3 * Library for filesystems writers.
6 #include <linux/module.h>
7 #include <linux/pagemap.h>
8 #include <linux/slab.h>
9 #include <linux/mount.h>
10 #include <linux/vfs.h>
11 #include <linux/quotaops.h>
12 #include <linux/mutex.h>
13 #include <linux/exportfs.h>
14 #include <linux/writeback.h>
15 #include <linux/buffer_head.h>
17 #include <asm/uaccess.h>
21 static inline int simple_positive(struct dentry
*dentry
)
23 return dentry
->d_inode
&& !d_unhashed(dentry
);
26 int simple_getattr(struct vfsmount
*mnt
, struct dentry
*dentry
,
29 struct inode
*inode
= dentry
->d_inode
;
30 generic_fillattr(inode
, stat
);
31 stat
->blocks
= inode
->i_mapping
->nrpages
<< (PAGE_CACHE_SHIFT
- 9);
35 int simple_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
37 buf
->f_type
= dentry
->d_sb
->s_magic
;
38 buf
->f_bsize
= PAGE_CACHE_SIZE
;
39 buf
->f_namelen
= NAME_MAX
;
44 * Retaining negative dentries for an in-memory filesystem just wastes
45 * memory and lookup time: arrange for them to be deleted immediately.
47 static int simple_delete_dentry(const struct dentry
*dentry
)
53 * Lookup the data. This is trivial - if the dentry didn't already
54 * exist, we know it is negative. Set d_op to delete negative dentries.
56 struct dentry
*simple_lookup(struct inode
*dir
, struct dentry
*dentry
, struct nameidata
*nd
)
58 static const struct dentry_operations simple_dentry_operations
= {
59 .d_delete
= simple_delete_dentry
,
62 if (dentry
->d_name
.len
> NAME_MAX
)
63 return ERR_PTR(-ENAMETOOLONG
);
64 d_set_d_op(dentry
, &simple_dentry_operations
);
69 int dcache_dir_open(struct inode
*inode
, struct file
*file
)
71 static struct qstr cursor_name
= {.len
= 1, .name
= "."};
73 file
->private_data
= d_alloc(file
->f_path
.dentry
, &cursor_name
);
75 return file
->private_data
? 0 : -ENOMEM
;
78 int dcache_dir_close(struct inode
*inode
, struct file
*file
)
80 dput(file
->private_data
);
84 loff_t
dcache_dir_lseek(struct file
*file
, loff_t offset
, int origin
)
86 struct dentry
*dentry
= file
->f_path
.dentry
;
87 mutex_lock(&dentry
->d_inode
->i_mutex
);
90 offset
+= file
->f_pos
;
95 mutex_unlock(&dentry
->d_inode
->i_mutex
);
98 if (offset
!= file
->f_pos
) {
100 if (file
->f_pos
>= 2) {
102 struct dentry
*cursor
= file
->private_data
;
103 loff_t n
= file
->f_pos
- 2;
105 spin_lock(&dentry
->d_lock
);
106 /* d_lock not required for cursor */
107 list_del(&cursor
->d_u
.d_child
);
108 p
= dentry
->d_subdirs
.next
;
109 while (n
&& p
!= &dentry
->d_subdirs
) {
111 next
= list_entry(p
, struct dentry
, d_u
.d_child
);
112 spin_lock_nested(&next
->d_lock
, DENTRY_D_LOCK_NESTED
);
113 if (simple_positive(next
))
115 spin_unlock(&next
->d_lock
);
118 list_add_tail(&cursor
->d_u
.d_child
, p
);
119 spin_unlock(&dentry
->d_lock
);
122 mutex_unlock(&dentry
->d_inode
->i_mutex
);
126 /* Relationship between i_mode and the DT_xxx types */
127 static inline unsigned char dt_type(struct inode
*inode
)
129 return (inode
->i_mode
>> 12) & 15;
133 * Directory is locked and all positive dentries in it are safe, since
134 * for ramfs-type trees they can't go away without unlink() or rmdir(),
135 * both impossible due to the lock on directory.
