Optimize andes_clear_page() and andes_copy_page() with prefetch
[linux-2.6/linux-mips.git] / mm / memory.c
blob83f1586d4bfa184e38f3f64ac8124606f17e46da
1 /*
2 * linux/mm/memory.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
39 #include <linux/mm.h>
40 #include <linux/mman.h>
41 #include <linux/swap.h>
42 #include <linux/smp_lock.h>
43 #include <linux/swapctl.h>
44 #include <linux/iobuf.h>
45 #include <asm/uaccess.h>
46 #include <asm/pgalloc.h>
47 #include <linux/highmem.h>
48 #include <linux/pagemap.h>
51 unsigned long max_mapnr;
52 unsigned long num_physpages;
53 void * high_memory;
54 struct page *highmem_start_page;
57 * We special-case the C-O-W ZERO_PAGE, because it's such
58 * a common occurrence (no need to read the page to know
59 * that it's zero - better for the cache and memory subsystem).
61 static inline void copy_cow_page(struct page * from, struct page * to, unsigned long address)
63 if (from == ZERO_PAGE(address)) {
64 clear_user_highpage(to, address);
65 return;
67 copy_user_highpage(to, from, address);
70 mem_map_t * mem_map = NULL;
73 * Note: this doesn't free the actual pages themselves. That
74 * has been handled earlier when unmapping all the memory regions.
76 static inline void free_one_pmd(pmd_t * dir)
78 pte_t * pte;
80 if (pmd_none(*dir))
81 return;
82 if (pmd_bad(*dir)) {
83 pmd_ERROR(*dir);
84 pmd_clear(dir);
85 return;
87 pte = pte_offset(dir, 0);
88 pmd_clear(dir);
89 pte_free(pte);
92 static inline void free_one_pgd(pgd_t * dir)
94 int j;
95 pmd_t * pmd;
97 if (pgd_none(*dir))
98 return;
99 if (pgd_bad(*dir)) {
100 pgd_ERROR(*dir);
101 pgd_clear(dir);
102 return;
104 pmd = pmd_offset(dir, 0);
105 pgd_clear(dir);
106 for (j = 0; j < PTRS_PER_PMD ; j++)
107 free_one_pmd(pmd+j);
108 pmd_free(pmd);
111 /* Low and high watermarks for page table cache.
112 The system should try to have pgt_water[0] <= cache elements <= pgt_water[1]
114 int pgt_cache_water[2] = { 25, 50 };
116 /* Returns the number of pages freed */
117 int check_pgt_cache(void)
119 return do_check_pgt_cache(pgt_cache_water[0], pgt_cache_water[1]);
124 * This function clears all user-level page tables of a process - this
125 * is needed by execve(), so that old pages aren't in the way.
127 void clear_page_tables(struct mm_struct *mm, unsigned long first, int nr)
129 pgd_t * page_dir = mm->pgd;
131 page_dir += first;
132 do {
133 free_one_pgd(page_dir);
134 page_dir++;
135 } while (--nr);
137 /* keep the page table cache within bounds */
138 check_pgt_cache();
141 #define PTE_TABLE_MASK ((PTRS_PER_PTE-1) * sizeof(pte_t))
142 #define PMD_TABLE_MASK ((PTRS_PER_PMD-1) * sizeof(pmd_t))
145 * copy one vm_area from one task to the other. Assumes the page tables
146 * already present in the new task to be cleared in the whole range
147 * covered by this vma.
