Eleminate mips_cpu and move it into cpu_data.
[linux-2.6/linux-mips.git] / arch / mips / kernel / time.c
blob76fcb624534adf52a32f43912a9de096643f9ef2
1 /*
2 * Copyright 2001 MontaVista Software Inc.
3 * Author: Jun Sun, jsun@mvista.com or jsun@junsun.net
5 * Common time service routines for MIPS machines. See
6 * Documents/mips/README.txt.
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the
10 * Free Software Foundation; either version 2 of the License, or (at your
11 * option) any later version.
13 #include <linux/config.h>
14 #include <linux/types.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/sched.h>
18 #include <linux/param.h>
19 #include <linux/time.h>
20 #include <linux/smp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/spinlock.h>
23 #include <linux/interrupt.h>
24 #include <linux/module.h>
26 #include <asm/bootinfo.h>
27 #include <asm/cpu.h>
28 #include <asm/time.h>
29 #include <asm/hardirq.h>
30 #include <asm/div64.h>
32 /* This is for machines which generate the exact clock. */
33 #define USECS_PER_JIFFY (1000000/HZ)
34 #define USECS_PER_JIFFY_FRAC ((u32)((1000000ULL << 32) / HZ))
36 #define TICK_SIZE (tick_nsec / 1000)
38 u64 jiffies_64;
41 * forward reference
43 extern rwlock_t xtime_lock;
44 extern volatile unsigned long wall_jiffies;
46 spinlock_t rtc_lock = SPIN_LOCK_UNLOCKED;
49 * whether we emulate local_timer_interrupts for SMP machines.
51 int emulate_local_timer_interrupt;
54 * By default we provide the null RTC ops
56 static unsigned long null_rtc_get_time(void)
58 return mktime(2000, 1, 1, 0, 0, 0);
61 static int null_rtc_set_time(unsigned long sec)
63 return 0;
66 unsigned long (*rtc_get_time)(void) = null_rtc_get_time;
67 int (*rtc_set_time)(unsigned long) = null_rtc_set_time;
71 * This version of gettimeofday has microsecond resolution and better than
72 * microsecond precision on fast machines with cycle counter.
74 void do_gettimeofday(struct timeval *tv)
76 unsigned long flags;
77 unsigned long usec, sec;
79 read_lock_irqsave(&xtime_lock, flags);
80 usec = do_gettimeoffset();
82 unsigned long lost = jiffies - wall_jiffies;
83 if (lost)
84 usec += lost * (1000000 / HZ);
86 sec = xtime.tv_sec;
87 usec += (xtime.tv_nsec / 1000);
88 read_unlock_irqrestore(&xtime_lock, flags);
90 while (usec >= 1000000) {
91 usec -= 1000000;
92 sec++;
95 tv->tv_sec = sec;
96 tv->tv_usec = usec;
99 void do_settimeofday(struct timeval *tv)
101 write_lock_irq(&xtime_lock);
103 * This is revolting. We need to set "xtime" correctly. However, the
104 * value in this location is the value at the most recent update of
105 * wall time. Discover what correction gettimeofday() would have
106 * made, and then undo it!
108 tv->tv_usec -= do_gettimeoffset();
109 tv->tv_usec -= (jiffies - wall_jiffies) * (1000000 / HZ);
111 while (tv->tv_usec < 0) {
112 tv->tv_usec += 1000000;
113 tv->tv_sec--;
116 xtime.tv_sec = tv->tv_sec;
117 xtime.tv_nsec = (tv->tv_usec * 1000);
118 time_adjust = 0; /* stop active adjtime() */
119 time_status |= STA_UNSYNC;
120 time_maxerror = NTP_PHASE_LIMIT;
121 time_esterror = NTP_PHASE_LIMIT;
122 write_unlock_irq(&xtime_lock);
127 * Gettimeoffset routines. These routines returns the time duration
128 * since last timer interrupt in usecs.
130 * If the exact CPU counter frequency is known, use fixed_rate_gettimeoffset.
131 * Otherwise use calibrate_gettimeoffset()
133 * If the CPU does not have counter register all, you can either supply
134 * your own gettimeoffset() routine, or use null_gettimeoffset() routines,
135 * which gives the same resolution as HZ.
