
->tv_nsec
= ((NSEC_PER_SEC
+ HZ
- 1) / HZ
);
160 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
162 * If sched_clock is using a cycle counter, we
163 * don't have any idea of its true resolution
164 * exported, but it is much more than 1s/HZ.
172 int posix_cpu_clock_set(const clockid_t which_clock
, const struct timespec
*tp
)
175 * You can never reset a CPU clock, but we check for other errors
176 * in the call before failing with EPERM.
178 int error
= check_clock(which_clock
);
187 * Sample a per-thread clock for the given task.
189 static int cpu_clock_sample(const clockid_t which_clock
, struct task_struct
*p
,
190 union cpu_time_count
*cpu
)
192 switch (CPUCLOCK_WHICH(which_clock
)) {
196 cpu
->cpu
= prof_ticks(p
);
199 cpu
->cpu
= virt_ticks(p
);
202 cpu
->sched
= sched_ns(p
);
209 * Sample a process (thread group) clock for the given group_leader task.
210 * Must be called with tasklist_lock held for reading.
211 * Must be called with tasklist_lock held for reading, and p->sighand->siglock.
213 static int cpu_clock_sample_group_locked(unsigned int clock_idx
,
214 struct task_struct
*p
,
215 union cpu_time_count
*cpu
)
217 struct task_struct
*t
= p
;
222 cpu
->cpu
= cputime_add(p
->signal
->utime
, p
->signal
->stime
);
224 cpu
->cpu
= cputime_add(cpu
->cpu
, prof_ticks(t
));
229 cpu
->cpu
= p
->signal
->utime
;
231 cpu
->cpu
= cputime_add(cpu
->cpu
, virt_ticks(t
));
236 cpu
->sched
= p
->signal
->sched_time
;
237 /* Add in each other live thread. */
238 while ((t
= next_thread(t
)) != p
) {
239 cpu
->sched
+= t
->sched_time
;
241 cpu
->sched
+= sched_ns(p
);
248 * Sample a process (thread group) clock for the given group_leader task.
249 * Must be called with tasklist_lock held for reading.
251 static int cpu_clock_sample_group(const clockid_t which_clock
,
252 struct task_struct
*p
,
253 union cpu_time_count
*cpu
)
257 spin_lock_irqsave(&p
->sighand
->siglock
, flags
);
258 ret
= cpu_clock_sample_group_locked(CPUCLOCK_WHICH(which_clock
), p
,
260 spin_unlock_irqrestore(&p
->sighand
->siglock
, flags
);
265 int posix_cpu_clock_get(const clockid_t which_clock
, struct timespec
*tp
)
267 const pid_t pid
= CPUCLOCK_PID(which_clock
);
269 union cpu_time_count rtn
;
273 * Special case constant value for our own clocks.
274 * We don't have to do any lookup to find ourselves.
276 if (CPUCLOCK_PERTHREAD(which_clock
)) {
278 * Sampling just ourselves we can do with no locking.
280 error
= cpu_clock_sample(which_clock
,
283 read_lock(&tasklist_lock
);
284 error
= cpu_clock_sample_group(which_clock
,
286 read_unlock(&tasklist_lock
);
290 * Find the given PID, and validate that the caller
291 * should be able to see it.
293 struct task_struct
*p
;
294 read_lock(&tasklist_lock
);
295 p
= find_task_by_pid(pid
);
297 if (CPUCLOCK_PERTHREAD(which_clock
)) {
298 if (p
->tgid
== current
->tgid
) {
299 error
= cpu_clock_sample(which_clock
,
302 } else if (p
->tgid
== pid
&& p
->signal
) {
303 error
= cpu_clock_sample_group(which_clock
,
307 read_unlock(&tasklist_lock
);
312 sample_to_timespec(which_clock
, rtn
, tp
);
318 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
319 * This is called from sys_timer_create with the new timer already locked.
321 int posix_cpu_timer_create(struct k_itimer
*new_timer
)
324 const pid_t pid
= CPUCLOCK_PID(new_timer
->it_clock
);
325 struct task_struct
*p
;
327 if (CPUCLOCK_WHICH(new_timer
->it_clock
) >= CPUCLOCK_MAX
)
330 INIT_LIST_HEAD(&new_timer
->it
.cpu
.entry
);
331 new_timer
->it
.cpu
.incr
.sched
= 0;
332 new_timer
->it
.cpu
.expires
.sched
= 0;
334 read_lock(&tasklist_lock
);
335 if (CPUCLOCK_PERTHREAD(new_timer
->it_clock
)) {
339 p
= find_task_by_pid(pid
);
340 if (p
&& p
->tgid
!= current
->tgid
)
345 p
= current
->group_leader
;
347 p
= find_task_by_pid(pid
);
348 if (p
&& p
->tgid
!= pid
)
352 new_timer
->it
.cpu
.task
= p
;
358 read_unlock(&tasklist_lock
);
364 * Clean up a CPU-clock timer that is about to be destroyed.
365 * This is called from timer deletion with the timer already locked.
366 * If we return TIMER_RETRY, it's necessary to release the timer's lock
367 * and try again. (This happens when the timer is in the middle of firing.)
369 int posix_cpu_timer_del(struct k_itimer
*timer
)
371 struct task_struct
*p
= timer
->it
.cpu
.task
;
374 if (likely(p
!= NULL
)) {
375 read_lock(&tasklist_lock
);
376 if (unlikely(p
->signal
== NULL
)) {
378 * We raced with the reaping of the task.
379 * The deletion should have cleared us off the list.