149 * 08Jan98 Merged into one routine from several inline routines to reduce
150 * variable count and make things faster. -jj
152 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
153 struct vm_area_struct *vma)
155 pgd_t * src_pgd, * dst_pgd;
156 unsigned long address = vma->vm_start;
157 unsigned long end = vma->vm_end;
158 unsigned long cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
160 src_pgd = pgd_offset(src, address)-1;
161 dst_pgd = pgd_offset(dst, address)-1;
163 for (;;) {
164 pmd_t * src_pmd, * dst_pmd;
166 src_pgd++; dst_pgd++;
168 /* copy_pmd_range */
170 if (pgd_none(*src_pgd))
171 goto skip_copy_pmd_range;
172 if (pgd_bad(*src_pgd)) {
173 pgd_ERROR(*src_pgd);
174 pgd_clear(src_pgd);
175 skip_copy_pmd_range: address = (address + PGDIR_SIZE) & PGDIR_MASK;
176 if (!address || (address >= end))
177 goto out;
178 continue;
180 if (pgd_none(*dst_pgd)) {
181 if (!pmd_alloc(dst_pgd, 0))
182 goto nomem;
185 src_pmd = pmd_offset(src_pgd, address);
186 dst_pmd = pmd_offset(dst_pgd, address);
188 do {
189 pte_t * src_pte, * dst_pte;
191 /* copy_pte_range */
193 if (pmd_none(*src_pmd))
194 goto skip_copy_pte_range;
195 if (pmd_bad(*src_pmd)) {
196 pmd_ERROR(*src_pmd);
197 pmd_clear(src_pmd);
198 skip_copy_pte_range: address = (address + PMD_SIZE) & PMD_MASK;
199 if (address >= end)
200 goto out;
201 goto cont_copy_pmd_range;
203 if (pmd_none(*dst_pmd)) {
204 if (!pte_alloc(dst_pmd, 0))
205 goto nomem;
208 src_pte = pte_offset(src_pmd, address);
209 dst_pte = pte_offset(dst_pmd, address);
211 do {
212 pte_t pte = *src_pte;
213 unsigned long page_nr;
215 /* copy_one_pte */
217 if (pte_none(pte))
218 goto cont_copy_pte_range;
219 if (!pte_present(pte)) {
220 swap_duplicate(pte_to_swp_entry(pte));
221 set_pte(dst_pte, pte);
222 goto cont_copy_pte_range;
224 page_nr = pte_pagenr(pte);
225 if (page_nr >= max_mapnr ||
226 PageReserved(mem_map+page_nr)) {
227 set_pte(dst_pte, pte);
228 goto cont_copy_pte_range;
230 /* If it's a COW mapping, write protect it both in the parent and the child */
231 if (cow) {
232 pte = pte_wrprotect(pte);
233 set_pte(src_pte, pte);
235 /* If it's a shared mapping, mark it clean in the child */
236 if (vma->vm_flags & VM_SHARED)
237 pte = pte_mkclean(pte);
238 set_pte(dst_pte, pte_mkold(pte));
239 get_page(mem_map + page_nr);
241 cont_copy_pte_range: address += PAGE_SIZE;
242 if (address >= end)
243 goto out;
244 src_pte++;
245 dst_pte++;
246 } while ((unsigned long)src_pte & PTE_TABLE_MASK);
248 cont_copy_pmd_range: src_pmd++;
249 dst_pmd++;
250 } while ((unsigned long)src_pmd & PMD_TABLE_MASK);
252 out:
253 return 0;
255 nomem:
256 return -ENOMEM;
260 * Return indicates whether a page was freed so caller can adjust rss
262 static inline int free_pte(pte_t page)
264 if (pte_present(page)) {
265 unsigned long nr = pte_pagenr(page);
266 if (nr >= max_mapnr || PageReserved(mem_map+nr))
267 return 0;
269 * free_page() used to be able to clear swap cache
270 * entries. We may now have to do it manually.
272 free_page_and_swap_cache(mem_map+nr);
273 return 1;
275 swap_free(pte_to_swp_entry(page));
276 return 0;
279 static inline void forget_pte(pte_t page)
281 if (!pte_none(page)) {
282 printk("forget_pte: old mapping existed!\n");
283 free_pte(page);
287 static inline int zap_pte_range(struct mm_struct *mm, pmd_t * pmd, unsigned long address, unsigned long size)
289 pte_t * pte;
290 int freed;
292 if (pmd_none(*pmd))
293 return 0;
294 if (pmd_bad(*pmd)) {
295 pmd_ERROR(*pmd);
296 pmd_clear(pmd);
297 return 0;
299 pte = pte_offset(pmd, address);
300 address &= ~PMD_MASK;
301 if (address + size > PMD_SIZE)
302 size = PMD_SIZE - address;
303 size >>= PAGE_SHIFT;
304 freed = 0;
305 for (;;) {
306 pte_t page;
307 if (!size)
308 break;
309 page = *pte;
310 pte++;
311 size--;
312 pte_clear(pte-1);
313 if (pte_none(page))
314 continue;
315 freed += free_pte(page);
317 return freed;
320 static inline int zap_pmd_range(struct mm_struct *mm, pgd_t * dir, unsigned long address, unsigned long size)
322 pmd_t * pmd;
323 unsigned long end;
324 int freed;
326 if (pgd_none(*dir))
327 return 0;
328 if (pgd_bad(*dir)) {
329 pgd_ERROR(*dir);
330 pgd_clear(dir);
331 return 0;
333 pmd = pmd_offset(dir, address);
334 address &= ~PGDIR_MASK;
335 end = address + size;
336 if (end > PGDIR_SIZE)
337 end = PGDIR_SIZE;
338 freed = 0;
339 do {
340 freed += zap_pte_range(mm, pmd, address, end - address);
341 address = (address + PMD_SIZE) & PMD_MASK;
342 pmd++;
343 } while (address < end);
344 return freed;
348 * remove user pages in a given range.