138 int dcache_readdir(struct file
* filp
, void * dirent
, filldir_t filldir
)
140 struct dentry
*dentry
= filp
->f_path
.dentry
;
141 struct dentry
*cursor
= filp
->private_data
;
142 struct list_head
*p
, *q
= &cursor
->d_u
.d_child
;
148 ino
= dentry
->d_inode
->i_ino
;
149 if (filldir(dirent
, ".", 1, i
, ino
, DT_DIR
) < 0)
155 ino
= parent_ino(dentry
);
156 if (filldir(dirent
, "..", 2, i
, ino
, DT_DIR
) < 0)
162 spin_lock(&dentry
->d_lock
);
163 if (filp
->f_pos
== 2)
164 list_move(q
, &dentry
->d_subdirs
);
166 for (p
=q
->next
; p
!= &dentry
->d_subdirs
; p
=p
->next
) {
168 next
= list_entry(p
, struct dentry
, d_u
.d_child
);
169 spin_lock_nested(&next
->d_lock
, DENTRY_D_LOCK_NESTED
);
170 if (!simple_positive(next
)) {
171 spin_unlock(&next
->d_lock
);
175 spin_unlock(&next
->d_lock
);
176 spin_unlock(&dentry
->d_lock
);
177 if (filldir(dirent
, next
->d_name
.name
,
178 next
->d_name
.len
, filp
->f_pos
,
179 next
->d_inode
->i_ino
,
180 dt_type(next
->d_inode
)) < 0)
182 spin_lock(&dentry
->d_lock
);
183 spin_lock_nested(&next
->d_lock
, DENTRY_D_LOCK_NESTED
);
184 /* next is still alive */
186 spin_unlock(&next
->d_lock
);
190 spin_unlock(&dentry
->d_lock
);
195 ssize_t
generic_read_dir(struct file
*filp
, char __user
*buf
, size_t siz
, loff_t
*ppos
)
200 const struct file_operations simple_dir_operations
= {
201 .open
= dcache_dir_open
,
202 .release
= dcache_dir_close
,
203 .llseek
= dcache_dir_lseek
,
204 .read
= generic_read_dir
,
205 .readdir
= dcache_readdir
,
209 const struct inode_operations simple_dir_inode_operations
= {
210 .lookup
= simple_lookup
,
213 static const struct super_operations simple_super_operations
= {
214 .statfs
= simple_statfs
,
218 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
219 * will never be mountable)
221 struct dentry
*mount_pseudo(struct file_system_type
*fs_type
, char *name
,
222 const struct super_operations
*ops
,
223 const struct dentry_operations
*dops
, unsigned long magic
)
225 struct super_block
*s
= sget(fs_type
, NULL
, set_anon_super
, NULL
);
226 struct dentry
*dentry
;
228 struct qstr d_name
= {.name
= name
, .len
= strlen(name
)};
233 s
->s_flags
= MS_NOUSER
;
234 s
->s_maxbytes
= MAX_LFS_FILESIZE
;
235 s
->s_blocksize
= PAGE_SIZE
;
236 s
->s_blocksize_bits
= PAGE_SHIFT
;
238 s
->s_op
= ops
? ops
: &simple_super_operations
;
244 * since this is the first inode, make it number 1. New inodes created
245 * after this must take care not to collide with it (by passing
246 * max_reserved of 1 to iunique).