381 BUG_ON(!list_empty(&timer
->it
.cpu
.entry
));
383 spin_lock(&p
->sighand
->siglock
);
384 if (timer
->it
.cpu
.firing
)
387 list_del(&timer
->it
.cpu
.entry
);
388 spin_unlock(&p
->sighand
->siglock
);
390 read_unlock(&tasklist_lock
);
400 * Clean out CPU timers still ticking when a thread exited. The task
401 * pointer is cleared, and the expiry time is replaced with the residual
402 * time for later timer_gettime calls to return.
403 * This must be called with the siglock held.
405 static void cleanup_timers(struct list_head
*head
,
406 cputime_t utime
, cputime_t stime
,
407 unsigned long long sched_time
)
409 struct cpu_timer_list
*timer
, *next
;
410 cputime_t ptime
= cputime_add(utime
, stime
);
412 list_for_each_entry_safe(timer
, next
, head
, entry
) {
413 list_del_init(&timer
->entry
);
414 if (cputime_lt(timer
->expires
.cpu
, ptime
)) {
415 timer
->expires
.cpu
= cputime_zero
;
417 timer
->expires
.cpu
= cputime_sub(timer
->expires
.cpu
,
423 list_for_each_entry_safe(timer
, next
, head
, entry
) {
424 list_del_init(&timer
->entry
);
425 if (cputime_lt(timer
->expires
.cpu
, utime
)) {
426 timer
->expires
.cpu
= cputime_zero
;
428 timer
->expires
.cpu
= cputime_sub(timer
->expires
.cpu
,
434 list_for_each_entry_safe(timer
, next
, head
, entry
) {
435 list_del_init(&timer
->entry
);
436 if (timer
->expires
.sched
< sched_time
) {
437 timer
->expires
.sched
= 0;
439 timer
->expires
.sched
-= sched_time
;
445 * These are both called with the siglock held, when the current thread
446 * is being reaped. When the final (leader) thread in the group is reaped,
447 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
449 void posix_cpu_timers_exit(struct task_struct
*tsk
)
451 cleanup_timers(tsk
->cpu_timers
,
452 tsk
->utime
, tsk
->stime
, tsk
->sched_time
);
455 void posix_cpu_timers_exit_group(struct task_struct
*tsk
)
457 cleanup_timers(tsk
->signal
->cpu_timers
,
458 cputime_add(tsk
->utime
, tsk
->signal
->utime
),
459 cputime_add(tsk
->stime
, tsk
->signal
->stime
),
460 tsk
->sched_time
+ tsk
->signal
->sched_time
);
465 * Set the expiry times of all the threads in the process so one of them
466 * will go off before the process cumulative expiry total is reached.
468 static void process_timer_rebalance(struct task_struct
*p
,
469 unsigned int clock_idx
,
470 union cpu_time_count expires
,
471 union cpu_time_count val
)
473 cputime_t ticks
, left
;
474 unsigned long long ns
, nsleft
;
475 struct task_struct
*t
= p
;
476 unsigned int nthreads
= atomic_read(&p
->signal
->live
);
486 left
= cputime_div(cputime_sub(expires
.cpu
, val
.cpu
),
489 if (likely(!(t
->flags
& PF_EXITING
))) {
490 ticks
= cputime_add(prof_ticks(t
), left
);
491 if (cputime_eq(t
->it_prof_expires
,
493 cputime_gt(t
->it_prof_expires
, ticks
)) {
494 t
->it_prof_expires
= ticks
;
501 left
= cputime_div(cputime_sub(expires
.cpu
, val
.cpu
),
504 if (likely(!(t
->flags
& PF_EXITING
))) {
505 ticks
= cputime_add(virt_ticks(t
), left
);
506 if (cputime_eq(t
->it_virt_expires
,
508 cputime_gt(t
->it_virt_expires
, ticks
)) {
509 t
->it_virt_expires
= ticks
;
516 nsleft
= expires
.sched
- val
.sched
;
517 do_div(nsleft
, nthreads
);
519 if (likely(!(t
->flags
& PF_EXITING
))) {
520 ns
= t
->sched_time
+ nsleft
;
521 if (t
->it_sched_expires
== 0 ||
522 t
->it_sched_expires
> ns
) {
523 t
->it_sched_expires
= ns
;
532 static void clear_dead_task(struct k_itimer
*timer
, union cpu_time_count now
)
535 * That's all for this thread or process.
536 * We leave our residual in expires to be reported.
538 put_task_struct(timer
->it
.cpu
.task
);
539 timer
->it
.cpu
.task
= NULL
;
540 timer
->it
.cpu
.expires
= cpu_time_sub(timer
->it_clock
,
541 timer
->it
.cpu
.expires
,
546 * Insert the timer on the appropriate list before any timers that
547 * expire later. This must be called with the tasklist_lock held
548 * for reading, and interrupts disabled.
550 static void arm_timer(struct k_itimer
*timer
, union cpu_time_count now
)
552 struct task_struct
*p
= timer
->it
.cpu
.task
;
553 struct list_head
*head
, *listpos
;
554 struct cpu_timer_list
*const nt
= &timer
->it
.cpu
;
555 struct cpu_timer_list
*next
;
558 head
= (CPUCLOCK_PERTHREAD(timer
->it_clock
) ?