350 void zap_page_range(struct mm_struct *mm, unsigned long address, unsigned long size)
352 pgd_t * dir;
353 unsigned long end = address + size;
354 int freed = 0;
356 dir = pgd_offset(mm, address);
359 * This is a long-lived spinlock. That's fine.
360 * There's no contention, because the page table
361 * lock only protects against kswapd anyway, and
362 * even if kswapd happened to be looking at this
363 * process we _want_ it to get stuck.
365 if (address >= end)
366 BUG();
367 spin_lock(&mm->page_table_lock);
368 do {
369 freed += zap_pmd_range(mm, dir, address, end - address);
370 address = (address + PGDIR_SIZE) & PGDIR_MASK;
371 dir++;
372 } while (address && (address < end));
373 spin_unlock(&mm->page_table_lock);
375 * Update rss for the mm_struct (not necessarily current->mm)
376 * Notice that rss is an unsigned long.
378 if (mm->rss > freed)
379 mm->rss -= freed;
380 else
381 mm->rss = 0;
386 * Do a quick page-table lookup for a single page.
388 static struct page * follow_page(unsigned long address)
390 pgd_t *pgd;
391 pmd_t *pmd;
393 pgd = pgd_offset(current->mm, address);
394 pmd = pmd_offset(pgd, address);
395 if (pmd) {
396 pte_t * pte = pte_offset(pmd, address);
397 if (pte && pte_present(*pte))
398 return pte_page(*pte);
401 return NULL;
405 * Given a physical address, is there a useful struct page pointing to
406 * it? This may become more complex in the future if we start dealing
407 * with IO-aperture pages in kiobufs.
410 static inline struct page * get_page_map(struct page *page)
412 if (page > (mem_map + max_mapnr))
413 return 0;
414 return page;
418 * Force in an entire range of pages from the current process's user VA,
419 * and pin them in physical memory.
422 #define dprintk(x...)
423 int map_user_kiobuf(int rw, struct kiobuf *iobuf, unsigned long va, size_t len)
425 unsigned long ptr, end;
426 int err;
427 struct mm_struct * mm;
428 struct vm_area_struct * vma = 0;
429 struct page * map;
430 int i;
431 int datain = (rw == READ);
433 /* Make sure the iobuf is not already mapped somewhere. */
434 if (iobuf->nr_pages)
435 return -EINVAL;
437 mm = current->mm;
438 dprintk ("map_user_kiobuf: begin\n");
440 ptr = va & PAGE_MASK;
441 end = (va + len + PAGE_SIZE - 1) & PAGE_MASK;
442 err = expand_kiobuf(iobuf, (end - ptr) >> PAGE_SHIFT);
443 if (err)
444 return err;
446 down(&mm->mmap_sem);
448 err = -EFAULT;
449 iobuf->locked = 0;
450 iobuf->offset = va & ~PAGE_MASK;
451 iobuf->length = len;
453 i = 0;
456 * First of all, try to fault in all of the necessary pages
458 while (ptr < end) {
459 if (!vma || ptr >= vma->vm_end) {
460 vma = find_vma(current->mm, ptr);
461 if (!vma)
462 goto out_unlock;
463 if (vma->vm_start > ptr) {
464 if (!(vma->vm_flags & VM_GROWSDOWN))
465 goto out_unlock;
466 if (expand_stack(vma, ptr))
467 goto out_unlock;
469 if (((datain) && (!(vma->vm_flags & VM_WRITE))) ||
470 (!(vma->vm_flags & VM_READ))) {
471 err = -EACCES;
472 goto out_unlock;
475 if (handle_mm_fault(current->mm, vma, ptr, datain) <= 0)
476 goto out_unlock;
477 spin_lock(&mm->page_table_lock);
478 map = follow_page(ptr);
479 if (!map) {
480 spin_unlock(&mm->page_table_lock);
481 dprintk (KERN_ERR "Missing page in map_user_kiobuf\n");
482 goto out_unlock;
484 map = get_page_map(map);
485 if (map)
486 atomic_inc(&map->count);
487 else
488 printk (KERN_INFO "Mapped page missing [%d]\n", i);
489 spin_unlock(&mm->page_table_lock);
490 iobuf->maplist[i] = map;
491 iobuf->nr_pages = ++i;
493 ptr += PAGE_SIZE;
496 up(&mm->mmap_sem);
497 dprintk ("map_user_kiobuf: end OK\n");
498 return 0;
500 out_unlock:
501 up(&mm->mmap_sem);
502 unmap_kiobuf(iobuf);
503 dprintk ("map_user_kiobuf: end %d\n", err);
504 return err;
509 * Unmap all of the pages referenced by a kiobuf. We release the pages,
510 * and unlock them if they were locked.
