Merge branch 'upstream' of git://ftp.linux-mips.org/pub/scm/upstream-linus
[linux-2.6/linux-mips.git] / kernel / sched.c
bloba4ca632c477cefcab0a1115d0bda5fe3724d0000
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/nmi.h>
24 #include <linux/init.h>
25 #include <asm/uaccess.h>
26 #include <linux/highmem.h>
27 #include <linux/smp_lock.h>
28 #include <asm/mmu_context.h>
29 #include <linux/interrupt.h>
30 #include <linux/capability.h>
31 #include <linux/completion.h>
32 #include <linux/kernel_stat.h>
33 #include <linux/debug_locks.h>
34 #include <linux/security.h>
35 #include <linux/notifier.h>
36 #include <linux/profile.h>
37 #include <linux/freezer.h>
38 #include <linux/vmalloc.h>
39 #include <linux/blkdev.h>
40 #include <linux/delay.h>
41 #include <linux/smp.h>
42 #include <linux/threads.h>
43 #include <linux/timer.h>
44 #include <linux/rcupdate.h>
45 #include <linux/cpu.h>
46 #include <linux/cpuset.h>
47 #include <linux/percpu.h>
48 #include <linux/kthread.h>
49 #include <linux/seq_file.h>
50 #include <linux/syscalls.h>
51 #include <linux/times.h>
52 #include <linux/tsacct_kern.h>
53 #include <linux/kprobes.h>
54 #include <linux/delayacct.h>
55 #include <asm/tlb.h>
57 #include <asm/unistd.h>
60 * Scheduler clock - returns current time in nanosec units.
61 * This is default implementation.
62 * Architectures and sub-architectures can override this.
64 unsigned long long __attribute__((weak)) sched_clock(void)
66 return (unsigned long long)jiffies * (1000000000 / HZ);
70 * Convert user-nice values [ -20 ... 0 ... 19 ]
71 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
72 * and back.
74 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
75 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
76 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
79 * 'User priority' is the nice value converted to something we
80 * can work with better when scaling various scheduler parameters,
81 * it's a [ 0 ... 39 ] range.
83 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
84 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
85 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
88 * Some helpers for converting nanosecond timing to jiffy resolution
90 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
91 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
94 * These are the 'tuning knobs' of the scheduler:
96 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
97 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
98 * Timeslices get refilled after they expire.
100 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
101 #define DEF_TIMESLICE (100 * HZ / 1000)
102 #define ON_RUNQUEUE_WEIGHT 30
103 #define CHILD_PENALTY 95
104 #define PARENT_PENALTY 100
105 #define EXIT_WEIGHT 3
106 #define PRIO_BONUS_RATIO 25
107 #define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
108 #define INTERACTIVE_DELTA 2
109 #define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
110 #define STARVATION_LIMIT (MAX_SLEEP_AVG)
111 #define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
114 * If a task is 'interactive' then we reinsert it in the active
115 * array after it has expired its current timeslice. (it will not
116 * continue to run immediately, it will still roundrobin with
117 * other interactive tasks.)
119 * This part scales the interactivity limit depending on niceness.
121 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
122 * Here are a few examples of different nice levels:
124 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
125 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
126 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
127 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
128 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
130 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
131 * priority range a task can explore, a value of '1' means the
132 * task is rated interactive.)
134 * Ie. nice +19 tasks can never get 'interactive' enough to be
135 * reinserted into the active array. And only heavily CPU-hog nice -20
136 * tasks will be expired. Default nice 0 tasks are somewhere between,
137 * it takes some effort for them to get interactive, but it's not
138 * too hard.
141 #define CURRENT_BONUS(p) \
142 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
143 MAX_SLEEP_AVG)
145 #define GRANULARITY (10 * HZ / 1000 ? : 1)
147 #ifdef CONFIG_SMP
148 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
149 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
150 num_online_cpus())
151 #else
152 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
153 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
154 #endif
156 #define SCALE(v1,v1_max,v2_max) \
157 (v1) * (v2_max) / (v1_max)
159 #define DELTA(p) \
160 (SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
161 INTERACTIVE_DELTA)
163 #define TASK_INTERACTIVE(p) \
164 ((p)->prio <= (p)->static_prio - DELTA(p))
166 #define INTERACTIVE_SLEEP(p) \
167 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
168 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
170 #define TASK_PREEMPTS_CURR(p, rq) \
171 ((p)->prio < (rq)->curr->prio)
173 #define SCALE_PRIO(x, prio) \
174 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
176 static unsigned int static_prio_timeslice(int static_prio)
178 if (static_prio < NICE_TO_PRIO(0))
179 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
180 else
181 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
185 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
186 * to time slice values: [800ms ... 100ms ... 5ms]
188 * The higher a thread's priority, the bigger timeslices
189 * it gets during one round of execution. But even the lowest
190 * priority thread gets MIN_TIMESLICE worth of execution time.
193 static inline unsigned int task_timeslice(struct task_struct *p)
195 return static_prio_timeslice(p->static_prio);
199 * These are the runqueue data structures:
202 struct prio_array {
203 unsigned int nr_active;
204 DECLARE_BITMAP(bitmap, MAX_PRIO+1); /* include 1 bit for delimiter */
205 struct list_head queue[MAX_PRIO];
209 * This is the main, per-CPU runqueue data structure.
211 * Locking rule: those places that want to lock multiple runqueues
212 * (such as the load balancing or the thread migration code), lock
213 * acquire operations must be ordered by ascending &runqueue.
215 struct rq {
216 spinlock_t lock;
219 * nr_running and cpu_load should be in the same cacheline because
220 * remote CPUs use both these fields when doing load calculation.
222 unsigned long nr_running;
223 unsigned long raw_weighted_load;
224 #ifdef CONFIG_SMP
225 unsigned long cpu_load[3];
226 #endif
227 unsigned long long nr_switches;
230 * This is part of a global counter where only the total sum
231 * over all CPUs matters. A task can increase this counter on
232 * one CPU and if it got migrated afterwards it may decrease
233 * it on another CPU. Always updated under the runqueue lock:
235 unsigned long nr_uninterruptible;
237 unsigned long expired_timestamp;
238 /* Cached timestamp set by update_cpu_clock() */
239 unsigned long long most_recent_timestamp;
240 struct task_struct *curr, *idle;
241 unsigned long next_balance;
242 struct mm_struct *prev_mm;
243 struct prio_array *active, *expired, arrays[2];
244 int best_expired_prio;
245 atomic_t nr_iowait;
247 #ifdef CONFIG_SMP
248 struct sched_domain *sd;
250 /* For active balancing */
251 int active_balance;
252 int push_cpu;
253 int cpu; /* cpu of this runqueue */
255 struct task_struct *migration_thread;
256 struct list_head migration_queue;
257 #endif
259 #ifdef CONFIG_SCHEDSTATS
260 /* latency stats */
261 struct sched_info rq_sched_info;
263 /* sys_sched_yield() stats */
264 unsigned long yld_exp_empty;
265 unsigned long yld_act_empty;
266 unsigned long yld_both_empty;
267 unsigned long yld_cnt;
269 /* schedule() stats */
270 unsigned long sched_switch;
271 unsigned long sched_cnt;
272 unsigned long sched_goidle;
274 /* try_to_wake_up() stats */
275 unsigned long ttwu_cnt;
276 unsigned long ttwu_local;
277 #endif
278 struct lock_class_key rq_lock_key;
281 static DEFINE_PER_CPU(struct rq, runqueues);
283 static inline int cpu_of(struct rq *rq)
285 #ifdef CONFIG_SMP
286 return rq->cpu;
287 #else
288 return 0;
289 #endif
293 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
294 * See detach_destroy_domains: synchronize_sched for details.
296 * The domain tree of any CPU may only be accessed from within
297 * preempt-disabled sections.
299 #define for_each_domain(cpu, __sd) \
300 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
302 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
303 #define this_rq() (&__get_cpu_var(runqueues))
304 #define task_rq(p) cpu_rq(task_cpu(p))
305 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
307 #ifndef prepare_arch_switch
308 # define prepare_arch_switch(next) do { } while (0)
309 #endif
310 #ifndef finish_arch_switch
311 # define finish_arch_switch(prev) do { } while (0)
312 #endif
314 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
315 static inline int task_running(struct rq *rq, struct task_struct *p)
317 return rq->curr == p;
320 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
324 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
326 #ifdef CONFIG_DEBUG_SPINLOCK
327 /* this is a valid case when another task releases the spinlock */
328 rq->lock.owner = current;
329 #endif
331 * If we are tracking spinlock dependencies then we have to
332 * fix up the runqueue lock - which gets 'carried over' from
333 * prev into current:
335 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
337 spin_unlock_irq(&rq->lock);
340 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
341 static inline int task_running(struct rq *rq, struct task_struct *p)
343 #ifdef CONFIG_SMP
344 return p->oncpu;
345 #else
346 return rq->curr == p;
347 #endif
350 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
352 #ifdef CONFIG_SMP
354 * We can optimise this out completely for !SMP, because the
355 * SMP rebalancing from interrupt is the only thing that cares
356 * here.
358 next->oncpu = 1;
359 #endif
360 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
361 spin_unlock_irq(&rq->lock);
362 #else
363 spin_unlock(&rq->lock);
364 #endif
367 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
369 #ifdef CONFIG_SMP
371 * After ->oncpu is cleared, the task can be moved to a different CPU.
372 * We must ensure this doesn't happen until the switch is completely
373 * finished.
375 smp_wmb();
376 prev->oncpu = 0;
377 #endif
378 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
379 local_irq_enable();
380 #endif
382 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
385 * __task_rq_lock - lock the runqueue a given task resides on.
386 * Must be called interrupts disabled.
388 static inline struct rq *__task_rq_lock(struct task_struct *p)
389 __acquires(rq->lock)
391 struct rq *rq;
393 repeat_lock_task:
394 rq = task_rq(p);
395 spin_lock(&rq->lock);
396 if (unlikely(rq != task_rq(p))) {
397 spin_unlock(&rq->lock);
398 goto repeat_lock_task;
400 return rq;
404 * task_rq_lock - lock the runqueue a given task resides on and disable
405 * interrupts. Note the ordering: we can safely lookup the task_rq without
406 * explicitly disabling preemption.
408 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
409 __acquires(rq->lock)
411 struct rq *rq;
413 repeat_lock_task:
414 local_irq_save(*flags);
415 rq = task_rq(p);
416 spin_lock(&rq->lock);
417 if (unlikely(rq != task_rq(p))) {
418 spin_unlock_irqrestore(&rq->lock, *flags);
419 goto repeat_lock_task;
421 return rq;
424 static inline void __task_rq_unlock(struct rq *rq)
425 __releases(rq->lock)
427 spin_unlock(&rq->lock);
430 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
431 __releases(rq->lock)
433 spin_unlock_irqrestore(&rq->lock, *flags);
436 #ifdef CONFIG_SCHEDSTATS
438 * bump this up when changing the output format or the meaning of an existing
439 * format, so that tools can adapt (or abort)
441 #define SCHEDSTAT_VERSION 14
443 static int show_schedstat(struct seq_file *seq, void *v)
445 int cpu;
447 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
448 seq_printf(seq, "timestamp %lu\n", jiffies);
449 for_each_online_cpu(cpu) {
450 struct rq *rq = cpu_rq(cpu);
451 #ifdef CONFIG_SMP
452 struct sched_domain *sd;
453 int dcnt = 0;
454 #endif
456 /* runqueue-specific stats */
457 seq_printf(seq,
458 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
459 cpu, rq->yld_both_empty,
460 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
461 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
462 rq->ttwu_cnt, rq->ttwu_local,
463 rq->rq_sched_info.cpu_time,
464 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
466 seq_printf(seq, "\n");
468 #ifdef CONFIG_SMP
469 /* domain-specific stats */
470 preempt_disable();
471 for_each_domain(cpu, sd) {
472 enum idle_type itype;
473 char mask_str[NR_CPUS];
475 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
476 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
477 for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
478 itype++) {
479 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu "
480 "%lu",
481 sd->lb_cnt[itype],
482 sd->lb_balanced[itype],
483 sd->lb_failed[itype],
484 sd->lb_imbalance[itype],
485 sd->lb_gained[itype],
486 sd->lb_hot_gained[itype],
487 sd->lb_nobusyq[itype],
488 sd->lb_nobusyg[itype]);
490 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu"
491 " %lu %lu %lu\n",
492 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
493 sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
494 sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
495 sd->ttwu_wake_remote, sd->ttwu_move_affine,
496 sd->ttwu_move_balance);
498 preempt_enable();
499 #endif
501 return 0;
504 static int schedstat_open(struct inode *inode, struct file *file)
506 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
507 char *buf = kmalloc(size, GFP_KERNEL);
508 struct seq_file *m;
509 int res;
511 if (!buf)
512 return -ENOMEM;
513 res = single_open(file, show_schedstat, NULL);
514 if (!res) {
515 m = file->private_data;
516 m->buf = buf;
517 m->size = size;
518 } else
519 kfree(buf);
520 return res;
523 const struct file_operations proc_schedstat_operations = {
524 .open = schedstat_open,
525 .read = seq_read,
526 .llseek = seq_lseek,
527 .release = single_release,
531 * Expects runqueue lock to be held for atomicity of update
533 static inline void
534 rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies)
536 if (rq) {
537 rq->rq_sched_info.run_delay += delta_jiffies;
538 rq->rq_sched_info.pcnt++;
543 * Expects runqueue lock to be held for atomicity of update
545 static inline void
546 rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies)
548 if (rq)
549 rq->rq_sched_info.cpu_time += delta_jiffies;
551 # define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
552 # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
553 #else /* !CONFIG_SCHEDSTATS */
554 static inline void
555 rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies)
557 static inline void
558 rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies)
560 # define schedstat_inc(rq, field) do { } while (0)
561 # define schedstat_add(rq, field, amt) do { } while (0)
562 #endif
565 * this_rq_lock - lock this runqueue and disable interrupts.
567 static inline struct rq *this_rq_lock(void)
568 __acquires(rq->lock)
570 struct rq *rq;
572 local_irq_disable();
573 rq = this_rq();
574 spin_lock(&rq->lock);
576 return rq;
579 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
581 * Called when a process is dequeued from the active array and given
582 * the cpu. We should note that with the exception of interactive
583 * tasks, the expired queue will become the active queue after the active
584 * queue is empty, without explicitly dequeuing and requeuing tasks in the
585 * expired queue. (Interactive tasks may be requeued directly to the
586 * active queue, thus delaying tasks in the expired queue from running;
587 * see scheduler_tick()).
589 * This function is only called from sched_info_arrive(), rather than
590 * dequeue_task(). Even though a task may be queued and dequeued multiple
591 * times as it is shuffled about, we're really interested in knowing how
592 * long it was from the *first* time it was queued to the time that it
593 * finally hit a cpu.
595 static inline void sched_info_dequeued(struct task_struct *t)
597 t->sched_info.last_queued = 0;
601 * Called when a task finally hits the cpu. We can now calculate how
602 * long it was waiting to run. We also note when it began so that we
603 * can keep stats on how long its timeslice is.
605 static void sched_info_arrive(struct task_struct *t)
607 unsigned long now = jiffies, delta_jiffies = 0;
609 if (t->sched_info.last_queued)
610 delta_jiffies = now - t->sched_info.last_queued;
611 sched_info_dequeued(t);
612 t->sched_info.run_delay += delta_jiffies;
613 t->sched_info.last_arrival = now;
614 t->sched_info.pcnt++;
616 rq_sched_info_arrive(task_rq(t), delta_jiffies);
620 * Called when a process is queued into either the active or expired
621 * array. The time is noted and later used to determine how long we
622 * had to wait for us to reach the cpu. Since the expired queue will
623 * become the active queue after active queue is empty, without dequeuing
624 * and requeuing any tasks, we are interested in queuing to either. It
625 * is unusual but not impossible for tasks to be dequeued and immediately
626 * requeued in the same or another array: this can happen in sched_yield(),
627 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
628 * to runqueue.
630 * This function is only called from enqueue_task(), but also only updates
631 * the timestamp if it is already not set. It's assumed that
632 * sched_info_dequeued() will clear that stamp when appropriate.
634 static inline void sched_info_queued(struct task_struct *t)
636 if (unlikely(sched_info_on()))
637 if (!t->sched_info.last_queued)
638 t->sched_info.last_queued = jiffies;
642 * Called when a process ceases being the active-running process, either
643 * voluntarily or involuntarily. Now we can calculate how long we ran.
645 static inline void sched_info_depart(struct task_struct *t)
647 unsigned long delta_jiffies = jiffies - t->sched_info.last_arrival;
649 t->sched_info.cpu_time += delta_jiffies;
650 rq_sched_info_depart(task_rq(t), delta_jiffies);
654 * Called when tasks are switched involuntarily due, typically, to expiring
655 * their time slice. (This may also be called when switching to or from
656 * the idle task.) We are only called when prev != next.
658 static inline void
659 __sched_info_switch(struct task_struct *prev, struct task_struct *next)
661 struct rq *rq = task_rq(prev);
664 * prev now departs the cpu. It's not interesting to record
665 * stats about how efficient we were at scheduling the idle
666 * process, however.
668 if (prev != rq->idle)
669 sched_info_depart(prev);
671 if (next != rq->idle)
672 sched_info_arrive(next);
674 static inline void
675 sched_info_switch(struct task_struct *prev, struct task_struct *next)
677 if (unlikely(sched_info_on()))
678 __sched_info_switch(prev, next);
680 #else
681 #define sched_info_queued(t) do { } while (0)
682 #define sched_info_switch(t, next) do { } while (0)
683 #endif /* CONFIG_SCHEDSTATS || CONFIG_TASK_DELAY_ACCT */
686 * Adding/removing a task to/from a priority array:
688 static void dequeue_task(struct task_struct *p, struct prio_array *array)
690 array->nr_active--;
691 list_del(&p->run_list);
692 if (list_empty(array->queue + p->prio))
693 __clear_bit(p->prio, array->bitmap);
696 static void enqueue_task(struct task_struct *p, struct prio_array *array)
698 sched_info_queued(p);
699 list_add_tail(&p->run_list, array->queue + p->prio);
700 __set_bit(p->prio, array->bitmap);
701 array->nr_active++;
702 p->array = array;
706 * Put task to the end of the run list without the overhead of dequeue
707 * followed by enqueue.
709 static void requeue_task(struct task_struct *p, struct prio_array *array)
711 list_move_tail(&p->run_list, array->queue + p->prio);
714 static inline void
715 enqueue_task_head(struct task_struct *p, struct prio_array *array)
717 list_add(&p->run_list, array->queue + p->prio);
718 __set_bit(p->prio, array->bitmap);
719 array->nr_active++;
720 p->array = array;
724 * __normal_prio - return the priority that is based on the static
725 * priority but is modified by bonuses/penalties.
727 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
728 * into the -5 ... 0 ... +5 bonus/penalty range.
730 * We use 25% of the full 0...39 priority range so that:
732 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
733 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
735 * Both properties are important to certain workloads.
738 static inline int __normal_prio(struct task_struct *p)
740 int bonus, prio;
742 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
744 prio = p->static_prio - bonus;
745 if (prio < MAX_RT_PRIO)
746 prio = MAX_RT_PRIO;
747 if (prio > MAX_PRIO-1)
748 prio = MAX_PRIO-1;
749 return prio;
753 * To aid in avoiding the subversion of "niceness" due to uneven distribution
754 * of tasks with abnormal "nice" values across CPUs the contribution that
755 * each task makes to its run queue's load is weighted according to its
756 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
757 * scaled version of the new time slice allocation that they receive on time
758 * slice expiry etc.
762 * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
763 * If static_prio_timeslice() is ever changed to break this assumption then
764 * this code will need modification
766 #define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
767 #define LOAD_WEIGHT(lp) \
768 (((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
769 #define PRIO_TO_LOAD_WEIGHT(prio) \
770 LOAD_WEIGHT(static_prio_timeslice(prio))
771 #define RTPRIO_TO_LOAD_WEIGHT(rp) \
772 (PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + LOAD_WEIGHT(rp))
774 static void set_load_weight(struct task_struct *p)
776 if (has_rt_policy(p)) {
777 #ifdef CONFIG_SMP
778 if (p == task_rq(p)->migration_thread)
780 * The migration thread does the actual balancing.
781 * Giving its load any weight will skew balancing
782 * adversely.
784 p->load_weight = 0;
785 else
786 #endif
787 p->load_weight = RTPRIO_TO_LOAD_WEIGHT(p->rt_priority);
788 } else
789 p->load_weight = PRIO_TO_LOAD_WEIGHT(p->static_prio);
792 static inline void
793 inc_raw_weighted_load(struct rq *rq, const struct task_struct *p)
795 rq->raw_weighted_load += p->load_weight;
798 static inline void
799 dec_raw_weighted_load(struct rq *rq, const struct task_struct *p)
801 rq->raw_weighted_load -= p->load_weight;
804 static inline void inc_nr_running(struct task_struct *p, struct rq *rq)
806 rq->nr_running++;
807 inc_raw_weighted_load(rq, p);
810 static inline void dec_nr_running(struct task_struct *p, struct rq *rq)
812 rq->nr_running--;
813 dec_raw_weighted_load(rq, p);
817 * Calculate the expected normal priority: i.e. priority
818 * without taking RT-inheritance into account. Might be
819 * boosted by interactivity modifiers. Changes upon fork,
820 * setprio syscalls, and whenever the interactivity
821 * estimator recalculates.
823 static inline int normal_prio(struct task_struct *p)
825 int prio;
827 if (has_rt_policy(p))
828 prio = MAX_RT_PRIO-1 - p->rt_priority;
829 else
830 prio = __normal_prio(p);
831 return prio;
835 * Calculate the current priority, i.e. the priority
836 * taken into account by the scheduler. This value might
837 * be boosted by RT tasks, or might be boosted by
838 * interactivity modifiers. Will be RT if the task got
839 * RT-boosted. If not then it returns p->normal_prio.
841 static int effective_prio(struct task_struct *p)
843 p->normal_prio = normal_prio(p);
845 * If we are RT tasks or we were boosted to RT priority,
846 * keep the priority unchanged. Otherwise, update priority
847 * to the normal priority:
849 if (!rt_prio(p->prio))
850 return p->normal_prio;
851 return p->prio;
855 * __activate_task - move a task to the runqueue.
857 static void __activate_task(struct task_struct *p, struct rq *rq)
859 struct prio_array *target = rq->active;
861 if (batch_task(p))
862 target = rq->expired;
863 enqueue_task(p, target);
864 inc_nr_running(p, rq);
868 * __activate_idle_task - move idle task to the _front_ of runqueue.
870 static inline void __activate_idle_task(struct task_struct *p, struct rq *rq)
872 enqueue_task_head(p, rq->active);
873 inc_nr_running(p, rq);
877 * Recalculate p->normal_prio and p->prio after having slept,
878 * updating the sleep-average too:
880 static int recalc_task_prio(struct task_struct *p, unsigned long long now)
882 /* Caller must always ensure 'now >= p->timestamp' */
883 unsigned long sleep_time = now - p->timestamp;
885 if (batch_task(p))
886 sleep_time = 0;
888 if (likely(sleep_time > 0)) {
890 * This ceiling is set to the lowest priority that would allow
891 * a task to be reinserted into the active array on timeslice
892 * completion.
894 unsigned long ceiling = INTERACTIVE_SLEEP(p);
896 if (p->mm && sleep_time > ceiling && p->sleep_avg < ceiling) {
898 * Prevents user tasks from achieving best priority
899 * with one single large enough sleep.
901 p->sleep_avg = ceiling;
903 * Using INTERACTIVE_SLEEP() as a ceiling places a
904 * nice(0) task 1ms sleep away from promotion, and
905 * gives it 700ms to round-robin with no chance of
906 * being demoted. This is more than generous, so
907 * mark this sleep as non-interactive to prevent the
908 * on-runqueue bonus logic from intervening should
909 * this task not receive cpu immediately.
