2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
5 * Implements an efficient asynchronous io interface.
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
9 * See ../COPYING for licensing terms.
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/errno.h>
14 #include <linux/time.h>
15 #include <linux/aio_abi.h>
16 #include <linux/module.h>
17 #include <linux/syscalls.h>
21 #include <linux/sched.h>
23 #include <linux/file.h>
25 #include <linux/mman.h>
26 #include <linux/slab.h>
27 #include <linux/timer.h>
28 #include <linux/aio.h>
29 #include <linux/highmem.h>
30 #include <linux/workqueue.h>
31 #include <linux/security.h>
33 #include <asm/kmap_types.h>
34 #include <asm/uaccess.h>
35 #include <asm/mmu_context.h>
38 #define dprintk printk
40 #define dprintk(x...) do { ; } while (0)
43 long aio_run
= 0; /* for testing only */
44 long aio_wakeups
= 0; /* for testing only */
46 /*------ sysctl variables----*/
47 atomic_t aio_nr
= ATOMIC_INIT(0); /* current system wide number of aio requests */
48 unsigned aio_max_nr
= 0x10000; /* system wide maximum number of aio requests */
49 /*----end sysctl variables---*/
51 static kmem_cache_t
*kiocb_cachep
;
52 static kmem_cache_t
*kioctx_cachep
;
54 static struct workqueue_struct
*aio_wq
;
56 /* Used for rare fput completion. */
57 static void aio_fput_routine(void *);
58 static DECLARE_WORK(fput_work
, aio_fput_routine
, NULL
);
60 static DEFINE_SPINLOCK(fput_lock
);
63 static void aio_kick_handler(void *);
66 * Creates the slab caches used by the aio routines, panic on
67 * failure as this is done early during the boot sequence.
69 static int __init
aio_setup(void)
71 kiocb_cachep
= kmem_cache_create("kiocb", sizeof(struct kiocb
),
72 0, SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
, NULL
);
73 kioctx_cachep
= kmem_cache_create("kioctx", sizeof(struct kioctx
),
74 0, SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
, NULL
);
76 aio_wq
= create_workqueue("aio");
78 pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page
));
83 static void aio_free_ring(struct kioctx
*ctx
)
85 struct aio_ring_info
*info
= &ctx
->ring_info
;
88 for (i
=0; i
<info
->nr_pages
; i
++)
89 put_page(info
->ring_pages
[i
]);
91 if (info
->mmap_size
) {
92 down_write(&ctx
->mm
->mmap_sem
);
93 do_munmap(ctx
->mm
, info
->mmap_base
, info
->mmap_size
);
94 up_write(&ctx
->mm
->mmap_sem
);
97 if (info
->ring_pages
&& info
->ring_pages
!= info
->internal_pages
)
98 kfree(info
->ring_pages
);
99 info
->ring_pages
= NULL
;
103 static int aio_setup_ring(struct kioctx
*ctx
)
105 struct aio_ring
*ring
;
106 struct aio_ring_info
*info
= &ctx
->ring_info
;
107 unsigned nr_events
= ctx
->max_reqs
;
111 /* Compensate for the ring buffer's head/tail overlap entry */
112 nr_events
+= 2; /* 1 is required, 2 for good luck */
114 size
= sizeof(struct aio_ring
);
115 size
+= sizeof(struct io_event
) * nr_events
;
116 nr_pages
= (size
+ PAGE_SIZE
-1) >> PAGE_SHIFT
;
121 nr_events
= (PAGE_SIZE
* nr_pages
- sizeof(struct aio_ring
)) / sizeof(struct io_event
);
124 info
->ring_pages
= info
->internal_pages
;
125 if (nr_pages
> AIO_RING_PAGES
) {
126 info
->ring_pages
= kmalloc(sizeof(struct page
*) * nr_pages
, GFP_KERNEL
);
127 if (!info
->ring_pages
)
129 memset(info
->ring_pages
, 0, sizeof(struct page
*) * nr_pages
);
132 info
->mmap_size
= nr_pages
* PAGE_SIZE
;
133 dprintk("attempting mmap of %lu bytes\n", info
->mmap_size
);
134 down_write(&ctx
->mm
->mmap_sem
);
135 info
->mmap_base
= do_mmap(NULL
, 0, info
->mmap_size
,
136 PROT_READ
|PROT_WRITE
, MAP_ANON
|MAP_PRIVATE
,
138 if (IS_ERR((void *)info
->mmap_base
)) {
139 up_write(&ctx
->mm
->mmap_sem
);
140 printk("mmap err: %ld\n", -info
->mmap_base
);
146 dprintk("mmap address: 0x%08lx\n", info
->mmap_base
);
147 info
->nr_pages
= get_user_pages(current
, ctx
->mm
,
148 info
->mmap_base
, nr_pages
,
149 1, 0, info
->ring_pages
, NULL
);
150 up_write(&ctx
->mm
->mmap_sem
);
152 if (unlikely(info
->nr_pages
!= nr_pages
)) {
157 ctx
->user_id
= info
->mmap_base
;
159 info
->nr
= nr_events
; /* trusted copy */
161 ring
= kmap_atomic(info
->ring_pages
[0], KM_USER0
);
162 ring
->nr
= nr_events
; /* user copy */
163 ring
->id
= ctx
->user_id
;
164 ring
->head
= ring
->tail
= 0;
165 ring
->magic
= AIO_RING_MAGIC
;
166 ring
->compat_features
= AIO_RING_COMPAT_FEATURES
;
167 ring
->incompat_features
= AIO_RING_INCOMPAT_FEATURES
;
168 ring
->header_length
= sizeof(struct aio_ring
);
169 kunmap_atomic(ring
, KM_USER0
);
175 /* aio_ring_event: returns a pointer to the event at the given index from
176 * kmap_atomic(, km). Release the pointer with put_aio_ring_event();
178 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
179 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
180 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
182 #define aio_ring_event(info, nr, km) ({ \
183 unsigned pos = (nr) + AIO_EVENTS_OFFSET; \
184 struct io_event *__event; \
185 __event = kmap_atomic( \
186 (info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \
187 __event += pos % AIO_EVENTS_PER_PAGE; \
191 #define put_aio_ring_event(event, km) do { \
192 struct io_event *__event = (event); \
194 kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \
198 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
200 static struct kioctx
*ioctx_alloc(unsigned nr_events