513 void unmap_kiobuf (struct kiobuf *iobuf)
515 int i;
516 struct page *map;
518 for (i = 0; i < iobuf->nr_pages; i++) {
519 map = iobuf->maplist[i];
520 if (map) {
521 if (iobuf->locked)
522 UnlockPage(map);
523 __free_page(map);
527 iobuf->nr_pages = 0;
528 iobuf->locked = 0;
533 * Lock down all of the pages of a kiovec for IO.
535 * If any page is mapped twice in the kiovec, we return the error -EINVAL.
537 * The optional wait parameter causes the lock call to block until all
538 * pages can be locked if set. If wait==0, the lock operation is
539 * aborted if any locked pages are found and -EAGAIN is returned.
542 int lock_kiovec(int nr, struct kiobuf *iovec[], int wait)
544 struct kiobuf *iobuf;
545 int i, j;
546 struct page *page, **ppage;
547 int doublepage = 0;
548 int repeat = 0;
550 repeat:
552 for (i = 0; i < nr; i++) {
553 iobuf = iovec[i];
555 if (iobuf->locked)
556 continue;
557 iobuf->locked = 1;
559 ppage = iobuf->maplist;
560 for (j = 0; j < iobuf->nr_pages; ppage++, j++) {
561 page = *ppage;
562 if (!page)
563 continue;
565 if (TryLockPage(page))
566 goto retry;
570 return 0;
572 retry:
575 * We couldn't lock one of the pages. Undo the locking so far,
576 * wait on the page we got to, and try again.
579 unlock_kiovec(nr, iovec);
580 if (!wait)
581 return -EAGAIN;
584 * Did the release also unlock the page we got stuck on?
586 if (!PageLocked(page)) {
588 * If so, we may well have the page mapped twice
589 * in the IO address range. Bad news. Of
590 * course, it _might_ just be a coincidence,
591 * but if it happens more than once, chances
592 * are we have a double-mapped page.
594 if (++doublepage >= 3)
595 return -EINVAL;
597 /* Try again... */
598 wait_on_page(page);
601 if (++repeat < 16)
602 goto repeat;
603 return -EAGAIN;
607 * Unlock all of the pages of a kiovec after IO.
610 int unlock_kiovec(int nr, struct kiobuf *iovec[])
612 struct kiobuf *iobuf;
613 int i, j;
614 struct page *page, **ppage;
616 for (i = 0; i < nr; i++) {
617 iobuf = iovec[i];
619 if (!iobuf->locked)
620 continue;
621 iobuf->locked = 0;
623 ppage = iobuf->maplist;
624 for (j = 0; j < iobuf->nr_pages; ppage++, j++) {
625 page = *ppage;
626 if (!page)
627 continue;
628 UnlockPage(page);
631 return 0;
634 static inline void zeromap_pte_range(pte_t * pte, unsigned long address,
635 unsigned long size, pgprot_t prot)
637 unsigned long end;
639 address &= ~PMD_MASK;
640 end = address + size;
641 if (end > PMD_SIZE)
642 end = PMD_SIZE;
643 do {
644 pte_t zero_pte = pte_wrprotect(mk_pte(ZERO_PAGE(address), prot));
645 pte_t oldpage = *pte;
646 set_pte(pte, zero_pte);
647 forget_pte(oldpage);
648 address += PAGE_SIZE;
649 pte++;
650 } while (address && (address < end));
653 static inline int zeromap_pmd_range(pmd_t * pmd, unsigned long address,
654 unsigned long size, pgprot_t prot)
656 unsigned long end;
658 address &= ~PGDIR_MASK;
659 end = address + size;
660 if (end > PGDIR_SIZE)
661 end = PGDIR_SIZE;
662 do {
663 pte_t * pte = pte_alloc(pmd, address);
664 if (!pte)
665 return -ENOMEM;
666 zeromap_pte_range(pte, address, end - address, prot);
667 address = (address + PMD_SIZE) & PMD_MASK;
668 pmd++;
669 } while (address && (address < end));
670 return 0;
673 int zeromap_page_range(unsigned long address, unsigned long size, pgprot_t prot)
675 int error = 0;
676 pgd_t * dir;
677 unsigned long beg = address;
678 unsigned long end = address + size;
680 dir = pgd_offset(current->mm, address);
681 flush_cache_range(current->mm, beg, end);
682 if (address >= end)
683 BUG();
684 do {
685 pmd_t *pmd = pmd_alloc(dir, address);
686 error = -ENOMEM;
687 if (!pmd)
688 break;
689 error = zeromap_pmd_range(pmd, address, end - address, prot);
690 if (error)
691 break;
692 address = (address + PGDIR_SIZE) & PGDIR_MASK;
693 dir++;
694 } while (address && (address < end));
695 flush_tlb_range(current->mm, beg, end);
696 return error;
700 * maps a range of physical memory into the requested pages. the old
701 * mappings are removed. any references to nonexistent pages results
702 * in null mappings (currently treated as "copy-on-access")