559 p
->cpu_timers
: p
->signal
->cpu_timers
);
560 head
+= CPUCLOCK_WHICH(timer
->it_clock
);
562 BUG_ON(!irqs_disabled());
563 spin_lock(&p
->sighand
->siglock
);
566 if (CPUCLOCK_WHICH(timer
->it_clock
) == CPUCLOCK_SCHED
) {
567 list_for_each_entry(next
, head
, entry
) {
568 if (next
->expires
.sched
> nt
->expires
.sched
)
570 listpos
= &next
->entry
;
573 list_for_each_entry(next
, head
, entry
) {
574 if (cputime_gt(next
->expires
.cpu
, nt
->expires
.cpu
))
576 listpos
= &next
->entry
;
579 list_add(&nt
->entry
, listpos
);
581 if (listpos
== head
) {
583 * We are the new earliest-expiring timer.
584 * If we are a thread timer, there can always
585 * be a process timer telling us to stop earlier.
588 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
589 switch (CPUCLOCK_WHICH(timer
->it_clock
)) {
593 if (cputime_eq(p
->it_prof_expires
,
595 cputime_gt(p
->it_prof_expires
,
597 p
->it_prof_expires
= nt
->expires
.cpu
;
600 if (cputime_eq(p
->it_virt_expires
,
602 cputime_gt(p
->it_virt_expires
,
604 p
->it_virt_expires
= nt
->expires
.cpu
;
607 if (p
->it_sched_expires
== 0 ||
608 p
->it_sched_expires
> nt
->expires
.sched
)
609 p
->it_sched_expires
= nt
->expires
.sched
;
614 * For a process timer, we must balance
615 * all the live threads' expirations.
617 switch (CPUCLOCK_WHICH(timer
->it_clock
)) {
621 if (!cputime_eq(p
->signal
->it_virt_expires
,
623 cputime_lt(p
->signal
->it_virt_expires
,
624 timer
->it
.cpu
.expires
.cpu
))
628 if (!cputime_eq(p
->signal
->it_prof_expires
,
630 cputime_lt(p
->signal
->it_prof_expires
,
631 timer
->it
.cpu
.expires
.cpu
))
633 i
= p
->signal
->rlim
[RLIMIT_CPU
].rlim_cur
;
634 if (i
!= RLIM_INFINITY
&&
635 i
<= cputime_to_secs(timer
->it
.cpu
.expires
.cpu
))
640 process_timer_rebalance(
642 CPUCLOCK_WHICH(timer
->it_clock
),
643 timer
->it
.cpu
.expires
, now
);
649 spin_unlock(&p
->sighand
->siglock
);
653 * The timer is locked, fire it and arrange for its reload.
655 static void cpu_timer_fire(struct k_itimer
*timer
)
657 if (unlikely(timer
->sigq
== NULL
)) {
659 * This a special case for clock_nanosleep,
660 * not a normal timer from sys_timer_create.
662 wake_up_process(timer
->it_process
);
663 timer
->it
.cpu
.expires
.sched
= 0;
664 } else if (timer
->it
.cpu
.incr
.sched
== 0) {
666 * One-shot timer. Clear it as soon as it's fired.
668 posix_timer_event(timer
, 0);
669 timer
->it
.cpu
.expires
.sched
= 0;
670 } else if (posix_timer_event(timer
, ++timer
->it_requeue_pending
)) {
672 * The signal did not get queued because the signal
673 * was ignored, so we won't get any callback to
674 * reload the timer. But we need to keep it
675 * ticking in case the signal is deliverable next time.
677 posix_cpu_timer_schedule(timer
);
682 * Guts of sys_timer_settime for CPU timers.
683 * This is called with the timer locked and interrupts disabled.
684 * If we return TIMER_RETRY, it's necessary to release the timer's lock
685 * and try again. (This happens when the timer is in the middle of firing.)
687 int posix_cpu_timer_set(struct k_itimer
*timer
, int flags
,
688 struct itimerspec
*new, struct itimerspec
*old
)
690 struct task_struct
*p
= timer
->it
.cpu
.task
;
691 union cpu_time_count old_expires
, new_expires
, val
;
694 if (unlikely(p
== NULL
)) {
696 * Timer refers to a dead task's clock.
701 new_expires
= timespec_to_sample(timer
->it_clock
, &new->it_value
);
703 read_lock(&tasklist_lock
);
705 * We need the tasklist_lock to protect against reaping that
706 * clears p->signal. If p has just been reaped, we can no
707 * longer get any information about it at all.
709 if (unlikely(p
->signal
== NULL
)) {
710 read_unlock(&tasklist_lock
);
712 timer
->it
.cpu
.task
= NULL
;
717 * Disarm any old timer after extracting its expiry time.
719 BUG_ON(!irqs_disabled());
722 spin_lock(&p
->sighand
->siglock
);
723 old_expires
= timer
->it
.cpu
.expires
;
724 if (unlikely(timer
->it
.cpu
.firing
)) {
725 timer
->it
.cpu
.firing
= -1;
728 list_del_init(&timer
->it
.cpu
.entry
);
729 spin_unlock(&p
->sighand
->siglock
);
732 * We need to sample the current value to convert the new
733 * value from to relative and absolute, and to convert the
734 * old value from absolute to relative. To set a process
735 * timer, we need a sample to balance the thread expiry
736 * times (in arm_timer). With an absolute time, we must
737 * check if it's already passed. In short, we need a sample.