)
202 struct mm_struct
*mm
;
205 /* Prevent overflows */
206 if ((nr_events
> (0x10000000U
/ sizeof(struct io_event
))) ||
207 (nr_events
> (0x10000000U
/ sizeof(struct kiocb
)))) {
208 pr_debug("ENOMEM: nr_events too high\n");
209 return ERR_PTR(-EINVAL
);
212 if (nr_events
> aio_max_nr
)
213 return ERR_PTR(-EAGAIN
);
215 ctx
= kmem_cache_alloc(kioctx_cachep
, GFP_KERNEL
);
217 return ERR_PTR(-ENOMEM
);
219 memset(ctx
, 0, sizeof(*ctx
));
220 ctx
->max_reqs
= nr_events
;
221 mm
= ctx
->mm
= current
->mm
;
222 atomic_inc(&mm
->mm_count
);
224 atomic_set(&ctx
->users
, 1);
225 spin_lock_init(&ctx
->ctx_lock
);
226 spin_lock_init(&ctx
->ring_info
.ring_lock
);
227 init_waitqueue_head(&ctx
->wait
);
229 INIT_LIST_HEAD(&ctx
->active_reqs
);
230 INIT_LIST_HEAD(&ctx
->run_list
);
231 INIT_WORK(&ctx
->wq
, aio_kick_handler
, ctx
);
233 if (aio_setup_ring(ctx
) < 0)
236 /* limit the number of system wide aios */
237 atomic_add(ctx
->max_reqs
, &aio_nr
); /* undone by __put_ioctx */
238 if (unlikely(atomic_read(&aio_nr
) > aio_max_nr
))
241 /* now link into global list. kludge. FIXME */
242 write_lock(&mm
->ioctx_list_lock
);
243 ctx
->next
= mm
->ioctx_list
;
244 mm
->ioctx_list
= ctx
;
245 write_unlock(&mm
->ioctx_list_lock
);
247 dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
248 ctx
, ctx
->user_id
, current
->mm
, ctx
->ring_info
.nr
);
252 atomic_sub(ctx
->max_reqs
, &aio_nr
);
253 ctx
->max_reqs
= 0; /* prevent __put_ioctx from sub'ing aio_nr */
255 return ERR_PTR(-EAGAIN
);
259 kmem_cache_free(kioctx_cachep
, ctx
);
260 ctx
= ERR_PTR(-ENOMEM
);
262 dprintk("aio: error allocating ioctx %p\n", ctx
);
267 * Cancels all outstanding aio requests on an aio context. Used
268 * when the processes owning a context have all exited to encourage
269 * the rapid destruction of the kioctx.
271 static void aio_cancel_all(struct kioctx
*ctx
)
273 int (*cancel
)(struct kiocb
*, struct io_event
*);
275 spin_lock_irq(&ctx
->ctx_lock
);
277 while (!list_empty(&ctx
->active_reqs
)) {
278 struct list_head
*pos
= ctx
->active_reqs
.next
;
279 struct kiocb
*iocb
= list_kiocb(pos
);
280 list_del_init(&iocb
->ki_list
);
281 cancel
= iocb
->ki_cancel
;
282 kiocbSetCancelled(iocb
);
285 spin_unlock_irq(&ctx
->ctx_lock
);
287 spin_lock_irq(&ctx
->ctx_lock
);
290 spin_unlock_irq(&ctx
->ctx_lock
);
293 void wait_for_all_aios(struct kioctx
*ctx
)
295 struct task_struct
*tsk
= current
;
296 DECLARE_WAITQUEUE(wait
, tsk
);
298 if (!ctx
->reqs_active
)
301 add_wait_queue(&ctx
->wait
, &wait
);
302 set_task_state(tsk
, TASK_UNINTERRUPTIBLE
);
303 while (ctx
->reqs_active
) {
305 set_task_state(tsk
, TASK_UNINTERRUPTIBLE
);
307 __set_task_state(tsk
, TASK_RUNNING
);
308 remove_wait_queue(&ctx
->wait
, &wait
);
311 /* wait_on_sync_kiocb:
312 * Waits on the given sync kiocb to complete.
314 ssize_t fastcall
wait_on_sync_kiocb(struct kiocb
*iocb
)
316 while (iocb
->ki_users
) {
317 set_current_state(TASK_UNINTERRUPTIBLE
);
322 __set_current_state(TASK_RUNNING
);
323 return iocb
->ki_user_data
;
326 /* exit_aio: called when the last user of mm goes away. At this point,
327 * there is no way for any new requests to be submited or any of the
328 * io_* syscalls to be called on the context. However, there may be
329 * outstanding requests which hold references to the context; as they
330 * go away, they will call put_ioctx and release any pinned memory
331 * associated with the request (held via struct page * references).
333 void fastcall
exit_aio(struct mm_struct
*mm
)
335 struct kioctx
*ctx
= mm
->ioctx_list
;
336 mm
->ioctx_list
= NULL
;
338 struct kioctx
*next
= ctx
->next
;
342 wait_for_all_aios(ctx
);
344 * this is an overkill, but ensures we don't leave
345 * the ctx on the aio_wq
347 flush_workqueue(aio_wq
);
349 if (1 != atomic_read(&ctx
->users
))
351 "exit_aio:ioctx still alive: %d %d %d\n",
352 atomic_read(&ctx
->users
), ctx
->dead
,
360 * Called when the last user of an aio context has gone away,
361 * and the struct needs to be freed.
363 void fastcall
__put_ioctx(struct kioctx
*ctx
)
365 unsigned nr_events
= ctx
->max_reqs
;
367 if (unlikely(ctx
->reqs_active
))
370 cancel_delayed_work(&ctx
->wq
);
371 flush_workqueue(aio_wq
);
375 pr_debug("__put_ioctx: freeing %p\n", ctx
);
376 kmem_cache_free(kioctx_cachep
, ctx
);
378 atomic_sub(nr_events
, &aio_nr
);
382 * Allocate a slot for an aio request. Increments the users count
383 * of the kioctx so that the kioctx stays around until all requests are
384 * complete. Returns NULL if no requests are free.
386 * Returns with kiocb->users set to 2. The io submit code path holds
387 * an extra reference while submitting the i/o.
388 * This prevents races between the aio code path referencing the
389 * req (after submitting it) and aio_complete() freeing the req.
391 static struct kiocb
*FASTCALL(__aio_get_req(struct kioctx
*ctx
));
392 static struct kiocb fastcall
*__aio_get_req(struct kioctx
*ctx
)
394 struct kiocb
*req
= NULL
;
395 struct aio_ring
*ring
;
398 req
= kmem_cache_alloc(kiocb_cachep
, GFP_KERNEL
);
402 req
->ki_flags
= 1 << KIF_LOCKED
;
406 req
->ki_cancel
= NULL
;
407 req
->ki_retry
= NULL
;
408 req
->ki_obj
.user
= NULL
;
411 INIT_LIST_HEAD(&req
->ki_run_list
);
413 /* Check if the completion queue has enough free space to
414 * accept an event from this io.