704 static inline void remap_pte_range(pte_t * pte, unsigned long address, unsigned long size,
705 unsigned long phys_addr, pgprot_t prot)
707 unsigned long end;
709 address &= ~PMD_MASK;
710 end = address + size;
711 if (end > PMD_SIZE)
712 end = PMD_SIZE;
713 do {
714 unsigned long mapnr;
715 pte_t oldpage = *pte;
716 pte_clear(pte);
718 mapnr = MAP_NR(__va(phys_addr));
719 if (mapnr >= max_mapnr || PageReserved(mem_map+mapnr))
720 set_pte(pte, mk_pte_phys(phys_addr, prot));
721 forget_pte(oldpage);
722 address += PAGE_SIZE;
723 phys_addr += PAGE_SIZE;
724 pte++;
725 } while (address && (address < end));
728 static inline int remap_pmd_range(pmd_t * pmd, unsigned long address, unsigned long size,
729 unsigned long phys_addr, pgprot_t prot)
731 unsigned long end;
733 address &= ~PGDIR_MASK;
734 end = address + size;
735 if (end > PGDIR_SIZE)
736 end = PGDIR_SIZE;
737 phys_addr -= address;
738 do {
739 pte_t * pte = pte_alloc(pmd, address);
740 if (!pte)
741 return -ENOMEM;
742 remap_pte_range(pte, address, end - address, address + phys_addr, prot);
743 address = (address + PMD_SIZE) & PMD_MASK;
744 pmd++;
745 } while (address && (address < end));
746 return 0;
749 int remap_page_range(unsigned long from, unsigned long phys_addr, unsigned long size, pgprot_t prot)
751 int error = 0;
752 pgd_t * dir;
753 unsigned long beg = from;
754 unsigned long end = from + size;
756 phys_addr -= from;
757 dir = pgd_offset(current->mm, from);
758 flush_cache_range(current->mm, beg, end);
759 if (from >= end)
760 BUG();
761 do {
762 pmd_t *pmd = pmd_alloc(dir, from);
763 error = -ENOMEM;
764 if (!pmd)
765 break;
766 error = remap_pmd_range(pmd, from, end - from, phys_addr + from, prot);
767 if (error)
768 break;
769 from = (from + PGDIR_SIZE) & PGDIR_MASK;
770 dir++;
771 } while (from && (from < end));
772 flush_tlb_range(current->mm, beg, end);
773 return error;
777 * Establish a new mapping:
778 * - flush the old one
779 * - update the page tables
780 * - inform the TLB about the new one
782 static inline void establish_pte(struct vm_area_struct * vma, unsigned long address, pte_t *page_table, pte_t entry)
784 flush_tlb_page(vma, address);
785 set_pte(page_table, entry);
786 update_mmu_cache(vma, address, entry);
789 static inline void break_cow(struct vm_area_struct * vma, struct page * old_page, struct page * new_page, unsigned long address,
790 pte_t *page_table)
792 copy_cow_page(old_page,new_page,address);
793 flush_page_to_ram(new_page);
794 flush_cache_page(vma, address);
795 establish_pte(vma, address, page_table, pte_mkwrite(pte_mkdirty(mk_pte(new_page, vma->vm_page_prot))));
799 * This routine handles present pages, when users try to write
800 * to a shared page. It is done by copying the page to a new address
801 * and decrementing the shared-page counter for the old page.
803 * Goto-purists beware: the only reason for goto's here is that it results
804 * in better assembly code.. The "default" path will see no jumps at all.
806 * Note that this routine assumes that the protection checks have been
807 * done by the caller (the low-level page fault routine in most cases).
808 * Thus we can safely just mark it writable once we've done any necessary
809 * COW.
811 * We also mark the page dirty at this point even though the page will
812 * change only once the write actually happens. This avoids a few races,
813 * and potentially makes it more efficient.
815 * We enter with the page table read-lock held, and need to exit without
816 * it.
818 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct * vma,
819 unsigned long address, pte_t *page_table, pte_t pte)
821 unsigned long map_nr;
822 struct page *old_page, *new_page;
824 map_nr = pte_pagenr(pte);
825 if (map_nr >= max_mapnr)
826 goto bad_wp_page;
827 old_page = mem_map + map_nr;
830 * We can avoid the copy if:
831 * - we're the only user (count == 1)
832 * - the only other user is the swap cache,
833 * and the only swap cache user is itself,
834 * in which case we can remove the page
835 * from the swap cache.