739 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
740 cpu_clock_sample(timer
->it_clock
, p
, &val
);
742 cpu_clock_sample_group(timer
->it_clock
, p
, &val
);
746 if (old_expires
.sched
== 0) {
747 old
->it_value
.tv_sec
= 0;
748 old
->it_value
.tv_nsec
= 0;
751 * Update the timer in case it has
752 * overrun already. If it has,
753 * we'll report it as having overrun
754 * and with the next reloaded timer
755 * already ticking, though we are
756 * swallowing that pending
757 * notification here to install the
760 bump_cpu_timer(timer
, val
);
761 if (cpu_time_before(timer
->it_clock
, val
,
762 timer
->it
.cpu
.expires
)) {
763 old_expires
= cpu_time_sub(
765 timer
->it
.cpu
.expires
, val
);
766 sample_to_timespec(timer
->it_clock
,
770 old
->it_value
.tv_nsec
= 1;
771 old
->it_value
.tv_sec
= 0;
778 * We are colliding with the timer actually firing.
779 * Punt after filling in the timer's old value, and
780 * disable this firing since we are already reporting
781 * it as an overrun (thanks to bump_cpu_timer above).
783 read_unlock(&tasklist_lock
);
787 if (new_expires
.sched
!= 0 && !(flags
& TIMER_ABSTIME
)) {
788 cpu_time_add(timer
->it_clock
, &new_expires
, val
);
792 * Install the new expiry time (or zero).
793 * For a timer with no notification action, we don't actually
794 * arm the timer (we'll just fake it for timer_gettime).
796 timer
->it
.cpu
.expires
= new_expires
;
797 if (new_expires
.sched
!= 0 &&
798 (timer
->it_sigev_notify
& ~SIGEV_THREAD_ID
) != SIGEV_NONE
&&
799 cpu_time_before(timer
->it_clock
, val
, new_expires
)) {
800 arm_timer(timer
, val
);
803 read_unlock(&tasklist_lock
);
806 * Install the new reload setting, and
807 * set up the signal and overrun bookkeeping.
809 timer
->it
.cpu
.incr
= timespec_to_sample(timer
->it_clock
,
813 * This acts as a modification timestamp for the timer,
814 * so any automatic reload attempt will punt on seeing
815 * that we have reset the timer manually.
817 timer
->it_requeue_pending
= (timer
->it_requeue_pending
+ 2) &
819 timer
->it_overrun_last
= 0;
820 timer
->it_overrun
= -1;
822 if (new_expires
.sched
!= 0 &&
823 (timer
->it_sigev_notify
& ~SIGEV_THREAD_ID
) != SIGEV_NONE
&&
824 !cpu_time_before(timer
->it_clock
, val
, new_expires
)) {
826 * The designated time already passed, so we notify
827 * immediately, even if the thread never runs to
828 * accumulate more time on this clock.
830 cpu_timer_fire(timer
);
836 sample_to_timespec(timer
->it_clock
,
837 timer
->it
.cpu
.incr
, &old
->it_interval
);
842 void posix_cpu_timer_get(struct k_itimer
*timer
, struct itimerspec
*itp
)
844 union cpu_time_count now
;
845 struct task_struct
*p
= timer
->it
.cpu
.task
;
849 * Easy part: convert the reload time.
851 sample_to_timespec(timer
->it_clock
,
852 timer
->it
.cpu
.incr
, &itp
->it_interval
);
854 if (timer
->it
.cpu
.expires
.sched
== 0) { /* Timer not armed at all. */
855 itp
->it_value
.tv_sec
= itp
->it_value
.tv_nsec
= 0;
859 if (unlikely(p
== NULL
)) {
861 * This task already died and the timer will never fire.
862 * In this case, expires is actually the dead value.
865 sample_to_timespec(timer
->it_clock
, timer
->it
.cpu
.expires
,
871 * Sample the clock to take the difference with the expiry time.
873 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
874 cpu_clock_sample(timer
->it_clock
, p
, &now
);
875 clear_dead
= p
->exit_state
;
877 read_lock(&tasklist_lock
);
878 if (unlikely(p
->signal
== NULL
)) {
880 * The process has been reaped.
881 * We can't even collect a sample any more.
882 * Call the timer disarmed, nothing else to do.
885 timer
->it
.cpu
.task
= NULL
;
886 timer
->it
.cpu
.expires
.sched
= 0;
887 read_unlock(&tasklist_lock
);
890 cpu_clock_sample_group(timer
->it_clock
, p
, &now
);
891 clear_dead
= (unlikely(p
->exit_state
) &&
892 thread_group_empty(p
));
894 read_unlock(&tasklist_lock
);
897 if ((timer
->it_sigev_notify
& ~SIGEV_THREAD_ID
) == SIGEV_NONE
) {
898 if (timer
->it
.cpu
.incr
.sched
== 0 &&
899 cpu_time_before(timer
->it_clock
,
900 timer
->it
.cpu
.expires
, now
)) {
902 * Do-nothing timer expired and has no reload,
903 * so it's as if it was never set.
905 timer
->it
.cpu
.expires
.sched
= 0;
906 itp
->it_value
.tv_sec
= itp
->it_value
.tv_nsec
= 0;
910 * Account for any expirations and reloads that should
913 bump_cpu_timer(timer
, now
);
916 if (unlikely(clear_dead
)) {
918 * We've noticed that the thread is dead, but
919 * not yet reaped. Take this opportunity to
922 clear_dead_task(timer
, now
);
926 if (cpu_time_before(timer
->it_clock
, now
, timer
->it
.cpu
.expires
)) {
927 sample_to_timespec(timer
->it_clock
,
928 cpu_time_sub(timer
->it_clock
,
929 timer
->it
.cpu
.expires
, now
),
933 * The timer should have expired already, but the firing
934 * hasn't taken place yet. Say it's just about to expire.
