[PATCH] hid-core endianness annotations
[linux-2.6/linux-mips.git] / kernel / workqueue.c
blobb6fa5e63085d65b42f46fe97735751b6f402cab4
1 /*
2 * linux/kernel/workqueue.c
4 * Generic mechanism for defining kernel helper threads for running
5 * arbitrary tasks in process context.
7 * Started by Ingo Molnar, Copyright (C) 2002
9 * Derived from the taskqueue/keventd code by:
11 * David Woodhouse <dwmw2@infradead.org>
12 * Andrew Morton <andrewm@uow.edu.au>
13 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
14 * Theodore Ts'o <tytso@mit.edu>
16 * Made to use alloc_percpu by Christoph Lameter <clameter@sgi.com>.
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/sched.h>
22 #include <linux/init.h>
23 #include <linux/signal.h>
24 #include <linux/completion.h>
25 #include <linux/workqueue.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/notifier.h>
29 #include <linux/kthread.h>
30 #include <linux/hardirq.h>
31 #include <linux/mempolicy.h>
32 #include <linux/freezer.h>
33 #include <linux/kallsyms.h>
34 #include <linux/debug_locks.h>
37 * The per-CPU workqueue (if single thread, we always use the first
38 * possible cpu).
40 * The sequence counters are for flush_scheduled_work(). It wants to wait
41 * until all currently-scheduled works are completed, but it doesn't
42 * want to be livelocked by new, incoming ones. So it waits until
43 * remove_sequence is >= the insert_sequence which pertained when
44 * flush_scheduled_work() was called.
46 struct cpu_workqueue_struct {
48 spinlock_t lock;
50 long remove_sequence; /* Least-recently added (next to run) */
51 long insert_sequence; /* Next to add */
53 struct list_head worklist;
54 wait_queue_head_t more_work;
55 wait_queue_head_t work_done;
57 struct workqueue_struct *wq;
58 struct task_struct *thread;
60 int run_depth; /* Detect run_workqueue() recursion depth */
62 int freezeable; /* Freeze the thread during suspend */
63 } ____cacheline_aligned;
66 * The externally visible workqueue abstraction is an array of
67 * per-CPU workqueues:
69 struct workqueue_struct {
70 struct cpu_workqueue_struct *cpu_wq;
71 const char *name;
72 struct list_head list; /* Empty if single thread */
75 /* All the per-cpu workqueues on the system, for hotplug cpu to add/remove
76 threads to each one as cpus come/go. */
77 static DEFINE_MUTEX(workqueue_mutex);
78 static LIST_HEAD(workqueues);
80 static int singlethread_cpu;
82 /* If it's single threaded, it isn't in the list of workqueues. */
83 static inline int is_single_threaded(struct workqueue_struct *wq)
85 return list_empty(&wq->list);
89 * Set the workqueue on which a work item is to be run
90 * - Must *only* be called if the pending flag is set
92 static inline void set_wq_data(struct work_struct *work, void *wq)
94 unsigned long new;
96 BUG_ON(!work_pending(work));
98 new = (unsigned long) wq | (1UL << WORK_STRUCT_PENDING);
99 new |= WORK_STRUCT_FLAG_MASK & *work_data_bits(work);
100 atomic_long_set(&work->data, new);
103 static inline void *get_wq_data(struct work_struct *work)
105 return (void *) (atomic_long_read(&work->data) & WORK_STRUCT_WQ_DATA_MASK);
108 static int __run_work(struct cpu_workqueue_struct *cwq, struct work_struct *work)
110 int ret = 0;
111 unsigned long flags;
113 spin_lock_irqsave(&cwq->lock, flags);
115 * We need to re-validate the work info after we've gotten
116 * the cpu_workqueue lock. We can run the work now iff:
118 * - the wq_data still matches the cpu_workqueue_struct
119 * - AND the work is still marked pending
120 * - AND the work is still on a list (which will be this
121 * workqueue_struct list)
123 * All these conditions are important, because we
124 * need to protect against the work being run right
125 * now on another CPU (all but the last one might be
126 * true if it's currently running and has not been
127 * released yet, for example).