911 p->sleep_type = SLEEP_NONINTERACTIVE;
912 } else {
914 * Tasks waking from uninterruptible sleep are
915 * limited in their sleep_avg rise as they
916 * are likely to be waiting on I/O
918 if (p->sleep_type == SLEEP_NONINTERACTIVE && p->mm) {
919 if (p->sleep_avg >= ceiling)
920 sleep_time = 0;
921 else if (p->sleep_avg + sleep_time >=
922 ceiling) {
923 p->sleep_avg = ceiling;
924 sleep_time = 0;
929 * This code gives a bonus to interactive tasks.
931 * The boost works by updating the 'average sleep time'
932 * value here, based on ->timestamp. The more time a
933 * task spends sleeping, the higher the average gets -
934 * and the higher the priority boost gets as well.
936 p->sleep_avg += sleep_time;
939 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
940 p->sleep_avg = NS_MAX_SLEEP_AVG;
943 return effective_prio(p);
947 * activate_task - move a task to the runqueue and do priority recalculation
949 * Update all the scheduling statistics stuff. (sleep average
950 * calculation, priority modifiers, etc.)
952 static void activate_task(struct task_struct *p, struct rq *rq, int local)
954 unsigned long long now;
956 if (rt_task(p))
957 goto out;
959 now = sched_clock();
960 #ifdef CONFIG_SMP
961 if (!local) {
962 /* Compensate for drifting sched_clock */
963 struct rq *this_rq = this_rq();
964 now = (now - this_rq->most_recent_timestamp)
965 + rq->most_recent_timestamp;
967 #endif
970 * Sleep time is in units of nanosecs, so shift by 20 to get a
971 * milliseconds-range estimation of the amount of time that the task
972 * spent sleeping:
974 if (unlikely(prof_on == SLEEP_PROFILING)) {
975 if (p->state == TASK_UNINTERRUPTIBLE)
976 profile_hits(SLEEP_PROFILING, (void *)get_wchan(p),
977 (now - p->timestamp) >> 20);
980 p->prio = recalc_task_prio(p, now);
983 * This checks to make sure it's not an uninterruptible task
984 * that is now waking up.
986 if (p->sleep_type == SLEEP_NORMAL) {
988 * Tasks which were woken up by interrupts (ie. hw events)
989 * are most likely of interactive nature. So we give them
990 * the credit of extending their sleep time to the period
991 * of time they spend on the runqueue, waiting for execution
992 * on a CPU, first time around:
994 if (in_interrupt())
995 p->sleep_type = SLEEP_INTERRUPTED;
996 else {
998 * Normal first-time wakeups get a credit too for
999 * on-runqueue time, but it will be weighted down:
1001 p->sleep_type = SLEEP_INTERACTIVE;
1004 p->timestamp = now;
1005 out:
1006 __activate_task(p, rq);
1010 * deactivate_task - remove a task from the runqueue.
1012 static void deactivate_task(struct task_struct *p, struct rq *rq)
1014 dec_nr_running(p, rq);
1015 dequeue_task(p, p->array);
1016 p->array = NULL;
1020 * resched_task - mark a task 'to be rescheduled now'.
1022 * On UP this means the setting of the need_resched flag, on SMP it
1023 * might also involve a cross-CPU call to trigger the scheduler on
1024 * the target CPU.
1026 #ifdef CONFIG_SMP
1028 #ifndef tsk_is_polling
1029 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1030 #endif
1032 static void resched_task(struct task_struct *p)
1034 int cpu;
1036 assert_spin_locked(&task_rq(p)->lock);
1038 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
1039 return;
1041 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
1043 cpu = task_cpu(p);
1044 if (cpu == smp_processor_id())
1045 return;
1047 /* NEED_RESCHED must be visible before we test polling */
1048 smp_mb();
1049 if (!tsk_is_polling(p))
1050 smp_send_reschedule(cpu);
1052 #else
1053 static inline void resched_task(struct task_struct *p)
1055 assert_spin_locked(&task_rq(p)->lock);
1056 set_tsk_need_resched(p);
1058 #endif
1061 * task_curr - is this task currently executing on a CPU?
1062 * @p: the task in question.
1064 inline int task_curr(const struct task_struct *p)
1066 return cpu_curr(task_cpu(p)) == p;
1069 /* Used instead of source_load when we know the type == 0 */
1070 unsigned long weighted_cpuload(const int cpu)
1072 return cpu_rq(cpu)->raw_weighted_load;
1075 #ifdef CONFIG_SMP
1076 struct migration_req {
1077 struct list_head list;
1079 struct task_struct *task;
1080 int dest_cpu;
1082 struct completion done;
1086 * The task's runqueue lock must be held.
1087 * Returns true if you have to wait for migration thread.
1089 static int
1090 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1092 struct rq *rq = task_rq(p);
1095 * If the task is not on a runqueue (and not running), then
1096 * it is sufficient to simply update the task's cpu field.
1098 if (!p->array && !task_running(rq, p)) {
1099 set_task_cpu(p, dest_cpu);
1100 return 0;
1103 init_completion(&req->done);
1104 req->task = p;
1105 req->dest_cpu = dest_cpu;
1106 list_add(&req->list, &rq->migration_queue);
1108 return 1;
1112 * wait_task_inactive - wait for a thread to unschedule.
1114 * The caller must ensure that the task *will* unschedule sometime soon,
1115 * else this function might spin for a *long* time. This function can't
1116 * be called with interrupts off, or it may introduce deadlock with
1117 * smp_call_function() if an IPI is sent by the same process we are
1118 * waiting to become inactive.
1120 void wait_task_inactive(struct task_struct *p)
1122 unsigned long flags;
1123 struct rq *rq;
1124 int preempted;
1126 repeat:
1127 rq = task_rq_lock(p, &flags);
1128 /* Must be off runqueue entirely, not preempted. */
1129 if (unlikely(p->array || task_running(rq, p))) {
1130 /* If it's preempted, we yield. It could be a while. */
1131 preempted = !task_running(rq, p);
1132 task_rq_unlock(rq, &flags);
1133 cpu_relax();
1134 if (preempted)
1135 yield();
1136 goto repeat;
1138 task_rq_unlock(rq, &flags);
1141 /***
1142 * kick_process - kick a running thread to enter/exit the kernel
1143 * @p: the to-be-kicked thread
1145 * Cause a process which is running on another CPU to enter
1146 * kernel-mode, without any delay. (to get signals handled.)
1148 * NOTE: this function doesnt have to take the runqueue lock,
1149 * because all it wants to ensure is that the remote task enters
1150 * the kernel. If the IPI races and the task has been migrated
1151 * to another CPU then no harm is done and the purpose has been
1152 * achieved as well.
1154 void kick_process(struct task_struct *p)
1156 int cpu;
1158 preempt_disable();
1159 cpu = task_cpu(p);
1160 if ((cpu != smp_processor_id()) && task_curr(p))
1161 smp_send_reschedule(cpu);
1162 preempt_enable();
1166 * Return a low guess at the load of a migration-source cpu weighted
1167 * according to the scheduling class and "nice" value.
1169 * We want to under-estimate the load of migration sources, to
1170 * balance conservatively.
1172 static inline unsigned long source_load(int cpu, int type)
1174 struct rq *rq = cpu_rq(cpu);
1176 if (type == 0)
1177 return rq->raw_weighted_load;
1179 return min(rq->cpu_load[type-1], rq->raw_weighted_load);
1183 * Return a high guess at the load of a migration-target cpu weighted
1184 * according to the scheduling class and "nice" value.
1186 static inline unsigned long target_load(int cpu, int type)
1188 struct rq *rq = cpu_rq(cpu);
1190 if (type == 0)
1191 return rq->raw_weighted_load;
1193 return max(rq->cpu_load[type-1], rq->raw_weighted_load);
1197 * Return the average load per task on the cpu's run queue
1199 static inline unsigned long cpu_avg_load_per_task(int cpu)
1201 struct rq *rq = cpu_rq(cpu);
1202 unsigned long n = rq->nr_running;
1204 return n ? rq->raw_weighted_load / n : SCHED_LOAD_SCALE;
1208 * find_idlest_group finds and returns the least busy CPU group within the
1209 * domain.
1211 static struct sched_group *
1212 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1214 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1215 unsigned long min_load = ULONG_MAX, this_load = 0;
1216 int load_idx = sd->forkexec_idx;
1217 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1219 do {
1220 unsigned long load, avg_load;
1221 int local_group;
1222 int i;
1224 /* Skip over this group if it has no CPUs allowed */
1225 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1226 goto nextgroup;
1228 local_group = cpu_isset(this_cpu, group->cpumask);
1230 /* Tally up the load of all CPUs in the group */
1231 avg_load = 0;
1233 for_each_cpu_mask(i, group->cpumask) {
1234 /* Bias balancing toward cpus of our domain */
1235 if (local_group)
1236 load = source_load(i, load_idx);
1237 else
1238 load = target_load(i, load_idx);
1240 avg_load += load;
1243 /* Adjust by relative CPU power of the group */
1244 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1246 if (local_group) {
1247 this_load = avg_load;
1248 this = group;
1249 } else if (avg_load < min_load) {
1250 min_load = avg_load;
1251 idlest = group;
1253 nextgroup:
1254 group = group->next;
1255 } while (group != sd->groups);
1257 if (!idlest || 100*this_load < imbalance*min_load)
1258 return NULL;
1259 return idlest;
1263 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1265 static int
1266 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1268 cpumask_t tmp;
1269 unsigned long load, min_load = ULONG_MAX;
1270 int idlest = -1;
1271 int i;
1273 /* Traverse only the allowed CPUs */
1274 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1276 for_each_cpu_mask(i, tmp) {
1277 load = weighted_cpuload(i);
1279 if (load < min_load || (load == min_load && i == this_cpu)) {
1280 min_load = load;
1281 idlest = i;
1285 return idlest;
1289 * sched_balance_self: balance the current task (running on cpu) in domains
1290 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1291 * SD_BALANCE_EXEC.
1293 * Balance, ie. select the least loaded group.
1295 * Returns the target CPU number, or the same CPU if no balancing is needed.
1297 * preempt must be disabled.
1299 static int sched_balance_self(int cpu, int flag)
1301 struct task_struct *t = current;
1302 struct sched_domain *tmp, *sd = NULL;
1304 for_each_domain(cpu, tmp) {
1306 * If power savings logic is enabled for a domain, stop there.
1308 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1309 break;
1310 if (tmp->flags & flag)
1311 sd = tmp;
1314 while (sd) {
1315 cpumask_t span;
1316 struct sched_group *group;
1317 int new_cpu, weight;
1319 if (!(sd->flags & flag)) {
1320 sd = sd->child;
1321 continue;
1324 span = sd->span;
1325 group = find_idlest_group(sd, t, cpu);
1326 if (!group) {
1327 sd = sd->child;
1328 continue;
1331 new_cpu = find_idlest_cpu(group, t, cpu);
1332 if (new_cpu == -1 || new_cpu == cpu) {
1333 /* Now try balancing at a lower domain level of cpu */
1334 sd = sd->child;
1335 continue;
1338 /* Now try balancing at a lower domain level of new_cpu */
1339 cpu = new_cpu;
1340 sd = NULL;
1341 weight = cpus_weight(span);
1342 for_each_domain(cpu, tmp) {
1343 if (weight <= cpus_weight(tmp->span))
1344 break;
1345 if (tmp->flags & flag)
1346 sd = tmp;
1348 /* while loop will break here if sd == NULL */
1351 return cpu;
1354 #endif /* CONFIG_SMP */
1357 * wake_idle() will wake a task on an idle cpu if task->cpu is
1358 * not idle and an idle cpu is available. The span of cpus to
1359 * search starts with cpus closest then further out as needed,
1360 * so we always favor a closer, idle cpu.
1362 * Returns the CPU we should wake onto.
1364 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1365 static int wake_idle(int cpu, struct task_struct *p)
1367 cpumask_t tmp;
1368 struct sched_domain *sd;
1369 int i;
1371 if (idle_cpu(cpu))
1372 return cpu;
1374 for_each_domain(cpu, sd) {
1375 if (sd->flags & SD_WAKE_IDLE) {
1376 cpus_and(tmp, sd->span, p->cpus_allowed);
1377 for_each_cpu_mask(i, tmp) {
1378 if (idle_cpu(i))
1379 return i;
1382 else
1383 break;
1385 return cpu;
1387 #else
1388 static inline int wake_idle(int cpu, struct task_struct *p)
1390 return cpu;
1392 #endif
1394 /***
1395 * try_to_wake_up - wake up a thread
1396 * @p: the to-be-woken-up thread
1397 * @state: the mask of task states that can be woken
1398 * @sync: do a synchronous wakeup?
1400 * Put it on the run-queue if it's not already there. The "current"
1401 * thread is always on the run-queue (except when the actual
1402 * re-schedule is in progress), and as such you're allowed to do
1403 * the simpler "current->state = TASK_RUNNING" to mark yourself
1404 * runnable without the overhead of this.
1406 * returns failure only if the task is already active.
1408 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1410 int cpu, this_cpu, success = 0;
1411 unsigned long flags;
1412 long old_state;
1413 struct rq *rq;
1414 #ifdef CONFIG_SMP
1415 struct sched_domain *sd, *this_sd = NULL;
1416 unsigned long load, this_load;
1417 int new_cpu;
1418 #endif
1420 rq = task_rq_lock(p, &flags);
1421 old_state = p->state;
1422 if (!(old_state & state))
1423 goto out;
1425 if (p->array)
1426 goto out_running;
1428 cpu = task_cpu(p);
1429 this_cpu = smp_processor_id();
1431 #ifdef CONFIG_SMP
1432 if (unlikely(task_running(rq, p)))
1433 goto out_activate;
1435 new_cpu = cpu;
1437 schedstat_inc(rq, ttwu_cnt);
1438 if (cpu == this_cpu) {
1439 schedstat_inc(rq, ttwu_local);
1440 goto out_set_cpu;
1443 for_each_domain(this_cpu, sd) {
1444 if (cpu_isset(cpu, sd->span)) {
1445 schedstat_inc(sd, ttwu_wake_remote);
1446 this_sd = sd;
1447 break;
1451 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1452 goto out_set_cpu;
1455 * Check for affine wakeup and passive balancing possibilities.
1457 if (this_sd) {
1458 int idx = this_sd->wake_idx;
1459 unsigned int imbalance;
1461 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1463 load = source_load(cpu, idx);
1464 this_load = target_load(this_cpu, idx);
1466 new_cpu = this_cpu; /* Wake to this CPU if we can */
1468 if (this_sd->flags & SD_WAKE_AFFINE) {
1469 unsigned long tl = this_load;
1470 unsigned long tl_per_task;
1472 tl_per_task = cpu_avg_load_per_task(this_cpu);
1475 * If sync wakeup then subtract the (maximum possible)
1476 * effect of the currently running task from the load
1477 * of the current CPU:
1479 if (sync)
1480 tl -= current->load_weight;
1482 if ((tl <= load &&
1483 tl + target_load(cpu, idx) <= tl_per_task) ||
1484 100*(tl + p->load_weight) <= imbalance*load) {
1486 * This domain has SD_WAKE_AFFINE and
1487 * p is cache cold in this domain, and
1488 * there is no bad imbalance.
1490 schedstat_inc(this_sd, ttwu_move_affine);
1491 goto out_set_cpu;
1496 * Start passive balancing when half the imbalance_pct
1497 * limit is reached.
1499 if (this_sd->flags & SD_WAKE_BALANCE) {
1500 if (imbalance*this_load <= 100*load) {
1501 schedstat_inc(this_sd, ttwu_move_balance);
1502 goto out_set_cpu;
1507 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1508 out_set_cpu:
1509 new_cpu = wake_idle(new_cpu, p);
1510 if (new_cpu != cpu) {
1511 set_task_cpu(p, new_cpu);
1512 task_rq_unlock(rq, &flags);
1513 /* might preempt at this point */
1514 rq = task_rq_lock(p, &flags);
1515 old_state = p->state;
1516 if (!(old_state & state))
1517 goto out;
1518 if (p->array)
1519 goto out_running;
1521 this_cpu = smp_processor_id();
1522 cpu = task_cpu(p);
1525 out_activate:
1526 #endif /* CONFIG_SMP */
1527 if (old_state == TASK_UNINTERRUPTIBLE) {
1528 rq->nr_uninterruptible--;
1530 * Tasks on involuntary sleep don't earn
1531 * sleep_avg beyond just interactive state.
1533 p->sleep_type = SLEEP_NONINTERACTIVE;
1534 } else
1537 * Tasks that have marked their sleep as noninteractive get
1538 * woken up with their sleep average not weighted in an
1539 * interactive way.
1541 if (old_state & TASK_NONINTERACTIVE)
1542 p->sleep_type = SLEEP_NONINTERACTIVE;
1545 activate_task(p, rq, cpu == this_cpu);
1547 * Sync wakeups (i.e. those types of wakeups where the waker
1548 * has indicated that it will leave the CPU in short order)
1549 * don't trigger a preemption, if the woken up task will run on
1550 * this cpu. (in this case the 'I will reschedule' promise of
1551 * the waker guarantees that the freshly woken up task is going
1552 * to be considered on this CPU.)
1554 if (!sync || cpu != this_cpu) {
1555 if (TASK_PREEMPTS_CURR(p, rq))
1556 resched_task(rq->curr);
1558 success = 1;
1560 out_running:
1561 p->state = TASK_RUNNING;
1562 out:
1563 task_rq_unlock(rq, &flags);
1565 return success;
1568 int fastcall wake_up_process(struct task_struct *p)
1570 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1571 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1573 EXPORT_SYMBOL(wake_up_process);
1575 int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1577 return try_to_wake_up(p, state, 0);
1580 static void task_running_tick(struct rq *rq, struct task_struct *p);
1582 * Perform scheduler related setup for a newly forked process p.
1583 * p is forked by current.
1585 void fastcall sched_fork(struct task_struct *p, int clone_flags)
1587 int cpu = get_cpu();
1589 #ifdef CONFIG_SMP
1590 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1591 #endif
1592 set_task_cpu(p, cpu);
1595 * We mark the process as running here, but have not actually
1596 * inserted it onto the runqueue yet. This guarantees that
1597 * nobody will actually run it, and a signal or other external
1598 * event cannot wake it up and insert it on the runqueue either.
1600 p->state = TASK_RUNNING;
1603 * Make sure we do not leak PI boosting priority to the child:
1605 p->prio = current->normal_prio;
1607 INIT_LIST_HEAD(&p->run_list);
1608 p->array = NULL;
1609 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1610 if (unlikely(sched_info_on()))
1611 memset(&p->sched_info, 0, sizeof(p->sched_info));
1612 #endif
1613 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1614 p->oncpu = 0;
1615 #endif
1616 #ifdef CONFIG_PREEMPT
1617 /* Want to start with kernel preemption disabled. */
1618 task_thread_info(p)->preempt_count = 1;
1619 #endif
1621 * Share the timeslice between parent and child, thus the
1622 * total amount of pending timeslices in the system doesn't change,
1623 * resulting in more scheduling fairness.
1625 local_irq_disable();
1626 p->time_slice = (current->time_slice + 1) >> 1;
1628 * The remainder of the first timeslice might be recovered by
1629 * the parent if the child exits early enough.
1631 p->first_time_slice = 1;
1632 current->time_slice >>= 1;
1633 p->timestamp = sched_clock();
1634 if (unlikely(!current->time_slice)) {
1636 * This case is rare, it happens when the parent has only
1637 * a single jiffy left from its timeslice. Taking the
1638 * runqueue lock is not a problem.
1640 current->time_slice = 1;
1641 task_running_tick(cpu_rq(cpu), current);
1643 local_irq_enable();
1644 put_cpu();
1648 * wake_up_new_task - wake up a newly created task for the first time.
1650 * This function will do some initial scheduler statistics housekeeping
1651 * that must be done for every newly created context, then puts the task
1652 * on the runqueue and wakes it.
1654 void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1656 struct rq *rq, *this_rq;
1657 unsigned long flags;
1658 int this_cpu, cpu;
1660 rq = task_rq_lock(p, &flags);
1661 BUG_ON(p->state != TASK_RUNNING);
1662 this_cpu = smp_processor_id();
1663 cpu = task_cpu(p);
1666 * We decrease the sleep average of forking parents
1667 * and children as well, to keep max-interactive tasks
1668 * from forking tasks that are max-interactive. The parent
1669 * (current) is done further down, under its lock.
1671 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1672 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1674 p->prio = effective_prio(p);
1676 if (likely(cpu == this_cpu)) {
1677 if (!(clone_flags & CLONE_VM)) {
1679 * The VM isn't cloned, so we're in a good position to
1680 * do child-runs-first in anticipation of an exec. This
1681 * usually avoids a lot of COW overhead.
1683 if (unlikely(!current->array))
1684 __activate_task(p, rq);
1685 else {
1686 p->prio = current->prio;
1687 p->normal_prio = current->normal_prio;
1688 list_add_tail(&p->run_list, &current->run_list);
1689 p->array = current->array;
1690 p->array->nr_active++;
1691 inc_nr_running(p, rq);
1693 set_need_resched();
1694 } else
1695 /* Run child last */
1696 __activate_task(p, rq);
1698 * We skip the following code due to cpu == this_cpu
1700 * task_rq_unlock(rq, &flags);
1701 * this_rq = task_rq_lock(current, &flags);
1703 this_rq = rq;
1704 } else {
1705 this_rq = cpu_rq(this_cpu);
1708 * Not the local CPU - must adjust timestamp. This should
1709 * get optimised away in the !CONFIG_SMP case.
1711 p->timestamp = (p->timestamp - this_rq->most_recent_timestamp)
1712 + rq->most_recent_timestamp;
1713 __activate_task(p, rq);
1714 if (TASK_PREEMPTS_CURR(p, rq))
1715 resched_task(rq->curr);
1718 * Parent and child are on different CPUs, now get the
1719 * parent runqueue to update the parent's ->sleep_avg:
1721 task_rq_unlock(rq, &flags);
1722 this_rq = task_rq_lock(current, &flags);
1724 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1725 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1726 task_rq_unlock(this_rq, &flags);
1730 * Potentially available exiting-child timeslices are
1731 * retrieved here - this way the parent does not get
1732 * penalized for creating too many threads.
1734 * (this cannot be used to 'generate' timeslices
1735 * artificially, because any timeslice recovered here
1736 * was given away by the parent in the first place.)
1738 void fastcall sched_exit(struct task_struct *p)
1740 unsigned long flags;
1741 struct rq *rq;
1744 * If the child was a (relative-) CPU hog then decrease
1745 * the sleep_avg of the parent as well.
1747 rq = task_rq_lock(p->parent, &flags);
1748 if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
1749 p->parent->time_slice += p->time_slice;
1750 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1751 p->parent->time_slice = task_timeslice(p);
1753 if (p->sleep_avg < p->parent->sleep_avg)
1754 p->parent->sleep_avg = p->parent->sleep_avg /
1755 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1756 (EXIT_WEIGHT + 1);
1757 task_rq_unlock(rq, &flags);
1761 * prepare_task_switch - prepare to switch tasks
1762 * @rq: the runqueue preparing to switch
1763 * @next: the task we are going to switch to.
1765 * This is called with the rq lock held and interrupts off. It must
1766 * be paired with a subsequent finish_task_switch after the context
1767 * switch.
1769 * prepare_task_switch sets up locking and calls architecture specific
1770 * hooks.
1772 static inline void prepare_task_switch(struct rq *rq, struct task_struct *next)
1774 prepare_lock_switch(rq, next);
1775 prepare_arch_switch(next);
1779 * finish_task_switch - clean up after a task-switch
1780 * @rq: runqueue associated with task-switch
1781 * @prev: the thread we just switched away from.
1783 * finish_task_switch must be called after the context switch, paired
1784 * with a prepare_task_switch call before the context switch.
1785 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1786 * and do any other architecture-specific cleanup actions.
1788 * Note that we may have delayed dropping an mm in context_switch(). If
1789 * so, we finish that here outside of the runqueue lock. (Doing it
1790 * with the lock held can cause deadlocks; see schedule() for
1791 * details.)
1793 static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
1794 __releases(rq->lock)
1796 struct mm_struct *mm = rq->prev_mm;
1797 long prev_state;
1799 rq->prev_mm = NULL;
1802 * A task struct has one reference for the use as "current".
1803 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1804 * schedule one last time. The schedule call will never return, and
1805 * the scheduled task must drop that reference.