416 spin_lock_irq(&ctx
->ctx_lock
);
417 ring
= kmap_atomic(ctx
->ring_info
.ring_pages
[0], KM_USER0
);
418 if (ctx
->reqs_active
< aio_ring_avail(&ctx
->ring_info
, ring
)) {
419 list_add(&req
->ki_list
, &ctx
->active_reqs
);
424 kunmap_atomic(ring
, KM_USER0
);
425 spin_unlock_irq(&ctx
->ctx_lock
);
428 kmem_cache_free(kiocb_cachep
, req
);
435 static inline struct kiocb
*aio_get_req(struct kioctx
*ctx
)
438 /* Handle a potential starvation case -- should be exceedingly rare as
439 * requests will be stuck on fput_head only if the aio_fput_routine is
440 * delayed and the requests were the last user of the struct file.
442 req
= __aio_get_req(ctx
);
443 if (unlikely(NULL
== req
)) {
444 aio_fput_routine(NULL
);
445 req
= __aio_get_req(ctx
);
450 static inline void really_put_req(struct kioctx
*ctx
, struct kiocb
*req
)
456 req
->ki_obj
.user
= NULL
;
459 kmem_cache_free(kiocb_cachep
, req
);
462 if (unlikely(!ctx
->reqs_active
&& ctx
->dead
))
466 static void aio_fput_routine(void *data
)
468 spin_lock_irq(&fput_lock
);
469 while (likely(!list_empty(&fput_head
))) {
470 struct kiocb
*req
= list_kiocb(fput_head
.next
);
471 struct kioctx
*ctx
= req
->ki_ctx
;
473 list_del(&req
->ki_list
);
474 spin_unlock_irq(&fput_lock
);
476 /* Complete the fput */
477 __fput(req
->ki_filp
);
479 /* Link the iocb into the context's free list */
480 spin_lock_irq(&ctx
->ctx_lock
);
481 really_put_req(ctx
, req
);
482 spin_unlock_irq(&ctx
->ctx_lock
);
485 spin_lock_irq(&fput_lock
);
487 spin_unlock_irq(&fput_lock
);
491 * Returns true if this put was the last user of the request.
493 static int __aio_put_req(struct kioctx
*ctx
, struct kiocb
*req
)
495 dprintk(KERN_DEBUG
"aio_put(%p): f_count=%d\n",
496 req
, atomic_read(&req
->ki_filp
->f_count
));
499 if (unlikely(req
->ki_users
< 0))
501 if (likely(req
->ki_users
))
503 list_del(&req
->ki_list
); /* remove from active_reqs */
504 req
->ki_cancel
= NULL
;
505 req
->ki_retry
= NULL
;
507 /* Must be done under the lock to serialise against cancellation.
508 * Call this aio_fput as it duplicates fput via the fput_work.
510 if (unlikely(atomic_dec_and_test(&req
->ki_filp
->f_count
))) {
512 spin_lock(&fput_lock
);
513 list_add(&req
->ki_list
, &fput_head
);
514 spin_unlock(&fput_lock
);
515 queue_work(aio_wq
, &fput_work
);
517 really_put_req(ctx
, req
);
522 * Returns true if this put was the last user of the kiocb,
523 * false if the request is still in use.
525 int fastcall
aio_put_req(struct kiocb
*req
)
527 struct kioctx
*ctx
= req
->ki_ctx
;
529 spin_lock_irq(&ctx
->ctx_lock
);
530 ret
= __aio_put_req(ctx
, req
);
531 spin_unlock_irq(&ctx
->ctx_lock
);
537 /* Lookup an ioctx id. ioctx_list is lockless for reads.
538 * FIXME: this is O(n) and is only suitable for development.
540 struct kioctx
*lookup_ioctx(unsigned long ctx_id
)
542 struct kioctx
*ioctx
;
543 struct mm_struct
*mm
;
546 read_lock(&mm
->ioctx_list_lock
);
547 for (ioctx
= mm
->ioctx_list
; ioctx
; ioctx
= ioctx
->next
)
548 if (likely(ioctx
->user_id
== ctx_id
&& !ioctx
->dead
)) {
552 read_unlock(&mm
->ioctx_list_lock
);
559 * Makes the calling kernel thread take on the specified
561 * Called by the retry thread execute retries within the
562 * iocb issuer's mm context, so that copy_from/to_user
563 * operations work seamlessly for aio.
564 * (Note: this routine is intended to be called only
565 * from a kernel thread context)
567 static void use_mm(struct mm_struct
*mm
)
569 struct mm_struct
*active_mm
;
570 struct task_struct
*tsk
= current
;
573 tsk
->flags
|= PF_BORROWED_MM
;
574 active_mm
= tsk
->active_mm
;
575 atomic_inc(&mm
->mm_count
);
578 activate_mm(active_mm
, mm
);
586 * Reverses the effect of use_mm, i.e. releases the
587 * specified mm context which was earlier taken on
588 * by the calling kernel thread
589 * (Note: this routine is intended to be called only
590 * from a kernel thread context)
592 * Comments: Called with ctx->ctx_lock held. This nests
593 * task_lock instead ctx_lock.
595 void unuse_mm(struct mm_struct
*mm
)
597 struct task_struct
*tsk
= current
;
600 tsk
->flags
&= ~PF_BORROWED_MM
;
602 /* active_mm is still 'mm' */
603 enter_lazy_tlb(mm
, tsk
);
608 * Queue up a kiocb to be retried. Assumes that the kiocb
609 * has already been marked as kicked, and places it on
610 * the retry run list for the corresponding ioctx, if it
611 * isn't already queued. Returns 1 if it actually queued
612 * the kiocb (to tell the caller to activate the work
613 * queue to process it), or 0, if it found that it was
616 * Should be called with the spin lock iocb->ki_ctx->ctx_lock
619 static inline int __queue_kicked_iocb(struct kiocb
*iocb
)
621 struct kioctx
*ctx
= iocb
->ki_ctx
;
623 if (list_empty(&iocb
->ki_run_list
)) {
624 list_add_tail(&iocb
->ki_run_list
,
633 * This is the core aio execution routine. It is
634 * invoked both for initial i/o submission and
635 * subsequent retries via the aio_kick_handler.