129 if (get_wq_data(work) == cwq
130 && work_pending(work)
131 && !list_empty(&work->entry)) {
132 work_func_t f = work->func;
133 list_del_init(&work->entry);
134 spin_unlock_irqrestore(&cwq->lock, flags);
136 if (!test_bit(WORK_STRUCT_NOAUTOREL, work_data_bits(work)))
137 work_release(work);
138 f(work);
140 spin_lock_irqsave(&cwq->lock, flags);
141 cwq->remove_sequence++;
142 wake_up(&cwq->work_done);
143 ret = 1;
145 spin_unlock_irqrestore(&cwq->lock, flags);
146 return ret;
150 * run_scheduled_work - run scheduled work synchronously
151 * @work: work to run
153 * This checks if the work was pending, and runs it
154 * synchronously if so. It returns a boolean to indicate
155 * whether it had any scheduled work to run or not.
157 * NOTE! This _only_ works for normal work_structs. You
158 * CANNOT use this for delayed work, because the wq data
159 * for delayed work will not point properly to the per-
160 * CPU workqueue struct, but will change!
162 int fastcall run_scheduled_work(struct work_struct *work)
164 for (;;) {
165 struct cpu_workqueue_struct *cwq;
167 if (!work_pending(work))
168 return 0;
169 if (list_empty(&work->entry))
170 return 0;
171 /* NOTE! This depends intimately on __queue_work! */
172 cwq = get_wq_data(work);
173 if (!cwq)
174 return 0;
175 if (__run_work(cwq, work))
176 return 1;
179 EXPORT_SYMBOL(run_scheduled_work);
181 /* Preempt must be disabled. */
182 static void __queue_work(struct cpu_workqueue_struct *cwq,
183 struct work_struct *work)
185 unsigned long flags;
187 spin_lock_irqsave(&cwq->lock, flags);
188 set_wq_data(work, cwq);
189 list_add_tail(&work->entry, &cwq->worklist);
190 cwq->insert_sequence++;
191 wake_up(&cwq->more_work);
192 spin_unlock_irqrestore(&cwq->lock, flags);
196 * queue_work - queue work on a workqueue
197 * @wq: workqueue to use
198 * @work: work to queue
200 * Returns 0 if @work was already on a queue, non-zero otherwise.
202 * We queue the work to the CPU it was submitted, but there is no
203 * guarantee that it will be processed by that CPU.
205 int fastcall queue_work(struct workqueue_struct *wq, struct work_struct *work)
207 int ret = 0, cpu = get_cpu();
209 if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
210 if (unlikely(is_single_threaded(wq)))
211 cpu = singlethread_cpu;
212 BUG_ON(!list_empty(&work->entry));
213 __queue_work(per_cpu_ptr(wq->cpu_wq, cpu), work);
214 ret = 1;
216 put_cpu();
217 return ret;
219 EXPORT_SYMBOL_GPL(queue_work);
221 void delayed_work_timer_fn(unsigned long __data)
223 struct delayed_work *dwork = (struct delayed_work *)__data;
224 struct workqueue_struct *wq = get_wq_data(&dwork->work);
225 int cpu = smp_processor_id();
227 if (unlikely(is_single_threaded(wq)))
228 cpu = singlethread_cpu;
230 __queue_work(per_cpu_ptr(wq->cpu_wq, cpu), &dwork->work);
234 * queue_delayed_work - queue work on a workqueue after delay
235 * @wq: workqueue to use
236 * @dwork: delayable work to queue
237 * @delay: number of jiffies to wait before queueing
239 * Returns 0 if @work was already on a queue, non-zero otherwise.
241 int fastcall queue_delayed_work(struct workqueue_struct *wq,
242 struct delayed_work *dwork, unsigned long delay)
244 int ret = 0;
245 struct timer_list *timer = &dwork->timer;
246 struct work_struct *work = &dwork->work;
248 timer_stats_timer_set_start_info(timer);
249 if (delay == 0)
250 return queue_work(wq, work);
252 if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
253 BUG_ON(timer_pending(timer));
254 BUG_ON(!list_empty(&work->entry));
256 /* This stores wq for the moment, for the timer_fn */
257 set_wq_data(work, wq);
258 timer->expires = jiffies + delay;
259 timer->data = (unsigned long)dwork;
260 timer->function = delayed_work_timer_fn;
261 add_timer(timer);
262 ret = 1;
264 return ret;
266 EXPORT_SYMBOL_GPL(queue_delayed_work);
269 * queue_delayed_work_on - queue work on specific CPU after delay
270 * @cpu: CPU number to execute work on
271 * @wq: workqueue to use
272 * @dwork: work to queue
273 * @delay: number of jiffies to wait before queueing
275 * Returns 0 if @work was already on a queue, non-zero otherwise.