936 itp
->it_value
.tv_nsec
= 1;
937 itp
->it_value
.tv_sec
= 0;
942 * Check for any per-thread CPU timers that have fired and move them off
943 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
944 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
946 static void check_thread_timers(struct task_struct
*tsk
,
947 struct list_head
*firing
)
950 struct list_head
*timers
= tsk
->cpu_timers
;
953 tsk
->it_prof_expires
= cputime_zero
;
954 while (!list_empty(timers
)) {
955 struct cpu_timer_list
*t
= list_entry(timers
->next
,
956 struct cpu_timer_list
,
958 if (!--maxfire
|| cputime_lt(prof_ticks(tsk
), t
->expires
.cpu
)) {
959 tsk
->it_prof_expires
= t
->expires
.cpu
;
963 list_move_tail(&t
->entry
, firing
);
968 tsk
->it_virt_expires
= cputime_zero
;
969 while (!list_empty(timers
)) {
970 struct cpu_timer_list
*t
= list_entry(timers
->next
,
971 struct cpu_timer_list
,
973 if (!--maxfire
|| cputime_lt(virt_ticks(tsk
), t
->expires
.cpu
)) {
974 tsk
->it_virt_expires
= t
->expires
.cpu
;
978 list_move_tail(&t
->entry
, firing
);
983 tsk
->it_sched_expires
= 0;
984 while (!list_empty(timers
)) {
985 struct cpu_timer_list
*t
= list_entry(timers
->next
,
986 struct cpu_timer_list
,
988 if (!--maxfire
|| tsk
->sched_time
< t
->expires
.sched
) {
989 tsk
->it_sched_expires
= t
->expires
.sched
;
993 list_move_tail(&t
->entry
, firing
);
998 * Check for any per-thread CPU timers that have fired and move them
999 * off the tsk->*_timers list onto the firing list. Per-thread timers
1000 * have already been taken off.
1002 static void check_process_timers(struct task_struct
*tsk
,
1003 struct list_head
*firing
)
1006 struct signal_struct
*const sig
= tsk
->signal
;
1007 cputime_t utime
, stime
, ptime
, virt_expires
, prof_expires
;
1008 unsigned long long sched_time
, sched_expires
;
1009 struct task_struct
*t
;
1010 struct list_head
*timers
= sig
->cpu_timers
;
1013 * Don't sample the current process CPU clocks if there are no timers.
1015 if (list_empty(&timers
[CPUCLOCK_PROF
]) &&
1016 cputime_eq(sig
->it_prof_expires
, cputime_zero
) &&
1017 sig
->rlim
[RLIMIT_CPU
].rlim_cur
== RLIM_INFINITY
&&
1018 list_empty(&timers
[CPUCLOCK_VIRT
]) &&
1019 cputime_eq(sig
->it_virt_expires
, cputime_zero
) &&
1020 list_empty(&timers
[CPUCLOCK_SCHED
]))
1024 * Collect the current process totals.
1028 sched_time
= sig
->sched_time
;
1031 utime
= cputime_add(utime
, t
->utime
);
1032 stime
= cputime_add(stime
, t
->stime
);
1033 sched_time
+= t
->sched_time
;
1036 ptime
= cputime_add(utime
, stime
);
1039 prof_expires
= cputime_zero
;
1040 while (!list_empty(timers
)) {
1041 struct cpu_timer_list
*t
= list_entry(timers
->next
,
1042 struct cpu_timer_list
,
1044 if (!--maxfire
|| cputime_lt(ptime
, t
->expires
.cpu
)) {
1045 prof_expires
= t
->expires
.cpu
;
1049 list_move_tail(&t
->entry
, firing
);
1054 virt_expires
= cputime_zero
;
1055 while (!list_empty(timers
)) {
1056 struct cpu_timer_list
*t
= list_entry(timers
->next
,
1057 struct cpu_timer_list
,
1059 if (!--maxfire
|| cputime_lt(utime
, t
->expires
.cpu
)) {
1060 virt_expires
= t
->expires
.cpu
;
1064 list_move_tail(&t
->entry
, firing
);
1070 while (!list_empty(timers
)) {
1071 struct cpu_timer_list
*t
= list_entry(timers
->next
,
1072 struct cpu_timer_list
,
1074 if (!--maxfire
|| sched_time
< t
->expires
.sched
) {
1075 sched_expires
= t
->expires
.sched
;
1079 list_move_tail(&t
->entry
, firing
);
1083 * Check for the special case process timers.
1085 if (!cputime_eq(sig
->it_prof_expires
, cputime_zero
)) {
1086 if (cputime_ge(ptime
, sig
->it_prof_expires
)) {
1087 /* ITIMER_PROF fires and reloads. */
1088 sig
->it_prof_expires
= sig
->it_prof_incr
;
1089 if (!cputime_eq(sig
->it_prof_expires
, cputime_zero
)) {
1090 sig
->it_prof_expires
= cputime_add(
1091 sig
->it_prof_expires
, ptime
);
1093 __group_send_sig_info(SIGPROF
, SEND_SIG_PRIV
, tsk
);
1095 if (!cputime_eq(sig
->it_prof_expires
, cputime_zero
) &&
1096 (cputime_eq(prof_expires
, cputime_zero
) ||
1097 cputime_lt(sig
->it_prof_expires
, prof_expires
))) {
1098 prof_expires
= sig
->it_prof_expires
;
1101 if (!cputime_eq(sig
->it_virt_expires
, cputime_zero
)) {
1102 if (cputime_ge(utime
, sig
->it_virt_expires
)) {
1103 /* ITIMER_VIRTUAL fires and reloads. */
1104 sig
->it_virt_expires
= sig
->it_virt_incr
;
1105 if (!cputime_eq(sig
->it_virt_expires
, cputime_zero
)) {
1106 sig
->it_virt_expires
= cputime_add(
1107 sig
->it_virt_expires
, utime
);
1109 __group_send_sig_info(SIGVTALRM
, SEND_SIG_PRIV
, tsk
);
1111 if (!cputime_eq(sig
->it_virt_expires
, cputime_zero
) &&
1112 (cputime_eq(virt_expires
, cputime_zero
) ||
1113 cputime_lt(sig
->it_virt_expires
, virt_expires
))) {
1114 virt_expires
= sig
->it_virt_expires
;
1117 if (sig
->rlim
[RLIMIT_CPU
].rlim_cur
!= RLIM_INFINITY
) {
1118 unsigned long psecs
= cputime_to_secs(ptime
);
1120 if (psecs
>= sig
->rlim
[RLIMIT_CPU
].rlim_max
) {
1122 * At the hard limit, we just die.