636 * Expects to be invoked with iocb->ki_ctx->lock
637 * already held. The lock is released and reaquired
638 * as needed during processing.
640 * Calls the iocb retry method (already setup for the
641 * iocb on initial submission) for operation specific
642 * handling, but takes care of most of common retry
643 * execution details for a given iocb. The retry method
644 * needs to be non-blocking as far as possible, to avoid
645 * holding up other iocbs waiting to be serviced by the
646 * retry kernel thread.
648 * The trickier parts in this code have to do with
649 * ensuring that only one retry instance is in progress
650 * for a given iocb at any time. Providing that guarantee
651 * simplifies the coding of individual aio operations as
652 * it avoids various potential races.
654 static ssize_t
aio_run_iocb(struct kiocb
*iocb
)
656 struct kioctx
*ctx
= iocb
->ki_ctx
;
657 ssize_t (*retry
)(struct kiocb
*);
660 if (iocb
->ki_retried
++ > 1024*1024) {
661 printk("Maximal retry count. Bytes done %Zd\n",
662 iocb
->ki_nbytes
- iocb
->ki_left
);
666 if (!(iocb
->ki_retried
& 0xff)) {
667 pr_debug("%ld retry: %d of %d (kick %ld, Q %ld run %ld, wake %ld)\n",
669 iocb
->ki_nbytes
- iocb
->ki_left
, iocb
->ki_nbytes
,
670 iocb
->ki_kicked
, iocb
->ki_queued
, aio_run
, aio_wakeups
);
673 if (!(retry
= iocb
->ki_retry
)) {
674 printk("aio_run_iocb: iocb->ki_retry = NULL\n");
679 * We don't want the next retry iteration for this
680 * operation to start until this one has returned and
681 * updated the iocb state. However, wait_queue functions
682 * can trigger a kick_iocb from interrupt context in the
683 * meantime, indicating that data is available for the next
684 * iteration. We want to remember that and enable the
685 * next retry iteration _after_ we are through with
688 * So, in order to be able to register a "kick", but
689 * prevent it from being queued now, we clear the kick
690 * flag, but make the kick code *think* that the iocb is
691 * still on the run list until we are actually done.
692 * When we are done with this iteration, we check if
693 * the iocb was kicked in the meantime and if so, queue
697 kiocbClearKicked(iocb
);
700 * This is so that aio_complete knows it doesn't need to
701 * pull the iocb off the run list (We can't just call
702 * INIT_LIST_HEAD because we don't want a kick_iocb to
703 * queue this on the run list yet)
705 iocb
->ki_run_list
.next
= iocb
->ki_run_list
.prev
= NULL
;
706 spin_unlock_irq(&ctx
->ctx_lock
);
708 /* Quit retrying if the i/o has been cancelled */
709 if (kiocbIsCancelled(iocb
)) {
711 aio_complete(iocb
, ret
, 0);
712 /* must not access the iocb after this */
717 * Now we are all set to call the retry method in async
718 * context. By setting this thread's io_wait context
719 * to point to the wait queue entry inside the currently
720 * running iocb for the duration of the retry, we ensure
721 * that async notification wakeups are queued by the
722 * operation instead of blocking waits, and when notified,
723 * cause the iocb to be kicked for continuation (through
724 * the aio_wake_function callback).
726 BUG_ON(current
->io_wait
!= NULL
);
727 current
->io_wait
= &iocb
->ki_wait
;
729 current
->io_wait
= NULL
;
731 if (-EIOCBRETRY
!= ret
) {
732 if (-EIOCBQUEUED
!= ret
) {
733 BUG_ON(!list_empty(&iocb
->ki_wait
.task_list
));
734 aio_complete(iocb
, ret
, 0);
735 /* must not access the iocb after this */
739 * Issue an additional retry to avoid waiting forever if
740 * no waits were queued (e.g. in case of a short read).
742 if (list_empty(&iocb
->ki_wait
.task_list
))
743 kiocbSetKicked(iocb
);
746 spin_lock_irq(&ctx
->ctx_lock
);
748 if (-EIOCBRETRY
== ret
) {
750 * OK, now that we are done with this iteration
751 * and know that there is more left to go,
752 * this is where we let go so that a subsequent
753 * "kick" can start the next iteration
756 /* will make __queue_kicked_iocb succeed from here on */
757 INIT_LIST_HEAD(&iocb
->ki_run_list
);
758 /* we must queue the next iteration ourselves, if it
759 * has already been kicked */
760 if (kiocbIsKicked(iocb
)) {
761 __queue_kicked_iocb(iocb
);
769 * Process all pending retries queued on the ioctx
771 * Assumes it is operating within the aio issuer's mm
772 * context. Expects to be called with ctx->ctx_lock held
774 static int __aio_run_iocbs(struct kioctx
*ctx
)
780 list_splice_init(&ctx
->run_list
, &run_list
);
781 while (!list_empty(&run_list
)) {
782 iocb
= list_entry(run_list
.next
, struct kiocb
,
784 list_del(&iocb
->ki_run_list
);
786 * Hold an extra reference while retrying i/o.
788 iocb
->ki_users
++; /* grab extra reference */
790 if (__aio_put_req(ctx
, iocb
)) /* drop extra ref */
795 if (!list_empty(&ctx
->run_list
))
800 static void aio_queue_work(struct kioctx
* ctx
)
802 unsigned long timeout
;
804 * if someone is waiting, get the work started right
805 * away, otherwise, use a longer delay
808 if (waitqueue_active(&ctx
->wait
))
812 queue_delayed_work(aio_wq
, &ctx
->wq
, timeout
);
818 * Process all pending retries queued on the ioctx
820 * Assumes it is operating within the aio issuer's mm
823 static inline void aio_run_iocbs(struct kioctx
*ctx
)
827 spin_lock_irq(&ctx
->ctx_lock
);
829 requeue
= __aio_run_iocbs(ctx
);
830 spin_unlock_irq(&ctx
->ctx_lock
);
836 * just like aio_run_iocbs, but keeps running them until
837 * the list stays empty
839 static inline void aio_run_all_iocbs(struct kioctx
*ctx
)
841 spin_lock_irq(&ctx
->ctx_lock
);
842 while (__aio_run_iocbs(ctx
))
844 spin_unlock_irq(&ctx
->ctx_lock
);
849 * Work queue handler triggered to process pending
850 * retries on an ioctx. Takes on the aio issuer's
851 * mm context before running the iocbs, so that
852 * copy_xxx_user operates on the issuer's address
854 * Run on aiod's context.