837 switch (page_count(old_page)) {
838 case 2:
840 * Lock the page so that no one can look it up from
841 * the swap cache, grab a reference and start using it.
842 * Can not do lock_page, holding page_table_lock.
844 if (!PageSwapCache(old_page) || TryLockPage(old_page))
845 break;
846 if (is_page_shared(old_page)) {
847 UnlockPage(old_page);
848 break;
850 delete_from_swap_cache_nolock(old_page);
851 UnlockPage(old_page);
852 /* FallThrough */
853 case 1:
854 flush_cache_page(vma, address);
855 establish_pte(vma, address, page_table, pte_mkyoung(pte_mkdirty(pte_mkwrite(pte))));
856 spin_unlock(&mm->page_table_lock);
857 return 1; /* Minor fault */
861 * Ok, we need to copy. Oh, well..
863 spin_unlock(&mm->page_table_lock);
864 new_page = page_cache_alloc();
865 if (!new_page)
866 return -1;
867 spin_lock(&mm->page_table_lock);
870 * Re-check the pte - we dropped the lock
872 if (pte_val(*page_table) == pte_val(pte)) {
873 if (PageReserved(old_page))
874 ++mm->rss;
875 break_cow(vma, old_page, new_page, address, page_table);
877 /* Free the old page.. */
878 new_page = old_page;
880 spin_unlock(&mm->page_table_lock);
881 page_cache_release(new_page);
882 return 1; /* Minor fault */
884 bad_wp_page:
885 spin_unlock(&mm->page_table_lock);
886 printk("do_wp_page: bogus page at address %08lx (nr %ld)\n",address,map_nr);
887 return -1;
891 * This function zeroes out partial mmap'ed pages at truncation time..
893 static void partial_clear(struct vm_area_struct *vma, unsigned long address)
895 unsigned int offset;
896 struct page *page;
897 pgd_t *page_dir;
898 pmd_t *page_middle;
899 pte_t *page_table, pte;
901 page_dir = pgd_offset(vma->vm_mm, address);
902 if (pgd_none(*page_dir))
903 return;
904 if (pgd_bad(*page_dir)) {
905 pgd_ERROR(*page_dir);
906 pgd_clear(page_dir);
907 return;
909 page_middle = pmd_offset(page_dir, address);
910 if (pmd_none(*page_middle))
911 return;
912 if (pmd_bad(*page_middle)) {
913 pmd_ERROR(*page_middle);
914 pmd_clear(page_middle);
915 return;
917 page_table = pte_offset(page_middle, address);
918 pte = *page_table;
919 if (!pte_present(pte))
920 return;
921 flush_cache_page(vma, address);
922 page = pte_page(pte);
923 if ((page-mem_map >= max_mapnr) || PageReserved(page))
924 return;
925 offset = address & ~PAGE_MASK;
926 memclear_highpage_flush(page, offset, PAGE_SIZE - offset);
930 * Handle all mappings that got truncated by a "truncate()"
931 * system call.
933 * NOTE! We have to be ready to update the memory sharing
934 * between the file and the memory map for a potential last
935 * incomplete page. Ugly, but necessary.
937 void vmtruncate(struct inode * inode, loff_t offset)
939 unsigned long partial, pgoff;
940 struct vm_area_struct * mpnt;
941 struct address_space *mapping = inode->i_mapping;
943 if (inode->i_size < offset)
944 goto out;
945 inode->i_size = offset;
946 truncate_inode_pages(mapping, offset);
947 spin_lock(&mapping->i_shared_lock);
948 if (!mapping->i_mmap)
949 goto out_unlock;
951 pgoff = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
952 partial = (unsigned long)offset & (PAGE_CACHE_SIZE - 1);
954 mpnt = mapping->i_mmap;
955 do {
956 struct mm_struct *mm = mpnt->vm_mm;
957 unsigned long start = mpnt->vm_start;
958 unsigned long end = mpnt->vm_end;
959 unsigned long len = end - start;
960 unsigned long diff;
962 /* mapping wholly truncated? */
963 if (mpnt->vm_pgoff >= pgoff) {
964 flush_cache_range(mm, start, end);
965 zap_page_range(mm, start, len);
966 flush_tlb_range(mm, start, end);
967 continue;
970 /* mapping wholly unaffected? */
971 len = len >> PAGE_SHIFT;
972 diff = pgoff - mpnt->vm_pgoff;
973 if (diff >= len)
974 continue;
976 /* Ok, partially affected.. */
977 start += diff << PAGE_SHIFT;
978 len = (len - diff) << PAGE_SHIFT;
979 if (start & ~PAGE_MASK) {
980 partial_clear(mpnt, start);
981 start = (start + ~PAGE_MASK) & PAGE_MASK;
983 flush_cache_range(mm, start, end);
984 zap_page_range(mm, start, len);
985 flush_tlb_range(mm, start, end);
986 } while ((mpnt = mpnt->vm_next_share) != NULL);
987 out_unlock:
988 spin_unlock(&mapping->i_shared_lock);
989 out:
990 /* this should go into ->truncate */
991 inode->i_size = offset;
992 if (inode->i_op && inode->i_op->truncate)
993 inode->i_op->truncate(inode);
999 * Primitive swap readahead code. We simply read an aligned block of
1000 * (1 << page_cluster) entries in the swap area. This method is chosen
1001 * because it doesn't cost us any seek time. We also make sure to queue
1002 * the 'original' request together with the readahead ones...