249 root
->i_mode
= S_IFDIR
| S_IRUSR
| S_IWUSR
;
250 root
->i_atime
= root
->i_mtime
= root
->i_ctime
= CURRENT_TIME
;
251 dentry
= __d_alloc(s
, &d_name
);
256 d_instantiate(dentry
, root
);
259 s
->s_flags
|= MS_ACTIVE
;
260 return dget(s
->s_root
);
263 deactivate_locked_super(s
);
264 return ERR_PTR(-ENOMEM
);
267 int simple_link(struct dentry
*old_dentry
, struct inode
*dir
, struct dentry
*dentry
)
269 struct inode
*inode
= old_dentry
->d_inode
;
271 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
275 d_instantiate(dentry
, inode
);
279 int simple_empty(struct dentry
*dentry
)
281 struct dentry
*child
;
284 spin_lock(&dentry
->d_lock
);
285 list_for_each_entry(child
, &dentry
->d_subdirs
, d_u
.d_child
) {
286 spin_lock_nested(&child
->d_lock
, DENTRY_D_LOCK_NESTED
);
287 if (simple_positive(child
)) {
288 spin_unlock(&child
->d_lock
);
291 spin_unlock(&child
->d_lock
);
295 spin_unlock(&dentry
->d_lock
);
299 int simple_unlink(struct inode
*dir
, struct dentry
*dentry
)
301 struct inode
*inode
= dentry
->d_inode
;
303 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
309 int simple_rmdir(struct inode
*dir
, struct dentry
*dentry
)
311 if (!simple_empty(dentry
))
314 drop_nlink(dentry
->d_inode
);
315 simple_unlink(dir
, dentry
);
320 int simple_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
321 struct inode
*new_dir
, struct dentry
*new_dentry
)
323 struct inode
*inode
= old_dentry
->d_inode
;
324 int they_are_dirs
= S_ISDIR(old_dentry
->d_inode
->i_mode
);
326 if (!simple_empty(new_dentry
))
329 if (new_dentry
->d_inode
) {
330 simple_unlink(new_dir
, new_dentry
);
332 drop_nlink(new_dentry
->d_inode
);
335 } else if (they_are_dirs
) {
340 old_dir
->i_ctime
= old_dir
->i_mtime
= new_dir
->i_ctime
=
341 new_dir
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
347 * simple_setattr - setattr for simple filesystem
349 * @iattr: iattr structure
351 * Returns 0 on success, -error on failure.
353 * simple_setattr is a simple ->setattr implementation without a proper
354 * implementation of size changes.
356 * It can either be used for in-memory filesystems or special files
357 * on simple regular filesystems. Anything that needs to change on-disk
358 * or wire state on size changes needs its own setattr method.
360 int simple_setattr(struct dentry
*dentry
, struct iattr
*iattr
)
362 struct inode
*inode
= dentry
->d_inode
;
365 WARN_ON_ONCE(inode
->i_op
->truncate
);
367 error
= inode_change_ok(inode
, iattr
);
371 if (iattr
->ia_valid
& ATTR_SIZE
)
372 truncate_setsize(inode
, iattr
->ia_size
);
373 setattr_copy(inode
, iattr
);
374 mark_inode_dirty(inode
);
377 EXPORT_SYMBOL(simple_setattr
);
379 int simple_readpage(struct file
*file
, struct page
*page
)
381 clear_highpage(page
);
382 flush_dcache_page(page
);
383 SetPageUptodate(page
);
388 int simple_write_begin(struct file
*file
, struct address_space
*mapping
,
389 loff_t pos
, unsigned len
, unsigned flags
,
390 struct page
**pagep
, void **fsdata
)
395 index
= pos
>> PAGE_CACHE_SHIFT
;
397 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
403 if (!PageUptodate(page
) && (len
!= PAGE_CACHE_SIZE
)) {
404 unsigned from
= pos
& (PAGE_CACHE_SIZE
- 1);
406 zero_user_segments(page
, 0, from
, from
+ len
, PAGE_CACHE_SIZE
);
412 * simple_write_end - .write_end helper for non-block-device FSes
413 * @available: See .write_end of address_space_operations
422 * simple_write_end does the minimum needed for updating a page after writing is
423 * done. It has the same API signature as the .write_end of
424 * address_space_operations vector. So it can just be set onto .write_end for
425 * FSes that don't need any other processing. i_mutex is assumed to be held.
426 * Block based filesystems should use generic_write_end().
427 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
428 * is not called, so a filesystem that actually does store data in .write_inode
429 * should extend on what's done here with a call to mark_inode_dirty() in the
430 * case that i_size has changed.
432 int simple_write_end(struct file
*file
, struct address_space
*mapping
,
433 loff_t pos
, unsigned len
, unsigned copied
,
434 struct page
*page
, void *fsdata
)
436 struct inode
*inode
= page
->mapping
->host
;
437 loff_t last_pos
= pos
+ copied
;
439 /* zero the stale part of the page if we did a short copy */
441 unsigned from
= pos
& (PAGE_CACHE_SIZE
- 1);
443 zero_user(page
, from
+ copied
, len
- copied
);
446 if (!PageUptodate(page
))
447 SetPageUptodate(page
);
449 * No need to use i_size_read() here, the i_size
450 * cannot change under us because we hold the i_mutex.