856 static void aio_kick_handler(void *data
)
858 struct kioctx
*ctx
= data
;
859 mm_segment_t oldfs
= get_fs();
864 spin_lock_irq(&ctx
->ctx_lock
);
865 requeue
=__aio_run_iocbs(ctx
);
867 spin_unlock_irq(&ctx
->ctx_lock
);
870 * we're in a worker thread already, don't use queue_delayed_work,
873 queue_work(aio_wq
, &ctx
->wq
);
878 * Called by kick_iocb to queue the kiocb for retry
879 * and if required activate the aio work queue to process
882 void queue_kicked_iocb(struct kiocb
*iocb
)
884 struct kioctx
*ctx
= iocb
->ki_ctx
;
888 WARN_ON((!list_empty(&iocb
->ki_wait
.task_list
)));
890 spin_lock_irqsave(&ctx
->ctx_lock
, flags
);
891 run
= __queue_kicked_iocb(iocb
);
892 spin_unlock_irqrestore(&ctx
->ctx_lock
, flags
);
901 * Called typically from a wait queue callback context
902 * (aio_wake_function) to trigger a retry of the iocb.
903 * The retry is usually executed by aio workqueue
904 * threads (See aio_kick_handler).
906 void fastcall
kick_iocb(struct kiocb
*iocb
)
908 /* sync iocbs are easy: they can only ever be executing from a
910 if (is_sync_kiocb(iocb
)) {
911 kiocbSetKicked(iocb
);
912 wake_up_process(iocb
->ki_obj
.tsk
);
917 /* If its already kicked we shouldn't queue it again */
918 if (!kiocbTryKick(iocb
)) {
919 queue_kicked_iocb(iocb
);
922 EXPORT_SYMBOL(kick_iocb
);
925 * Called when the io request on the given iocb is complete.
926 * Returns true if this is the last user of the request. The
927 * only other user of the request can be the cancellation code.
929 int fastcall
aio_complete(struct kiocb
*iocb
, long res
, long res2
)
931 struct kioctx
*ctx
= iocb
->ki_ctx
;
932 struct aio_ring_info
*info
;
933 struct aio_ring
*ring
;
934 struct io_event
*event
;
939 /* Special case handling for sync iocbs: events go directly
940 * into the iocb for fast handling. Note that this will not
941 * work if we allow sync kiocbs to be cancelled. in which
942 * case the usage count checks will have to move under ctx_lock
945 if (is_sync_kiocb(iocb
)) {
948 iocb
->ki_user_data
= res
;
949 if (iocb
->ki_users
== 1) {
953 spin_lock_irq(&ctx
->ctx_lock
);
955 ret
= (0 == iocb
->ki_users
);
956 spin_unlock_irq(&ctx
->ctx_lock
);
958 /* sync iocbs put the task here for us */
959 wake_up_process(iocb
->ki_obj
.tsk
);
963 info
= &ctx
->ring_info
;
965 /* add a completion event to the ring buffer.
966 * must be done holding ctx->ctx_lock to prevent
967 * other code from messing with the tail
968 * pointer since we might be called from irq
971 spin_lock_irqsave(&ctx
->ctx_lock
, flags
);
973 if (iocb
->ki_run_list
.prev
&& !list_empty(&iocb
->ki_run_list
))
974 list_del_init(&iocb
->ki_run_list
);
977 * cancelled requests don't get events, userland was given one
978 * when the event got cancelled.
980 if (kiocbIsCancelled(iocb
))
983 ring
= kmap_atomic(info
->ring_pages
[0], KM_IRQ1
);
986 event
= aio_ring_event(info
, tail
, KM_IRQ0
);
987 tail
= (tail
+ 1) % info
->nr
;
989 event
->obj
= (u64
)(unsigned long)iocb
->ki_obj
.user
;
990 event
->data
= iocb
->ki_user_data
;
994 dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
995 ctx
, tail
, iocb
, iocb
->ki_obj
.user
, iocb
->ki_user_data
,
998 /* after flagging the request as done, we
999 * must never even look at it again
1001 smp_wmb(); /* make event visible before updating tail */
1006 put_aio_ring_event(event
, KM_IRQ0
);
1007 kunmap_atomic(ring
, KM_IRQ1
);
1009 pr_debug("added to ring %p at [%lu]\n", iocb
, tail
);
1011 pr_debug("%ld retries: %d of %d (kicked %ld, Q %ld run %ld wake %ld)\n",
1013 iocb
->ki_nbytes
- iocb
->ki_left
, iocb
->ki_nbytes
,
1014 iocb
->ki_kicked
, iocb
->ki_queued
, aio_run
, aio_wakeups
);
1016 /* everything turned out well, dispose of the aiocb. */
1017 ret
= __aio_put_req(ctx
, iocb
);
1019 spin_unlock_irqrestore(&ctx
->ctx_lock
, flags
);
1021 if (waitqueue_active(&ctx
->wait
))
1022 wake_up(&ctx
->wait
);
1031 * Pull an event off of the ioctx's event ring. Returns the number of
1032 * events fetched (0 or 1 ;-)
1033 * FIXME: make this use cmpxchg.
1034 * TODO: make the ringbuffer user mmap()able (requires FIXME).