1806 * The test for TASK_DEAD must occur while the runqueue locks are
1807 * still held, otherwise prev could be scheduled on another cpu, die
1808 * there before we look at prev->state, and then the reference would
1809 * be dropped twice.
1810 * Manfred Spraul <manfred@colorfullife.com>
1812 prev_state = prev->state;
1813 finish_arch_switch(prev);
1814 finish_lock_switch(rq, prev);
1815 if (mm)
1816 mmdrop(mm);
1817 if (unlikely(prev_state == TASK_DEAD)) {
1819 * Remove function-return probe instances associated with this
1820 * task and put them back on the free list.
1822 kprobe_flush_task(prev);
1823 put_task_struct(prev);
1828 * schedule_tail - first thing a freshly forked thread must call.
1829 * @prev: the thread we just switched away from.
1831 asmlinkage void schedule_tail(struct task_struct *prev)
1832 __releases(rq->lock)
1834 struct rq *rq = this_rq();
1836 finish_task_switch(rq, prev);
1837 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1838 /* In this case, finish_task_switch does not reenable preemption */
1839 preempt_enable();
1840 #endif
1841 if (current->set_child_tid)
1842 put_user(current->pid, current->set_child_tid);
1846 * context_switch - switch to the new MM and the new
1847 * thread's register state.
1849 static inline struct task_struct *
1850 context_switch(struct rq *rq, struct task_struct *prev,
1851 struct task_struct *next)
1853 struct mm_struct *mm = next->mm;
1854 struct mm_struct *oldmm = prev->active_mm;
1857 * For paravirt, this is coupled with an exit in switch_to to
1858 * combine the page table reload and the switch backend into
1859 * one hypercall.
1861 arch_enter_lazy_cpu_mode();
1863 if (!mm) {
1864 next->active_mm = oldmm;
1865 atomic_inc(&oldmm->mm_count);
1866 enter_lazy_tlb(oldmm, next);
1867 } else
1868 switch_mm(oldmm, mm, next);
1870 if (!prev->mm) {
1871 prev->active_mm = NULL;
1872 WARN_ON(rq->prev_mm);
1873 rq->prev_mm = oldmm;
1876 * Since the runqueue lock will be released by the next
1877 * task (which is an invalid locking op but in the case
1878 * of the scheduler it's an obvious special-case), so we
1879 * do an early lockdep release here:
1881 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1882 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1883 #endif
1885 /* Here we just switch the register state and the stack. */
1886 switch_to(prev, next, prev);
1888 return prev;
1892 * nr_running, nr_uninterruptible and nr_context_switches:
1894 * externally visible scheduler statistics: current number of runnable
1895 * threads, current number of uninterruptible-sleeping threads, total
1896 * number of context switches performed since bootup.
1898 unsigned long nr_running(void)
1900 unsigned long i, sum = 0;
1902 for_each_online_cpu(i)
1903 sum += cpu_rq(i)->nr_running;
1905 return sum;
1908 unsigned long nr_uninterruptible(void)
1910 unsigned long i, sum = 0;
1912 for_each_possible_cpu(i)
1913 sum += cpu_rq(i)->nr_uninterruptible;
1916 * Since we read the counters lockless, it might be slightly
1917 * inaccurate. Do not allow it to go below zero though:
1919 if (unlikely((long)sum < 0))
1920 sum = 0;
1922 return sum;
1925 unsigned long long nr_context_switches(void)
1927 int i;
1928 unsigned long long sum = 0;
1930 for_each_possible_cpu(i)
1931 sum += cpu_rq(i)->nr_switches;
1933 return sum;
1936 unsigned long nr_iowait(void)
1938 unsigned long i, sum = 0;
1940 for_each_possible_cpu(i)
1941 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1943 return sum;
1946 unsigned long nr_active(void)
1948 unsigned long i, running = 0, uninterruptible = 0;
1950 for_each_online_cpu(i) {
1951 running += cpu_rq(i)->nr_running;
1952 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1955 if (unlikely((long)uninterruptible < 0))
1956 uninterruptible = 0;
1958 return running + uninterruptible;
1961 #ifdef CONFIG_SMP
1964 * Is this task likely cache-hot:
1966 static inline int
1967 task_hot(struct task_struct *p, unsigned long long now, struct sched_domain *sd)
1969 return (long long)(now - p->last_ran) < (long long)sd->cache_hot_time;
1973 * double_rq_lock - safely lock two runqueues
1975 * Note this does not disable interrupts like task_rq_lock,
1976 * you need to do so manually before calling.
1978 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1979 __acquires(rq1->lock)
1980 __acquires(rq2->lock)
1982 BUG_ON(!irqs_disabled());
1983 if (rq1 == rq2) {
1984 spin_lock(&rq1->lock);
1985 __acquire(rq2->lock); /* Fake it out ;) */
1986 } else {
1987 if (rq1 < rq2) {
1988 spin_lock(&rq1->lock);
1989 spin_lock(&rq2->lock);
1990 } else {
1991 spin_lock(&rq2->lock);
1992 spin_lock(&rq1->lock);
1998 * double_rq_unlock - safely unlock two runqueues
2000 * Note this does not restore interrupts like task_rq_unlock,
2001 * you need to do so manually after calling.
2003 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2004 __releases(rq1->lock)
2005 __releases(rq2->lock)
2007 spin_unlock(&rq1->lock);
2008 if (rq1 != rq2)
2009 spin_unlock(&rq2->lock);
2010 else
2011 __release(rq2->lock);
2015 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2017 static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
2018 __releases(this_rq->lock)
2019 __acquires(busiest->lock)
2020 __acquires(this_rq->lock)
2022 if (unlikely(!irqs_disabled())) {
2023 /* printk() doesn't work good under rq->lock */
2024 spin_unlock(&this_rq->lock);
2025 BUG_ON(1);
2027 if (unlikely(!spin_trylock(&busiest->lock))) {
2028 if (busiest < this_rq) {
2029 spin_unlock(&this_rq->lock);
2030 spin_lock(&busiest->lock);
2031 spin_lock(&this_rq->lock);
2032 } else
2033 spin_lock(&busiest->lock);
2038 * If dest_cpu is allowed for this process, migrate the task to it.
2039 * This is accomplished by forcing the cpu_allowed mask to only
2040 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2041 * the cpu_allowed mask is restored.
2043 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2045 struct migration_req req;
2046 unsigned long flags;
2047 struct rq *rq;
2049 rq = task_rq_lock(p, &flags);
2050 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2051 || unlikely(cpu_is_offline(dest_cpu)))
2052 goto out;
2054 /* force the process onto the specified CPU */
2055 if (migrate_task(p, dest_cpu, &req)) {
2056 /* Need to wait for migration thread (might exit: take ref). */
2057 struct task_struct *mt = rq->migration_thread;
2059 get_task_struct(mt);
2060 task_rq_unlock(rq, &flags);
2061 wake_up_process(mt);
2062 put_task_struct(mt);
2063 wait_for_completion(&req.done);
2065 return;
2067 out:
2068 task_rq_unlock(rq, &flags);
2072 * sched_exec - execve() is a valuable balancing opportunity, because at
2073 * this point the task has the smallest effective memory and cache footprint.
2075 void sched_exec(void)
2077 int new_cpu, this_cpu = get_cpu();
2078 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2079 put_cpu();
2080 if (new_cpu != this_cpu)
2081 sched_migrate_task(current, new_cpu);
2085 * pull_task - move a task from a remote runqueue to the local runqueue.
2086 * Both runqueues must be locked.
2088 static void pull_task(struct rq *src_rq, struct prio_array *src_array,
2089 struct task_struct *p, struct rq *this_rq,
2090 struct prio_array *this_array, int this_cpu)
2092 dequeue_task(p, src_array);
2093 dec_nr_running(p, src_rq);
2094 set_task_cpu(p, this_cpu);
2095 inc_nr_running(p, this_rq);
2096 enqueue_task(p, this_array);
2097 p->timestamp = (p->timestamp - src_rq->most_recent_timestamp)
2098 + this_rq->most_recent_timestamp;
2100 * Note that idle threads have a prio of MAX_PRIO, for this test
2101 * to be always true for them.
2103 if (TASK_PREEMPTS_CURR(p, this_rq))
2104 resched_task(this_rq->curr);
2108 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2110 static
2111 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2112 struct sched_domain *sd, enum idle_type idle,
2113 int *all_pinned)
2116 * We do not migrate tasks that are:
2117 * 1) running (obviously), or
2118 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2119 * 3) are cache-hot on their current CPU.
2121 if (!cpu_isset(this_cpu, p->cpus_allowed))
2122 return 0;
2123 *all_pinned = 0;
2125 if (task_running(rq, p))
2126 return 0;
2129 * Aggressive migration if:
2130 * 1) task is cache cold, or
2131 * 2) too many balance attempts have failed.
2134 if (sd->nr_balance_failed > sd->cache_nice_tries) {
2135 #ifdef CONFIG_SCHEDSTATS
2136 if (task_hot(p, rq->most_recent_timestamp, sd))
2137 schedstat_inc(sd, lb_hot_gained[idle]);
2138 #endif
2139 return 1;
2142 if (task_hot(p, rq->most_recent_timestamp, sd))
2143 return 0;
2144 return 1;
2147 #define rq_best_prio(rq) min((rq)->curr->prio, (rq)->best_expired_prio)
2150 * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
2151 * load from busiest to this_rq, as part of a balancing operation within
2152 * "domain". Returns the number of tasks moved.
2154 * Called with both runqueues locked.
2156 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2157 unsigned long max_nr_move, unsigned long max_load_move,
2158 struct sched_domain *sd, enum idle_type idle,
2159 int *all_pinned)
2161 int idx, pulled = 0, pinned = 0, this_best_prio, best_prio,
2162 best_prio_seen, skip_for_load;
2163 struct prio_array *array, *dst_array;
2164 struct list_head *head, *curr;
2165 struct task_struct *tmp;
2166 long rem_load_move;
2168 if (max_nr_move == 0 || max_load_move == 0)
2169 goto out;
2171 rem_load_move = max_load_move;
2172 pinned = 1;
2173 this_best_prio = rq_best_prio(this_rq);
2174 best_prio = rq_best_prio(busiest);
2176 * Enable handling of the case where there is more than one task
2177 * with the best priority. If the current running task is one
2178 * of those with prio==best_prio we know it won't be moved
2179 * and therefore it's safe to override the skip (based on load) of
2180 * any task we find with that prio.
2182 best_prio_seen = best_prio == busiest->curr->prio;
2185 * We first consider expired tasks. Those will likely not be
2186 * executed in the near future, and they are most likely to
2187 * be cache-cold, thus switching CPUs has the least effect
2188 * on them.
2190 if (busiest->expired->nr_active) {
2191 array = busiest->expired;
2192 dst_array = this_rq->expired;
2193 } else {
2194 array = busiest->active;
2195 dst_array = this_rq->active;
2198 new_array:
2199 /* Start searching at priority 0: */
2200 idx = 0;
2201 skip_bitmap:
2202 if (!idx)
2203 idx = sched_find_first_bit(array->bitmap);
2204 else
2205 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
2206 if (idx >= MAX_PRIO) {
2207 if (array == busiest->expired && busiest->active->nr_active) {
2208 array = busiest->active;
2209 dst_array = this_rq->active;
2210 goto new_array;
2212 goto out;
2215 head = array->queue + idx;
2216 curr = head->prev;
2217 skip_queue:
2218 tmp = list_entry(curr, struct task_struct, run_list);
2220 curr = curr->prev;
2223 * To help distribute high priority tasks accross CPUs we don't
2224 * skip a task if it will be the highest priority task (i.e. smallest
2225 * prio value) on its new queue regardless of its load weight
2227 skip_for_load = tmp->load_weight > rem_load_move;
2228 if (skip_for_load && idx < this_best_prio)
2229 skip_for_load = !best_prio_seen && idx == best_prio;
2230 if (skip_for_load ||
2231 !can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
2233 best_prio_seen |= idx == best_prio;
2234 if (curr != head)
2235 goto skip_queue;
2236 idx++;
2237 goto skip_bitmap;
2240 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
2241 pulled++;
2242 rem_load_move -= tmp->load_weight;
2245 * We only want to steal up to the prescribed number of tasks
2246 * and the prescribed amount of weighted load.
2248 if (pulled < max_nr_move && rem_load_move > 0) {
2249 if (idx < this_best_prio)
2250 this_best_prio = idx;
2251 if (curr != head)
2252 goto skip_queue;
2253 idx++;
2254 goto skip_bitmap;
2256 out:
2258 * Right now, this is the only place pull_task() is called,
2259 * so we can safely collect pull_task() stats here rather than
2260 * inside pull_task().
2262 schedstat_add(sd, lb_gained[idle], pulled);
2264 if (all_pinned)
2265 *all_pinned = pinned;
2266 return pulled;
2270 * find_busiest_group finds and returns the busiest CPU group within the
2271 * domain. It calculates and returns the amount of weighted load which
2272 * should be moved to restore balance via the imbalance parameter.
2274 static struct sched_group *
2275 find_busiest_group(struct sched_domain *sd, int this_cpu,
2276 unsigned long *imbalance, enum idle_type idle, int *sd_idle,
2277 cpumask_t *cpus, int *balance)
2279 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2280 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2281 unsigned long max_pull;
2282 unsigned long busiest_load_per_task, busiest_nr_running;
2283 unsigned long this_load_per_task, this_nr_running;
2284 int load_idx;
2285 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2286 int power_savings_balance = 1;
2287 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2288 unsigned long min_nr_running = ULONG_MAX;
2289 struct sched_group *group_min = NULL, *group_leader = NULL;
2290 #endif
2292 max_load = this_load = total_load = total_pwr = 0;
2293 busiest_load_per_task = busiest_nr_running = 0;
2294 this_load_per_task = this_nr_running = 0;
2295 if (idle == NOT_IDLE)
2296 load_idx = sd->busy_idx;
2297 else if (idle == NEWLY_IDLE)
2298 load_idx = sd->newidle_idx;
2299 else
2300 load_idx = sd->idle_idx;
2302 do {
2303 unsigned long load, group_capacity;
2304 int local_group;
2305 int i;
2306 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2307 unsigned long sum_nr_running, sum_weighted_load;
2309 local_group = cpu_isset(this_cpu, group->cpumask);
2311 if (local_group)
2312 balance_cpu = first_cpu(group->cpumask);
2314 /* Tally up the load of all CPUs in the group */
2315 sum_weighted_load = sum_nr_running = avg_load = 0;
2317 for_each_cpu_mask(i, group->cpumask) {
2318 struct rq *rq;
2320 if (!cpu_isset(i, *cpus))
2321 continue;
2323 rq = cpu_rq(i);
2325 if (*sd_idle && !idle_cpu(i))
2326 *sd_idle = 0;
2328 /* Bias balancing toward cpus of our domain */
2329 if (local_group) {
2330 if (idle_cpu(i) && !first_idle_cpu) {
2331 first_idle_cpu = 1;
2332 balance_cpu = i;
2335 load = target_load(i, load_idx);
2336 } else
2337 load = source_load(i, load_idx);
2339 avg_load += load;
2340 sum_nr_running += rq->nr_running;
2341 sum_weighted_load += rq->raw_weighted_load;
2345 * First idle cpu or the first cpu(busiest) in this sched group
2346 * is eligible for doing load balancing at this and above
2347 * domains.
2349 if (local_group && balance_cpu != this_cpu && balance) {
2350 *balance = 0;
2351 goto ret;
2354 total_load += avg_load;
2355 total_pwr += group->cpu_power;
2357 /* Adjust by relative CPU power of the group */
2358 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
2360 group_capacity = group->cpu_power / SCHED_LOAD_SCALE;
2362 if (local_group) {
2363 this_load = avg_load;
2364 this = group;
2365 this_nr_running = sum_nr_running;
2366 this_load_per_task = sum_weighted_load;
2367 } else if (avg_load > max_load &&
2368 sum_nr_running > group_capacity) {
2369 max_load = avg_load;
2370 busiest = group;
2371 busiest_nr_running = sum_nr_running;
2372 busiest_load_per_task = sum_weighted_load;
2375 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2377 * Busy processors will not participate in power savings
2378 * balance.
2380 if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2381 goto group_next;
2384 * If the local group is idle or completely loaded
2385 * no need to do power savings balance at this domain
2387 if (local_group && (this_nr_running >= group_capacity ||
2388 !this_nr_running))
2389 power_savings_balance = 0;
2392 * If a group is already running at full capacity or idle,
2393 * don't include that group in power savings calculations
2395 if (!power_savings_balance || sum_nr_running >= group_capacity
2396 || !sum_nr_running)
2397 goto group_next;
2400 * Calculate the group which has the least non-idle load.
2401 * This is the group from where we need to pick up the load
2402 * for saving power
2404 if ((sum_nr_running < min_nr_running) ||
2405 (sum_nr_running == min_nr_running &&
2406 first_cpu(group->cpumask) <
2407 first_cpu(group_min->cpumask))) {
2408 group_min = group;
2409 min_nr_running = sum_nr_running;
2410 min_load_per_task = sum_weighted_load /
2411 sum_nr_running;
2415 * Calculate the group which is almost near its
2416 * capacity but still has some space to pick up some load
2417 * from other group and save more power
2419 if (sum_nr_running <= group_capacity - 1) {
2420 if (sum_nr_running > leader_nr_running ||
2421 (sum_nr_running == leader_nr_running &&
2422 first_cpu(group->cpumask) >
2423 first_cpu(group_leader->cpumask))) {
2424 group_leader = group;
2425 leader_nr_running = sum_nr_running;
2428 group_next:
2429 #endif
2430 group = group->next;
2431 } while (group != sd->groups);
2433 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2434 goto out_balanced;
2436 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2438 if (this_load >= avg_load ||
2439 100*max_load <= sd->imbalance_pct*this_load)
2440 goto out_balanced;
2442 busiest_load_per_task /= busiest_nr_running;
2444 * We're trying to get all the cpus to the average_load, so we don't
2445 * want to push ourselves above the average load, nor do we wish to
2446 * reduce the max loaded cpu below the average load, as either of these
2447 * actions would just result in more rebalancing later, and ping-pong
2448 * tasks around. Thus we look for the minimum possible imbalance.
2449 * Negative imbalances (*we* are more loaded than anyone else) will
2450 * be counted as no imbalance for these purposes -- we can't fix that
2451 * by pulling tasks to us. Be careful of negative numbers as they'll
2452 * appear as very large values with unsigned longs.
2454 if (max_load <= busiest_load_per_task)
2455 goto out_balanced;
2458 * In the presence of smp nice balancing, certain scenarios can have
2459 * max load less than avg load(as we skip the groups at or below
2460 * its cpu_power, while calculating max_load..)
2462 if (max_load < avg_load) {
2463 *imbalance = 0;
2464 goto small_imbalance;
2467 /* Don't want to pull so many tasks that a group would go idle */
2468 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2470 /* How much load to actually move to equalise the imbalance */
2471 *imbalance = min(max_pull * busiest->cpu_power,
2472 (avg_load - this_load) * this->cpu_power)
2473 / SCHED_LOAD_SCALE;
2476 * if *imbalance is less than the average load per runnable task
2477 * there is no gaurantee that any tasks will be moved so we'll have
2478 * a think about bumping its value to force at least one task to be
2479 * moved
2481 if (*imbalance < busiest_load_per_task) {
2482 unsigned long tmp, pwr_now, pwr_move;
2483 unsigned int imbn;
2485 small_imbalance:
2486 pwr_move = pwr_now = 0;
2487 imbn = 2;
2488 if (this_nr_running) {
2489 this_load_per_task /= this_nr_running;
2490 if (busiest_load_per_task > this_load_per_task)
2491 imbn = 1;
2492 } else
2493 this_load_per_task = SCHED_LOAD_SCALE;
2495 if (max_load - this_load >= busiest_load_per_task * imbn) {
2496 *imbalance = busiest_load_per_task;
2497 return busiest;
2501 * OK, we don't have enough imbalance to justify moving tasks,
2502 * however we may be able to increase total CPU power used by
2503 * moving them.
2506 pwr_now += busiest->cpu_power *
2507 min(busiest_load_per_task, max_load);
2508 pwr_now += this->cpu_power *
2509 min(this_load_per_task, this_load);
2510 pwr_now /= SCHED_LOAD_SCALE;
2512 /* Amount of load we'd subtract */
2513 tmp = busiest_load_per_task * SCHED_LOAD_SCALE /
2514 busiest->cpu_power;
2515 if (max_load > tmp)
2516 pwr_move += busiest->cpu_power *
2517 min(busiest_load_per_task, max_load - tmp);
2519 /* Amount of load we'd add */
2520 if (max_load * busiest->cpu_power <
2521 busiest_load_per_task * SCHED_LOAD_SCALE)
2522 tmp = max_load * busiest->cpu_power / this->cpu_power;
2523 else
2524 tmp = busiest_load_per_task * SCHED_LOAD_SCALE /
2525 this->cpu_power;
2526 pwr_move += this->cpu_power *
2527 min(this_load_per_task, this_load + tmp);
2528 pwr_move /= SCHED_LOAD_SCALE;
2530 /* Move if we gain throughput */
2531 if (pwr_move <= pwr_now)
2532 goto out_balanced;
2534 *imbalance = busiest_load_per_task;
2537 return busiest;
2539 out_balanced:
2540 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2541 if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2542 goto ret;
2544 if (this == group_leader && group_leader != group_min) {
2545 *imbalance = min_load_per_task;
2546 return group_min;
2548 #endif
2549 ret:
2550 *imbalance = 0;
2551 return NULL;
2555 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2557 static struct rq *
2558 find_busiest_queue(struct sched_group *group, enum idle_type idle,
2559 unsigned long imbalance, cpumask_t *cpus)
2561 struct rq *busiest = NULL, *rq;
2562 unsigned long max_load = 0;
2563 int i;
2565 for_each_cpu_mask(i, group->cpumask) {
2567 if (!cpu_isset(i, *cpus))
2568 continue;
2570 rq = cpu_rq(i);
2572 if (rq->nr_running == 1 && rq->raw_weighted_load > imbalance)
2573 continue;
2575 if (rq->raw_weighted_load > max_load) {
2576 max_load = rq->raw_weighted_load;
2577 busiest = rq;
2581 return busiest;
2585 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2586 * so long as it is large enough.
2588 #define MAX_PINNED_INTERVAL 512
2590 static inline unsigned long minus_1_or_zero(unsigned long n)
2592 return n > 0 ? n - 1 : 0;
2596 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2597 * tasks if there is an imbalance.
2599 static int load_balance(int this_cpu, struct rq *this_rq,
2600 struct sched_domain *sd, enum idle_type idle,
2601 int *balance)
2603 int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2604 struct sched_group *group;
2605 unsigned long imbalance;
2606 struct rq *busiest;
2607 cpumask_t cpus = CPU_MASK_ALL;
2608 unsigned long flags;
2611 * When power savings policy is enabled for the parent domain, idle
2612 * sibling can pick up load irrespective of busy siblings. In this case,
2613 * let the state of idle sibling percolate up as IDLE, instead of
2614 * portraying it as NOT_IDLE.
2616 if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2617 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2618 sd_idle = 1;
2620 schedstat_inc(sd, lb_cnt[idle]);
2622 redo:
2623 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2624 &cpus, balance);
2626 if (*balance == 0)
2627 goto out_balanced;
2629 if (!group) {
2630 schedstat_inc(sd, lb_nobusyg[idle]);
2631 goto out_balanced;
2634 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
2635 if (!busiest) {
2636 schedstat_inc(sd, lb_nobusyq[idle]);
2637 goto out_balanced;
2640 BUG_ON(busiest == this_rq);
2642 schedstat_add(sd, lb_imbalance[idle], imbalance);
2644 nr_moved = 0;
2645 if (busiest->nr_running > 1) {
2647 * Attempt to move tasks. If find_busiest_group has found
2648 * an imbalance but busiest->nr_running <= 1, the group is
2649 * still unbalanced. nr_moved simply stays zero, so it is
2650 * correctly treated as an imbalance.