452 if (last_pos
> inode
->i_size
)
453 i_size_write(inode
, last_pos
);
455 set_page_dirty(page
);
457 page_cache_release(page
);
463 * the inodes created here are not hashed. If you use iunique to generate
464 * unique inode values later for this filesystem, then you must take care
465 * to pass it an appropriate max_reserved value to avoid collisions.
467 int simple_fill_super(struct super_block
*s
, unsigned long magic
,
468 struct tree_descr
*files
)
472 struct dentry
*dentry
;
475 s
->s_blocksize
= PAGE_CACHE_SIZE
;
476 s
->s_blocksize_bits
= PAGE_CACHE_SHIFT
;
478 s
->s_op
= &simple_super_operations
;
481 inode
= new_inode(s
);
485 * because the root inode is 1, the files array must not contain an
489 inode
->i_mode
= S_IFDIR
| 0755;
490 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
491 inode
->i_op
= &simple_dir_inode_operations
;
492 inode
->i_fop
= &simple_dir_operations
;
494 root
= d_alloc_root(inode
);
499 for (i
= 0; !files
->name
|| files
->name
[0]; i
++, files
++) {
503 /* warn if it tries to conflict with the root inode */
504 if (unlikely(i
== 1))
505 printk(KERN_WARNING
"%s: %s passed in a files array"
506 "with an index of 1!\n", __func__
,
509 dentry
= d_alloc_name(root
, files
->name
);
512 inode
= new_inode(s
);
515 inode
->i_mode
= S_IFREG
| files
->mode
;
516 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
517 inode
->i_fop
= files
->ops
;
519 d_add(dentry
, inode
);
529 static DEFINE_SPINLOCK(pin_fs_lock
);
531 int simple_pin_fs(struct file_system_type
*type
, struct vfsmount
**mount
, int *count
)
533 struct vfsmount
*mnt
= NULL
;
534 spin_lock(&pin_fs_lock
);
535 if (unlikely(!*mount
)) {
536 spin_unlock(&pin_fs_lock
);
537 mnt
= vfs_kern_mount(type
, 0, type
->name
, NULL
);
540 spin_lock(&pin_fs_lock
);
546 spin_unlock(&pin_fs_lock
);
551 void simple_release_fs(struct vfsmount
**mount
, int *count
)
553 struct vfsmount
*mnt
;
554 spin_lock(&pin_fs_lock
);
558 spin_unlock(&pin_fs_lock
);
563 * simple_read_from_buffer - copy data from the buffer to user space
564 * @to: the user space buffer to read to
565 * @count: the maximum number of bytes to read
566 * @ppos: the current position in the buffer
567 * @from: the buffer to read from
568 * @available: the size of the buffer
570 * The simple_read_from_buffer() function reads up to @count bytes from the
571 * buffer @from at offset @ppos into the user space address starting at @to.
573 * On success, the number of bytes read is returned and the offset @ppos is
574 * advanced by this number, or negative value is returned on error.
576 ssize_t
simple_read_from_buffer(void __user
*to
, size_t count
, loff_t
*ppos
,
577 const void *from
, size_t available
)
584 if (pos
>= available
|| !count
)
586 if (count
> available
- pos
)
587 count
= available
- pos
;
588 ret
= copy_to_user(to
, from
+ pos
, count
);
597 * simple_write_to_buffer - copy data from user space to the buffer
598 * @to: the buffer to write to
599 * @available: the size of the buffer
600 * @ppos: the current position in the buffer
601 * @from: the user space buffer to read from
602 * @count: the maximum number of bytes to read
604 * The simple_write_to_buffer() function reads up to @count bytes from the user
605 * space address starting at @from into the buffer @to at offset @ppos.
607 * On success, the number of bytes written is returned and the offset @ppos is
608 * advanced by this number, or negative value is returned on error.