277 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
278 struct delayed_work *dwork, unsigned long delay)
280 int ret = 0;
281 struct timer_list *timer = &dwork->timer;
282 struct work_struct *work = &dwork->work;
284 if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
285 BUG_ON(timer_pending(timer));
286 BUG_ON(!list_empty(&work->entry));
288 /* This stores wq for the moment, for the timer_fn */
289 set_wq_data(work, wq);
290 timer->expires = jiffies + delay;
291 timer->data = (unsigned long)dwork;
292 timer->function = delayed_work_timer_fn;
293 add_timer_on(timer, cpu);
294 ret = 1;
296 return ret;
298 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
300 static void run_workqueue(struct cpu_workqueue_struct *cwq)
302 unsigned long flags;
305 * Keep taking off work from the queue until
306 * done.
308 spin_lock_irqsave(&cwq->lock, flags);
309 cwq->run_depth++;
310 if (cwq->run_depth > 3) {
311 /* morton gets to eat his hat */
312 printk("%s: recursion depth exceeded: %d\n",
313 __FUNCTION__, cwq->run_depth);
314 dump_stack();
316 while (!list_empty(&cwq->worklist)) {
317 struct work_struct *work = list_entry(cwq->worklist.next,
318 struct work_struct, entry);
319 work_func_t f = work->func;
321 list_del_init(cwq->worklist.next);
322 spin_unlock_irqrestore(&cwq->lock, flags);
324 BUG_ON(get_wq_data(work) != cwq);
325 if (!test_bit(WORK_STRUCT_NOAUTOREL, work_data_bits(work)))
326 work_release(work);
327 f(work);
329 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
330 printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
331 "%s/0x%08x/%d\n",
332 current->comm, preempt_count(),
333 current->pid);
334 printk(KERN_ERR " last function: ");
335 print_symbol("%s\n", (unsigned long)f);
336 debug_show_held_locks(current);
337 dump_stack();
340 spin_lock_irqsave(&cwq->lock, flags);
341 cwq->remove_sequence++;
342 wake_up(&cwq->work_done);
344 cwq->run_depth--;
345 spin_unlock_irqrestore(&cwq->lock, flags);
348 static int worker_thread(void *__cwq)
350 struct cpu_workqueue_struct *cwq = __cwq;
351 DECLARE_WAITQUEUE(wait, current);
352 struct k_sigaction sa;
353 sigset_t blocked;
355 if (!cwq->freezeable)
356 current->flags |= PF_NOFREEZE;
358 set_user_nice(current, -5);
360 /* Block and flush all signals */
361 sigfillset(&blocked);
362 sigprocmask(SIG_BLOCK, &blocked, NULL);
363 flush_signals(current);
366 * We inherited MPOL_INTERLEAVE from the booting kernel.
367 * Set MPOL_DEFAULT to insure node local allocations.
369 numa_default_policy();
371 /* SIG_IGN makes children autoreap: see do_notify_parent(). */
372 sa.sa.sa_handler = SIG_IGN;
373 sa.sa.sa_flags = 0;
374 siginitset(&sa.sa.sa_mask, sigmask(SIGCHLD));
375 do_sigaction(SIGCHLD, &sa, (struct k_sigaction *)0);
377 set_current_state(TASK_INTERRUPTIBLE);
378 while (!kthread_should_stop()) {
379 if (cwq->freezeable)
380 try_to_freeze();
382 add_wait_queue(&cwq->more_work, &wait);
383 if (list_empty(&cwq->worklist))
384 schedule();
385 else
386 __set_current_state(TASK_RUNNING);
387 remove_wait_queue(&cwq->more_work, &wait);
389 if (!list_empty(&cwq->worklist))
390 run_workqueue(cwq);
391 set_current_state(TASK_INTERRUPTIBLE);
393 __set_current_state(TASK_RUNNING);
394 return 0;
397 static void flush_cpu_workqueue(struct cpu_workqueue_struct *cwq)
399 if (cwq->thread == current) {
401 * Probably keventd trying to flush its own queue. So simply run
402 * it by hand rather than deadlocking.