1004 void swapin_readahead(swp_entry_t entry)
1006 int i, num;
1007 struct page *new_page;
1008 unsigned long offset;
1011 * Get the number of handles we should do readahead io to. Also,
1012 * grab temporary references on them, releasing them as io completes.
1014 num = valid_swaphandles(entry, &offset);
1015 for (i = 0; i < num; offset++, i++) {
1016 /* Don't block on I/O for read-ahead */
1017 if (atomic_read(&nr_async_pages) >= pager_daemon.swap_cluster) {
1018 while (i++ < num)
1019 swap_free(SWP_ENTRY(SWP_TYPE(entry), offset++));
1020 break;
1022 /* Ok, do the async read-ahead now */
1023 new_page = read_swap_cache_async(SWP_ENTRY(SWP_TYPE(entry), offset), 0);
1024 if (new_page != NULL)
1025 page_cache_release(new_page);
1026 swap_free(SWP_ENTRY(SWP_TYPE(entry), offset));
1028 return;
1031 static int do_swap_page(struct mm_struct * mm,
1032 struct vm_area_struct * vma, unsigned long address,
1033 pte_t * page_table, swp_entry_t entry, int write_access)
1035 struct page *page = lookup_swap_cache(entry);
1036 pte_t pte;
1038 if (!page) {
1039 lock_kernel();
1040 swapin_readahead(entry);
1041 page = read_swap_cache(entry);
1042 unlock_kernel();
1043 if (!page)
1044 return -1;
1046 flush_page_to_ram(page);
1047 flush_icache_page(vma, page);
1050 mm->rss++;
1052 pte = mk_pte(page, vma->vm_page_prot);
1055 * Freeze the "shared"ness of the page, ie page_count + swap_count.
1056 * Must lock page before transferring our swap count to already
1057 * obtained page count.
1059 lock_page(page);
1060 swap_free(entry);
1061 if (write_access && !is_page_shared(page)) {
1062 delete_from_swap_cache_nolock(page);
1063 UnlockPage(page);
1064 page = replace_with_highmem(page);
1065 pte = mk_pte(page, vma->vm_page_prot);
1066 pte = pte_mkwrite(pte_mkdirty(pte));
1067 } else
1068 UnlockPage(page);
1070 set_pte(page_table, pte);
1071 /* No need to invalidate - it was non-present before */
1072 update_mmu_cache(vma, address, pte);
1073 return 1; /* Minor fault */
1077 * This only needs the MM semaphore
1079 static int do_anonymous_page(struct mm_struct * mm, struct vm_area_struct * vma, pte_t *page_table, int write_access, unsigned long addr)
1081 int high = 0;
1082 struct page *page = NULL;
1083 pte_t entry = pte_wrprotect(mk_pte(ZERO_PAGE(addr), vma->vm_page_prot));
1084 if (write_access) {
1085 page = alloc_page(GFP_HIGHUSER);
1086 if (!page)
1087 return -1;
1088 if (PageHighMem(page))
1089 high = 1;
1090 clear_user_highpage(page, addr);
1091 entry = pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
1092 mm->rss++;
1093 flush_page_to_ram(page);
1095 set_pte(page_table, entry);
1096 /* No need to invalidate - it was non-present before */
1097 update_mmu_cache(vma, addr, entry);
1098 return 1; /* Minor fault */
1102 * do_no_page() tries to create a new page mapping. It aggressively
1103 * tries to share with existing pages, but makes a separate copy if
1104 * the "write_access" parameter is true in order to avoid the next
1105 * page fault.
1107 * As this is called only for pages that do not currently exist, we
1108 * do not need to flush old virtual caches or the TLB.
1110 * This is called with the MM semaphore held.