1036 static int aio_read_evt(struct kioctx
*ioctx
, struct io_event
*ent
)
1038 struct aio_ring_info
*info
= &ioctx
->ring_info
;
1039 struct aio_ring
*ring
;
1043 ring
= kmap_atomic(info
->ring_pages
[0], KM_USER0
);
1044 dprintk("in aio_read_evt h%lu t%lu m%lu\n",
1045 (unsigned long)ring
->head
, (unsigned long)ring
->tail
,
1046 (unsigned long)ring
->nr
);
1048 if (ring
->head
== ring
->tail
)
1051 spin_lock(&info
->ring_lock
);
1053 head
= ring
->head
% info
->nr
;
1054 if (head
!= ring
->tail
) {
1055 struct io_event
*evp
= aio_ring_event(info
, head
, KM_USER1
);
1057 head
= (head
+ 1) % info
->nr
;
1058 smp_mb(); /* finish reading the event before updatng the head */
1061 put_aio_ring_event(evp
, KM_USER1
);
1063 spin_unlock(&info
->ring_lock
);
1066 kunmap_atomic(ring
, KM_USER0
);
1067 dprintk("leaving aio_read_evt: %d h%lu t%lu\n", ret
,
1068 (unsigned long)ring
->head
, (unsigned long)ring
->tail
);
1072 struct aio_timeout
{
1073 struct timer_list timer
;
1075 struct task_struct
*p
;
1078 static void timeout_func(unsigned long data
)
1080 struct aio_timeout
*to
= (struct aio_timeout
*)data
;
1083 wake_up_process(to
->p
);
1086 static inline void init_timeout(struct aio_timeout
*to
)
1088 init_timer(&to
->timer
);
1089 to
->timer
.data
= (unsigned long)to
;
1090 to
->timer
.function
= timeout_func
;
1095 static inline void set_timeout(long start_jiffies
, struct aio_timeout
*to
,
1096 const struct timespec
*ts
)
1098 to
->timer
.expires
= start_jiffies
+ timespec_to_jiffies(ts
);
1099 if (time_after(to
->timer
.expires
, jiffies
))
1100 add_timer(&to
->timer
);
1105 static inline void clear_timeout(struct aio_timeout
*to
)
1107 del_singleshot_timer_sync(&to
->timer
);
1110 static int read_events(struct kioctx
*ctx
,
1111 long min_nr
, long nr
,
1112 struct io_event __user
*event
,
1113 struct timespec __user
*timeout
)
1115 long start_jiffies
= jiffies
;
1116 struct task_struct
*tsk
= current
;
1117 DECLARE_WAITQUEUE(wait
, tsk
);
1120 struct io_event ent
;
1121 struct aio_timeout to
;
1122 int event_loop
= 0; /* testing only */
1125 /* needed to zero any padding within an entry (there shouldn't be
1126 * any, but C is fun!
1128 memset(&ent
, 0, sizeof(ent
));
1131 while (likely(i
< nr
)) {
1132 ret
= aio_read_evt(ctx
, &ent
);
1133 if (unlikely(ret
<= 0))
1136 dprintk("read event: %Lx %Lx %Lx %Lx\n",
1137 ent
.data
, ent
.obj
, ent
.res
, ent
.res2
);
1139 /* Could we split the check in two? */
1141 if (unlikely(copy_to_user(event
, &ent
, sizeof(ent
)))) {
1142 dprintk("aio: lost an event due to EFAULT.\n");
1147 /* Good, event copied to userland, update counts. */
1159 /* racey check, but it gets redone */
1160 if (!retry
&& unlikely(!list_empty(&ctx
->run_list
))) {
1162 aio_run_all_iocbs(ctx
);
1170 if (unlikely(copy_from_user(&ts
, timeout
, sizeof(ts
))))
1173 set_timeout(start_jiffies
, &to
, &ts
);
1176 while (likely(i
< nr
)) {
1177 add_wait_queue_exclusive(&ctx
->wait
, &wait
);
1179 set_task_state(tsk
, TASK_INTERRUPTIBLE
);
1180 ret
= aio_read_evt(ctx
, &ent
);
1186 if (to
.timed_out
) /* Only check after read evt */
1190 if (signal_pending(tsk
)) {
1194 /*ret = aio_read_evt(ctx, &ent);*/
1197 set_task_state(tsk
, TASK_RUNNING
);
1198 remove_wait_queue(&ctx
->wait
, &wait
);
1200 if (unlikely(ret
<= 0))
1204 if (unlikely(copy_to_user(event
, &ent
, sizeof(ent
)))) {
1205 dprintk("aio: lost an event due to EFAULT.\n");
1209 /* Good, event copied to userland, update counts. */
1217 pr_debug("event loop executed %d times\n", event_loop
);
1218 pr_debug("aio_run %ld\n", aio_run
);
1219 pr_debug("aio_wakeups %ld\n", aio_wakeups
);
1223 /* Take an ioctx and remove it from the list of ioctx's. Protects
1224 * against races with itself via ->dead.
1226 static void io_destroy(struct kioctx
*ioctx
)
1228 struct mm_struct
*mm
= current
->mm
;
1229 struct kioctx
**tmp
;
1232 /* delete the entry from the list is someone else hasn't already */
1233 write_lock(&mm
->ioctx_list_lock
);
1234 was_dead
= ioctx
->dead
;
1236 for (tmp
= &mm
->ioctx_list
; *tmp
&& *tmp
!= ioctx
;
1237 tmp
= &(*tmp
)->next
)
1241 write_unlock(&mm
->ioctx_list_lock
);
1243 dprintk("aio_release(%p)\n", ioctx
);
1244 if (likely(!was_dead
))
1245 put_ioctx(ioctx
); /* twice for the list */
1247 aio_cancel_all(ioctx
);
1248 wait_for_all_aios(ioctx
);
1249 put_ioctx(ioctx
); /* once for the lookup */
1253 * Create an aio_context capable of receiving at least nr_events.
1254 * ctxp must not point to an aio_context that already exists, and
1255 * must be initialized to 0 prior to the call. On successful
1256 * creation of the aio_context, *ctxp is filled in with the resulting
1257 * handle. May fail with -EINVAL if *ctxp is not initialized,
1258 * if the specified nr_events exceeds internal limits. May fail
1259 * with -EAGAIN if the specified nr_events exceeds the user's limit
1260 * of available events. May fail with -ENOMEM if insufficient kernel
1261 * resources are available. May fail with -EFAULT if an invalid
1262 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1265 asmlinkage
long sys_io_setup(unsigned nr_events
, aio_context_t __user
*ctxp
)
1267 struct kioctx
*ioctx
= NULL
;
1271 ret
= get_user(ctx
, ctxp
);
1276 if (unlikely(ctx
|| (int)nr_events
<= 0)) {
1277 pr_debug("EINVAL: io_setup: ctx or nr_events > max\n");
1281 ioctx
= ioctx_alloc(nr_events
);
1282 ret
= PTR_ERR(ioctx
);
1283 if (!IS_ERR(ioctx
)) {
1284 ret
= put_user(ioctx
->user_id
, ctxp
);
1288 get_ioctx(ioctx
); /* io_destroy() expects us to hold a ref */
1297 * Destroy the aio_context specified. May cancel any outstanding
1298 * AIOs and block on completion. Will fail with -ENOSYS if not
1299 * implemented. May fail with -EFAULT if the context pointed to
1302 asmlinkage
long sys_io_destroy(aio_context_t ctx
)
1304 struct kioctx
*ioctx
= lookup_ioctx(ctx
);
1305 if (likely(NULL
!= ioctx
)) {
1309 pr_debug("EINVAL: io_destroy: invalid context id\n");
1314 * Default retry method for aio_read (also used for first time submit)
1315 * Responsible for updating iocb state as retries progress
1317 static ssize_t
aio_pread(struct kiocb
*iocb
)
1319 struct file
*file
= iocb
->ki_filp
;
1320 struct address_space
*mapping
= file
->f_mapping
;
1321 struct inode
*inode
= mapping
->host
;
1324 ret
= file
->f_op
->aio_read(iocb
, iocb
->ki_buf
,
1325 iocb
->ki_left
, iocb
->ki_pos
);
1328 * Can't just depend on iocb->ki_left to determine
1329 * whether we are done. This may have been a short read.