404 run_workqueue(cwq);
405 } else {
406 DEFINE_WAIT(wait);
407 long sequence_needed;
409 spin_lock_irq(&cwq->lock);
410 sequence_needed = cwq->insert_sequence;
412 while (sequence_needed - cwq->remove_sequence > 0) {
413 prepare_to_wait(&cwq->work_done, &wait,
414 TASK_UNINTERRUPTIBLE);
415 spin_unlock_irq(&cwq->lock);
416 schedule();
417 spin_lock_irq(&cwq->lock);
419 finish_wait(&cwq->work_done, &wait);
420 spin_unlock_irq(&cwq->lock);
425 * flush_workqueue - ensure that any scheduled work has run to completion.
426 * @wq: workqueue to flush
428 * Forces execution of the workqueue and blocks until its completion.
429 * This is typically used in driver shutdown handlers.
431 * This function will sample each workqueue's current insert_sequence number and
432 * will sleep until the head sequence is greater than or equal to that. This
433 * means that we sleep until all works which were queued on entry have been
434 * handled, but we are not livelocked by new incoming ones.
436 * This function used to run the workqueues itself. Now we just wait for the
437 * helper threads to do it.
439 void fastcall flush_workqueue(struct workqueue_struct *wq)
441 might_sleep();
443 if (is_single_threaded(wq)) {
444 /* Always use first cpu's area. */
445 flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, singlethread_cpu));
446 } else {
447 int cpu;
449 mutex_lock(&workqueue_mutex);
450 for_each_online_cpu(cpu)
451 flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, cpu));
452 mutex_unlock(&workqueue_mutex);
455 EXPORT_SYMBOL_GPL(flush_workqueue);
457 static struct task_struct *create_workqueue_thread(struct workqueue_struct *wq,
458 int cpu, int freezeable)
460 struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu);
461 struct task_struct *p;
463 spin_lock_init(&cwq->lock);
464 cwq->wq = wq;
465 cwq->thread = NULL;
466 cwq->insert_sequence = 0;
467 cwq->remove_sequence = 0;
468 cwq->freezeable = freezeable;
469 INIT_LIST_HEAD(&cwq->worklist);
470 init_waitqueue_head(&cwq->more_work);
471 init_waitqueue_head(&cwq->work_done);
473 if (is_single_threaded(wq))
474 p = kthread_create(worker_thread, cwq, "%s", wq->name);
475 else
476 p = kthread_create(worker_thread, cwq, "%s/%d", wq->name, cpu);
477 if (IS_ERR(p))
478 return NULL;
479 cwq->thread = p;
480 return p;
483 struct workqueue_struct *__create_workqueue(const char *name,
484 int singlethread, int freezeable)
486 int cpu, destroy = 0;
487 struct workqueue_struct *wq;
488 struct task_struct *p;
490 wq = kzalloc(sizeof(*wq), GFP_KERNEL);
491 if (!wq)
492 return NULL;
494 wq->cpu_wq = alloc_percpu(struct cpu_workqueue_struct);
495 if (!wq->cpu_wq) {
496 kfree(wq);
497 return NULL;
500 wq->name = name;
501 mutex_lock(&workqueue_mutex);
502 if (singlethread) {
503 INIT_LIST_HEAD(&wq->list);
504 p = create_workqueue_thread(wq, singlethread_cpu, freezeable);
505 if (!p)
506 destroy = 1;
507 else
508 wake_up_process(p);
509 } else {
510 list_add(&wq->list, &workqueues);
511 for_each_online_cpu(cpu) {
512 p = create_workqueue_thread(wq, cpu, freezeable);
513 if (p) {
514 kthread_bind(p, cpu);
515 wake_up_process(p);
516 } else
517 destroy = 1;
520 mutex_unlock(&workqueue_mutex);
523 * Was there any error during startup? If yes then clean up:
525 if (destroy) {
526 destroy_workqueue(wq);
527 wq = NULL;
529 return wq;
531 EXPORT_SYMBOL_GPL(__create_workqueue);
533 static void cleanup_workqueue_thread(struct workqueue_struct *wq, int cpu)
535 struct cpu_workqueue_struct *cwq;
536 unsigned long flags;
537 struct task_struct *p;
539 cwq = per_cpu_ptr(wq->cpu_wq, cpu);
540 spin_lock_irqsave(&cwq->lock, flags);
541 p = cwq->thread;
542 cwq->thread = NULL;
543 spin_unlock_irqrestore(&cwq->lock, flags);
544 if (p)
545 kthread_stop(p);
549 * destroy_workqueue - safely terminate a workqueue
550 * @wq: target workqueue
552 * Safely destroy a workqueue. All work currently pending will be done first.