1123 * No need to calculate anything else now.
1125 __group_send_sig_info(SIGKILL
, SEND_SIG_PRIV
, tsk
);
1128 if (psecs
>= sig
->rlim
[RLIMIT_CPU
].rlim_cur
) {
1130 * At the soft limit, send a SIGXCPU every second.
1132 __group_send_sig_info(SIGXCPU
, SEND_SIG_PRIV
, tsk
);
1133 if (sig
->rlim
[RLIMIT_CPU
].rlim_cur
1134 < sig
->rlim
[RLIMIT_CPU
].rlim_max
) {
1135 sig
->rlim
[RLIMIT_CPU
].rlim_cur
++;
1138 x
= secs_to_cputime(sig
->rlim
[RLIMIT_CPU
].rlim_cur
);
1139 if (cputime_eq(prof_expires
, cputime_zero
) ||
1140 cputime_lt(x
, prof_expires
)) {
1145 if (!cputime_eq(prof_expires
, cputime_zero
) ||
1146 !cputime_eq(virt_expires
, cputime_zero
) ||
1147 sched_expires
!= 0) {
1149 * Rebalance the threads' expiry times for the remaining
1150 * process CPU timers.
1153 cputime_t prof_left
, virt_left
, ticks
;
1154 unsigned long long sched_left
, sched
;
1155 const unsigned int nthreads
= atomic_read(&sig
->live
);
1160 prof_left
= cputime_sub(prof_expires
, utime
);
1161 prof_left
= cputime_sub(prof_left
, stime
);
1162 prof_left
= cputime_div(prof_left
, nthreads
);
1163 virt_left
= cputime_sub(virt_expires
, utime
);
1164 virt_left
= cputime_div(virt_left
, nthreads
);
1165 if (sched_expires
) {
1166 sched_left
= sched_expires
- sched_time
;
1167 do_div(sched_left
, nthreads
);
1173 if (unlikely(t
->flags
& PF_EXITING
))
1176 ticks
= cputime_add(cputime_add(t
->utime
, t
->stime
),
1178 if (!cputime_eq(prof_expires
, cputime_zero
) &&
1179 (cputime_eq(t
->it_prof_expires
, cputime_zero
) ||
1180 cputime_gt(t
->it_prof_expires
, ticks
))) {
1181 t
->it_prof_expires
= ticks
;
1184 ticks
= cputime_add(t
->utime
, virt_left
);
1185 if (!cputime_eq(virt_expires
, cputime_zero
) &&
1186 (cputime_eq(t
->it_virt_expires
, cputime_zero
) ||
1187 cputime_gt(t
->it_virt_expires
, ticks
))) {
1188 t
->it_virt_expires
= ticks
;
1191 sched
= t
->sched_time
+ sched_left
;
1192 if (sched_expires
&& (t
->it_sched_expires
== 0 ||
1193 t
->it_sched_expires
> sched
)) {
1194 t
->it_sched_expires
= sched
;
1196 } while ((t
= next_thread(t
)) != tsk
);
1201 * This is called from the signal code (via do_schedule_next_timer)
1202 * when the last timer signal was delivered and we have to reload the timer.
1204 void posix_cpu_timer_schedule(struct k_itimer
*timer
)
1206 struct task_struct
*p
= timer
->it
.cpu
.task
;
1207 union cpu_time_count now
;
1209 if (unlikely(p
== NULL
))
1211 * The task was cleaned up already, no future firings.
1216 * Fetch the current sample and update the timer's expiry time.
1218 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
1219 cpu_clock_sample(timer
->it_clock
, p
, &now
);
1220 bump_cpu_timer(timer
, now
);
1221 if (unlikely(p
->exit_state
)) {
1222 clear_dead_task(timer
, now
);
1225 read_lock(&tasklist_lock
); /* arm_timer needs it. */
1227 read_lock(&tasklist_lock
);
1228 if (unlikely(p
->signal
== NULL
)) {
1230 * The process has been reaped.
1231 * We can't even collect a sample any more.
1234 timer
->it
.cpu
.task
= p
= NULL
;
1235 timer
->it
.cpu
.expires
.sched
= 0;
1237 } else if (unlikely(p
->exit_state
) && thread_group_empty(p
)) {
1239 * We've noticed that the thread is dead, but
1240 * not yet reaped. Take this opportunity to
1241 * drop our task ref.
1243 clear_dead_task(timer
, now
);
1246 cpu_clock_sample_group(timer
->it_clock
, p
, &now
);
1247 bump_cpu_timer(timer
, now
);
1248 /* Leave the tasklist_lock locked for the call below. */
1252 * Now re-arm for the new expiry time.