1112 static int do_no_page(struct mm_struct * mm, struct vm_area_struct * vma,
1113 unsigned long address, int write_access, pte_t *page_table)
1115 struct page * new_page;
1116 pte_t entry;
1118 if (!vma->vm_ops || !vma->vm_ops->nopage)
1119 return do_anonymous_page(mm, vma, page_table, write_access, address);
1122 * The third argument is "no_share", which tells the low-level code
1123 * to copy, not share the page even if sharing is possible. It's
1124 * essentially an early COW detection.
1126 new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, (vma->vm_flags & VM_SHARED)?0:write_access);
1127 if (new_page == NULL) /* no page was available -- SIGBUS */
1128 return 0;
1129 if (new_page == NOPAGE_OOM)
1130 return -1;
1131 ++mm->rss;
1133 * This silly early PAGE_DIRTY setting removes a race
1134 * due to the bad i386 page protection. But it's valid
1135 * for other architectures too.
1137 * Note that if write_access is true, we either now have
1138 * an exclusive copy of the page, or this is a shared mapping,
1139 * so we can make it writable and dirty to avoid having to
1140 * handle that later.
1142 flush_page_to_ram(new_page);
1143 flush_icache_page(vma, new_page);
1144 entry = mk_pte(new_page, vma->vm_page_prot);
1145 if (write_access) {
1146 entry = pte_mkwrite(pte_mkdirty(entry));
1147 } else if (page_count(new_page) > 1 &&
1148 !(vma->vm_flags & VM_SHARED))
1149 entry = pte_wrprotect(entry);
1150 set_pte(page_table, entry);
1151 /* no need to invalidate: a not-present page shouldn't be cached */
1152 update_mmu_cache(vma, address, entry);
1153 return 2; /* Major fault */
1157 * These routines also need to handle stuff like marking pages dirty
1158 * and/or accessed for architectures that don't do it in hardware (most
1159 * RISC architectures). The early dirtying is also good on the i386.
1161 * There is also a hook called "update_mmu_cache()" that architectures
1162 * with external mmu caches can use to update those (ie the Sparc or
1163 * PowerPC hashed page tables that act as extended TLBs).
1165 * Note the "page_table_lock". It is to protect against kswapd removing
1166 * pages from under us. Note that kswapd only ever _removes_ pages, never
1167 * adds them. As such, once we have noticed that the page is not present,
1168 * we can drop the lock early.
1170 * The adding of pages is protected by the MM semaphore (which we hold),
1171 * so we don't need to worry about a page being suddenly been added into
1172 * our VM.
1174 static inline int handle_pte_fault(struct mm_struct *mm,
1175 struct vm_area_struct * vma, unsigned long address,
1176 int write_access, pte_t * pte)
1178 pte_t entry;
1180 entry = *pte;
1181 if (!pte_present(entry)) {
1182 if (pte_none(entry))
1183 return do_no_page(mm, vma, address, write_access, pte);
1184 return do_swap_page(mm, vma, address, pte, pte_to_swp_entry(entry), write_access);
1188 * Ok, the entry was present, we need to get the page table
1189 * lock to synchronize with kswapd, and verify that the entry
1190 * didn't change from under us..
1192 spin_lock(&mm->page_table_lock);
1193 if (pte_val(entry) == pte_val(*pte)) {
1194 if (write_access) {
1195 if (!pte_write(entry))
1196 return do_wp_page(mm, vma, address, pte, entry);
1198 entry = pte_mkdirty(entry);
1200 entry = pte_mkyoung(entry);
1201 establish_pte(vma, address, pte, entry);
1203 spin_unlock(&mm->page_table_lock);
1204 return 1;
1208 * By the time we get here, we already hold the mm semaphore
1210 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct * vma,
1211 unsigned long address, int write_access)
1213 int ret = -1;
1214 pgd_t *pgd;
1215 pmd_t *pmd;
1217 pgd = pgd_offset(mm, address);
1218 pmd = pmd_alloc(pgd, address);
1220 if (pmd) {
1221 pte_t * pte = pte_alloc(pmd, address);
1222 if (pte)
1223 ret = handle_pte_fault(mm, vma, address, write_access, pte);
1225 return ret;
1229 * Simplistic page force-in..
1231 int make_pages_present(unsigned long addr, unsigned long end)
1233 int write;
1234 struct mm_struct *mm = current->mm;
1235 struct vm_area_struct * vma;
1237 vma = find_vma(mm, addr);
1238 write = (vma->vm_flags & VM_WRITE) != 0;
1239 if (addr >= end)
1240 BUG();
1241 do {
1242 if (handle_mm_fault(mm, vma, addr, write) < 0)
1243 return -1;
1244 addr += PAGE_SIZE;
1245 } while (addr < end);
1246 return 0;