139 /* This is for machines which generate the exact clock. */
140 #define USECS_PER_JIFFY (1000000/HZ)
142 /* usecs per counter cycle, shifted to left by 32 bits */
143 static unsigned int sll32_usecs_per_cycle=0;
145 /* how many counter cycles in a jiffy */
146 static unsigned long cycles_per_jiffy=0;
148 /* Cycle counter value at the previous timer interrupt.. */
149 static unsigned int timerhi, timerlo;
151 /* last time when xtime and rtc are sync'ed up */
152 static long last_rtc_update;
154 /* the function pointer to one of the gettimeoffset funcs*/
155 unsigned long (*do_gettimeoffset)(void) = null_gettimeoffset;
157 unsigned long null_gettimeoffset(void)
159 return 0;
162 unsigned long fixed_rate_gettimeoffset(void)
164 u32 count;
165 unsigned long res;
167 /* Get last timer tick in absolute kernel time */
168 count = read_c0_count();
170 /* .. relative to previous jiffy (32 bits is enough) */
171 count -= timerlo;
173 __asm__("multu\t%1,%2\n\t"
174 "mfhi\t%0"
175 :"=r" (res)
176 :"r" (count),
177 "r" (sll32_usecs_per_cycle));
180 * Due to possible jiffies inconsistencies, we need to check
181 * the result so that we'll get a timer that is monotonic.
183 if (res >= USECS_PER_JIFFY)
184 res = USECS_PER_JIFFY-1;
186 return res;
190 * Cached "1/(clocks per usec)*2^32" value.
191 * It has to be recalculated once each jiffy.
193 static unsigned long cached_quotient;
195 /* Last jiffy when calibrate_divXX_gettimeoffset() was called. */
196 static unsigned long last_jiffies = 0;
200 * This is copied from dec/time.c:do_ioasic_gettimeoffset() by Mercij.
202 unsigned long calibrate_div32_gettimeoffset(void)
204 u32 count;
205 unsigned long res, tmp;
206 unsigned long quotient;
208 tmp = jiffies;
210 quotient = cached_quotient;
212 if (last_jiffies != tmp) {
213 last_jiffies = tmp;
214 if (last_jiffies != 0) {
215 unsigned long r0;
216 do_div64_32(r0, timerhi, timerlo, tmp);
217 do_div64_32(quotient, USECS_PER_JIFFY,
218 USECS_PER_JIFFY_FRAC, r0);
219 cached_quotient = quotient;
223 /* Get last timer tick in absolute kernel time */
224 count = read_c0_count();
226 /* .. relative to previous jiffy (32 bits is enough) */
227 count -= timerlo;
229 __asm__("multu %2,%3"
230 : "=l" (tmp), "=h" (res)
231 : "r" (count), "r" (quotient));
234 * Due to possible jiffies inconsistencies, we need to check
235 * the result so that we'll get a timer that is monotonic.
237 if (res >= USECS_PER_JIFFY)
238 res = USECS_PER_JIFFY - 1;
240 return res;
243 unsigned long calibrate_div64_gettimeoffset(void)
245 u32 count;
246 unsigned long res, tmp;
247 unsigned long quotient;
249 tmp = jiffies;
251 quotient = cached_quotient;
253 if (tmp && last_jiffies != tmp) {
254 last_jiffies = tmp;
255 __asm__(".set\tnoreorder\n\t"
256 ".set\tnoat\n\t"
257 ".set\tmips3\n\t"
258 "lwu\t%0,%2\n\t"
259 "dsll32\t$1,%1,0\n\t"
260 "or\t$1,$1,%0\n\t"
261 "ddivu\t$0,$1,%3\n\t"
262 "mflo\t$1\n\t"
263 "dsll32\t%0,%4,0\n\t"
264 "nop\n\t"
265 "ddivu\t$0,%0,$1\n\t"
266 "mflo\t%0\n\t"
267 ".set\tmips0\n\t"
268 ".set\tat\n\t"
269 ".set\treorder"
270 :"=&r" (quotient)
271 :"r" (timerhi),
272 "m" (timerlo),
273 "r" (tmp),
274 "r" (USECS_PER_JIFFY));
275 cached_quotient = quotient;
278 /* Get last timer tick in absolute kernel time */
279 count = read_c0_count();
281 /* .. relative to previous jiffy (32 bits is enough) */
282 count -= timerlo;
284 __asm__("multu\t%1,%2\n\t"
285 "mfhi\t%0"
286 :"=r" (res)
287 :"r" (count),
288 "r" (quotient));
291 * Due to possible jiffies inconsistencies, we need to check
292 * the result so that we'll get a timer that is monotonic.
294 if (res >= USECS_PER_JIFFY)
295 res = USECS_PER_JIFFY-1;
297 return res;
302 * local_timer_interrupt() does profiling and process accounting
303 * on a per-CPU basis.