554 void destroy_workqueue(struct workqueue_struct *wq)
556 int cpu;
558 flush_workqueue(wq);
560 /* We don't need the distraction of CPUs appearing and vanishing. */
561 mutex_lock(&workqueue_mutex);
562 if (is_single_threaded(wq))
563 cleanup_workqueue_thread(wq, singlethread_cpu);
564 else {
565 for_each_online_cpu(cpu)
566 cleanup_workqueue_thread(wq, cpu);
567 list_del(&wq->list);
569 mutex_unlock(&workqueue_mutex);
570 free_percpu(wq->cpu_wq);
571 kfree(wq);
573 EXPORT_SYMBOL_GPL(destroy_workqueue);
575 static struct workqueue_struct *keventd_wq;
578 * schedule_work - put work task in global workqueue
579 * @work: job to be done
581 * This puts a job in the kernel-global workqueue.
583 int fastcall schedule_work(struct work_struct *work)
585 return queue_work(keventd_wq, work);
587 EXPORT_SYMBOL(schedule_work);
590 * schedule_delayed_work - put work task in global workqueue after delay
591 * @dwork: job to be done
592 * @delay: number of jiffies to wait or 0 for immediate execution
594 * After waiting for a given time this puts a job in the kernel-global
595 * workqueue.
597 int fastcall schedule_delayed_work(struct delayed_work *dwork,
598 unsigned long delay)
600 timer_stats_timer_set_start_info(&dwork->timer);
601 return queue_delayed_work(keventd_wq, dwork, delay);
603 EXPORT_SYMBOL(schedule_delayed_work);
606 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
607 * @cpu: cpu to use
608 * @dwork: job to be done
609 * @delay: number of jiffies to wait
611 * After waiting for a given time this puts a job in the kernel-global
612 * workqueue on the specified CPU.
614 int schedule_delayed_work_on(int cpu,
615 struct delayed_work *dwork, unsigned long delay)
617 return queue_delayed_work_on(cpu, keventd_wq, dwork, delay);
619 EXPORT_SYMBOL(schedule_delayed_work_on);
622 * schedule_on_each_cpu - call a function on each online CPU from keventd
623 * @func: the function to call
625 * Returns zero on success.
626 * Returns -ve errno on failure.
628 * Appears to be racy against CPU hotplug.
630 * schedule_on_each_cpu() is very slow.
632 int schedule_on_each_cpu(work_func_t func)
634 int cpu;
635 struct work_struct *works;
637 works = alloc_percpu(struct work_struct);
638 if (!works)
639 return -ENOMEM;
641 mutex_lock(&workqueue_mutex);
642 for_each_online_cpu(cpu) {
643 struct work_struct *work = per_cpu_ptr(works, cpu);
645 INIT_WORK(work, func);
646 set_bit(WORK_STRUCT_PENDING, work_data_bits(work));
647 __queue_work(per_cpu_ptr(keventd_wq->cpu_wq, cpu), work);
649 mutex_unlock(&workqueue_mutex);
650 flush_workqueue(keventd_wq);
651 free_percpu(works);
652 return 0;
655 void flush_scheduled_work(void)
657 flush_workqueue(keventd_wq);
659 EXPORT_SYMBOL(flush_scheduled_work);
662 * cancel_rearming_delayed_workqueue - reliably kill off a delayed work whose handler rearms the delayed work.
663 * @wq: the controlling workqueue structure
664 * @dwork: the delayed work struct
666 void cancel_rearming_delayed_workqueue(struct workqueue_struct *wq,
667 struct delayed_work *dwork)
669 while (!cancel_delayed_work(dwork))
670 flush_workqueue(wq);
672 EXPORT_SYMBOL(cancel_rearming_delayed_workqueue);
675 * cancel_rearming_delayed_work - reliably kill off a delayed keventd work whose handler rearms the delayed work.