2652 local_irq_save(flags);
2653 double_rq_lock(this_rq, busiest);
2654 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2655 minus_1_or_zero(busiest->nr_running),
2656 imbalance, sd, idle, &all_pinned);
2657 double_rq_unlock(this_rq, busiest);
2658 local_irq_restore(flags);
2660 /* All tasks on this runqueue were pinned by CPU affinity */
2661 if (unlikely(all_pinned)) {
2662 cpu_clear(cpu_of(busiest), cpus);
2663 if (!cpus_empty(cpus))
2664 goto redo;
2665 goto out_balanced;
2669 if (!nr_moved) {
2670 schedstat_inc(sd, lb_failed[idle]);
2671 sd->nr_balance_failed++;
2673 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2675 spin_lock_irqsave(&busiest->lock, flags);
2677 /* don't kick the migration_thread, if the curr
2678 * task on busiest cpu can't be moved to this_cpu
2680 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2681 spin_unlock_irqrestore(&busiest->lock, flags);
2682 all_pinned = 1;
2683 goto out_one_pinned;
2686 if (!busiest->active_balance) {
2687 busiest->active_balance = 1;
2688 busiest->push_cpu = this_cpu;
2689 active_balance = 1;
2691 spin_unlock_irqrestore(&busiest->lock, flags);
2692 if (active_balance)
2693 wake_up_process(busiest->migration_thread);
2696 * We've kicked active balancing, reset the failure
2697 * counter.
2699 sd->nr_balance_failed = sd->cache_nice_tries+1;
2701 } else
2702 sd->nr_balance_failed = 0;
2704 if (likely(!active_balance)) {
2705 /* We were unbalanced, so reset the balancing interval */
2706 sd->balance_interval = sd->min_interval;
2707 } else {
2709 * If we've begun active balancing, start to back off. This
2710 * case may not be covered by the all_pinned logic if there
2711 * is only 1 task on the busy runqueue (because we don't call
2712 * move_tasks).
2714 if (sd->balance_interval < sd->max_interval)
2715 sd->balance_interval *= 2;
2718 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2719 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2720 return -1;
2721 return nr_moved;
2723 out_balanced:
2724 schedstat_inc(sd, lb_balanced[idle]);
2726 sd->nr_balance_failed = 0;
2728 out_one_pinned:
2729 /* tune up the balancing interval */
2730 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2731 (sd->balance_interval < sd->max_interval))
2732 sd->balance_interval *= 2;
2734 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2735 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2736 return -1;
2737 return 0;
2741 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2742 * tasks if there is an imbalance.
2744 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2745 * this_rq is locked.
2747 static int
2748 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
2750 struct sched_group *group;
2751 struct rq *busiest = NULL;
2752 unsigned long imbalance;
2753 int nr_moved = 0;
2754 int sd_idle = 0;
2755 cpumask_t cpus = CPU_MASK_ALL;
2758 * When power savings policy is enabled for the parent domain, idle
2759 * sibling can pick up load irrespective of busy siblings. In this case,
2760 * let the state of idle sibling percolate up as IDLE, instead of
2761 * portraying it as NOT_IDLE.
2763 if (sd->flags & SD_SHARE_CPUPOWER &&
2764 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2765 sd_idle = 1;
2767 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
2768 redo:
2769 group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE,
2770 &sd_idle, &cpus, NULL);
2771 if (!group) {
2772 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
2773 goto out_balanced;
2776 busiest = find_busiest_queue(group, NEWLY_IDLE, imbalance,
2777 &cpus);
2778 if (!busiest) {
2779 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
2780 goto out_balanced;
2783 BUG_ON(busiest == this_rq);
2785 schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
2787 nr_moved = 0;
2788 if (busiest->nr_running > 1) {
2789 /* Attempt to move tasks */
2790 double_lock_balance(this_rq, busiest);
2791 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2792 minus_1_or_zero(busiest->nr_running),
2793 imbalance, sd, NEWLY_IDLE, NULL);
2794 spin_unlock(&busiest->lock);
2796 if (!nr_moved) {
2797 cpu_clear(cpu_of(busiest), cpus);
2798 if (!cpus_empty(cpus))
2799 goto redo;
2803 if (!nr_moved) {
2804 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
2805 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2806 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2807 return -1;
2808 } else
2809 sd->nr_balance_failed = 0;
2811 return nr_moved;
2813 out_balanced:
2814 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
2815 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2816 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2817 return -1;
2818 sd->nr_balance_failed = 0;
2820 return 0;
2824 * idle_balance is called by schedule() if this_cpu is about to become
2825 * idle. Attempts to pull tasks from other CPUs.
2827 static void idle_balance(int this_cpu, struct rq *this_rq)
2829 struct sched_domain *sd;
2830 int pulled_task = 0;
2831 unsigned long next_balance = jiffies + 60 * HZ;
2833 for_each_domain(this_cpu, sd) {
2834 if (sd->flags & SD_BALANCE_NEWIDLE) {
2835 /* If we've pulled tasks over stop searching: */
2836 pulled_task = load_balance_newidle(this_cpu,
2837 this_rq, sd);
2838 if (time_after(next_balance,
2839 sd->last_balance + sd->balance_interval))
2840 next_balance = sd->last_balance
2841 + sd->balance_interval;
2842 if (pulled_task)
2843 break;
2846 if (!pulled_task)
2848 * We are going idle. next_balance may be set based on
2849 * a busy processor. So reset next_balance.
2851 this_rq->next_balance = next_balance;
2855 * active_load_balance is run by migration threads. It pushes running tasks
2856 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2857 * running on each physical CPU where possible, and avoids physical /
2858 * logical imbalances.
2860 * Called with busiest_rq locked.
2862 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
2864 int target_cpu = busiest_rq->push_cpu;
2865 struct sched_domain *sd;
2866 struct rq *target_rq;
2868 /* Is there any task to move? */
2869 if (busiest_rq->nr_running <= 1)
2870 return;
2872 target_rq = cpu_rq(target_cpu);
2875 * This condition is "impossible", if it occurs
2876 * we need to fix it. Originally reported by
2877 * Bjorn Helgaas on a 128-cpu setup.
2879 BUG_ON(busiest_rq == target_rq);
2881 /* move a task from busiest_rq to target_rq */
2882 double_lock_balance(busiest_rq, target_rq);
2884 /* Search for an sd spanning us and the target CPU. */
2885 for_each_domain(target_cpu, sd) {
2886 if ((sd->flags & SD_LOAD_BALANCE) &&
2887 cpu_isset(busiest_cpu, sd->span))
2888 break;
2891 if (likely(sd)) {
2892 schedstat_inc(sd, alb_cnt);
2894 if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
2895 RTPRIO_TO_LOAD_WEIGHT(100), sd, SCHED_IDLE,
2896 NULL))
2897 schedstat_inc(sd, alb_pushed);
2898 else
2899 schedstat_inc(sd, alb_failed);
2901 spin_unlock(&target_rq->lock);
2904 static void update_load(struct rq *this_rq)
2906 unsigned long this_load;
2907 unsigned int i, scale;
2909 this_load = this_rq->raw_weighted_load;
2911 /* Update our load: */
2912 for (i = 0, scale = 1; i < 3; i++, scale += scale) {
2913 unsigned long old_load, new_load;
2915 /* scale is effectively 1 << i now, and >> i divides by scale */
2917 old_load = this_rq->cpu_load[i];
2918 new_load = this_load;
2920 * Round up the averaging division if load is increasing. This
2921 * prevents us from getting stuck on 9 if the load is 10, for
2922 * example.
2924 if (new_load > old_load)
2925 new_load += scale-1;
2926 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2931 * run_rebalance_domains is triggered when needed from the scheduler tick.
2933 * It checks each scheduling domain to see if it is due to be balanced,
2934 * and initiates a balancing operation if so.
2936 * Balancing parameters are set up in arch_init_sched_domains.
2938 static DEFINE_SPINLOCK(balancing);
2940 static void run_rebalance_domains(struct softirq_action *h)
2942 int this_cpu = smp_processor_id(), balance = 1;
2943 struct rq *this_rq = cpu_rq(this_cpu);
2944 unsigned long interval;
2945 struct sched_domain *sd;
2947 * We are idle if there are no processes running. This
2948 * is valid even if we are the idle process (SMT).
2950 enum idle_type idle = !this_rq->nr_running ?
2951 SCHED_IDLE : NOT_IDLE;
2952 /* Earliest time when we have to call run_rebalance_domains again */
2953 unsigned long next_balance = jiffies + 60*HZ;
2955 for_each_domain(this_cpu, sd) {
2956 if (!(sd->flags & SD_LOAD_BALANCE))
2957 continue;
2959 interval = sd->balance_interval;
2960 if (idle != SCHED_IDLE)
2961 interval *= sd->busy_factor;
2963 /* scale ms to jiffies */
2964 interval = msecs_to_jiffies(interval);
2965 if (unlikely(!interval))
2966 interval = 1;
2968 if (sd->flags & SD_SERIALIZE) {
2969 if (!spin_trylock(&balancing))
2970 goto out;
2973 if (time_after_eq(jiffies, sd->last_balance + interval)) {
2974 if (load_balance(this_cpu, this_rq, sd, idle, &balance)) {
2976 * We've pulled tasks over so either we're no
2977 * longer idle, or one of our SMT siblings is
2978 * not idle.
2980 idle = NOT_IDLE;
2982 sd->last_balance = jiffies;
2984 if (sd->flags & SD_SERIALIZE)
2985 spin_unlock(&balancing);
2986 out:
2987 if (time_after(next_balance, sd->last_balance + interval))
2988 next_balance = sd->last_balance + interval;
2991 * Stop the load balance at this level. There is another
2992 * CPU in our sched group which is doing load balancing more
2993 * actively.
2995 if (!balance)
2996 break;
2998 this_rq->next_balance = next_balance;
3000 #else
3002 * on UP we do not need to balance between CPUs:
3004 static inline void idle_balance(int cpu, struct rq *rq)
3007 #endif
3009 DEFINE_PER_CPU(struct kernel_stat, kstat);
3011 EXPORT_PER_CPU_SYMBOL(kstat);
3014 * This is called on clock ticks and on context switches.
3015 * Bank in p->sched_time the ns elapsed since the last tick or switch.
3017 static inline void
3018 update_cpu_clock(struct task_struct *p, struct rq *rq, unsigned long long now)
3020 p->sched_time += now - p->last_ran;
3021 p->last_ran = rq->most_recent_timestamp = now;
3025 * Return current->sched_time plus any more ns on the sched_clock
3026 * that have not yet been banked.
3028 unsigned long long current_sched_time(const struct task_struct *p)
3030 unsigned long long ns;
3031 unsigned long flags;
3033 local_irq_save(flags);
3034 ns = p->sched_time + sched_clock() - p->last_ran;
3035 local_irq_restore(flags);
3037 return ns;
3041 * We place interactive tasks back into the active array, if possible.
3043 * To guarantee that this does not starve expired tasks we ignore the
3044 * interactivity of a task if the first expired task had to wait more
3045 * than a 'reasonable' amount of time. This deadline timeout is
3046 * load-dependent, as the frequency of array switched decreases with
3047 * increasing number of running tasks. We also ignore the interactivity
3048 * if a better static_prio task has expired:
3050 static inline int expired_starving(struct rq *rq)
3052 if (rq->curr->static_prio > rq->best_expired_prio)
3053 return 1;
3054 if (!STARVATION_LIMIT || !rq->expired_timestamp)
3055 return 0;
3056 if (jiffies - rq->expired_timestamp > STARVATION_LIMIT * rq->nr_running)
3057 return 1;
3058 return 0;
3062 * Account user cpu time to a process.
3063 * @p: the process that the cpu time gets accounted to
3064 * @hardirq_offset: the offset to subtract from hardirq_count()
3065 * @cputime: the cpu time spent in user space since the last update
3067 void account_user_time(struct task_struct *p, cputime_t cputime)
3069 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3070 cputime64_t tmp;
3072 p->utime = cputime_add(p->utime, cputime);
3074 /* Add user time to cpustat. */
3075 tmp = cputime_to_cputime64(cputime);
3076 if (TASK_NICE(p) > 0)
3077 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3078 else
3079 cpustat->user = cputime64_add(cpustat->user, tmp);
3083 * Account system cpu time to a process.
3084 * @p: the process that the cpu time gets accounted to
3085 * @hardirq_offset: the offset to subtract from hardirq_count()
3086 * @cputime: the cpu time spent in kernel space since the last update
3088 void account_system_time(struct task_struct *p, int hardirq_offset,
3089 cputime_t cputime)
3091 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3092 struct rq *rq = this_rq();
3093 cputime64_t tmp;
3095 p->stime = cputime_add(p->stime, cputime);
3097 /* Add system time to cpustat. */
3098 tmp = cputime_to_cputime64(cputime);
3099 if (hardirq_count() - hardirq_offset)
3100 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3101 else if (softirq_count())
3102 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3103 else if (p != rq->idle)
3104 cpustat->system = cputime64_add(cpustat->system, tmp);
3105 else if (atomic_read(&rq->nr_iowait) > 0)
3106 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3107 else
3108 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3109 /* Account for system time used */
3110 acct_update_integrals(p);
3114 * Account for involuntary wait time.
3115 * @p: the process from which the cpu time has been stolen
3116 * @steal: the cpu time spent in involuntary wait
3118 void account_steal_time(struct task_struct *p, cputime_t steal)
3120 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3121 cputime64_t tmp = cputime_to_cputime64(steal);
3122 struct rq *rq = this_rq();
3124 if (p == rq->idle) {
3125 p->stime = cputime_add(p->stime, steal);
3126 if (atomic_read(&rq->nr_iowait) > 0)
3127 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3128 else
3129 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3130 } else
3131 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3134 static void task_running_tick(struct rq *rq, struct task_struct *p)
3136 if (p->array != rq->active) {
3137 /* Task has expired but was not scheduled yet */
3138 set_tsk_need_resched(p);
3139 return;
3141 spin_lock(&rq->lock);
3143 * The task was running during this tick - update the
3144 * time slice counter. Note: we do not update a thread's
3145 * priority until it either goes to sleep or uses up its
3146 * timeslice. This makes it possible for interactive tasks
3147 * to use up their timeslices at their highest priority levels.
3149 if (rt_task(p)) {
3151 * RR tasks need a special form of timeslice management.
3152 * FIFO tasks have no timeslices.
3154 if ((p->policy == SCHED_RR) && !--p->time_slice) {
3155 p->time_slice = task_timeslice(p);
3156 p->first_time_slice = 0;
3157 set_tsk_need_resched(p);
3159 /* put it at the end of the queue: */
3160 requeue_task(p, rq->active);
3162 goto out_unlock;
3164 if (!--p->time_slice) {
3165 dequeue_task(p, rq->active);
3166 set_tsk_need_resched(p);
3167 p->prio = effective_prio(p);
3168 p->time_slice = task_timeslice(p);
3169 p->first_time_slice = 0;
3171 if (!rq->expired_timestamp)
3172 rq->expired_timestamp = jiffies;
3173 if (!TASK_INTERACTIVE(p) || expired_starving(rq)) {
3174 enqueue_task(p, rq->expired);
3175 if (p->static_prio < rq->best_expired_prio)
3176 rq->best_expired_prio = p->static_prio;
3177 } else
3178 enqueue_task(p, rq->active);
3179 } else {
3181 * Prevent a too long timeslice allowing a task to monopolize
3182 * the CPU. We do this by splitting up the timeslice into
3183 * smaller pieces.
3185 * Note: this does not mean the task's timeslices expire or
3186 * get lost in any way, they just might be preempted by
3187 * another task of equal priority. (one with higher
3188 * priority would have preempted this task already.) We
3189 * requeue this task to the end of the list on this priority
3190 * level, which is in essence a round-robin of tasks with
3191 * equal priority.
3193 * This only applies to tasks in the interactive
3194 * delta range with at least TIMESLICE_GRANULARITY to requeue.
3196 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
3197 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
3198 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
3199 (p->array == rq->active)) {
3201 requeue_task(p, rq->active);
3202 set_tsk_need_resched(p);
3205 out_unlock:
3206 spin_unlock(&rq->lock);
3210 * This function gets called by the timer code, with HZ frequency.
3211 * We call it with interrupts disabled.
3213 * It also gets called by the fork code, when changing the parent's
3214 * timeslices.
3216 void scheduler_tick(void)
3218 unsigned long long now = sched_clock();
3219 struct task_struct *p = current;
3220 int cpu = smp_processor_id();
3221 struct rq *rq = cpu_rq(cpu);
3223 update_cpu_clock(p, rq, now);
3225 if (p != rq->idle)
3226 task_running_tick(rq, p);
3227 #ifdef CONFIG_SMP
3228 update_load(rq);
3229 if (time_after_eq(jiffies, rq->next_balance))
3230 raise_softirq(SCHED_SOFTIRQ);
3231 #endif
3234 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3236 void fastcall add_preempt_count(int val)
3239 * Underflow?
3241 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3242 return;
3243 preempt_count() += val;
3245 * Spinlock count overflowing soon?
3247 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3248 PREEMPT_MASK - 10);
3250 EXPORT_SYMBOL(add_preempt_count);
3252 void fastcall sub_preempt_count(int val)
3255 * Underflow?
3257 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3258 return;
3260 * Is the spinlock portion underflowing?
3262 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3263 !(preempt_count() & PREEMPT_MASK)))
3264 return;
3266 preempt_count() -= val;
3268 EXPORT_SYMBOL(sub_preempt_count);
3270 #endif
3272 static inline int interactive_sleep(enum sleep_type sleep_type)
3274 return (sleep_type == SLEEP_INTERACTIVE ||
3275 sleep_type == SLEEP_INTERRUPTED);
3279 * schedule() is the main scheduler function.
3281 asmlinkage void __sched schedule(void)
3283 struct task_struct *prev, *next;
3284 struct prio_array *array;
3285 struct list_head *queue;
3286 unsigned long long now;
3287 unsigned long run_time;
3288 int cpu, idx, new_prio;
3289 long *switch_count;
3290 struct rq *rq;
3293 * Test if we are atomic. Since do_exit() needs to call into
3294 * schedule() atomically, we ignore that path for now.
3295 * Otherwise, whine if we are scheduling when we should not be.
3297 if (unlikely(in_atomic() && !current->exit_state)) {
3298 printk(KERN_ERR "BUG: scheduling while atomic: "
3299 "%s/0x%08x/%d\n",
3300 current->comm, preempt_count(), current->pid);
3301 debug_show_held_locks(current);
3302 if (irqs_disabled())
3303 print_irqtrace_events(current);
3304 dump_stack();
3306 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3308 need_resched:
3309 preempt_disable();
3310 prev = current;
3311 release_kernel_lock(prev);
3312 need_resched_nonpreemptible:
3313 rq = this_rq();
3316 * The idle thread is not allowed to schedule!
3317 * Remove this check after it has been exercised a bit.
3319 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
3320 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
3321 dump_stack();
3324 schedstat_inc(rq, sched_cnt);
3325 now = sched_clock();
3326 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
3327 run_time = now - prev->timestamp;
3328 if (unlikely((long long)(now - prev->timestamp) < 0))
3329 run_time = 0;
3330 } else
3331 run_time = NS_MAX_SLEEP_AVG;
3334 * Tasks charged proportionately less run_time at high sleep_avg to
3335 * delay them losing their interactive status
3337 run_time /= (CURRENT_BONUS(prev) ? : 1);
3339 spin_lock_irq(&rq->lock);
3341 switch_count = &prev->nivcsw;
3342 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3343 switch_count = &prev->nvcsw;
3344 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3345 unlikely(signal_pending(prev))))
3346 prev->state = TASK_RUNNING;
3347 else {
3348 if (prev->state == TASK_UNINTERRUPTIBLE)
3349 rq->nr_uninterruptible++;
3350 deactivate_task(prev, rq);
3354 cpu = smp_processor_id();
3355 if (unlikely(!rq->nr_running)) {
3356 idle_balance(cpu, rq);
3357 if (!rq->nr_running) {
3358 next = rq->idle;
3359 rq->expired_timestamp = 0;
3360 goto switch_tasks;
3364 array = rq->active;
3365 if (unlikely(!array->nr_active)) {
3367 * Switch the active and expired arrays.
3369 schedstat_inc(rq, sched_switch);
3370 rq->active = rq->expired;
3371 rq->expired = array;
3372 array = rq->active;
3373 rq->expired_timestamp = 0;
3374 rq->best_expired_prio = MAX_PRIO;
3377 idx = sched_find_first_bit(array->bitmap);
3378 queue = array->queue + idx;
3379 next = list_entry(queue->next, struct task_struct, run_list);
3381 if (!rt_task(next) && interactive_sleep(next->sleep_type)) {
3382 unsigned long long delta = now - next->timestamp;
3383 if (unlikely((long long)(now - next->timestamp) < 0))
3384 delta = 0;
3386 if (next->sleep_type == SLEEP_INTERACTIVE)
3387 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
3389 array = next->array;
3390 new_prio = recalc_task_prio(next, next->timestamp + delta);
3392 if (unlikely(next->prio != new_prio)) {
3393 dequeue_task(next, array);
3394 next->prio = new_prio;
3395 enqueue_task(next, array);
3398 next->sleep_type = SLEEP_NORMAL;
3399 switch_tasks:
3400 if (next == rq->idle)
3401 schedstat_inc(rq, sched_goidle);
3402 prefetch(next);
3403 prefetch_stack(next);
3404 clear_tsk_need_resched(prev);
3405 rcu_qsctr_inc(task_cpu(prev));
3407 update_cpu_clock(prev, rq, now);
3409 prev->sleep_avg -= run_time;
3410 if ((long)prev->sleep_avg <= 0)
3411 prev->sleep_avg = 0;
3412 prev->timestamp = prev->last_ran = now;
3414 sched_info_switch(prev, next);
3415 if (likely(prev != next)) {
3416 next->timestamp = next->last_ran = now;
3417 rq->nr_switches++;
3418 rq->curr = next;
3419 ++*switch_count;
3421 prepare_task_switch(rq, next);
3422 prev = context_switch(rq, prev, next);
3423 barrier();
3425 * this_rq must be evaluated again because prev may have moved
3426 * CPUs since it called schedule(), thus the 'rq' on its stack
3427 * frame will be invalid.
3429 finish_task_switch(this_rq(), prev);
3430 } else
3431 spin_unlock_irq(&rq->lock);
3433 prev = current;
3434 if (unlikely(reacquire_kernel_lock(prev) < 0))
3435 goto need_resched_nonpreemptible;
3436 preempt_enable_no_resched();
3437 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3438 goto need_resched;
3440 EXPORT_SYMBOL(schedule);
3442 #ifdef CONFIG_PREEMPT
3444 * this is the entry point to schedule() from in-kernel preemption
3445 * off of preempt_enable. Kernel preemptions off return from interrupt
3446 * occur there and call schedule directly.
3448 asmlinkage void __sched preempt_schedule(void)
3450 struct thread_info *ti = current_thread_info();
3451 #ifdef CONFIG_PREEMPT_BKL
3452 struct task_struct *task = current;
3453 int saved_lock_depth;
3454 #endif
3456 * If there is a non-zero preempt_count or interrupts are disabled,
3457 * we do not want to preempt the current task. Just return..
3459 if (likely(ti->preempt_count || irqs_disabled()))
3460 return;
3462 need_resched:
3463 add_preempt_count(PREEMPT_ACTIVE);
3465 * We keep the big kernel semaphore locked, but we
3466 * clear ->lock_depth so that schedule() doesnt
3467 * auto-release the semaphore:
3469 #ifdef CONFIG_PREEMPT_BKL
3470 saved_lock_depth = task->lock_depth;
3471 task->lock_depth = -1;
3472 #endif
3473 schedule();
3474 #ifdef CONFIG_PREEMPT_BKL
3475 task->lock_depth = saved_lock_depth;
3476 #endif
3477 sub_preempt_count(PREEMPT_ACTIVE);
3479 /* we could miss a preemption opportunity between schedule and now */
3480 barrier();
3481 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3482 goto need_resched;
3484 EXPORT_SYMBOL(preempt_schedule);
3487 * this is the entry point to schedule() from kernel preemption
3488 * off of irq context.
3489 * Note, that this is called and return with irqs disabled. This will
3490 * protect us against recursive calling from irq.