305 * In UP mode, it is invoked from the (global) timer_interrupt.
307 * In SMP mode, it might invoked by per-CPU timer interrupt, or
308 * a broadcasted inter-processor interrupt which itself is triggered
309 * by the global timer interrupt.
311 void local_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
313 if (!user_mode(regs)) {
314 if (prof_buffer && current->pid) {
315 extern int _stext;
316 unsigned long pc = regs->cp0_epc;
318 pc -= (unsigned long) &_stext;
319 pc >>= prof_shift;
321 * Dont ignore out-of-bounds pc values silently,
322 * put them into the last histogram slot, so if
323 * present, they will show up as a sharp peak.
325 if (pc > prof_len-1)
326 pc = prof_len-1;
327 atomic_inc((atomic_t *)&prof_buffer[pc]);
331 #ifdef CONFIG_SMP
332 /* in UP mode, update_process_times() is invoked by do_timer() */
333 update_process_times(user_mode(regs));
334 #endif
338 * high-level timer interrupt service routines. This function
339 * is set as irqaction->handler and is invoked through do_IRQ.
341 void timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
343 if (current_cpu_data.options & MIPS_CPU_COUNTER) {
344 unsigned int count;
347 * The cycle counter is only 32 bit which is good for about
348 * a minute at current count rates of upto 150MHz or so.
350 count = read_c0_count();
351 timerhi += (count < timerlo); /* Wrap around */
352 timerlo = count;
355 * set up for next timer interrupt - no harm if the machine
356 * is using another timer interrupt source.
357 * Note that writing to COMPARE register clears the interrupt
359 write_c0_compare(
360 count + cycles_per_jiffy);
365 * call the generic timer interrupt handling
367 do_timer(regs);
370 * If we have an externally synchronized Linux clock, then update
371 * CMOS clock accordingly every ~11 minutes. rtc_set_time() has to be
372 * called as close as possible to 500 ms before the new second starts.
374 read_lock (&xtime_lock);
375 if ((time_status & STA_UNSYNC) == 0 &&
376 xtime.tv_sec > last_rtc_update + 660 &&
377 (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 &&
378 (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) {
379 if (rtc_set_time(xtime.tv_sec) == 0) {
380 last_rtc_update = xtime.tv_sec;
381 } else {
382 last_rtc_update = xtime.tv_sec - 600;
383 /* do it again in 60 s */
386 read_unlock (&xtime_lock);
389 * If jiffies has overflowed in this timer_interrupt we must
390 * update the timer[hi]/[lo] to make fast gettimeoffset funcs
391 * quotient calc still valid. -arca
393 if (!jiffies) {
394 timerhi = timerlo = 0;
397 #if !defined(CONFIG_SMP)
399 * In UP mode, we call local_timer_interrupt() to do profiling
400 * and process accouting.
402 * In SMP mode, local_timer_interrupt() is invoked by appropriate
403 * low-level local timer interrupt handler.
405 local_timer_interrupt(0, NULL, regs);
407 #else /* CONFIG_SMP */
409 if (emulate_local_timer_interrupt) {
411 * this is the place where we send out inter-process
412 * interrupts and let each CPU do its own profiling
413 * and process accouting.
415 * Obviously we need to call local_timer_interrupt() for
416 * the current CPU too.
418 panic("Not implemented yet!!!");
420 #endif /* CONFIG_SMP */
423 asmlinkage void ll_timer_interrupt(int irq, struct pt_regs *regs)
425 int cpu = smp_processor_id();
427 irq_enter();
428 kstat_cpu(cpu).irqs[irq]++;
430 /* we keep interrupt disabled all the time */
431 timer_interrupt(irq, NULL, regs);
433 irq_exit();
435 if (softirq_pending(cpu))
436 do_softirq();
439 asmlinkage void ll_local_timer_interrupt(int irq, struct pt_regs *regs)
441 int cpu = smp_processor_id();
443 irq_enter();
444 kstat_cpu(cpu).irqs[irq]++;
446 /* we keep interrupt disabled all the time */
447 local_timer_interrupt(irq, NULL, regs);
449 irq_exit();
451 if (softirq_pending(cpu))
452 do_softirq();
456 * time_init() - it does the following things.
458 * 1) board_time_init() -
459 * a) (optional) set up RTC routines,
460 * b) (optional) calibrate and set the mips_counter_frequency
461 * (only needed if you intended to use fixed_rate_gettimeoffset
462 * or use cpu counter as timer interrupt source)
463 * 2) setup xtime based on rtc_get_time().