1332 iocb
->ki_buf
+= ret
;
1333 iocb
->ki_left
-= ret
;
1335 * For pipes and sockets we return once we have
1336 * some data; for regular files we retry till we
1337 * complete the entire read or find that we can't
1338 * read any more data (e.g short reads).
1340 if (!S_ISFIFO(inode
->i_mode
) && !S_ISSOCK(inode
->i_mode
))
1344 /* This means we must have transferred all that we could */
1345 /* No need to retry anymore */
1346 if ((ret
== 0) || (iocb
->ki_left
== 0))
1347 ret
= iocb
->ki_nbytes
- iocb
->ki_left
;
1353 * Default retry method for aio_write (also used for first time submit)
1354 * Responsible for updating iocb state as retries progress
1356 static ssize_t
aio_pwrite(struct kiocb
*iocb
)
1358 struct file
*file
= iocb
->ki_filp
;
1361 ret
= file
->f_op
->aio_write(iocb
, iocb
->ki_buf
,
1362 iocb
->ki_left
, iocb
->ki_pos
);
1365 iocb
->ki_buf
+= ret
;
1366 iocb
->ki_left
-= ret
;
1371 /* This means we must have transferred all that we could */
1372 /* No need to retry anymore */
1373 if ((ret
== 0) || (iocb
->ki_left
== 0))
1374 ret
= iocb
->ki_nbytes
- iocb
->ki_left
;
1379 static ssize_t
aio_fdsync(struct kiocb
*iocb
)
1381 struct file
*file
= iocb
->ki_filp
;
1382 ssize_t ret
= -EINVAL
;
1384 if (file
->f_op
->aio_fsync
)
1385 ret
= file
->f_op
->aio_fsync(iocb
, 1);
1389 static ssize_t
aio_fsync(struct kiocb
*iocb
)
1391 struct file
*file
= iocb
->ki_filp
;
1392 ssize_t ret
= -EINVAL
;
1394 if (file
->f_op
->aio_fsync
)
1395 ret
= file
->f_op
->aio_fsync(iocb
, 0);
1401 * Performs the initial checks and aio retry method
1402 * setup for the kiocb at the time of io submission.
1404 ssize_t
aio_setup_iocb(struct kiocb
*kiocb
)
1406 struct file
*file
= kiocb
->ki_filp
;
1409 switch (kiocb
->ki_opcode
) {
1410 case IOCB_CMD_PREAD
:
1412 if (unlikely(!(file
->f_mode
& FMODE_READ
)))
1415 if (unlikely(!access_ok(VERIFY_WRITE
, kiocb
->ki_buf
,
1419 if (file
->f_op
->aio_read
)
1420 kiocb
->ki_retry
= aio_pread
;
1422 case IOCB_CMD_PWRITE
:
1424 if (unlikely(!(file
->f_mode
& FMODE_WRITE
)))
1427 if (unlikely(!access_ok(VERIFY_READ
, kiocb
->ki_buf
,
1431 if (file
->f_op
->aio_write
)
1432 kiocb
->ki_retry
= aio_pwrite
;
1434 case IOCB_CMD_FDSYNC
:
1436 if (file
->f_op
->aio_fsync
)
1437 kiocb
->ki_retry
= aio_fdsync
;
1439 case IOCB_CMD_FSYNC
:
1441 if (file
->f_op
->aio_fsync
)
1442 kiocb
->ki_retry
= aio_fsync
;
1445 dprintk("EINVAL: io_submit: no operation provided\n");
1449 if (!kiocb
->ki_retry
)
1456 * aio_wake_function:
1457 * wait queue callback function for aio notification,
1458 * Simply triggers a retry of the operation via kick_iocb.
1460 * This callback is specified in the wait queue entry in
1461 * a kiocb (current->io_wait points to this wait queue
1462 * entry when an aio operation executes; it is used
1463 * instead of a synchronous wait when an i/o blocking
1464 * condition is encountered during aio).
1467 * This routine is executed with the wait queue lock held.
1468 * Since kick_iocb acquires iocb->ctx->ctx_lock, it nests
1469 * the ioctx lock inside the wait queue lock. This is safe
1470 * because this callback isn't used for wait queues which
1471 * are nested inside ioctx lock (i.e. ctx->wait)
1473 int aio_wake_function(wait_queue_t
*wait
, unsigned mode
, int sync
, void *key
)
1475 struct kiocb
*iocb
= container_of(wait
, struct kiocb
, ki_wait
);
1477 list_del_init(&wait
->task_list
);
1482 int fastcall
io_submit_one(struct kioctx
*ctx
, struct iocb __user
*user_iocb
,
1489 /* enforce forwards compatibility on users */
1490 if (unlikely(iocb
->aio_reserved1
|| iocb
->aio_reserved2
||
1491 iocb
->aio_reserved3
)) {
1492 pr_debug("EINVAL: io_submit: reserve field set\n");
1496 /* prevent overflows */
1498 (iocb
->aio_buf
!= (unsigned long)iocb
->aio_buf
) ||
1499 (iocb
->aio_nbytes
!= (size_t)iocb
->aio_nbytes
) ||
1500 ((ssize_t
)iocb
->aio_nbytes
< 0)
1502 pr_debug("EINVAL: io_submit: overflow check\n");
1506 file
= fget(iocb
->aio_fildes
);
1507 if (unlikely(!file
))
1510 req
= aio_get_req(ctx
); /* returns with 2 references to req */
1511 if (unlikely(!req
)) {
1516 req
->ki_filp
= file
;
1517 iocb
->aio_key
= req
->ki_key
;
1518 ret
= put_user(iocb
->aio_key
, &user_iocb
->aio_key
);
1519 if (unlikely(ret
)) {
1520 dprintk("EFAULT: aio_key\n");
1524 req
->ki_obj
.user
= user_iocb
;
1525 req
->ki_user_data
= iocb
->aio_data
;
1526 req
->ki_pos
= iocb
->aio_offset
;
1528 req
->ki_buf
= (char __user
*)(unsigned long)iocb
->aio_buf
;
1529 req
->ki_left
= req
->ki_nbytes
= iocb
->aio_nbytes
;
1530 req
->ki_opcode
= iocb
->aio_lio_opcode
;
1531 init_waitqueue_func_entry(&req
->ki_wait
, aio_wake_function
);
1532 INIT_LIST_HEAD(&req
->ki_wait
.task_list
);
1533 req
->ki_run_list
.next
= req
->ki_run_list
.prev
= NULL
;
1534 req
->ki_retry
= NULL
;
1535 req
->ki_retried
= 0;
1541 ret
= aio_setup_iocb(req
);
1546 spin_lock_irq(&ctx
->ctx_lock
);
1547 list_add_tail(&req
->ki_run_list
, &ctx
->run_list
);
1548 /* drain the run list */
1549 while (__aio_run_iocbs(ctx
))
1551 spin_unlock_irq(&ctx
->ctx_lock
);
1552 aio_put_req(req
); /* drop extra ref to req */
1556 aio_put_req(req
); /* drop extra ref to req */
1557 aio_put_req(req
); /* drop i/o ref to req */
1562 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1563 * the number of iocbs queued. May return -EINVAL if the aio_context
1564 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1565 * *iocbpp[0] is not properly initialized, if the operation specified
1566 * is invalid for the file descriptor in the iocb. May fail with
1567 * -EFAULT if any of the data structures point to invalid data. May
1568 * fail with -EBADF if the file descriptor specified in the first
1569 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1570 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1571 * fail with -ENOSYS if not implemented.