3492 asmlinkage void __sched preempt_schedule_irq(void)
3494 struct thread_info *ti = current_thread_info();
3495 #ifdef CONFIG_PREEMPT_BKL
3496 struct task_struct *task = current;
3497 int saved_lock_depth;
3498 #endif
3499 /* Catch callers which need to be fixed */
3500 BUG_ON(ti->preempt_count || !irqs_disabled());
3502 need_resched:
3503 add_preempt_count(PREEMPT_ACTIVE);
3505 * We keep the big kernel semaphore locked, but we
3506 * clear ->lock_depth so that schedule() doesnt
3507 * auto-release the semaphore:
3509 #ifdef CONFIG_PREEMPT_BKL
3510 saved_lock_depth = task->lock_depth;
3511 task->lock_depth = -1;
3512 #endif
3513 local_irq_enable();
3514 schedule();
3515 local_irq_disable();
3516 #ifdef CONFIG_PREEMPT_BKL
3517 task->lock_depth = saved_lock_depth;
3518 #endif
3519 sub_preempt_count(PREEMPT_ACTIVE);
3521 /* we could miss a preemption opportunity between schedule and now */
3522 barrier();
3523 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3524 goto need_resched;
3527 #endif /* CONFIG_PREEMPT */
3529 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3530 void *key)
3532 return try_to_wake_up(curr->private, mode, sync);
3534 EXPORT_SYMBOL(default_wake_function);
3537 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3538 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3539 * number) then we wake all the non-exclusive tasks and one exclusive task.
3541 * There are circumstances in which we can try to wake a task which has already
3542 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3543 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3545 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3546 int nr_exclusive, int sync, void *key)
3548 struct list_head *tmp, *next;
3550 list_for_each_safe(tmp, next, &q->task_list) {
3551 wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
3552 unsigned flags = curr->flags;
3554 if (curr->func(curr, mode, sync, key) &&
3555 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3556 break;
3561 * __wake_up - wake up threads blocked on a waitqueue.
3562 * @q: the waitqueue
3563 * @mode: which threads
3564 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3565 * @key: is directly passed to the wakeup function
3567 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3568 int nr_exclusive, void *key)
3570 unsigned long flags;
3572 spin_lock_irqsave(&q->lock, flags);
3573 __wake_up_common(q, mode, nr_exclusive, 0, key);
3574 spin_unlock_irqrestore(&q->lock, flags);
3576 EXPORT_SYMBOL(__wake_up);
3579 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3581 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3583 __wake_up_common(q, mode, 1, 0, NULL);
3587 * __wake_up_sync - wake up threads blocked on a waitqueue.
3588 * @q: the waitqueue
3589 * @mode: which threads
3590 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3592 * The sync wakeup differs that the waker knows that it will schedule
3593 * away soon, so while the target thread will be woken up, it will not
3594 * be migrated to another CPU - ie. the two threads are 'synchronized'
3595 * with each other. This can prevent needless bouncing between CPUs.
3597 * On UP it can prevent extra preemption.
3599 void fastcall
3600 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3602 unsigned long flags;
3603 int sync = 1;
3605 if (unlikely(!q))
3606 return;
3608 if (unlikely(!nr_exclusive))
3609 sync = 0;
3611 spin_lock_irqsave(&q->lock, flags);
3612 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3613 spin_unlock_irqrestore(&q->lock, flags);
3615 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3617 void fastcall complete(struct completion *x)
3619 unsigned long flags;
3621 spin_lock_irqsave(&x->wait.lock, flags);
3622 x->done++;
3623 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3624 1, 0, NULL);
3625 spin_unlock_irqrestore(&x->wait.lock, flags);
3627 EXPORT_SYMBOL(complete);
3629 void fastcall complete_all(struct completion *x)
3631 unsigned long flags;
3633 spin_lock_irqsave(&x->wait.lock, flags);
3634 x->done += UINT_MAX/2;
3635 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3636 0, 0, NULL);
3637 spin_unlock_irqrestore(&x->wait.lock, flags);
3639 EXPORT_SYMBOL(complete_all);
3641 void fastcall __sched wait_for_completion(struct completion *x)
3643 might_sleep();
3645 spin_lock_irq(&x->wait.lock);
3646 if (!x->done) {
3647 DECLARE_WAITQUEUE(wait, current);
3649 wait.flags |= WQ_FLAG_EXCLUSIVE;
3650 __add_wait_queue_tail(&x->wait, &wait);
3651 do {
3652 __set_current_state(TASK_UNINTERRUPTIBLE);
3653 spin_unlock_irq(&x->wait.lock);
3654 schedule();
3655 spin_lock_irq(&x->wait.lock);
3656 } while (!x->done);
3657 __remove_wait_queue(&x->wait, &wait);
3659 x->done--;
3660 spin_unlock_irq(&x->wait.lock);
3662 EXPORT_SYMBOL(wait_for_completion);
3664 unsigned long fastcall __sched
3665 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3667 might_sleep();
3669 spin_lock_irq(&x->wait.lock);
3670 if (!x->done) {
3671 DECLARE_WAITQUEUE(wait, current);
3673 wait.flags |= WQ_FLAG_EXCLUSIVE;
3674 __add_wait_queue_tail(&x->wait, &wait);
3675 do {
3676 __set_current_state(TASK_UNINTERRUPTIBLE);
3677 spin_unlock_irq(&x->wait.lock);
3678 timeout = schedule_timeout(timeout);
3679 spin_lock_irq(&x->wait.lock);
3680 if (!timeout) {
3681 __remove_wait_queue(&x->wait, &wait);
3682 goto out;
3684 } while (!x->done);
3685 __remove_wait_queue(&x->wait, &wait);
3687 x->done--;
3688 out:
3689 spin_unlock_irq(&x->wait.lock);
3690 return timeout;
3692 EXPORT_SYMBOL(wait_for_completion_timeout);
3694 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3696 int ret = 0;
3698 might_sleep();
3700 spin_lock_irq(&x->wait.lock);
3701 if (!x->done) {
3702 DECLARE_WAITQUEUE(wait, current);
3704 wait.flags |= WQ_FLAG_EXCLUSIVE;
3705 __add_wait_queue_tail(&x->wait, &wait);
3706 do {
3707 if (signal_pending(current)) {
3708 ret = -ERESTARTSYS;
3709 __remove_wait_queue(&x->wait, &wait);
3710 goto out;
3712 __set_current_state(TASK_INTERRUPTIBLE);
3713 spin_unlock_irq(&x->wait.lock);
3714 schedule();
3715 spin_lock_irq(&x->wait.lock);
3716 } while (!x->done);
3717 __remove_wait_queue(&x->wait, &wait);
3719 x->done--;
3720 out:
3721 spin_unlock_irq(&x->wait.lock);
3723 return ret;
3725 EXPORT_SYMBOL(wait_for_completion_interruptible);
3727 unsigned long fastcall __sched
3728 wait_for_completion_interruptible_timeout(struct completion *x,
3729 unsigned long timeout)
3731 might_sleep();
3733 spin_lock_irq(&x->wait.lock);
3734 if (!x->done) {
3735 DECLARE_WAITQUEUE(wait, current);
3737 wait.flags |= WQ_FLAG_EXCLUSIVE;
3738 __add_wait_queue_tail(&x->wait, &wait);
3739 do {
3740 if (signal_pending(current)) {
3741 timeout = -ERESTARTSYS;
3742 __remove_wait_queue(&x->wait, &wait);
3743 goto out;
3745 __set_current_state(TASK_INTERRUPTIBLE);
3746 spin_unlock_irq(&x->wait.lock);
3747 timeout = schedule_timeout(timeout);
3748 spin_lock_irq(&x->wait.lock);
3749 if (!timeout) {
3750 __remove_wait_queue(&x->wait, &wait);
3751 goto out;
3753 } while (!x->done);
3754 __remove_wait_queue(&x->wait, &wait);
3756 x->done--;
3757 out:
3758 spin_unlock_irq(&x->wait.lock);
3759 return timeout;
3761 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3764 #define SLEEP_ON_VAR \
3765 unsigned long flags; \
3766 wait_queue_t wait; \
3767 init_waitqueue_entry(&wait, current);
3769 #define SLEEP_ON_HEAD \
3770 spin_lock_irqsave(&q->lock,flags); \
3771 __add_wait_queue(q, &wait); \
3772 spin_unlock(&q->lock);
3774 #define SLEEP_ON_TAIL \
3775 spin_lock_irq(&q->lock); \
3776 __remove_wait_queue(q, &wait); \
3777 spin_unlock_irqrestore(&q->lock, flags);
3779 void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3781 SLEEP_ON_VAR
3783 current->state = TASK_INTERRUPTIBLE;
3785 SLEEP_ON_HEAD
3786 schedule();
3787 SLEEP_ON_TAIL
3789 EXPORT_SYMBOL(interruptible_sleep_on);
3791 long fastcall __sched
3792 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3794 SLEEP_ON_VAR
3796 current->state = TASK_INTERRUPTIBLE;
3798 SLEEP_ON_HEAD
3799 timeout = schedule_timeout(timeout);
3800 SLEEP_ON_TAIL
3802 return timeout;
3804 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3806 void fastcall __sched sleep_on(wait_queue_head_t *q)
3808 SLEEP_ON_VAR
3810 current->state = TASK_UNINTERRUPTIBLE;
3812 SLEEP_ON_HEAD
3813 schedule();
3814 SLEEP_ON_TAIL
3816 EXPORT_SYMBOL(sleep_on);
3818 long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3820 SLEEP_ON_VAR
3822 current->state = TASK_UNINTERRUPTIBLE;
3824 SLEEP_ON_HEAD
3825 timeout = schedule_timeout(timeout);
3826 SLEEP_ON_TAIL
3828 return timeout;
3831 EXPORT_SYMBOL(sleep_on_timeout);
3833 #ifdef CONFIG_RT_MUTEXES
3836 * rt_mutex_setprio - set the current priority of a task
3837 * @p: task
3838 * @prio: prio value (kernel-internal form)
3840 * This function changes the 'effective' priority of a task. It does
3841 * not touch ->normal_prio like __setscheduler().
3843 * Used by the rt_mutex code to implement priority inheritance logic.
3845 void rt_mutex_setprio(struct task_struct *p, int prio)
3847 struct prio_array *array;
3848 unsigned long flags;
3849 struct rq *rq;
3850 int oldprio;
3852 BUG_ON(prio < 0 || prio > MAX_PRIO);
3854 rq = task_rq_lock(p, &flags);
3856 oldprio = p->prio;
3857 array = p->array;
3858 if (array)
3859 dequeue_task(p, array);
3860 p->prio = prio;
3862 if (array) {
3864 * If changing to an RT priority then queue it
3865 * in the active array!
3867 if (rt_task(p))
3868 array = rq->active;
3869 enqueue_task(p, array);
3871 * Reschedule if we are currently running on this runqueue and
3872 * our priority decreased, or if we are not currently running on
3873 * this runqueue and our priority is higher than the current's
3875 if (task_running(rq, p)) {
3876 if (p->prio > oldprio)
3877 resched_task(rq->curr);
3878 } else if (TASK_PREEMPTS_CURR(p, rq))
3879 resched_task(rq->curr);
3881 task_rq_unlock(rq, &flags);
3884 #endif
3886 void set_user_nice(struct task_struct *p, long nice)
3888 struct prio_array *array;
3889 int old_prio, delta;
3890 unsigned long flags;
3891 struct rq *rq;
3893 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3894 return;
3896 * We have to be careful, if called from sys_setpriority(),
3897 * the task might be in the middle of scheduling on another CPU.
3899 rq = task_rq_lock(p, &flags);
3901 * The RT priorities are set via sched_setscheduler(), but we still
3902 * allow the 'normal' nice value to be set - but as expected
3903 * it wont have any effect on scheduling until the task is
3904 * not SCHED_NORMAL/SCHED_BATCH:
3906 if (has_rt_policy(p)) {
3907 p->static_prio = NICE_TO_PRIO(nice);
3908 goto out_unlock;
3910 array = p->array;
3911 if (array) {
3912 dequeue_task(p, array);
3913 dec_raw_weighted_load(rq, p);
3916 p->static_prio = NICE_TO_PRIO(nice);
3917 set_load_weight(p);
3918 old_prio = p->prio;
3919 p->prio = effective_prio(p);
3920 delta = p->prio - old_prio;
3922 if (array) {
3923 enqueue_task(p, array);
3924 inc_raw_weighted_load(rq, p);
3926 * If the task increased its priority or is running and
3927 * lowered its priority, then reschedule its CPU:
3929 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3930 resched_task(rq->curr);
3932 out_unlock:
3933 task_rq_unlock(rq, &flags);
3935 EXPORT_SYMBOL(set_user_nice);
3938 * can_nice - check if a task can reduce its nice value
3939 * @p: task
3940 * @nice: nice value
3942 int can_nice(const struct task_struct *p, const int nice)
3944 /* convert nice value [19,-20] to rlimit style value [1,40] */
3945 int nice_rlim = 20 - nice;
3947 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3948 capable(CAP_SYS_NICE));
3951 #ifdef __ARCH_WANT_SYS_NICE
3954 * sys_nice - change the priority of the current process.
3955 * @increment: priority increment
3957 * sys_setpriority is a more generic, but much slower function that
3958 * does similar things.
3960 asmlinkage long sys_nice(int increment)
3962 long nice, retval;
3965 * Setpriority might change our priority at the same moment.
3966 * We don't have to worry. Conceptually one call occurs first
3967 * and we have a single winner.
3969 if (increment < -40)
3970 increment = -40;
3971 if (increment > 40)
3972 increment = 40;
3974 nice = PRIO_TO_NICE(current->static_prio) + increment;
3975 if (nice < -20)
3976 nice = -20;
3977 if (nice > 19)
3978 nice = 19;
3980 if (increment < 0 && !can_nice(current, nice))
3981 return -EPERM;
3983 retval = security_task_setnice(current, nice);
3984 if (retval)
3985 return retval;
3987 set_user_nice(current, nice);
3988 return 0;
3991 #endif
3994 * task_prio - return the priority value of a given task.
3995 * @p: the task in question.
3997 * This is the priority value as seen by users in /proc.
3998 * RT tasks are offset by -200. Normal tasks are centered
3999 * around 0, value goes from -16 to +15.
4001 int task_prio(const struct task_struct *p)
4003 return p->prio - MAX_RT_PRIO;
4007 * task_nice - return the nice value of a given task.
4008 * @p: the task in question.
4010 int task_nice(const struct task_struct *p)
4012 return TASK_NICE(p);
4014 EXPORT_SYMBOL_GPL(task_nice);
4017 * idle_cpu - is a given cpu idle currently?
4018 * @cpu: the processor in question.
4020 int idle_cpu(int cpu)
4022 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4026 * idle_task - return the idle task for a given cpu.
4027 * @cpu: the processor in question.
4029 struct task_struct *idle_task(int cpu)
4031 return cpu_rq(cpu)->idle;
4035 * find_process_by_pid - find a process with a matching PID value.
4036 * @pid: the pid in question.
4038 static inline struct task_struct *find_process_by_pid(pid_t pid)
4040 return pid ? find_task_by_pid(pid) : current;
4043 /* Actually do priority change: must hold rq lock. */
4044 static void __setscheduler(struct task_struct *p, int policy, int prio)
4046 BUG_ON(p->array);
4048 p->policy = policy;
4049 p->rt_priority = prio;
4050 p->normal_prio = normal_prio(p);
4051 /* we are holding p->pi_lock already */
4052 p->prio = rt_mutex_getprio(p);
4054 * SCHED_BATCH tasks are treated as perpetual CPU hogs:
4056 if (policy == SCHED_BATCH)
4057 p->sleep_avg = 0;
4058 set_load_weight(p);
4062 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4063 * @p: the task in question.
4064 * @policy: new policy.
4065 * @param: structure containing the new RT priority.
4067 * NOTE that the task may be already dead.
4069 int sched_setscheduler(struct task_struct *p, int policy,
4070 struct sched_param *param)
4072 int retval, oldprio, oldpolicy = -1;
4073 struct prio_array *array;
4074 unsigned long flags;
4075 struct rq *rq;
4077 /* may grab non-irq protected spin_locks */
4078 BUG_ON(in_interrupt());
4079 recheck:
4080 /* double check policy once rq lock held */
4081 if (policy < 0)
4082 policy = oldpolicy = p->policy;
4083 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4084 policy != SCHED_NORMAL && policy != SCHED_BATCH)
4085 return -EINVAL;
4087 * Valid priorities for SCHED_FIFO and SCHED_RR are
4088 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
4089 * SCHED_BATCH is 0.
4091 if (param->sched_priority < 0 ||
4092 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4093 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4094 return -EINVAL;
4095 if (is_rt_policy(policy) != (param->sched_priority != 0))
4096 return -EINVAL;
4099 * Allow unprivileged RT tasks to decrease priority:
4101 if (!capable(CAP_SYS_NICE)) {
4102 if (is_rt_policy(policy)) {
4103 unsigned long rlim_rtprio;
4104 unsigned long flags;
4106 if (!lock_task_sighand(p, &flags))
4107 return -ESRCH;
4108 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4109 unlock_task_sighand(p, &flags);
4111 /* can't set/change the rt policy */
4112 if (policy != p->policy && !rlim_rtprio)
4113 return -EPERM;
4115 /* can't increase priority */
4116 if (param->sched_priority > p->rt_priority &&
4117 param->sched_priority > rlim_rtprio)
4118 return -EPERM;
4121 /* can't change other user's priorities */
4122 if ((current->euid != p->euid) &&
4123 (current->euid != p->uid))
4124 return -EPERM;
4127 retval = security_task_setscheduler(p, policy, param);
4128 if (retval)
4129 return retval;
4131 * make sure no PI-waiters arrive (or leave) while we are
4132 * changing the priority of the task:
4134 spin_lock_irqsave(&p->pi_lock, flags);
4136 * To be able to change p->policy safely, the apropriate
4137 * runqueue lock must be held.
4139 rq = __task_rq_lock(p);
4140 /* recheck policy now with rq lock held */
4141 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4142 policy = oldpolicy = -1;
4143 __task_rq_unlock(rq);
4144 spin_unlock_irqrestore(&p->pi_lock, flags);
4145 goto recheck;
4147 array = p->array;
4148 if (array)
4149 deactivate_task(p, rq);
4150 oldprio = p->prio;
4151 __setscheduler(p, policy, param->sched_priority);
4152 if (array) {
4153 __activate_task(p, rq);
4155 * Reschedule if we are currently running on this runqueue and
4156 * our priority decreased, or if we are not currently running on
4157 * this runqueue and our priority is higher than the current's
4159 if (task_running(rq, p)) {
4160 if (p->prio > oldprio)
4161 resched_task(rq->curr);
4162 } else if (TASK_PREEMPTS_CURR(p, rq))
4163 resched_task(rq->curr);
4165 __task_rq_unlock(rq);
4166 spin_unlock_irqrestore(&p->pi_lock, flags);
4168 rt_mutex_adjust_pi(p);
4170 return 0;
4172 EXPORT_SYMBOL_GPL(sched_setscheduler);
4174 static int
4175 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4177 struct sched_param lparam;
4178 struct task_struct *p;
4179 int retval;
4181 if (!param || pid < 0)
4182 return -EINVAL;
4183 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4184 return -EFAULT;
4186 rcu_read_lock();
4187 retval = -ESRCH;
4188 p = find_process_by_pid(pid);
4189 if (p != NULL)
4190 retval = sched_setscheduler(p, policy, &lparam);
4191 rcu_read_unlock();
4193 return retval;
4197 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4198 * @pid: the pid in question.
4199 * @policy: new policy.
4200 * @param: structure containing the new RT priority.
4202 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4203 struct sched_param __user *param)
4205 /* negative values for policy are not valid */
4206 if (policy < 0)
4207 return -EINVAL;
4209 return do_sched_setscheduler(pid, policy, param);
4213 * sys_sched_setparam - set/change the RT priority of a thread
4214 * @pid: the pid in question.
4215 * @param: structure containing the new RT priority.
4217 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4219 return do_sched_setscheduler(pid, -1, param);
4223 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4224 * @pid: the pid in question.
4226 asmlinkage long sys_sched_getscheduler(pid_t pid)
4228 struct task_struct *p;
4229 int retval = -EINVAL;
4231 if (pid < 0)
4232 goto out_nounlock;
4234 retval = -ESRCH;
4235 read_lock(&tasklist_lock);
4236 p = find_process_by_pid(pid);
4237 if (p) {
4238 retval = security_task_getscheduler(p);
4239 if (!retval)
4240 retval = p->policy;
4242 read_unlock(&tasklist_lock);
4244 out_nounlock:
4245 return retval;
4249 * sys_sched_getscheduler - get the RT priority of a thread
4250 * @pid: the pid in question.
4251 * @param: structure containing the RT priority.
4253 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4255 struct sched_param lp;
4256 struct task_struct *p;
4257 int retval = -EINVAL;
4259 if (!param || pid < 0)
4260 goto out_nounlock;
4262 read_lock(&tasklist_lock);
4263 p = find_process_by_pid(pid);
4264 retval = -ESRCH;
4265 if (!p)
4266 goto out_unlock;
4268 retval = security_task_getscheduler(p);
4269 if (retval)
4270 goto out_unlock;
4272 lp.sched_priority = p->rt_priority;
4273 read_unlock(&tasklist_lock);
4276 * This one might sleep, we cannot do it with a spinlock held ...
4278 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4280 out_nounlock:
4281 return retval;
4283 out_unlock:
4284 read_unlock(&tasklist_lock);
4285 return retval;
4288 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4290 cpumask_t cpus_allowed;
4291 struct task_struct *p;
4292 int retval;
4294 lock_cpu_hotplug();
4295 read_lock(&tasklist_lock);
4297 p = find_process_by_pid(pid);
4298 if (!p) {
4299 read_unlock(&tasklist_lock);
4300 unlock_cpu_hotplug();
4301 return -ESRCH;
4305 * It is not safe to call set_cpus_allowed with the
4306 * tasklist_lock held. We will bump the task_struct's
4307 * usage count and then drop tasklist_lock.
4309 get_task_struct(p);
4310 read_unlock(&tasklist_lock);
4312 retval = -EPERM;
4313 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4314 !capable(CAP_SYS_NICE))
4315 goto out_unlock;
4317 retval = security_task_setscheduler(p, 0, NULL);
4318 if (retval)
4319 goto out_unlock;
4321 cpus_allowed = cpuset_cpus_allowed(p);
4322 cpus_and(new_mask, new_mask, cpus_allowed);
4323 retval = set_cpus_allowed(p, new_mask);
4325 out_unlock:
4326 put_task_struct(p);
4327 unlock_cpu_hotplug();
4328 return retval;
4331 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4332 cpumask_t *new_mask)
4334 if (len < sizeof(cpumask_t)) {
4335 memset(new_mask, 0, sizeof(cpumask_t));
4336 } else if (len > sizeof(cpumask_t)) {
4337 len = sizeof(cpumask_t);
4339 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4343 * sys_sched_setaffinity - set the cpu affinity of a process
4344 * @pid: pid of the process
4345 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4346 * @user_mask_ptr: user-space pointer to the new cpu mask
4348 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4349 unsigned long __user *user_mask_ptr)
4351 cpumask_t new_mask;
4352 int retval;
4354 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4355 if (retval)
4356 return retval;
4358 return sched_setaffinity(pid, new_mask);
4362 * Represents all cpu's present in the system
4363 * In systems capable of hotplug, this map could dynamically grow
4364 * as new cpu's are detected in the system via any platform specific
4365 * method, such as ACPI for e.g.
4368 cpumask_t cpu_present_map __read_mostly;
4369 EXPORT_SYMBOL(cpu_present_map);
4371 #ifndef CONFIG_SMP
4372 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4373 EXPORT_SYMBOL(cpu_online_map);
4375 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4376 EXPORT_SYMBOL(cpu_possible_map);
4377 #endif
4379 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4381 struct task_struct *p;
4382 int retval;
4384 lock_cpu_hotplug();
4385 read_lock(&tasklist_lock);
4387 retval = -ESRCH;
4388 p = find_process_by_pid(pid);
4389 if (!p)
4390 goto out_unlock;
4392 retval = security_task_getscheduler(p);
4393 if (retval)
4394 goto out_unlock;
4396 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4398 out_unlock:
4399 read_unlock(&tasklist_lock);
4400 unlock_cpu_hotplug();
4401 if (retval)
4402 return retval;
4404 return 0;
4408 * sys_sched_getaffinity - get the cpu affinity of a process
4409 * @pid: pid of the process
4410 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4411 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4413 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4414 unsigned long __user *user_mask_ptr)
4416 int ret;
4417 cpumask_t mask;
4419 if (len < sizeof(cpumask_t))
4420 return -EINVAL;
4422 ret = sched_getaffinity(pid, &mask);
4423 if (ret < 0)
4424 return ret;
4426 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4427 return -EFAULT;
4429 return sizeof(cpumask_t);
4433 * sys_sched_yield - yield the current processor to other threads.