464 * 3) choose a appropriate gettimeoffset routine.
465 * 4) calculate a couple of cached variables for later usage
466 * 5) board_timer_setup() -
467 * a) (optional) over-write any choices made above by time_init().
468 * b) machine specific code should setup the timer irqaction.
469 * c) enable the timer interrupt
472 void (*board_time_init)(void) = NULL;
473 void (*board_timer_setup)(struct irqaction *irq) = NULL;
475 unsigned int mips_counter_frequency = 0;
477 static struct irqaction timer_irqaction = {
478 timer_interrupt,
479 SA_INTERRUPT,
481 "timer",
482 NULL,
483 NULL
486 void __init time_init(void)
488 if (board_time_init)
489 board_time_init();
491 xtime.tv_sec = rtc_get_time();
492 xtime.tv_nsec = 0;
494 /* choose appropriate gettimeoffset routine */
495 if (!(current_cpu_data.options & MIPS_CPU_COUNTER)) {
496 /* no cpu counter - sorry */
497 do_gettimeoffset = null_gettimeoffset;
498 } else if (mips_counter_frequency != 0) {
499 /* we have cpu counter and know counter frequency! */
500 do_gettimeoffset = fixed_rate_gettimeoffset;
501 } else if ((current_cpu_data.isa_level == MIPS_CPU_ISA_M32) ||
502 (current_cpu_data.isa_level == MIPS_CPU_ISA_I) ||
503 (current_cpu_data.isa_level == MIPS_CPU_ISA_II) ) {
504 /* we need to calibrate the counter but we don't have
505 * 64-bit division. */
506 do_gettimeoffset = calibrate_div32_gettimeoffset;
507 } else {
508 /* we need to calibrate the counter but we *do* have
509 * 64-bit division. */
510 do_gettimeoffset = calibrate_div64_gettimeoffset;
513 /* caclulate cache parameters */
514 if (mips_counter_frequency) {
515 u32 count;
517 cycles_per_jiffy = mips_counter_frequency / HZ;
519 /* sll32_usecs_per_cycle = 10^6 * 2^32 / mips_counter_freq */
520 /* any better way to do this? */
521 sll32_usecs_per_cycle = mips_counter_frequency / 100000;
522 sll32_usecs_per_cycle = 0xffffffff / sll32_usecs_per_cycle;
523 sll32_usecs_per_cycle *= 10;
526 * For those using cpu counter as timer, this sets up the
527 * first interrupt
529 count = read_c0_count();
530 write_c0_compare(
531 count + cycles_per_jiffy);
535 * Call board specific timer interrupt setup.
537 * this pointer must be setup in machine setup routine.
539 * Even if the machine choose to use low-level timer interrupt,
540 * it still needs to setup the timer_irqaction.
541 * In that case, it might be better to set timer_irqaction.handler
542 * to be NULL function so that we are sure the high-level code
543 * is not invoked accidentally.
545 board_timer_setup(&timer_irqaction);
548 #define FEBRUARY 2
549 #define STARTOFTIME 1970
550 #define SECDAY 86400L
551 #define SECYR (SECDAY * 365)
552 #define leapyear(year) ((year) % 4 == 0)
553 #define days_in_year(a) (leapyear(a) ? 366 : 365)
554 #define days_in_month(a) (month_days[(a) - 1])
556 static int month_days[12] = {
557 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
560 void to_tm(unsigned long tim, struct rtc_time * tm)
562 long hms, day, gday;
563 int i;
565 gday = day = tim / SECDAY;
566 hms = tim % SECDAY;
568 /* Hours, minutes, seconds are easy */
569 tm->tm_hour = hms / 3600;
570 tm->tm_min = (hms % 3600) / 60;
571 tm->tm_sec = (hms % 3600) % 60;
573 /* Number of years in days */
574 for (i = STARTOFTIME; day >= days_in_year(i); i++)
575 day -= days_in_year(i);
576 tm->tm_year = i;
578 /* Number of months in days left */
579 if (leapyear(tm->tm_year))
580 days_in_month(FEBRUARY) = 29;
581 for (i = 1; day >= days_in_month(i); i++)
582 day -= days_in_month(i);
583 days_in_month(FEBRUARY) = 28;
584 tm->tm_mon = i-1; /* tm_mon starts from 0 to 11 */
586 /* Days are what is left over (+1) from all that. */
587 tm->tm_mday = day + 1;
590 * Determine the day of week
592 tm->tm_wday = (gday + 4) % 7; /* 1970/1/1 was Thursday */
595 EXPORT_SYMBOL(rtc_lock);