1254 arm_timer(timer
, now
);
1257 read_unlock(&tasklist_lock
);
1260 timer
->it_overrun_last
= timer
->it_overrun
;
1261 timer
->it_overrun
= -1;
1262 ++timer
->it_requeue_pending
;
1266 * This is called from the timer interrupt handler. The irq handler has
1267 * already updated our counts. We need to check if any timers fire now.
1268 * Interrupts are disabled.
1270 void run_posix_cpu_timers(struct task_struct
*tsk
)
1273 struct k_itimer
*timer
, *next
;
1275 BUG_ON(!irqs_disabled());
1277 #define UNEXPIRED(clock) \
1278 (cputime_eq(tsk->it_##clock##_expires, cputime_zero) || \
1279 cputime_lt(clock##_ticks(tsk), tsk->it_##clock##_expires))
1281 if (UNEXPIRED(prof
) && UNEXPIRED(virt
) &&
1282 (tsk
->it_sched_expires
== 0 ||
1283 tsk
->sched_time
< tsk
->it_sched_expires
))
1289 * Double-check with locks held.
1291 read_lock(&tasklist_lock
);
1292 if (likely(tsk
->signal
!= NULL
)) {
1293 spin_lock(&tsk
->sighand
->siglock
);
1296 * Here we take off tsk->cpu_timers[N] and tsk->signal->cpu_timers[N]
1297 * all the timers that are firing, and put them on the firing list.
1299 check_thread_timers(tsk
, &firing
);
1300 check_process_timers(tsk
, &firing
);
1303 * We must release these locks before taking any timer's lock.
1304 * There is a potential race with timer deletion here, as the
1305 * siglock now protects our private firing list. We have set
1306 * the firing flag in each timer, so that a deletion attempt
1307 * that gets the timer lock before we do will give it up and
1308 * spin until we've taken care of that timer below.
1310 spin_unlock(&tsk
->sighand
->siglock
);
1312 read_unlock(&tasklist_lock
);
1315 * Now that all the timers on our list have the firing flag,
1316 * noone will touch their list entries but us. We'll take
1317 * each timer's lock before clearing its firing flag, so no
1318 * timer call will interfere.
1320 list_for_each_entry_safe(timer
, next
, &firing
, it
.cpu
.entry
) {
1322 spin_lock(&timer
->it_lock
);
1323 list_del_init(&timer
->it
.cpu
.entry
);
1324 firing
= timer
->it
.cpu
.firing
;
1325 timer
->it
.cpu
.firing
= 0;
1327 * The firing flag is -1 if we collided with a reset
1328 * of the timer, which already reported this
1329 * almost-firing as an overrun. So don't generate an event.
1331 if (likely(firing
>= 0)) {
1332 cpu_timer_fire(timer
);
1334 spin_unlock(&timer
->it_lock
);
1339 * Set one of the process-wide special case CPU timers.
1340 * The tasklist_lock and tsk->sighand->siglock must be held by the caller.
1341 * The oldval argument is null for the RLIMIT_CPU timer, where *newval is
1342 * absolute; non-null for ITIMER_*, where *newval is relative and we update
1343 * it to be absolute, *oldval is absolute and we update it to be relative.
1345 void set_process_cpu_timer(struct task_struct
*tsk
, unsigned int clock_idx
,
1346 cputime_t
*newval
, cputime_t
*oldval
)
1348 union cpu_time_count now
;
1349 struct list_head
*head
;
1351 BUG_ON(clock_idx
== CPUCLOCK_SCHED
);
1352 cpu_clock_sample_group_locked(clock_idx
, tsk
, &now
);
1355 if (!cputime_eq(*oldval
, cputime_zero
)) {
1356 if (cputime_le(*oldval
, now
.cpu
)) {
1357 /* Just about to fire. */
1358 *oldval
= jiffies_to_cputime(1);
1360 *oldval
= cputime_sub(*oldval
, now
.cpu
);
1364 if (cputime_eq(*newval
, cputime_zero
))
1366 *newval
= cputime_add(*newval
, now
.cpu
);
1369 * If the RLIMIT_CPU timer will expire before the
1370 * ITIMER_PROF timer, we have nothing else to do.
1372 if (tsk
->signal
->rlim
[RLIMIT_CPU
].rlim_cur
1373 < cputime_to_secs(*newval
))
1378 * Check whether there are any process timers already set to fire
1379 * before this one. If so, we don't have anything more to do.
1381 head
= &tsk
->signal
->cpu_timers
[clock_idx
];
1382 if (list_empty(head
) ||
1383 cputime_ge(list_entry(head
->next
,
1384 struct cpu_timer_list
, entry
)->expires
.cpu
,
1387 * Rejigger each thread's expiry time so that one will
1388 * notice before we hit the process-cumulative expiry time.
1390 union cpu_time_count expires
= { .sched
= 0 };
1391 expires
.cpu
= *newval
;
1392 process_timer_rebalance(tsk
, clock_idx
, expires
, now
);
1396 static long posix_cpu_clock_nanosleep_restart(struct restart_block
*);
1398 int posix_cpu_nsleep(const clockid_t which_clock
, int flags
,
1399 struct timespec
*rqtp
, struct timespec __user
*rmtp
)
1401 struct restart_block
*restart_block
=
1402 ¤t_thread_info()->restart_block
;
1403 struct k_itimer timer
;
1407 * Diagnose required errors first.
1409 if (CPUCLOCK_PERTHREAD(which_clock
) &&
1410 (CPUCLOCK_PID(which_clock
) == 0 ||
1411 CPUCLOCK_PID(which_clock
) == current
->pid
))
1415 * Set up a temporary timer and then wait for it to go off.