610 ssize_t
simple_write_to_buffer(void *to
, size_t available
, loff_t
*ppos
,
611 const void __user
*from
, size_t count
)
618 if (pos
>= available
|| !count
)
620 if (count
> available
- pos
)
621 count
= available
- pos
;
622 res
= copy_from_user(to
+ pos
, from
, count
);
631 * memory_read_from_buffer - copy data from the buffer
632 * @to: the kernel space buffer to read to
633 * @count: the maximum number of bytes to read
634 * @ppos: the current position in the buffer
635 * @from: the buffer to read from
636 * @available: the size of the buffer
638 * The memory_read_from_buffer() function reads up to @count bytes from the
639 * buffer @from at offset @ppos into the kernel space address starting at @to.
641 * On success, the number of bytes read is returned and the offset @ppos is
642 * advanced by this number, or negative value is returned on error.
644 ssize_t
memory_read_from_buffer(void *to
, size_t count
, loff_t
*ppos
,
645 const void *from
, size_t available
)
651 if (pos
>= available
)
653 if (count
> available
- pos
)
654 count
= available
- pos
;
655 memcpy(to
, from
+ pos
, count
);
662 * Transaction based IO.
663 * The file expects a single write which triggers the transaction, and then
664 * possibly a read which collects the result - which is stored in a
668 void simple_transaction_set(struct file
*file
, size_t n
)
670 struct simple_transaction_argresp
*ar
= file
->private_data
;
672 BUG_ON(n
> SIMPLE_TRANSACTION_LIMIT
);
675 * The barrier ensures that ar->size will really remain zero until
676 * ar->data is ready for reading.
682 char *simple_transaction_get(struct file
*file
, const char __user
*buf
, size_t size
)
684 struct simple_transaction_argresp
*ar
;
685 static DEFINE_SPINLOCK(simple_transaction_lock
);
687 if (size
> SIMPLE_TRANSACTION_LIMIT
- 1)
688 return ERR_PTR(-EFBIG
);
690 ar
= (struct simple_transaction_argresp
*)get_zeroed_page(GFP_KERNEL
);
692 return ERR_PTR(-ENOMEM
);
694 spin_lock(&simple_transaction_lock
);
696 /* only one write allowed per open */
697 if (file
->private_data
) {
698 spin_unlock(&simple_transaction_lock
);
699 free_page((unsigned long)ar
);
700 return ERR_PTR(-EBUSY
);
703 file
->private_data
= ar
;
705 spin_unlock(&simple_transaction_lock
);
707 if (copy_from_user(ar
->data
, buf
, size
))
708 return ERR_PTR(-EFAULT
);
713 ssize_t
simple_transaction_read(struct file
*file
, char __user
*buf
, size_t size
, loff_t
*pos
)
715 struct simple_transaction_argresp
*ar
= file
->private_data
;
719 return simple_read_from_buffer(buf
, size
, pos
, ar
->data
, ar
->size
);
722 int simple_transaction_release(struct inode
*inode
, struct file
*file
)
724 free_page((unsigned long)file
->private_data
);
728 /* Simple attribute files */
731 int (*get
)(void *, u64
*);
732 int (*set
)(void *, u64
);
733 char get_buf
[24]; /* enough to store a u64 and "\n\0" */
736 const char *fmt
; /* format for read operation */
737 struct mutex mutex
; /* protects access to these buffers */
740 /* simple_attr_open is called by an actual attribute open file operation
741 * to set the attribute specific access operations. */
742 int simple_attr_open(struct inode
*inode
, struct file
*file
,
743 int (*get
)(void *, u64
*), int (*set
)(void *, u64
),
746 struct simple_attr
*attr
;
748 attr
= kmalloc(sizeof(*attr
), GFP_KERNEL
);
754 attr
->data
= inode
->i_private
;
756 mutex_init(&attr
->mutex
);
758 file
->private_data
= attr
;
760 return nonseekable_open(inode
, file
);
763 int simple_attr_release(struct inode
*inode
, struct file
*file
)
765 kfree(file
->private_data
);