4435 * This function yields the current CPU by moving the calling thread
4436 * to the expired array. If there are no other threads running on this
4437 * CPU then this function will return.
4439 asmlinkage long sys_sched_yield(void)
4441 struct rq *rq = this_rq_lock();
4442 struct prio_array *array = current->array, *target = rq->expired;
4444 schedstat_inc(rq, yld_cnt);
4446 * We implement yielding by moving the task into the expired
4447 * queue.
4449 * (special rule: RT tasks will just roundrobin in the active
4450 * array.)
4452 if (rt_task(current))
4453 target = rq->active;
4455 if (array->nr_active == 1) {
4456 schedstat_inc(rq, yld_act_empty);
4457 if (!rq->expired->nr_active)
4458 schedstat_inc(rq, yld_both_empty);
4459 } else if (!rq->expired->nr_active)
4460 schedstat_inc(rq, yld_exp_empty);
4462 if (array != target) {
4463 dequeue_task(current, array);
4464 enqueue_task(current, target);
4465 } else
4467 * requeue_task is cheaper so perform that if possible.
4469 requeue_task(current, array);
4472 * Since we are going to call schedule() anyway, there's
4473 * no need to preempt or enable interrupts:
4475 __release(rq->lock);
4476 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4477 _raw_spin_unlock(&rq->lock);
4478 preempt_enable_no_resched();
4480 schedule();
4482 return 0;
4485 static void __cond_resched(void)
4487 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4488 __might_sleep(__FILE__, __LINE__);
4489 #endif
4491 * The BKS might be reacquired before we have dropped
4492 * PREEMPT_ACTIVE, which could trigger a second
4493 * cond_resched() call.
4495 do {
4496 add_preempt_count(PREEMPT_ACTIVE);
4497 schedule();
4498 sub_preempt_count(PREEMPT_ACTIVE);
4499 } while (need_resched());
4502 int __sched cond_resched(void)
4504 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4505 system_state == SYSTEM_RUNNING) {
4506 __cond_resched();
4507 return 1;
4509 return 0;
4511 EXPORT_SYMBOL(cond_resched);
4514 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4515 * call schedule, and on return reacquire the lock.
4517 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4518 * operations here to prevent schedule() from being called twice (once via
4519 * spin_unlock(), once by hand).
4521 int cond_resched_lock(spinlock_t *lock)
4523 int ret = 0;
4525 if (need_lockbreak(lock)) {
4526 spin_unlock(lock);
4527 cpu_relax();
4528 ret = 1;
4529 spin_lock(lock);
4531 if (need_resched() && system_state == SYSTEM_RUNNING) {
4532 spin_release(&lock->dep_map, 1, _THIS_IP_);
4533 _raw_spin_unlock(lock);
4534 preempt_enable_no_resched();
4535 __cond_resched();
4536 ret = 1;
4537 spin_lock(lock);
4539 return ret;
4541 EXPORT_SYMBOL(cond_resched_lock);
4543 int __sched cond_resched_softirq(void)
4545 BUG_ON(!in_softirq());
4547 if (need_resched() && system_state == SYSTEM_RUNNING) {
4548 raw_local_irq_disable();
4549 _local_bh_enable();
4550 raw_local_irq_enable();
4551 __cond_resched();
4552 local_bh_disable();
4553 return 1;
4555 return 0;
4557 EXPORT_SYMBOL(cond_resched_softirq);
4560 * yield - yield the current processor to other threads.
4562 * This is a shortcut for kernel-space yielding - it marks the
4563 * thread runnable and calls sys_sched_yield().
4565 void __sched yield(void)
4567 set_current_state(TASK_RUNNING);
4568 sys_sched_yield();
4570 EXPORT_SYMBOL(yield);
4573 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4574 * that process accounting knows that this is a task in IO wait state.
4576 * But don't do that if it is a deliberate, throttling IO wait (this task
4577 * has set its backing_dev_info: the queue against which it should throttle)
4579 void __sched io_schedule(void)
4581 struct rq *rq = &__raw_get_cpu_var(runqueues);
4583 delayacct_blkio_start();
4584 atomic_inc(&rq->nr_iowait);
4585 schedule();
4586 atomic_dec(&rq->nr_iowait);
4587 delayacct_blkio_end();
4589 EXPORT_SYMBOL(io_schedule);
4591 long __sched io_schedule_timeout(long timeout)
4593 struct rq *rq = &__raw_get_cpu_var(runqueues);
4594 long ret;
4596 delayacct_blkio_start();
4597 atomic_inc(&rq->nr_iowait);
4598 ret = schedule_timeout(timeout);
4599 atomic_dec(&rq->nr_iowait);
4600 delayacct_blkio_end();
4601 return ret;
4605 * sys_sched_get_priority_max - return maximum RT priority.
4606 * @policy: scheduling class.
4608 * this syscall returns the maximum rt_priority that can be used
4609 * by a given scheduling class.
4611 asmlinkage long sys_sched_get_priority_max(int policy)
4613 int ret = -EINVAL;
4615 switch (policy) {
4616 case SCHED_FIFO:
4617 case SCHED_RR:
4618 ret = MAX_USER_RT_PRIO-1;
4619 break;
4620 case SCHED_NORMAL:
4621 case SCHED_BATCH:
4622 ret = 0;
4623 break;
4625 return ret;
4629 * sys_sched_get_priority_min - return minimum RT priority.
4630 * @policy: scheduling class.
4632 * this syscall returns the minimum rt_priority that can be used
4633 * by a given scheduling class.
4635 asmlinkage long sys_sched_get_priority_min(int policy)
4637 int ret = -EINVAL;
4639 switch (policy) {
4640 case SCHED_FIFO:
4641 case SCHED_RR:
4642 ret = 1;
4643 break;
4644 case SCHED_NORMAL:
4645 case SCHED_BATCH:
4646 ret = 0;
4648 return ret;
4652 * sys_sched_rr_get_interval - return the default timeslice of a process.
4653 * @pid: pid of the process.
4654 * @interval: userspace pointer to the timeslice value.
4656 * this syscall writes the default timeslice value of a given process
4657 * into the user-space timespec buffer. A value of '0' means infinity.
4659 asmlinkage
4660 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4662 struct task_struct *p;
4663 int retval = -EINVAL;
4664 struct timespec t;
4666 if (pid < 0)
4667 goto out_nounlock;
4669 retval = -ESRCH;
4670 read_lock(&tasklist_lock);
4671 p = find_process_by_pid(pid);
4672 if (!p)
4673 goto out_unlock;
4675 retval = security_task_getscheduler(p);
4676 if (retval)
4677 goto out_unlock;
4679 jiffies_to_timespec(p->policy == SCHED_FIFO ?
4680 0 : task_timeslice(p), &t);
4681 read_unlock(&tasklist_lock);
4682 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4683 out_nounlock:
4684 return retval;
4685 out_unlock:
4686 read_unlock(&tasklist_lock);
4687 return retval;
4690 static inline struct task_struct *eldest_child(struct task_struct *p)
4692 if (list_empty(&p->children))
4693 return NULL;
4694 return list_entry(p->children.next,struct task_struct,sibling);
4697 static inline struct task_struct *older_sibling(struct task_struct *p)
4699 if (p->sibling.prev==&p->parent->children)
4700 return NULL;
4701 return list_entry(p->sibling.prev,struct task_struct,sibling);
4704 static inline struct task_struct *younger_sibling(struct task_struct *p)
4706 if (p->sibling.next==&p->parent->children)
4707 return NULL;
4708 return list_entry(p->sibling.next,struct task_struct,sibling);
4711 static const char stat_nam[] = "RSDTtZX";
4713 static void show_task(struct task_struct *p)
4715 struct task_struct *relative;
4716 unsigned long free = 0;
4717 unsigned state;
4719 state = p->state ? __ffs(p->state) + 1 : 0;
4720 printk("%-13.13s %c", p->comm,
4721 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4722 #if (BITS_PER_LONG == 32)
4723 if (state == TASK_RUNNING)
4724 printk(" running ");
4725 else
4726 printk(" %08lX ", thread_saved_pc(p));
4727 #else
4728 if (state == TASK_RUNNING)
4729 printk(" running task ");
4730 else
4731 printk(" %016lx ", thread_saved_pc(p));
4732 #endif
4733 #ifdef CONFIG_DEBUG_STACK_USAGE
4735 unsigned long *n = end_of_stack(p);
4736 while (!*n)
4737 n++;
4738 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4740 #endif
4741 printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4742 if ((relative = eldest_child(p)))
4743 printk("%5d ", relative->pid);
4744 else
4745 printk(" ");
4746 if ((relative = younger_sibling(p)))
4747 printk("%7d", relative->pid);
4748 else
4749 printk(" ");
4750 if ((relative = older_sibling(p)))
4751 printk(" %5d", relative->pid);
4752 else
4753 printk(" ");
4754 if (!p->mm)
4755 printk(" (L-TLB)\n");
4756 else
4757 printk(" (NOTLB)\n");
4759 if (state != TASK_RUNNING)
4760 show_stack(p, NULL);
4763 void show_state_filter(unsigned long state_filter)
4765 struct task_struct *g, *p;
4767 #if (BITS_PER_LONG == 32)
4768 printk("\n"
4769 " free sibling\n");
4770 printk(" task PC stack pid father child younger older\n");
4771 #else
4772 printk("\n"
4773 " free sibling\n");
4774 printk(" task PC stack pid father child younger older\n");
4775 #endif
4776 read_lock(&tasklist_lock);
4777 do_each_thread(g, p) {
4779 * reset the NMI-timeout, listing all files on a slow
4780 * console might take alot of time:
4782 touch_nmi_watchdog();
4783 if (p->state & state_filter)
4784 show_task(p);
4785 } while_each_thread(g, p);
4787 read_unlock(&tasklist_lock);
4789 * Only show locks if all tasks are dumped:
4791 if (state_filter == -1)
4792 debug_show_all_locks();
4796 * init_idle - set up an idle thread for a given CPU
4797 * @idle: task in question
4798 * @cpu: cpu the idle task belongs to
4800 * NOTE: this function does not set the idle thread's NEED_RESCHED
4801 * flag, to make booting more robust.
4803 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4805 struct rq *rq = cpu_rq(cpu);
4806 unsigned long flags;
4808 idle->timestamp = sched_clock();
4809 idle->sleep_avg = 0;
4810 idle->array = NULL;
4811 idle->prio = idle->normal_prio = MAX_PRIO;
4812 idle->state = TASK_RUNNING;
4813 idle->cpus_allowed = cpumask_of_cpu(cpu);
4814 set_task_cpu(idle, cpu);
4816 spin_lock_irqsave(&rq->lock, flags);
4817 rq->curr = rq->idle = idle;
4818 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4819 idle->oncpu = 1;
4820 #endif
4821 spin_unlock_irqrestore(&rq->lock, flags);
4823 /* Set the preempt count _outside_ the spinlocks! */
4824 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4825 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4826 #else
4827 task_thread_info(idle)->preempt_count = 0;
4828 #endif
4832 * In a system that switches off the HZ timer nohz_cpu_mask
4833 * indicates which cpus entered this state. This is used
4834 * in the rcu update to wait only for active cpus. For system
4835 * which do not switch off the HZ timer nohz_cpu_mask should
4836 * always be CPU_MASK_NONE.
4838 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4840 #ifdef CONFIG_SMP
4842 * This is how migration works:
4844 * 1) we queue a struct migration_req structure in the source CPU's
4845 * runqueue and wake up that CPU's migration thread.
4846 * 2) we down() the locked semaphore => thread blocks.
4847 * 3) migration thread wakes up (implicitly it forces the migrated
4848 * thread off the CPU)
4849 * 4) it gets the migration request and checks whether the migrated
4850 * task is still in the wrong runqueue.
4851 * 5) if it's in the wrong runqueue then the migration thread removes
4852 * it and puts it into the right queue.
4853 * 6) migration thread up()s the semaphore.
4854 * 7) we wake up and the migration is done.
4858 * Change a given task's CPU affinity. Migrate the thread to a
4859 * proper CPU and schedule it away if the CPU it's executing on
4860 * is removed from the allowed bitmask.
4862 * NOTE: the caller must have a valid reference to the task, the
4863 * task must not exit() & deallocate itself prematurely. The
4864 * call is not atomic; no spinlocks may be held.
4866 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
4868 struct migration_req req;
4869 unsigned long flags;
4870 struct rq *rq;
4871 int ret = 0;
4873 rq = task_rq_lock(p, &flags);
4874 if (!cpus_intersects(new_mask, cpu_online_map)) {
4875 ret = -EINVAL;
4876 goto out;
4879 p->cpus_allowed = new_mask;
4880 /* Can the task run on the task's current CPU? If so, we're done */
4881 if (cpu_isset(task_cpu(p), new_mask))
4882 goto out;
4884 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4885 /* Need help from migration thread: drop lock and wait. */
4886 task_rq_unlock(rq, &flags);
4887 wake_up_process(rq->migration_thread);
4888 wait_for_completion(&req.done);
4889 tlb_migrate_finish(p->mm);
4890 return 0;
4892 out:
4893 task_rq_unlock(rq, &flags);
4895 return ret;
4897 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4900 * Move (not current) task off this cpu, onto dest cpu. We're doing
4901 * this because either it can't run here any more (set_cpus_allowed()
4902 * away from this CPU, or CPU going down), or because we're
4903 * attempting to rebalance this task on exec (sched_exec).
4905 * So we race with normal scheduler movements, but that's OK, as long
4906 * as the task is no longer on this CPU.
4908 * Returns non-zero if task was successfully migrated.
4910 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4912 struct rq *rq_dest, *rq_src;
4913 int ret = 0;
4915 if (unlikely(cpu_is_offline(dest_cpu)))
4916 return ret;
4918 rq_src = cpu_rq(src_cpu);
4919 rq_dest = cpu_rq(dest_cpu);
4921 double_rq_lock(rq_src, rq_dest);
4922 /* Already moved. */
4923 if (task_cpu(p) != src_cpu)
4924 goto out;
4925 /* Affinity changed (again). */
4926 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4927 goto out;
4929 set_task_cpu(p, dest_cpu);
4930 if (p->array) {
4932 * Sync timestamp with rq_dest's before activating.
4933 * The same thing could be achieved by doing this step
4934 * afterwards, and pretending it was a local activate.
4935 * This way is cleaner and logically correct.
4937 p->timestamp = p->timestamp - rq_src->most_recent_timestamp
4938 + rq_dest->most_recent_timestamp;
4939 deactivate_task(p, rq_src);
4940 __activate_task(p, rq_dest);
4941 if (TASK_PREEMPTS_CURR(p, rq_dest))
4942 resched_task(rq_dest->curr);
4944 ret = 1;
4945 out:
4946 double_rq_unlock(rq_src, rq_dest);
4947 return ret;
4951 * migration_thread - this is a highprio system thread that performs
4952 * thread migration by bumping thread off CPU then 'pushing' onto
4953 * another runqueue.
4955 static int migration_thread(void *data)
4957 int cpu = (long)data;
4958 struct rq *rq;
4960 rq = cpu_rq(cpu);
4961 BUG_ON(rq->migration_thread != current);
4963 set_current_state(TASK_INTERRUPTIBLE);
4964 while (!kthread_should_stop()) {
4965 struct migration_req *req;
4966 struct list_head *head;
4968 try_to_freeze();
4970 spin_lock_irq(&rq->lock);
4972 if (cpu_is_offline(cpu)) {
4973 spin_unlock_irq(&rq->lock);
4974 goto wait_to_die;
4977 if (rq->active_balance) {
4978 active_load_balance(rq, cpu);
4979 rq->active_balance = 0;
4982 head = &rq->migration_queue;
4984 if (list_empty(head)) {
4985 spin_unlock_irq(&rq->lock);
4986 schedule();
4987 set_current_state(TASK_INTERRUPTIBLE);
4988 continue;
4990 req = list_entry(head->next, struct migration_req, list);
4991 list_del_init(head->next);
4993 spin_unlock(&rq->lock);
4994 __migrate_task(req->task, cpu, req->dest_cpu);
4995 local_irq_enable();
4997 complete(&req->done);
4999 __set_current_state(TASK_RUNNING);
5000 return 0;
5002 wait_to_die:
5003 /* Wait for kthread_stop */
5004 set_current_state(TASK_INTERRUPTIBLE);
5005 while (!kthread_should_stop()) {
5006 schedule();
5007 set_current_state(TASK_INTERRUPTIBLE);
5009 __set_current_state(TASK_RUNNING);
5010 return 0;
5013 #ifdef CONFIG_HOTPLUG_CPU
5015 * Figure out where task on dead CPU should go, use force if neccessary.
5016 * NOTE: interrupts should be disabled by the caller
5018 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5020 unsigned long flags;
5021 cpumask_t mask;
5022 struct rq *rq;
5023 int dest_cpu;
5025 restart:
5026 /* On same node? */
5027 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5028 cpus_and(mask, mask, p->cpus_allowed);
5029 dest_cpu = any_online_cpu(mask);
5031 /* On any allowed CPU? */
5032 if (dest_cpu == NR_CPUS)
5033 dest_cpu = any_online_cpu(p->cpus_allowed);
5035 /* No more Mr. Nice Guy. */
5036 if (dest_cpu == NR_CPUS) {
5037 rq = task_rq_lock(p, &flags);
5038 cpus_setall(p->cpus_allowed);
5039 dest_cpu = any_online_cpu(p->cpus_allowed);
5040 task_rq_unlock(rq, &flags);
5043 * Don't tell them about moving exiting tasks or
5044 * kernel threads (both mm NULL), since they never
5045 * leave kernel.
5047 if (p->mm && printk_ratelimit())
5048 printk(KERN_INFO "process %d (%s) no "
5049 "longer affine to cpu%d\n",
5050 p->pid, p->comm, dead_cpu);
5052 if (!__migrate_task(p, dead_cpu, dest_cpu))
5053 goto restart;
5057 * While a dead CPU has no uninterruptible tasks queued at this point,
5058 * it might still have a nonzero ->nr_uninterruptible counter, because
5059 * for performance reasons the counter is not stricly tracking tasks to
5060 * their home CPUs. So we just add the counter to another CPU's counter,
5061 * to keep the global sum constant after CPU-down:
5063 static void migrate_nr_uninterruptible(struct rq *rq_src)
5065 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5066 unsigned long flags;
5068 local_irq_save(flags);
5069 double_rq_lock(rq_src, rq_dest);
5070 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5071 rq_src->nr_uninterruptible = 0;
5072 double_rq_unlock(rq_src, rq_dest);
5073 local_irq_restore(flags);
5076 /* Run through task list and migrate tasks from the dead cpu. */
5077 static void migrate_live_tasks(int src_cpu)
5079 struct task_struct *p, *t;
5081 write_lock_irq(&tasklist_lock);
5083 do_each_thread(t, p) {
5084 if (p == current)
5085 continue;
5087 if (task_cpu(p) == src_cpu)
5088 move_task_off_dead_cpu(src_cpu, p);
5089 } while_each_thread(t, p);
5091 write_unlock_irq(&tasklist_lock);
5094 /* Schedules idle task to be the next runnable task on current CPU.
5095 * It does so by boosting its priority to highest possible and adding it to
5096 * the _front_ of the runqueue. Used by CPU offline code.
5098 void sched_idle_next(void)
5100 int this_cpu = smp_processor_id();
5101 struct rq *rq = cpu_rq(this_cpu);
5102 struct task_struct *p = rq->idle;
5103 unsigned long flags;
5105 /* cpu has to be offline */
5106 BUG_ON(cpu_online(this_cpu));
5109 * Strictly not necessary since rest of the CPUs are stopped by now
5110 * and interrupts disabled on the current cpu.
5112 spin_lock_irqsave(&rq->lock, flags);
5114 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
5116 /* Add idle task to the _front_ of its priority queue: */
5117 __activate_idle_task(p, rq);
5119 spin_unlock_irqrestore(&rq->lock, flags);
5123 * Ensures that the idle task is using init_mm right before its cpu goes
5124 * offline.
5126 void idle_task_exit(void)
5128 struct mm_struct *mm = current->active_mm;
5130 BUG_ON(cpu_online(smp_processor_id()));
5132 if (mm != &init_mm)
5133 switch_mm(mm, &init_mm, current);
5134 mmdrop(mm);
5137 /* called under rq->lock with disabled interrupts */
5138 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5140 struct rq *rq = cpu_rq(dead_cpu);
5142 /* Must be exiting, otherwise would be on tasklist. */
5143 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
5145 /* Cannot have done final schedule yet: would have vanished. */
5146 BUG_ON(p->state == TASK_DEAD);
5148 get_task_struct(p);
5151 * Drop lock around migration; if someone else moves it,
5152 * that's OK. No task can be added to this CPU, so iteration is
5153 * fine.
5154 * NOTE: interrupts should be left disabled --dev@
5156 spin_unlock(&rq->lock);
5157 move_task_off_dead_cpu(dead_cpu, p);
5158 spin_lock(&rq->lock);
5160 put_task_struct(p);
5163 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5164 static void migrate_dead_tasks(unsigned int dead_cpu)
5166 struct rq *rq = cpu_rq(dead_cpu);
5167 unsigned int arr, i;
5169 for (arr = 0; arr < 2; arr++) {
5170 for (i = 0; i < MAX_PRIO; i++) {
5171 struct list_head *list = &rq->arrays[arr].queue[i];
5173 while (!list_empty(list))
5174 migrate_dead(dead_cpu, list_entry(list->next,
5175 struct task_struct, run_list));
5179 #endif /* CONFIG_HOTPLUG_CPU */
5182 * migration_call - callback that gets triggered when a CPU is added.
5183 * Here we can start up the necessary migration thread for the new CPU.
5185 static int __cpuinit
5186 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5188 struct task_struct *p;
5189 int cpu = (long)hcpu;
5190 unsigned long flags;
5191 struct rq *rq;
5193 switch (action) {
5194 case CPU_UP_PREPARE:
5195 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
5196 if (IS_ERR(p))
5197 return NOTIFY_BAD;
5198 p->flags |= PF_NOFREEZE;
5199 kthread_bind(p, cpu);
5200 /* Must be high prio: stop_machine expects to yield to it. */
5201 rq = task_rq_lock(p, &flags);
5202 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
5203 task_rq_unlock(rq, &flags);
5204 cpu_rq(cpu)->migration_thread = p;
5205 break;
5207 case CPU_ONLINE:
5208 /* Strictly unneccessary, as first user will wake it. */
5209 wake_up_process(cpu_rq(cpu)->migration_thread);
5210 break;
5212 #ifdef CONFIG_HOTPLUG_CPU
5213 case CPU_UP_CANCELED:
5214 if (!cpu_rq(cpu)->migration_thread)
5215 break;
5216 /* Unbind it from offline cpu so it can run. Fall thru. */
5217 kthread_bind(cpu_rq(cpu)->migration_thread,
5218 any_online_cpu(cpu_online_map));
5219 kthread_stop(cpu_rq(cpu)->migration_thread);
5220 cpu_rq(cpu)->migration_thread = NULL;
5221 break;
5223 case CPU_DEAD:
5224 migrate_live_tasks(cpu);
5225 rq = cpu_rq(cpu);
5226 kthread_stop(rq->migration_thread);
5227 rq->migration_thread = NULL;
5228 /* Idle task back to normal (off runqueue, low prio) */
5229 rq = task_rq_lock(rq->idle, &flags);
5230 deactivate_task(rq->idle, rq);
5231 rq->idle->static_prio = MAX_PRIO;
5232 __setscheduler(rq->idle, SCHED_NORMAL, 0);
5233 migrate_dead_tasks(cpu);
5234 task_rq_unlock(rq, &flags);
5235 migrate_nr_uninterruptible(rq);
5236 BUG_ON(rq->nr_running != 0);
5238 /* No need to migrate the tasks: it was best-effort if
5239 * they didn't do lock_cpu_hotplug(). Just wake up
5240 * the requestors. */
5241 spin_lock_irq(&rq->lock);
5242 while (!list_empty(&rq->migration_queue)) {
5243 struct migration_req *req;
5245 req = list_entry(rq->migration_queue.next,
5246 struct migration_req, list);
5247 list_del_init(&req->list);
5248 complete(&req->done);
5250 spin_unlock_irq(&rq->lock);
5251 break;
5252 #endif
5254 return NOTIFY_OK;
5257 /* Register at highest priority so that task migration (migrate_all_tasks)
5258 * happens before everything else.