1417 memset(&timer
, 0, sizeof timer
);
1418 spin_lock_init(&timer
.it_lock
);
1419 timer
.it_clock
= which_clock
;
1420 timer
.it_overrun
= -1;
1421 error
= posix_cpu_timer_create(&timer
);
1422 timer
.it_process
= current
;
1424 static struct itimerspec zero_it
;
1425 struct itimerspec it
= { .it_value
= *rqtp
,
1426 .it_interval
= {} };
1428 spin_lock_irq(&timer
.it_lock
);
1429 error
= posix_cpu_timer_set(&timer
, flags
, &it
, NULL
);
1431 spin_unlock_irq(&timer
.it_lock
);
1435 while (!signal_pending(current
)) {
1436 if (timer
.it
.cpu
.expires
.sched
== 0) {
1438 * Our timer fired and was reset.
1440 spin_unlock_irq(&timer
.it_lock
);
1445 * Block until cpu_timer_fire (or a signal) wakes us.
1447 __set_current_state(TASK_INTERRUPTIBLE
);
1448 spin_unlock_irq(&timer
.it_lock
);
1450 spin_lock_irq(&timer
.it_lock
);
1454 * We were interrupted by a signal.
1456 sample_to_timespec(which_clock
, timer
.it
.cpu
.expires
, rqtp
);
1457 posix_cpu_timer_set(&timer
, 0, &zero_it
, &it
);
1458 spin_unlock_irq(&timer
.it_lock
);
1460 if ((it
.it_value
.tv_sec
| it
.it_value
.tv_nsec
) == 0) {
1462 * It actually did fire already.
1468 * Report back to the user the time still remaining.
1470 if (rmtp
!= NULL
&& !(flags
& TIMER_ABSTIME
) &&
1471 copy_to_user(rmtp
, &it
.it_value
, sizeof *rmtp
))
1474 restart_block
->fn
= posix_cpu_clock_nanosleep_restart
;
1475 /* Caller already set restart_block->arg1 */
1476 restart_block
->arg0
= which_clock
;
1477 restart_block
->arg1
= (unsigned long) rmtp
;
1478 restart_block
->arg2
= rqtp
->tv_sec
;
1479 restart_block
->arg3
= rqtp
->tv_nsec
;
1481 error
= -ERESTART_RESTARTBLOCK
;
1488 posix_cpu_clock_nanosleep_restart(struct restart_block
*restart_block
)
1490 clockid_t which_clock
= restart_block
->arg0
;
1491 struct timespec __user
*rmtp
;
1494 rmtp
= (struct timespec __user
*) restart_block
->arg1
;
1495 t
.tv_sec
= restart_block
->arg2
;
1496 t
.tv_nsec
= restart_block
->arg3
;
1498 restart_block
->fn
= do_no_restart_syscall
;
1499 return posix_cpu_nsleep(which_clock
, TIMER_ABSTIME
, &t
, rmtp
);
1503 #define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1504 #define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1506 static int process_cpu_clock_getres(const clockid_t which_clock
,
1507 struct timespec
*tp
)
1509 return posix_cpu_clock_getres(PROCESS_CLOCK
, tp
);
1511 static int process_cpu_clock_get(const clockid_t which_clock
,
1512 struct timespec
*tp
)
1514 return posix_cpu_clock_get(PROCESS_CLOCK
, tp
);
1516 static int process_cpu_timer_create(struct k_itimer
*timer
)
1518 timer
->it_clock
= PROCESS_CLOCK
;
1519 return posix_cpu_timer_create(timer
);
1521 static int process_cpu_nsleep(const clockid_t which_clock
, int flags
,
1522 struct timespec
*rqtp
,
1523 struct timespec __user
*rmtp
)
1525 return posix_cpu_nsleep(PROCESS_CLOCK
, flags
, rqtp
, rmtp
);
1527 static int thread_cpu_clock_getres(const clockid_t which_clock
,
1528 struct timespec
*tp
)
1530 return posix_cpu_clock_getres(THREAD_CLOCK
, tp
);
1532 static int thread_cpu_clock_get(const clockid_t which_clock
,
1533 struct timespec
*tp
)
1535 return posix_cpu_clock_get(THREAD_CLOCK
, tp
);
1537 static int thread_cpu_timer_create(struct k_itimer
*timer
)
1539 timer
->it_clock
= THREAD_CLOCK
;
1540 return posix_cpu_timer_create(timer
);
1542 static int thread_cpu_nsleep(const clockid_t which_clock
, int flags
,
1543 struct timespec
*rqtp
, struct timespec __user
*rmtp
)
1548 static __init
int init_posix_cpu_timers(void)
1550 struct k_clock process
= {
1551 .clock_getres
= process_cpu_clock_getres
,
1552 .clock_get
= process_cpu_clock_get
,
1553 .clock_set
= do_posix_clock_nosettime
,
1554 .timer_create
= process_cpu_timer_create
,
1555 .nsleep
= process_cpu_nsleep
,
1557 struct k_clock thread
= {
1558 .clock_getres
= thread_cpu_clock_getres
,
1559 .clock_get
= thread_cpu_clock_get
,
1560 .clock_set
= do_posix_clock_nosettime
,
1561 .timer_create
= thread_cpu_timer_create
,
1562 .nsleep
= thread_cpu_nsleep
,
1565 register_posix_clock(CLOCK_PROCESS_CPUTIME_ID
, &process
);
1566 register_posix_clock(CLOCK_THREAD_CPUTIME_ID
, &thread
);
1570 __initcall(init_posix_cpu_timers
);