676 * @dwork: the delayed work struct
678 void cancel_rearming_delayed_work(struct delayed_work *dwork)
680 cancel_rearming_delayed_workqueue(keventd_wq, dwork);
682 EXPORT_SYMBOL(cancel_rearming_delayed_work);
685 * execute_in_process_context - reliably execute the routine with user context
686 * @fn: the function to execute
687 * @ew: guaranteed storage for the execute work structure (must
688 * be available when the work executes)
690 * Executes the function immediately if process context is available,
691 * otherwise schedules the function for delayed execution.
693 * Returns: 0 - function was executed
694 * 1 - function was scheduled for execution
696 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
698 if (!in_interrupt()) {
699 fn(&ew->work);
700 return 0;
703 INIT_WORK(&ew->work, fn);
704 schedule_work(&ew->work);
706 return 1;
708 EXPORT_SYMBOL_GPL(execute_in_process_context);
710 int keventd_up(void)
712 return keventd_wq != NULL;
715 int current_is_keventd(void)
717 struct cpu_workqueue_struct *cwq;
718 int cpu = smp_processor_id(); /* preempt-safe: keventd is per-cpu */
719 int ret = 0;
721 BUG_ON(!keventd_wq);
723 cwq = per_cpu_ptr(keventd_wq->cpu_wq, cpu);
724 if (current == cwq->thread)
725 ret = 1;
727 return ret;
731 /* Take the work from this (downed) CPU. */
732 static void take_over_work(struct workqueue_struct *wq, unsigned int cpu)
734 struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu);
735 struct list_head list;
736 struct work_struct *work;
738 spin_lock_irq(&cwq->lock);
739 list_replace_init(&cwq->worklist, &list);
741 while (!list_empty(&list)) {
742 printk("Taking work for %s\n", wq->name);
743 work = list_entry(list.next,struct work_struct,entry);
744 list_del(&work->entry);
745 __queue_work(per_cpu_ptr(wq->cpu_wq, smp_processor_id()), work);
747 spin_unlock_irq(&cwq->lock);
750 /* We're holding the cpucontrol mutex here */
751 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
752 unsigned long action,
753 void *hcpu)
755 unsigned int hotcpu = (unsigned long)hcpu;
756 struct workqueue_struct *wq;
758 switch (action) {
759 case CPU_UP_PREPARE:
760 mutex_lock(&workqueue_mutex);
761 /* Create a new workqueue thread for it. */
762 list_for_each_entry(wq, &workqueues, list) {
763 if (!create_workqueue_thread(wq, hotcpu, 0)) {
764 printk("workqueue for %i failed\n", hotcpu);
765 return NOTIFY_BAD;
768 break;
770 case CPU_ONLINE:
771 /* Kick off worker threads. */
772 list_for_each_entry(wq, &workqueues, list) {
773 struct cpu_workqueue_struct *cwq;
775 cwq = per_cpu_ptr(wq->cpu_wq, hotcpu);
776 kthread_bind(cwq->thread, hotcpu);
777 wake_up_process(cwq->thread);
779 mutex_unlock(&workqueue_mutex);
780 break;
782 case CPU_UP_CANCELED:
783 list_for_each_entry(wq, &workqueues, list) {
784 if (!per_cpu_ptr(wq->cpu_wq, hotcpu)->thread)
785 continue;
786 /* Unbind so it can run. */
787 kthread_bind(per_cpu_ptr(wq->cpu_wq, hotcpu)->thread,
788 any_online_cpu(cpu_online_map));
789 cleanup_workqueue_thread(wq, hotcpu);
791 mutex_unlock(&workqueue_mutex);
792 break;
794 case CPU_DOWN_PREPARE:
795 mutex_lock(&workqueue_mutex);
796 break;
798 case CPU_DOWN_FAILED:
799 mutex_unlock(&workqueue_mutex);
800 break;
802 case CPU_DEAD:
803 list_for_each_entry(wq, &workqueues, list)
804 cleanup_workqueue_thread(wq, hotcpu);
805 list_for_each_entry(wq, &workqueues, list)
806 take_over_work(wq, hotcpu);
807 mutex_unlock(&workqueue_mutex);
808 break;
811 return NOTIFY_OK;
814 void init_workqueues(void)
816 singlethread_cpu = first_cpu(cpu_possible_map);
817 hotcpu_notifier(workqueue_cpu_callback, 0);
818 keventd_wq = create_workqueue("events");
819 BUG_ON(!keventd_wq);