5260 static struct notifier_block __cpuinitdata migration_notifier = {
5261 .notifier_call = migration_call,
5262 .priority = 10
5265 int __init migration_init(void)
5267 void *cpu = (void *)(long)smp_processor_id();
5268 int err;
5270 /* Start one for the boot CPU: */
5271 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5272 BUG_ON(err == NOTIFY_BAD);
5273 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5274 register_cpu_notifier(&migration_notifier);
5276 return 0;
5278 #endif
5280 #ifdef CONFIG_SMP
5281 #undef SCHED_DOMAIN_DEBUG
5282 #ifdef SCHED_DOMAIN_DEBUG
5283 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5285 int level = 0;
5287 if (!sd) {
5288 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5289 return;
5292 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5294 do {
5295 int i;
5296 char str[NR_CPUS];
5297 struct sched_group *group = sd->groups;
5298 cpumask_t groupmask;
5300 cpumask_scnprintf(str, NR_CPUS, sd->span);
5301 cpus_clear(groupmask);
5303 printk(KERN_DEBUG);
5304 for (i = 0; i < level + 1; i++)
5305 printk(" ");
5306 printk("domain %d: ", level);
5308 if (!(sd->flags & SD_LOAD_BALANCE)) {
5309 printk("does not load-balance\n");
5310 if (sd->parent)
5311 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5312 " has parent");
5313 break;
5316 printk("span %s\n", str);
5318 if (!cpu_isset(cpu, sd->span))
5319 printk(KERN_ERR "ERROR: domain->span does not contain "
5320 "CPU%d\n", cpu);
5321 if (!cpu_isset(cpu, group->cpumask))
5322 printk(KERN_ERR "ERROR: domain->groups does not contain"
5323 " CPU%d\n", cpu);
5325 printk(KERN_DEBUG);
5326 for (i = 0; i < level + 2; i++)
5327 printk(" ");
5328 printk("groups:");
5329 do {
5330 if (!group) {
5331 printk("\n");
5332 printk(KERN_ERR "ERROR: group is NULL\n");
5333 break;
5336 if (!group->cpu_power) {
5337 printk("\n");
5338 printk(KERN_ERR "ERROR: domain->cpu_power not "
5339 "set\n");
5342 if (!cpus_weight(group->cpumask)) {
5343 printk("\n");
5344 printk(KERN_ERR "ERROR: empty group\n");
5347 if (cpus_intersects(groupmask, group->cpumask)) {
5348 printk("\n");
5349 printk(KERN_ERR "ERROR: repeated CPUs\n");
5352 cpus_or(groupmask, groupmask, group->cpumask);
5354 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5355 printk(" %s", str);
5357 group = group->next;
5358 } while (group != sd->groups);
5359 printk("\n");
5361 if (!cpus_equal(sd->span, groupmask))
5362 printk(KERN_ERR "ERROR: groups don't span "
5363 "domain->span\n");
5365 level++;
5366 sd = sd->parent;
5367 if (!sd)
5368 continue;
5370 if (!cpus_subset(groupmask, sd->span))
5371 printk(KERN_ERR "ERROR: parent span is not a superset "
5372 "of domain->span\n");
5374 } while (sd);
5376 #else
5377 # define sched_domain_debug(sd, cpu) do { } while (0)
5378 #endif
5380 static int sd_degenerate(struct sched_domain *sd)
5382 if (cpus_weight(sd->span) == 1)
5383 return 1;
5385 /* Following flags need at least 2 groups */
5386 if (sd->flags & (SD_LOAD_BALANCE |
5387 SD_BALANCE_NEWIDLE |
5388 SD_BALANCE_FORK |
5389 SD_BALANCE_EXEC |
5390 SD_SHARE_CPUPOWER |
5391 SD_SHARE_PKG_RESOURCES)) {
5392 if (sd->groups != sd->groups->next)
5393 return 0;
5396 /* Following flags don't use groups */
5397 if (sd->flags & (SD_WAKE_IDLE |
5398 SD_WAKE_AFFINE |
5399 SD_WAKE_BALANCE))
5400 return 0;
5402 return 1;
5405 static int
5406 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5408 unsigned long cflags = sd->flags, pflags = parent->flags;
5410 if (sd_degenerate(parent))
5411 return 1;
5413 if (!cpus_equal(sd->span, parent->span))
5414 return 0;
5416 /* Does parent contain flags not in child? */
5417 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5418 if (cflags & SD_WAKE_AFFINE)
5419 pflags &= ~SD_WAKE_BALANCE;
5420 /* Flags needing groups don't count if only 1 group in parent */
5421 if (parent->groups == parent->groups->next) {
5422 pflags &= ~(SD_LOAD_BALANCE |
5423 SD_BALANCE_NEWIDLE |
5424 SD_BALANCE_FORK |
5425 SD_BALANCE_EXEC |
5426 SD_SHARE_CPUPOWER |
5427 SD_SHARE_PKG_RESOURCES);
5429 if (~cflags & pflags)
5430 return 0;
5432 return 1;
5436 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5437 * hold the hotplug lock.
5439 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
5441 struct rq *rq = cpu_rq(cpu);
5442 struct sched_domain *tmp;
5444 /* Remove the sched domains which do not contribute to scheduling. */
5445 for (tmp = sd; tmp; tmp = tmp->parent) {
5446 struct sched_domain *parent = tmp->parent;
5447 if (!parent)
5448 break;
5449 if (sd_parent_degenerate(tmp, parent)) {
5450 tmp->parent = parent->parent;
5451 if (parent->parent)
5452 parent->parent->child = tmp;
5456 if (sd && sd_degenerate(sd)) {
5457 sd = sd->parent;
5458 if (sd)
5459 sd->child = NULL;
5462 sched_domain_debug(sd, cpu);
5464 rcu_assign_pointer(rq->sd, sd);
5467 /* cpus with isolated domains */
5468 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
5470 /* Setup the mask of cpus configured for isolated domains */
5471 static int __init isolated_cpu_setup(char *str)
5473 int ints[NR_CPUS], i;
5475 str = get_options(str, ARRAY_SIZE(ints), ints);
5476 cpus_clear(cpu_isolated_map);
5477 for (i = 1; i <= ints[0]; i++)
5478 if (ints[i] < NR_CPUS)
5479 cpu_set(ints[i], cpu_isolated_map);
5480 return 1;
5483 __setup ("isolcpus=", isolated_cpu_setup);
5486 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5487 * to a function which identifies what group(along with sched group) a CPU
5488 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5489 * (due to the fact that we keep track of groups covered with a cpumask_t).
5491 * init_sched_build_groups will build a circular linked list of the groups
5492 * covered by the given span, and will set each group's ->cpumask correctly,
5493 * and ->cpu_power to 0.
5495 static void
5496 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5497 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5498 struct sched_group **sg))
5500 struct sched_group *first = NULL, *last = NULL;
5501 cpumask_t covered = CPU_MASK_NONE;
5502 int i;
5504 for_each_cpu_mask(i, span) {
5505 struct sched_group *sg;
5506 int group = group_fn(i, cpu_map, &sg);
5507 int j;
5509 if (cpu_isset(i, covered))
5510 continue;
5512 sg->cpumask = CPU_MASK_NONE;
5513 sg->cpu_power = 0;
5515 for_each_cpu_mask(j, span) {
5516 if (group_fn(j, cpu_map, NULL) != group)
5517 continue;
5519 cpu_set(j, covered);
5520 cpu_set(j, sg->cpumask);
5522 if (!first)
5523 first = sg;
5524 if (last)
5525 last->next = sg;
5526 last = sg;
5528 last->next = first;
5531 #define SD_NODES_PER_DOMAIN 16
5534 * Self-tuning task migration cost measurement between source and target CPUs.
5536 * This is done by measuring the cost of manipulating buffers of varying
5537 * sizes. For a given buffer-size here are the steps that are taken:
5539 * 1) the source CPU reads+dirties a shared buffer
5540 * 2) the target CPU reads+dirties the same shared buffer
5542 * We measure how long they take, in the following 4 scenarios:
5544 * - source: CPU1, target: CPU2 | cost1
5545 * - source: CPU2, target: CPU1 | cost2
5546 * - source: CPU1, target: CPU1 | cost3
5547 * - source: CPU2, target: CPU2 | cost4
5549 * We then calculate the cost3+cost4-cost1-cost2 difference - this is
5550 * the cost of migration.
5552 * We then start off from a small buffer-size and iterate up to larger
5553 * buffer sizes, in 5% steps - measuring each buffer-size separately, and
5554 * doing a maximum search for the cost. (The maximum cost for a migration
5555 * normally occurs when the working set size is around the effective cache
5556 * size.)
5558 #define SEARCH_SCOPE 2
5559 #define MIN_CACHE_SIZE (64*1024U)
5560 #define DEFAULT_CACHE_SIZE (5*1024*1024U)
5561 #define ITERATIONS 1
5562 #define SIZE_THRESH 130
5563 #define COST_THRESH 130
5566 * The migration cost is a function of 'domain distance'. Domain
5567 * distance is the number of steps a CPU has to iterate down its
5568 * domain tree to share a domain with the other CPU. The farther
5569 * two CPUs are from each other, the larger the distance gets.
5571 * Note that we use the distance only to cache measurement results,
5572 * the distance value is not used numerically otherwise. When two
5573 * CPUs have the same distance it is assumed that the migration
5574 * cost is the same. (this is a simplification but quite practical)
5576 #define MAX_DOMAIN_DISTANCE 32
5578 static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] =
5579 { [ 0 ... MAX_DOMAIN_DISTANCE-1 ] =
5581 * Architectures may override the migration cost and thus avoid
5582 * boot-time calibration. Unit is nanoseconds. Mostly useful for
5583 * virtualized hardware:
5585 #ifdef CONFIG_DEFAULT_MIGRATION_COST
5586 CONFIG_DEFAULT_MIGRATION_COST
5587 #else
5588 -1LL
5589 #endif
5593 * Allow override of migration cost - in units of microseconds.
5594 * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
5595 * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
5597 static int __init migration_cost_setup(char *str)
5599 int ints[MAX_DOMAIN_DISTANCE+1], i;
5601 str = get_options(str, ARRAY_SIZE(ints), ints);
5603 printk("#ints: %d\n", ints[0]);
5604 for (i = 1; i <= ints[0]; i++) {
5605 migration_cost[i-1] = (unsigned long long)ints[i]*1000;
5606 printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]);
5608 return 1;
5611 __setup ("migration_cost=", migration_cost_setup);
5614 * Global multiplier (divisor) for migration-cutoff values,
5615 * in percentiles. E.g. use a value of 150 to get 1.5 times
5616 * longer cache-hot cutoff times.
5618 * (We scale it from 100 to 128 to long long handling easier.)
5621 #define MIGRATION_FACTOR_SCALE 128
5623 static unsigned int migration_factor = MIGRATION_FACTOR_SCALE;
5625 static int __init setup_migration_factor(char *str)
5627 get_option(&str, &migration_factor);
5628 migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100;
5629 return 1;
5632 __setup("migration_factor=", setup_migration_factor);
5635 * Estimated distance of two CPUs, measured via the number of domains
5636 * we have to pass for the two CPUs to be in the same span:
5638 static unsigned long domain_distance(int cpu1, int cpu2)
5640 unsigned long distance = 0;
5641 struct sched_domain *sd;
5643 for_each_domain(cpu1, sd) {
5644 WARN_ON(!cpu_isset(cpu1, sd->span));
5645 if (cpu_isset(cpu2, sd->span))
5646 return distance;
5647 distance++;
5649 if (distance >= MAX_DOMAIN_DISTANCE) {
5650 WARN_ON(1);
5651 distance = MAX_DOMAIN_DISTANCE-1;
5654 return distance;
5657 static unsigned int migration_debug;
5659 static int __init setup_migration_debug(char *str)
5661 get_option(&str, &migration_debug);
5662 return 1;
5665 __setup("migration_debug=", setup_migration_debug);
5668 * Maximum cache-size that the scheduler should try to measure.
5669 * Architectures with larger caches should tune this up during
5670 * bootup. Gets used in the domain-setup code (i.e. during SMP
5671 * bootup).
5673 unsigned int max_cache_size;
5675 static int __init setup_max_cache_size(char *str)
5677 get_option(&str, &max_cache_size);
5678 return 1;
5681 __setup("max_cache_size=", setup_max_cache_size);
5684 * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
5685 * is the operation that is timed, so we try to generate unpredictable
5686 * cachemisses that still end up filling the L2 cache:
5688 static void touch_cache(void *__cache, unsigned long __size)
5690 unsigned long size = __size / sizeof(long);
5691 unsigned long chunk1 = size / 3;
5692 unsigned long chunk2 = 2 * size / 3;
5693 unsigned long *cache = __cache;
5694 int i;
5696 for (i = 0; i < size/6; i += 8) {
5697 switch (i % 6) {
5698 case 0: cache[i]++;
5699 case 1: cache[size-1-i]++;
5700 case 2: cache[chunk1-i]++;
5701 case 3: cache[chunk1+i]++;
5702 case 4: cache[chunk2-i]++;
5703 case 5: cache[chunk2+i]++;
5709 * Measure the cache-cost of one task migration. Returns in units of nsec.
5711 static unsigned long long
5712 measure_one(void *cache, unsigned long size, int source, int target)
5714 cpumask_t mask, saved_mask;
5715 unsigned long long t0, t1, t2, t3, cost;
5717 saved_mask = current->cpus_allowed;
5720 * Flush source caches to RAM and invalidate them:
5722 sched_cacheflush();
5725 * Migrate to the source CPU:
5727 mask = cpumask_of_cpu(source);
5728 set_cpus_allowed(current, mask);
5729 WARN_ON(smp_processor_id() != source);
5732 * Dirty the working set:
5734 t0 = sched_clock();
5735 touch_cache(cache, size);
5736 t1 = sched_clock();
5739 * Migrate to the target CPU, dirty the L2 cache and access
5740 * the shared buffer. (which represents the working set
5741 * of a migrated task.)
5743 mask = cpumask_of_cpu(target);
5744 set_cpus_allowed(current, mask);
5745 WARN_ON(smp_processor_id() != target);
5747 t2 = sched_clock();
5748 touch_cache(cache, size);
5749 t3 = sched_clock();
5751 cost = t1-t0 + t3-t2;
5753 if (migration_debug >= 2)
5754 printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
5755 source, target, t1-t0, t1-t0, t3-t2, cost);
5757 * Flush target caches to RAM and invalidate them:
5759 sched_cacheflush();
5761 set_cpus_allowed(current, saved_mask);
5763 return cost;
5767 * Measure a series of task migrations and return the average
5768 * result. Since this code runs early during bootup the system
5769 * is 'undisturbed' and the average latency makes sense.
5771 * The algorithm in essence auto-detects the relevant cache-size,
5772 * so it will properly detect different cachesizes for different
5773 * cache-hierarchies, depending on how the CPUs are connected.
5775 * Architectures can prime the upper limit of the search range via
5776 * max_cache_size, otherwise the search range defaults to 20MB...64K.
5778 static unsigned long long
5779 measure_cost(int cpu1, int cpu2, void *cache, unsigned int size)
5781 unsigned long long cost1, cost2;
5782 int i;
5785 * Measure the migration cost of 'size' bytes, over an
5786 * average of 10 runs:
5788 * (We perturb the cache size by a small (0..4k)
5789 * value to compensate size/alignment related artifacts.
5790 * We also subtract the cost of the operation done on
5791 * the same CPU.)
5793 cost1 = 0;
5796 * dry run, to make sure we start off cache-cold on cpu1,
5797 * and to get any vmalloc pagefaults in advance:
5799 measure_one(cache, size, cpu1, cpu2);
5800 for (i = 0; i < ITERATIONS; i++)
5801 cost1 += measure_one(cache, size - i * 1024, cpu1, cpu2);
5803 measure_one(cache, size, cpu2, cpu1);
5804 for (i = 0; i < ITERATIONS; i++)
5805 cost1 += measure_one(cache, size - i * 1024, cpu2, cpu1);
5808 * (We measure the non-migrating [cached] cost on both
5809 * cpu1 and cpu2, to handle CPUs with different speeds)
5811 cost2 = 0;
5813 measure_one(cache, size, cpu1, cpu1);
5814 for (i = 0; i < ITERATIONS; i++)
5815 cost2 += measure_one(cache, size - i * 1024, cpu1, cpu1);
5817 measure_one(cache, size, cpu2, cpu2);
5818 for (i = 0; i < ITERATIONS; i++)
5819 cost2 += measure_one(cache, size - i * 1024, cpu2, cpu2);
5822 * Get the per-iteration migration cost:
5824 do_div(cost1, 2 * ITERATIONS);
5825 do_div(cost2, 2 * ITERATIONS);
5827 return cost1 - cost2;
5830 static unsigned long long measure_migration_cost(int cpu1, int cpu2)
5832 unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0;
5833 unsigned int max_size, size, size_found = 0;
5834 long long cost = 0, prev_cost;
5835 void *cache;
5838 * Search from max_cache_size*5 down to 64K - the real relevant
5839 * cachesize has to lie somewhere inbetween.
5841 if (max_cache_size) {
5842 max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE);
5843 size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE);
5844 } else {
5846 * Since we have no estimation about the relevant
5847 * search range
5849 max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE;
5850 size = MIN_CACHE_SIZE;
5853 if (!cpu_online(cpu1) || !cpu_online(cpu2)) {
5854 printk("cpu %d and %d not both online!\n", cpu1, cpu2);
5855 return 0;
5859 * Allocate the working set:
5861 cache = vmalloc(max_size);
5862 if (!cache) {
5863 printk("could not vmalloc %d bytes for cache!\n", 2 * max_size);
5864 return 1000000; /* return 1 msec on very small boxen */
5867 while (size <= max_size) {
5868 prev_cost = cost;
5869 cost = measure_cost(cpu1, cpu2, cache, size);
5872 * Update the max:
5874 if (cost > 0) {
5875 if (max_cost < cost) {
5876 max_cost = cost;
5877 size_found = size;
5881 * Calculate average fluctuation, we use this to prevent
5882 * noise from triggering an early break out of the loop:
5884 fluct = abs(cost - prev_cost);
5885 avg_fluct = (avg_fluct + fluct)/2;
5887 if (migration_debug)
5888 printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): "
5889 "(%8Ld %8Ld)\n",
5890 cpu1, cpu2, size,
5891 (long)cost / 1000000,
5892 ((long)cost / 100000) % 10,
5893 (long)max_cost / 1000000,
5894 ((long)max_cost / 100000) % 10,
5895 domain_distance(cpu1, cpu2),
5896 cost, avg_fluct);
5899 * If we iterated at least 20% past the previous maximum,
5900 * and the cost has dropped by more than 20% already,
5901 * (taking fluctuations into account) then we assume to
5902 * have found the maximum and break out of the loop early:
5904 if (size_found && (size*100 > size_found*SIZE_THRESH))
5905 if (cost+avg_fluct <= 0 ||
5906 max_cost*100 > (cost+avg_fluct)*COST_THRESH) {
5908 if (migration_debug)
5909 printk("-> found max.\n");
5910 break;
5913 * Increase the cachesize in 10% steps:
5915 size = size * 10 / 9;
5918 if (migration_debug)
5919 printk("[%d][%d] working set size found: %d, cost: %Ld\n",
5920 cpu1, cpu2, size_found, max_cost);
5922 vfree(cache);
5925 * A task is considered 'cache cold' if at least 2 times
5926 * the worst-case cost of migration has passed.
5928 * (this limit is only listened to if the load-balancing
5929 * situation is 'nice' - if there is a large imbalance we
5930 * ignore it for the sake of CPU utilization and
5931 * processing fairness.)
5933 return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE;
5936 static void calibrate_migration_costs(const cpumask_t *cpu_map)
5938 int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id();
5939 unsigned long j0, j1, distance, max_distance = 0;
5940 struct sched_domain *sd;
5942 j0 = jiffies;
5945 * First pass - calculate the cacheflush times:
5947 for_each_cpu_mask(cpu1, *cpu_map) {
5948 for_each_cpu_mask(cpu2, *cpu_map) {
5949 if (cpu1 == cpu2)
5950 continue;
5951 distance = domain_distance(cpu1, cpu2);
5952 max_distance = max(max_distance, distance);
5954 * No result cached yet?
5956 if (migration_cost[distance] == -1LL)
5957 migration_cost[distance] =
5958 measure_migration_cost(cpu1, cpu2);
5962 * Second pass - update the sched domain hierarchy with
5963 * the new cache-hot-time estimations:
5965 for_each_cpu_mask(cpu, *cpu_map) {
5966 distance = 0;
5967 for_each_domain(cpu, sd) {
5968 sd->cache_hot_time = migration_cost[distance];
5969 distance++;
5973 * Print the matrix:
5975 if (migration_debug)
5976 printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
5977 max_cache_size,
5978 #ifdef CONFIG_X86
5979 cpu_khz/1000
5980 #else
5982 #endif
5984 if (system_state == SYSTEM_BOOTING && num_online_cpus() > 1) {
5985 printk("migration_cost=");
5986 for (distance = 0; distance <= max_distance; distance++) {
5987 if (distance)
5988 printk(",");
5989 printk("%ld", (long)migration_cost[distance] / 1000);
5991 printk("\n");
5993 j1 = jiffies;
5994 if (migration_debug)
5995 printk("migration: %ld seconds\n", (j1-j0) / HZ);
5998 * Move back to the original CPU. NUMA-Q gets confused
5999 * if we migrate to another quad during bootup.
6001 if (raw_smp_processor_id() != orig_cpu) {
6002 cpumask_t mask = cpumask_of_cpu(orig_cpu),
6003 saved_mask = current->cpus_allowed;
6005 set_cpus_allowed(current, mask);
6006 set_cpus_allowed(current, saved_mask);
6010 #ifdef CONFIG_NUMA
6013 * find_next_best_node - find the next node to include in a sched_domain
6014 * @node: node whose sched_domain we're building
6015 * @used_nodes: nodes already in the sched_domain
6017 * Find the next node to include in a given scheduling domain. Simply
6018 * finds the closest node not already in the @used_nodes map.
6020 * Should use nodemask_t.
6022 static int find_next_best_node(int node, unsigned long *used_nodes)
6024 int i, n, val, min_val, best_node = 0;
6026 min_val = INT_MAX;
6028 for (i = 0; i < MAX_NUMNODES; i++) {
6029 /* Start at @node */
6030 n = (node + i) % MAX_NUMNODES;
6032 if (!nr_cpus_node(n))
6033 continue;
6035 /* Skip already used nodes */
6036 if (test_bit(n, used_nodes))
6037 continue;
6039 /* Simple min distance search */
6040 val = node_distance(node, n);
6042 if (val < min_val) {
6043 min_val = val;
6044 best_node = n;
6048 set_bit(best_node, used_nodes);
6049 return best_node;
6053 * sched_domain_node_span - get a cpumask for a node's sched_domain
6054 * @node: node whose cpumask we're constructing
6055 * @size: number of nodes to include in this span
6057 * Given a node, construct a good cpumask for its sched_domain to span. It
6058 * should be one that prevents unnecessary balancing, but also spreads tasks
6059 * out optimally.