1573 asmlinkage
long sys_io_submit(aio_context_t ctx_id
, long nr
,
1574 struct iocb __user
* __user
*iocbpp
)
1580 if (unlikely(nr
< 0))
1583 if (unlikely(!access_ok(VERIFY_READ
, iocbpp
, (nr
*sizeof(*iocbpp
)))))
1586 ctx
= lookup_ioctx(ctx_id
);
1587 if (unlikely(!ctx
)) {
1588 pr_debug("EINVAL: io_submit: invalid context id\n");
1593 * AKPM: should this return a partial result if some of the IOs were
1594 * successfully submitted?
1596 for (i
=0; i
<nr
; i
++) {
1597 struct iocb __user
*user_iocb
;
1600 if (unlikely(__get_user(user_iocb
, iocbpp
+ i
))) {
1605 if (unlikely(copy_from_user(&tmp
, user_iocb
, sizeof(tmp
)))) {
1610 ret
= io_submit_one(ctx
, user_iocb
, &tmp
);
1620 * Finds a given iocb for cancellation.
1621 * MUST be called with ctx->ctx_lock held.
1623 struct kiocb
*lookup_kiocb(struct kioctx
*ctx
, struct iocb __user
*iocb
, u32 key
)
1625 struct list_head
*pos
;
1626 /* TODO: use a hash or array, this sucks. */
1627 list_for_each(pos
, &ctx
->active_reqs
) {
1628 struct kiocb
*kiocb
= list_kiocb(pos
);
1629 if (kiocb
->ki_obj
.user
== iocb
&& kiocb
->ki_key
== key
)
1636 * Attempts to cancel an iocb previously passed to io_submit. If
1637 * the operation is successfully cancelled, the resulting event is
1638 * copied into the memory pointed to by result without being placed
1639 * into the completion queue and 0 is returned. May fail with
1640 * -EFAULT if any of the data structures pointed to are invalid.
1641 * May fail with -EINVAL if aio_context specified by ctx_id is
1642 * invalid. May fail with -EAGAIN if the iocb specified was not
1643 * cancelled. Will fail with -ENOSYS if not implemented.
1645 asmlinkage
long sys_io_cancel(aio_context_t ctx_id
, struct iocb __user
*iocb
,
1646 struct io_event __user
*result
)
1648 int (*cancel
)(struct kiocb
*iocb
, struct io_event
*res
);
1650 struct kiocb
*kiocb
;
1654 ret
= get_user(key
, &iocb
->aio_key
);
1658 ctx
= lookup_ioctx(ctx_id
);
1662 spin_lock_irq(&ctx
->ctx_lock
);
1664 kiocb
= lookup_kiocb(ctx
, iocb
, key
);
1665 if (kiocb
&& kiocb
->ki_cancel
) {
1666 cancel
= kiocb
->ki_cancel
;
1668 kiocbSetCancelled(kiocb
);
1671 spin_unlock_irq(&ctx
->ctx_lock
);
1673 if (NULL
!= cancel
) {
1674 struct io_event tmp
;
1675 pr_debug("calling cancel\n");
1676 memset(&tmp
, 0, sizeof(tmp
));
1677 tmp
.obj
= (u64
)(unsigned long)kiocb
->ki_obj
.user
;
1678 tmp
.data
= kiocb
->ki_user_data
;
1679 ret
= cancel(kiocb
, &tmp
);
1681 /* Cancellation succeeded -- copy the result
1682 * into the user's buffer.
1684 if (copy_to_user(result
, &tmp
, sizeof(tmp
)))
1688 printk(KERN_DEBUG
"iocb has no cancel operation\n");
1696 * Attempts to read at least min_nr events and up to nr events from
1697 * the completion queue for the aio_context specified by ctx_id. May
1698 * fail with -EINVAL if ctx_id is invalid, if min_nr is out of range,
1699 * if nr is out of range, if when is out of range. May fail with
1700 * -EFAULT if any of the memory specified to is invalid. May return
1701 * 0 or < min_nr if no events are available and the timeout specified
1702 * by when has elapsed, where when == NULL specifies an infinite
1703 * timeout. Note that the timeout pointed to by when is relative and
1704 * will be updated if not NULL and the operation blocks. Will fail
1705 * with -ENOSYS if not implemented.
1707 asmlinkage
long sys_io_getevents(aio_context_t ctx_id
,
1710 struct io_event __user
*events
,
1711 struct timespec __user
*timeout
)
1713 struct kioctx
*ioctx
= lookup_ioctx(ctx_id
);
1716 if (likely(ioctx
)) {
1717 if (likely(min_nr
<= nr
&& min_nr
>= 0 && nr
>= 0))
1718 ret
= read_events(ioctx
, min_nr
, nr
, events
, timeout
);
1725 __initcall(aio_setup
);
1727 EXPORT_SYMBOL(aio_complete
);
1728 EXPORT_SYMBOL(aio_put_req
);
1729 EXPORT_SYMBOL(wait_on_sync_kiocb
);