769 /* read from the buffer that is filled with the get function */
770 ssize_t
simple_attr_read(struct file
*file
, char __user
*buf
,
771 size_t len
, loff_t
*ppos
)
773 struct simple_attr
*attr
;
777 attr
= file
->private_data
;
782 ret
= mutex_lock_interruptible(&attr
->mutex
);
786 if (*ppos
) { /* continued read */
787 size
= strlen(attr
->get_buf
);
788 } else { /* first read */
790 ret
= attr
->get(attr
->data
, &val
);
794 size
= scnprintf(attr
->get_buf
, sizeof(attr
->get_buf
),
795 attr
->fmt
, (unsigned long long)val
);
798 ret
= simple_read_from_buffer(buf
, len
, ppos
, attr
->get_buf
, size
);
800 mutex_unlock(&attr
->mutex
);
804 /* interpret the buffer as a number to call the set function with */
805 ssize_t
simple_attr_write(struct file
*file
, const char __user
*buf
,
806 size_t len
, loff_t
*ppos
)
808 struct simple_attr
*attr
;
813 attr
= file
->private_data
;
817 ret
= mutex_lock_interruptible(&attr
->mutex
);
822 size
= min(sizeof(attr
->set_buf
) - 1, len
);
823 if (copy_from_user(attr
->set_buf
, buf
, size
))
826 attr
->set_buf
[size
] = '\0';
827 val
= simple_strtoll(attr
->set_buf
, NULL
, 0);
828 ret
= attr
->set(attr
->data
, val
);
830 ret
= len
; /* on success, claim we got the whole input */
832 mutex_unlock(&attr
->mutex
);
837 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
838 * @sb: filesystem to do the file handle conversion on
839 * @fid: file handle to convert
840 * @fh_len: length of the file handle in bytes
841 * @fh_type: type of file handle
842 * @get_inode: filesystem callback to retrieve inode
844 * This function decodes @fid as long as it has one of the well-known
845 * Linux filehandle types and calls @get_inode on it to retrieve the
846 * inode for the object specified in the file handle.
848 struct dentry
*generic_fh_to_dentry(struct super_block
*sb
, struct fid
*fid
,
849 int fh_len
, int fh_type
, struct inode
*(*get_inode
)
850 (struct super_block
*sb
, u64 ino
, u32 gen
))
852 struct inode
*inode
= NULL
;
858 case FILEID_INO32_GEN
:
859 case FILEID_INO32_GEN_PARENT
:
860 inode
= get_inode(sb
, fid
->i32
.ino
, fid
->i32
.gen
);
864 return d_obtain_alias(inode
);
866 EXPORT_SYMBOL_GPL(generic_fh_to_dentry
);
869 * generic_fh_to_dentry - generic helper for the fh_to_parent export operation
870 * @sb: filesystem to do the file handle conversion on
871 * @fid: file handle to convert
872 * @fh_len: length of the file handle in bytes
873 * @fh_type: type of file handle
874 * @get_inode: filesystem callback to retrieve inode
876 * This function decodes @fid as long as it has one of the well-known
877 * Linux filehandle types and calls @get_inode on it to retrieve the
878 * inode for the _parent_ object specified in the file handle if it
879 * is specified in the file handle, or NULL otherwise.
881 struct dentry
*generic_fh_to_parent(struct super_block
*sb
, struct fid
*fid
,
882 int fh_len
, int fh_type
, struct inode
*(*get_inode
)
883 (struct super_block
*sb
, u64 ino
, u32 gen
))
885 struct inode
*inode
= NULL
;
891 case FILEID_INO32_GEN_PARENT
:
892 inode
= get_inode(sb
, fid
->i32
.parent_ino
,
893 (fh_len
> 3 ? fid
->i32
.parent_gen
: 0));
897 return d_obtain_alias(inode
);
899 EXPORT_SYMBOL_GPL(generic_fh_to_parent
);
902 * generic_file_fsync - generic fsync implementation for simple filesystems
903 * @file: file to synchronize
904 * @datasync: only synchronize essential metadata if true
906 * This is a generic implementation of the fsync method for simple
907 * filesystems which track all non-inode metadata in the buffers list
908 * hanging off the address_space structure.