6061 static cpumask_t sched_domain_node_span(int node)
6063 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
6064 cpumask_t span, nodemask;
6065 int i;
6067 cpus_clear(span);
6068 bitmap_zero(used_nodes, MAX_NUMNODES);
6070 nodemask = node_to_cpumask(node);
6071 cpus_or(span, span, nodemask);
6072 set_bit(node, used_nodes);
6074 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6075 int next_node = find_next_best_node(node, used_nodes);
6077 nodemask = node_to_cpumask(next_node);
6078 cpus_or(span, span, nodemask);
6081 return span;
6083 #endif
6085 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6088 * SMT sched-domains:
6090 #ifdef CONFIG_SCHED_SMT
6091 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6092 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6094 static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
6095 struct sched_group **sg)
6097 if (sg)
6098 *sg = &per_cpu(sched_group_cpus, cpu);
6099 return cpu;
6101 #endif
6104 * multi-core sched-domains:
6106 #ifdef CONFIG_SCHED_MC
6107 static DEFINE_PER_CPU(struct sched_domain, core_domains);
6108 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6109 #endif
6111 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6112 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
6113 struct sched_group **sg)
6115 int group;
6116 cpumask_t mask = cpu_sibling_map[cpu];
6117 cpus_and(mask, mask, *cpu_map);
6118 group = first_cpu(mask);
6119 if (sg)
6120 *sg = &per_cpu(sched_group_core, group);
6121 return group;
6123 #elif defined(CONFIG_SCHED_MC)
6124 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
6125 struct sched_group **sg)
6127 if (sg)
6128 *sg = &per_cpu(sched_group_core, cpu);
6129 return cpu;
6131 #endif
6133 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6134 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6136 static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
6137 struct sched_group **sg)
6139 int group;
6140 #ifdef CONFIG_SCHED_MC
6141 cpumask_t mask = cpu_coregroup_map(cpu);
6142 cpus_and(mask, mask, *cpu_map);
6143 group = first_cpu(mask);
6144 #elif defined(CONFIG_SCHED_SMT)
6145 cpumask_t mask = cpu_sibling_map[cpu];
6146 cpus_and(mask, mask, *cpu_map);
6147 group = first_cpu(mask);
6148 #else
6149 group = cpu;
6150 #endif
6151 if (sg)
6152 *sg = &per_cpu(sched_group_phys, group);
6153 return group;
6156 #ifdef CONFIG_NUMA
6158 * The init_sched_build_groups can't handle what we want to do with node
6159 * groups, so roll our own. Now each node has its own list of groups which
6160 * gets dynamically allocated.
6162 static DEFINE_PER_CPU(struct sched_domain, node_domains);
6163 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
6165 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6166 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6168 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6169 struct sched_group **sg)
6171 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
6172 int group;
6174 cpus_and(nodemask, nodemask, *cpu_map);
6175 group = first_cpu(nodemask);
6177 if (sg)
6178 *sg = &per_cpu(sched_group_allnodes, group);
6179 return group;
6182 static void init_numa_sched_groups_power(struct sched_group *group_head)
6184 struct sched_group *sg = group_head;
6185 int j;
6187 if (!sg)
6188 return;
6189 next_sg:
6190 for_each_cpu_mask(j, sg->cpumask) {
6191 struct sched_domain *sd;
6193 sd = &per_cpu(phys_domains, j);
6194 if (j != first_cpu(sd->groups->cpumask)) {
6196 * Only add "power" once for each
6197 * physical package.
6199 continue;
6202 sg->cpu_power += sd->groups->cpu_power;
6204 sg = sg->next;
6205 if (sg != group_head)
6206 goto next_sg;
6208 #endif
6210 #ifdef CONFIG_NUMA
6211 /* Free memory allocated for various sched_group structures */
6212 static void free_sched_groups(const cpumask_t *cpu_map)
6214 int cpu, i;
6216 for_each_cpu_mask(cpu, *cpu_map) {
6217 struct sched_group **sched_group_nodes
6218 = sched_group_nodes_bycpu[cpu];
6220 if (!sched_group_nodes)
6221 continue;
6223 for (i = 0; i < MAX_NUMNODES; i++) {
6224 cpumask_t nodemask = node_to_cpumask(i);
6225 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6227 cpus_and(nodemask, nodemask, *cpu_map);
6228 if (cpus_empty(nodemask))
6229 continue;
6231 if (sg == NULL)
6232 continue;
6233 sg = sg->next;
6234 next_sg:
6235 oldsg = sg;
6236 sg = sg->next;
6237 kfree(oldsg);
6238 if (oldsg != sched_group_nodes[i])
6239 goto next_sg;
6241 kfree(sched_group_nodes);
6242 sched_group_nodes_bycpu[cpu] = NULL;
6245 #else
6246 static void free_sched_groups(const cpumask_t *cpu_map)
6249 #endif
6252 * Initialize sched groups cpu_power.
6254 * cpu_power indicates the capacity of sched group, which is used while
6255 * distributing the load between different sched groups in a sched domain.
6256 * Typically cpu_power for all the groups in a sched domain will be same unless
6257 * there are asymmetries in the topology. If there are asymmetries, group
6258 * having more cpu_power will pickup more load compared to the group having
6259 * less cpu_power.
6261 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6262 * the maximum number of tasks a group can handle in the presence of other idle
6263 * or lightly loaded groups in the same sched domain.
6265 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6267 struct sched_domain *child;
6268 struct sched_group *group;
6270 WARN_ON(!sd || !sd->groups);
6272 if (cpu != first_cpu(sd->groups->cpumask))
6273 return;
6275 child = sd->child;
6278 * For perf policy, if the groups in child domain share resources
6279 * (for example cores sharing some portions of the cache hierarchy
6280 * or SMT), then set this domain groups cpu_power such that each group
6281 * can handle only one task, when there are other idle groups in the
6282 * same sched domain.
6284 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6285 (child->flags &
6286 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6287 sd->groups->cpu_power = SCHED_LOAD_SCALE;
6288 return;
6291 sd->groups->cpu_power = 0;
6294 * add cpu_power of each child group to this groups cpu_power
6296 group = child->groups;
6297 do {
6298 sd->groups->cpu_power += group->cpu_power;
6299 group = group->next;
6300 } while (group != child->groups);
6304 * Build sched domains for a given set of cpus and attach the sched domains
6305 * to the individual cpus
6307 static int build_sched_domains(const cpumask_t *cpu_map)
6309 int i;
6310 struct sched_domain *sd;
6311 #ifdef CONFIG_NUMA
6312 struct sched_group **sched_group_nodes = NULL;
6313 int sd_allnodes = 0;
6316 * Allocate the per-node list of sched groups
6318 sched_group_nodes = kzalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
6319 GFP_KERNEL);
6320 if (!sched_group_nodes) {
6321 printk(KERN_WARNING "Can not alloc sched group node list\n");
6322 return -ENOMEM;
6324 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6325 #endif
6328 * Set up domains for cpus specified by the cpu_map.
6330 for_each_cpu_mask(i, *cpu_map) {
6331 struct sched_domain *sd = NULL, *p;
6332 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6334 cpus_and(nodemask, nodemask, *cpu_map);
6336 #ifdef CONFIG_NUMA
6337 if (cpus_weight(*cpu_map)
6338 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6339 sd = &per_cpu(allnodes_domains, i);
6340 *sd = SD_ALLNODES_INIT;
6341 sd->span = *cpu_map;
6342 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6343 p = sd;
6344 sd_allnodes = 1;
6345 } else
6346 p = NULL;
6348 sd = &per_cpu(node_domains, i);
6349 *sd = SD_NODE_INIT;
6350 sd->span = sched_domain_node_span(cpu_to_node(i));
6351 sd->parent = p;
6352 if (p)
6353 p->child = sd;
6354 cpus_and(sd->span, sd->span, *cpu_map);
6355 #endif
6357 p = sd;
6358 sd = &per_cpu(phys_domains, i);
6359 *sd = SD_CPU_INIT;
6360 sd->span = nodemask;
6361 sd->parent = p;
6362 if (p)
6363 p->child = sd;
6364 cpu_to_phys_group(i, cpu_map, &sd->groups);
6366 #ifdef CONFIG_SCHED_MC
6367 p = sd;
6368 sd = &per_cpu(core_domains, i);
6369 *sd = SD_MC_INIT;
6370 sd->span = cpu_coregroup_map(i);
6371 cpus_and(sd->span, sd->span, *cpu_map);
6372 sd->parent = p;
6373 p->child = sd;
6374 cpu_to_core_group(i, cpu_map, &sd->groups);
6375 #endif
6377 #ifdef CONFIG_SCHED_SMT
6378 p = sd;
6379 sd = &per_cpu(cpu_domains, i);
6380 *sd = SD_SIBLING_INIT;
6381 sd->span = cpu_sibling_map[i];
6382 cpus_and(sd->span, sd->span, *cpu_map);
6383 sd->parent = p;
6384 p->child = sd;
6385 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6386 #endif
6389 #ifdef CONFIG_SCHED_SMT
6390 /* Set up CPU (sibling) groups */
6391 for_each_cpu_mask(i, *cpu_map) {
6392 cpumask_t this_sibling_map = cpu_sibling_map[i];
6393 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6394 if (i != first_cpu(this_sibling_map))
6395 continue;
6397 init_sched_build_groups(this_sibling_map, cpu_map, &cpu_to_cpu_group);
6399 #endif
6401 #ifdef CONFIG_SCHED_MC
6402 /* Set up multi-core groups */
6403 for_each_cpu_mask(i, *cpu_map) {
6404 cpumask_t this_core_map = cpu_coregroup_map(i);
6405 cpus_and(this_core_map, this_core_map, *cpu_map);
6406 if (i != first_cpu(this_core_map))
6407 continue;
6408 init_sched_build_groups(this_core_map, cpu_map, &cpu_to_core_group);
6410 #endif
6413 /* Set up physical groups */
6414 for (i = 0; i < MAX_NUMNODES; i++) {
6415 cpumask_t nodemask = node_to_cpumask(i);
6417 cpus_and(nodemask, nodemask, *cpu_map);
6418 if (cpus_empty(nodemask))
6419 continue;
6421 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6424 #ifdef CONFIG_NUMA
6425 /* Set up node groups */
6426 if (sd_allnodes)
6427 init_sched_build_groups(*cpu_map, cpu_map, &cpu_to_allnodes_group);
6429 for (i = 0; i < MAX_NUMNODES; i++) {
6430 /* Set up node groups */
6431 struct sched_group *sg, *prev;
6432 cpumask_t nodemask = node_to_cpumask(i);
6433 cpumask_t domainspan;
6434 cpumask_t covered = CPU_MASK_NONE;
6435 int j;
6437 cpus_and(nodemask, nodemask, *cpu_map);
6438 if (cpus_empty(nodemask)) {
6439 sched_group_nodes[i] = NULL;
6440 continue;
6443 domainspan = sched_domain_node_span(i);
6444 cpus_and(domainspan, domainspan, *cpu_map);
6446 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6447 if (!sg) {
6448 printk(KERN_WARNING "Can not alloc domain group for "
6449 "node %d\n", i);
6450 goto error;
6452 sched_group_nodes[i] = sg;
6453 for_each_cpu_mask(j, nodemask) {
6454 struct sched_domain *sd;
6455 sd = &per_cpu(node_domains, j);
6456 sd->groups = sg;
6458 sg->cpu_power = 0;
6459 sg->cpumask = nodemask;
6460 sg->next = sg;
6461 cpus_or(covered, covered, nodemask);
6462 prev = sg;
6464 for (j = 0; j < MAX_NUMNODES; j++) {
6465 cpumask_t tmp, notcovered;
6466 int n = (i + j) % MAX_NUMNODES;
6468 cpus_complement(notcovered, covered);
6469 cpus_and(tmp, notcovered, *cpu_map);
6470 cpus_and(tmp, tmp, domainspan);
6471 if (cpus_empty(tmp))
6472 break;
6474 nodemask = node_to_cpumask(n);
6475 cpus_and(tmp, tmp, nodemask);
6476 if (cpus_empty(tmp))
6477 continue;
6479 sg = kmalloc_node(sizeof(struct sched_group),
6480 GFP_KERNEL, i);
6481 if (!sg) {
6482 printk(KERN_WARNING
6483 "Can not alloc domain group for node %d\n", j);
6484 goto error;
6486 sg->cpu_power = 0;
6487 sg->cpumask = tmp;
6488 sg->next = prev->next;
6489 cpus_or(covered, covered, tmp);
6490 prev->next = sg;
6491 prev = sg;
6494 #endif
6496 /* Calculate CPU power for physical packages and nodes */
6497 #ifdef CONFIG_SCHED_SMT
6498 for_each_cpu_mask(i, *cpu_map) {
6499 sd = &per_cpu(cpu_domains, i);
6500 init_sched_groups_power(i, sd);
6502 #endif
6503 #ifdef CONFIG_SCHED_MC
6504 for_each_cpu_mask(i, *cpu_map) {
6505 sd = &per_cpu(core_domains, i);
6506 init_sched_groups_power(i, sd);
6508 #endif
6510 for_each_cpu_mask(i, *cpu_map) {
6511 sd = &per_cpu(phys_domains, i);
6512 init_sched_groups_power(i, sd);
6515 #ifdef CONFIG_NUMA
6516 for (i = 0; i < MAX_NUMNODES; i++)
6517 init_numa_sched_groups_power(sched_group_nodes[i]);
6519 if (sd_allnodes) {
6520 struct sched_group *sg;
6522 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6523 init_numa_sched_groups_power(sg);
6525 #endif
6527 /* Attach the domains */
6528 for_each_cpu_mask(i, *cpu_map) {
6529 struct sched_domain *sd;
6530 #ifdef CONFIG_SCHED_SMT
6531 sd = &per_cpu(cpu_domains, i);
6532 #elif defined(CONFIG_SCHED_MC)
6533 sd = &per_cpu(core_domains, i);
6534 #else
6535 sd = &per_cpu(phys_domains, i);
6536 #endif
6537 cpu_attach_domain(sd, i);
6540 * Tune cache-hot values:
6542 calibrate_migration_costs(cpu_map);
6544 return 0;
6546 #ifdef CONFIG_NUMA
6547 error:
6548 free_sched_groups(cpu_map);
6549 return -ENOMEM;
6550 #endif
6553 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6555 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6557 cpumask_t cpu_default_map;
6558 int err;
6561 * Setup mask for cpus without special case scheduling requirements.
6562 * For now this just excludes isolated cpus, but could be used to
6563 * exclude other special cases in the future.
6565 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6567 err = build_sched_domains(&cpu_default_map);
6569 return err;
6572 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6574 free_sched_groups(cpu_map);
6578 * Detach sched domains from a group of cpus specified in cpu_map
6579 * These cpus will now be attached to the NULL domain
6581 static void detach_destroy_domains(const cpumask_t *cpu_map)
6583 int i;
6585 for_each_cpu_mask(i, *cpu_map)
6586 cpu_attach_domain(NULL, i);
6587 synchronize_sched();
6588 arch_destroy_sched_domains(cpu_map);
6592 * Partition sched domains as specified by the cpumasks below.
6593 * This attaches all cpus from the cpumasks to the NULL domain,
6594 * waits for a RCU quiescent period, recalculates sched
6595 * domain information and then attaches them back to the
6596 * correct sched domains
6597 * Call with hotplug lock held
6599 int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6601 cpumask_t change_map;
6602 int err = 0;
6604 cpus_and(*partition1, *partition1, cpu_online_map);
6605 cpus_and(*partition2, *partition2, cpu_online_map);
6606 cpus_or(change_map, *partition1, *partition2);
6608 /* Detach sched domains from all of the affected cpus */
6609 detach_destroy_domains(&change_map);
6610 if (!cpus_empty(*partition1))
6611 err = build_sched_domains(partition1);
6612 if (!err && !cpus_empty(*partition2))
6613 err = build_sched_domains(partition2);
6615 return err;
6618 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6619 int arch_reinit_sched_domains(void)
6621 int err;
6623 lock_cpu_hotplug();
6624 detach_destroy_domains(&cpu_online_map);
6625 err = arch_init_sched_domains(&cpu_online_map);
6626 unlock_cpu_hotplug();
6628 return err;
6631 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6633 int ret;
6635 if (buf[0] != '0' && buf[0] != '1')
6636 return -EINVAL;
6638 if (smt)
6639 sched_smt_power_savings = (buf[0] == '1');
6640 else
6641 sched_mc_power_savings = (buf[0] == '1');
6643 ret = arch_reinit_sched_domains();
6645 return ret ? ret : count;
6648 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6650 int err = 0;
6652 #ifdef CONFIG_SCHED_SMT
6653 if (smt_capable())
6654 err = sysfs_create_file(&cls->kset.kobj,
6655 &attr_sched_smt_power_savings.attr);
6656 #endif
6657 #ifdef CONFIG_SCHED_MC
6658 if (!err && mc_capable())
6659 err = sysfs_create_file(&cls->kset.kobj,
6660 &attr_sched_mc_power_savings.attr);
6661 #endif
6662 return err;
6664 #endif
6666 #ifdef CONFIG_SCHED_MC
6667 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6669 return sprintf(page, "%u\n", sched_mc_power_savings);
6671 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6672 const char *buf, size_t count)
6674 return sched_power_savings_store(buf, count, 0);
6676 SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6677 sched_mc_power_savings_store);
6678 #endif
6680 #ifdef CONFIG_SCHED_SMT
6681 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6683 return sprintf(page, "%u\n", sched_smt_power_savings);
6685 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6686 const char *buf, size_t count)
6688 return sched_power_savings_store(buf, count, 1);
6690 SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6691 sched_smt_power_savings_store);
6692 #endif
6695 * Force a reinitialization of the sched domains hierarchy. The domains
6696 * and groups cannot be updated in place without racing with the balancing
6697 * code, so we temporarily attach all running cpus to the NULL domain
6698 * which will prevent rebalancing while the sched domains are recalculated.
6700 static int update_sched_domains(struct notifier_block *nfb,
6701 unsigned long action, void *hcpu)
6703 switch (action) {
6704 case CPU_UP_PREPARE:
6705 case CPU_DOWN_PREPARE:
6706 detach_destroy_domains(&cpu_online_map);
6707 return NOTIFY_OK;
6709 case CPU_UP_CANCELED:
6710 case CPU_DOWN_FAILED:
6711 case CPU_ONLINE:
6712 case CPU_DEAD:
6714 * Fall through and re-initialise the domains.
6716 break;
6717 default:
6718 return NOTIFY_DONE;
6721 /* The hotplug lock is already held by cpu_up/cpu_down */
6722 arch_init_sched_domains(&cpu_online_map);
6724 return NOTIFY_OK;
6727 void __init sched_init_smp(void)
6729 cpumask_t non_isolated_cpus;
6731 lock_cpu_hotplug();
6732 arch_init_sched_domains(&cpu_online_map);
6733 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6734 if (cpus_empty(non_isolated_cpus))
6735 cpu_set(smp_processor_id(), non_isolated_cpus);
6736 unlock_cpu_hotplug();
6737 /* XXX: Theoretical race here - CPU may be hotplugged now */
6738 hotcpu_notifier(update_sched_domains, 0);
6740 /* Move init over to a non-isolated CPU */
6741 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6742 BUG();
6744 #else
6745 void __init sched_init_smp(void)
6748 #endif /* CONFIG_SMP */
6750 int in_sched_functions(unsigned long addr)
6752 /* Linker adds these: start and end of __sched functions */
6753 extern char __sched_text_start[], __sched_text_end[];
6755 return in_lock_functions(addr) ||
6756 (addr >= (unsigned long)__sched_text_start
6757 && addr < (unsigned long)__sched_text_end);
6760 void __init sched_init(void)
6762 int i, j, k;
6764 for_each_possible_cpu(i) {
6765 struct prio_array *array;
6766 struct rq *rq;
6768 rq = cpu_rq(i);
6769 spin_lock_init(&rq->lock);
6770 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
6771 rq->nr_running = 0;
6772 rq->active = rq->arrays;
6773 rq->expired = rq->arrays + 1;
6774 rq->best_expired_prio = MAX_PRIO;
6776 #ifdef CONFIG_SMP
6777 rq->sd = NULL;
6778 for (j = 1; j < 3; j++)
6779 rq->cpu_load[j] = 0;
6780 rq->active_balance = 0;
6781 rq->push_cpu = 0;
6782 rq->cpu = i;
6783 rq->migration_thread = NULL;
6784 INIT_LIST_HEAD(&rq->migration_queue);
6785 #endif
6786 atomic_set(&rq->nr_iowait, 0);
6788 for (j = 0; j < 2; j++) {
6789 array = rq->arrays + j;
6790 for (k = 0; k < MAX_PRIO; k++) {
6791 INIT_LIST_HEAD(array->queue + k);
6792 __clear_bit(k, array->bitmap);
6794 // delimiter for bitsearch
6795 __set_bit(MAX_PRIO, array->bitmap);
6799 set_load_weight(&init_task);
6801 #ifdef CONFIG_SMP
6802 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6803 #endif
6805 #ifdef CONFIG_RT_MUTEXES
6806 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6807 #endif
6810 * The boot idle thread does lazy MMU switching as well:
6812 atomic_inc(&init_mm.mm_count);
6813 enter_lazy_tlb(&init_mm, current);
6816 * Make us the idle thread. Technically, schedule() should not be
6817 * called from this thread, however somewhere below it might be,
6818 * but because we are the idle thread, we just pick up running again
6819 * when this runqueue becomes "idle".
6821 init_idle(current, smp_processor_id());
6824 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6825 void __might_sleep(char *file, int line)
6827 #ifdef in_atomic
6828 static unsigned long prev_jiffy; /* ratelimiting */
6830 if ((in_atomic() || irqs_disabled()) &&
6831 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6832 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6833 return;
6834 prev_jiffy = jiffies;
6835 printk(KERN_ERR "BUG: sleeping function called from invalid"
6836 " context at %s:%d\n", file, line);
6837 printk("in_atomic():%d, irqs_disabled():%d\n",
6838 in_atomic(), irqs_disabled());
6839 debug_show_held_locks(current);
6840 if (irqs_disabled())
6841 print_irqtrace_events(current);
6842 dump_stack();
6844 #endif
6846 EXPORT_SYMBOL(__might_sleep);
6847 #endif
6849 #ifdef CONFIG_MAGIC_SYSRQ
6850 void normalize_rt_tasks(void)
6852 struct prio_array *array;
6853 struct task_struct *p;
6854 unsigned long flags;
6855 struct rq *rq;
6857 read_lock_irq(&tasklist_lock);
6858 for_each_process(p) {
6859 if (!rt_task(p))
6860 continue;
6862 spin_lock_irqsave(&p->pi_lock, flags);
6863 rq = __task_rq_lock(p);
6865 array = p->array;
6866 if (array)
6867 deactivate_task(p, task_rq(p));
6868 __setscheduler(p, SCHED_NORMAL, 0);
6869 if (array) {
6870 __activate_task(p, task_rq(p));
6871 resched_task(rq->curr);
6874 __task_rq_unlock(rq);
6875 spin_unlock_irqrestore(&p->pi_lock, flags);
6877 read_unlock_irq(&tasklist_lock);
6880 #endif /* CONFIG_MAGIC_SYSRQ */
6882 #ifdef CONFIG_IA64
6884 * These functions are only useful for the IA64 MCA handling.
6886 * They can only be called when the whole system has been
6887 * stopped - every CPU needs to be quiescent, and no scheduling
6888 * activity can take place. Using them for anything else would
6889 * be a serious bug, and as a result, they aren't even visible
6890 * under any other configuration.
6894 * curr_task - return the current task for a given cpu.
6895 * @cpu: the processor in question.
6897 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6899 struct task_struct *curr_task(int cpu)
6901 return cpu_curr(cpu);
6905 * set_curr_task - set the current task for a given cpu.
6906 * @cpu: the processor in question.
6907 * @p: the task pointer to set.
6909 * Description: This function must only be used when non-maskable interrupts
6910 * are serviced on a separate stack. It allows the architecture to switch the
6911 * notion of the current task on a cpu in a non-blocking manner. This function
6912 * must be called with all CPU's synchronized, and interrupts disabled, the
6913 * and caller must save the original value of the current task (see
6914 * curr_task() above) and restore that value before reenabling interrupts and
6915 * re-starting the system.
6917 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6919 void set_curr_task(int cpu, struct task_struct *p)
6921 cpu_curr(cpu) = p;
6924 #endif