910 int generic_file_fsync(struct file
*file
, loff_t start
, loff_t end
,
913 struct inode
*inode
= file
->f_mapping
->host
;
917 err
= filemap_write_and_wait_range(inode
->i_mapping
, start
, end
);
921 mutex_lock(&inode
->i_mutex
);
922 ret
= sync_mapping_buffers(inode
->i_mapping
);
923 if (!(inode
->i_state
& I_DIRTY
))
925 if (datasync
&& !(inode
->i_state
& I_DIRTY_DATASYNC
))
928 err
= sync_inode_metadata(inode
, 1);
932 mutex_unlock(&inode
->i_mutex
);
935 EXPORT_SYMBOL(generic_file_fsync
);
938 * generic_check_addressable - Check addressability of file system
939 * @blocksize_bits: log of file system block size
940 * @num_blocks: number of blocks in file system
942 * Determine whether a file system with @num_blocks blocks (and a
943 * block size of 2**@blocksize_bits) is addressable by the sector_t
944 * and page cache of the system. Return 0 if so and -EFBIG otherwise.
946 int generic_check_addressable(unsigned blocksize_bits
, u64 num_blocks
)
948 u64 last_fs_block
= num_blocks
- 1;
950 last_fs_block
>> (PAGE_CACHE_SHIFT
- blocksize_bits
);
952 if (unlikely(num_blocks
== 0))
955 if ((blocksize_bits
< 9) || (blocksize_bits
> PAGE_CACHE_SHIFT
))
958 if ((last_fs_block
> (sector_t
)(~0ULL) >> (blocksize_bits
- 9)) ||
959 (last_fs_page
> (pgoff_t
)(~0ULL))) {
964 EXPORT_SYMBOL(generic_check_addressable
);
967 * No-op implementation of ->fsync for in-memory filesystems.
969 int noop_fsync(struct file
*file
, loff_t start
, loff_t end
, int datasync
)
974 EXPORT_SYMBOL(dcache_dir_close
);
975 EXPORT_SYMBOL(dcache_dir_lseek
);
976 EXPORT_SYMBOL(dcache_dir_open
);
977 EXPORT_SYMBOL(dcache_readdir
);
978 EXPORT_SYMBOL(generic_read_dir
);
979 EXPORT_SYMBOL(mount_pseudo
);
980 EXPORT_SYMBOL(simple_write_begin
);
981 EXPORT_SYMBOL(simple_write_end
);
982 EXPORT_SYMBOL(simple_dir_inode_operations
);
983 EXPORT_SYMBOL(simple_dir_operations
);
984 EXPORT_SYMBOL(simple_empty
);
985 EXPORT_SYMBOL(simple_fill_super
);
986 EXPORT_SYMBOL(simple_getattr
);
987 EXPORT_SYMBOL(simple_link
);
988 EXPORT_SYMBOL(simple_lookup
);
989 EXPORT_SYMBOL(simple_pin_fs
);
990 EXPORT_SYMBOL(simple_readpage
);
991 EXPORT_SYMBOL(simple_release_fs
);
992 EXPORT_SYMBOL(simple_rename
);
993 EXPORT_SYMBOL(simple_rmdir
);
994 EXPORT_SYMBOL(simple_statfs
);
995 EXPORT_SYMBOL(noop_fsync
);
996 EXPORT_SYMBOL(simple_unlink
);
997 EXPORT_SYMBOL(simple_read_from_buffer
);
998 EXPORT_SYMBOL(simple_write_to_buffer
);
999 EXPORT_SYMBOL(memory_read_from_buffer
);
1000 EXPORT_SYMBOL(simple_transaction_set
);
1001 EXPORT_SYMBOL(simple_transaction_get
);
1002 EXPORT_SYMBOL(simple_transaction_read
);
1003 EXPORT_SYMBOL(simple_transaction_release
);
1004 EXPORT_SYMBOL_GPL(simple_attr_open
);
1005 EXPORT_SYMBOL_GPL(simple_attr_release
);
1006 EXPORT_SYMBOL_GPL(simple_attr_read
);
1007 EXPORT_SYMBOL_GPL(simple_attr_write
);