[PATCH] pci: Repair pci_save/restore_state so we can restore one save many times.
[linux-2.6/linux-mips.git] / kernel / auditsc.c
blob359955800dd2ecb30827ad6b53daff9014088d19
1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <asm/atomic.h>
48 #include <asm/types.h>
49 #include <linux/fs.h>
50 #include <linux/namei.h>
51 #include <linux/mm.h>
52 #include <linux/module.h>
53 #include <linux/mount.h>
54 #include <linux/socket.h>
55 #include <linux/mqueue.h>
56 #include <linux/audit.h>
57 #include <linux/personality.h>
58 #include <linux/time.h>
59 #include <linux/netlink.h>
60 #include <linux/compiler.h>
61 #include <asm/unistd.h>
62 #include <linux/security.h>
63 #include <linux/list.h>
64 #include <linux/tty.h>
65 #include <linux/selinux.h>
66 #include <linux/binfmts.h>
67 #include <linux/highmem.h>
68 #include <linux/syscalls.h>
70 #include "audit.h"
72 extern struct list_head audit_filter_list[];
74 /* No syscall auditing will take place unless audit_enabled != 0. */
75 extern int audit_enabled;
77 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
78 * for saving names from getname(). */
79 #define AUDIT_NAMES 20
81 /* AUDIT_NAMES_RESERVED is the number of slots we reserve in the
82 * audit_context from being used for nameless inodes from
83 * path_lookup. */
84 #define AUDIT_NAMES_RESERVED 7
86 /* Indicates that audit should log the full pathname. */
87 #define AUDIT_NAME_FULL -1
89 /* number of audit rules */
90 int audit_n_rules;
92 /* When fs/namei.c:getname() is called, we store the pointer in name and
93 * we don't let putname() free it (instead we free all of the saved
94 * pointers at syscall exit time).
96 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
97 struct audit_names {
98 const char *name;
99 int name_len; /* number of name's characters to log */
100 unsigned name_put; /* call __putname() for this name */
101 unsigned long ino;
102 dev_t dev;
103 umode_t mode;
104 uid_t uid;
105 gid_t gid;
106 dev_t rdev;
107 u32 osid;
110 struct audit_aux_data {
111 struct audit_aux_data *next;
112 int type;
115 #define AUDIT_AUX_IPCPERM 0
117 struct audit_aux_data_mq_open {
118 struct audit_aux_data d;
119 int oflag;
120 mode_t mode;
121 struct mq_attr attr;
124 struct audit_aux_data_mq_sendrecv {
125 struct audit_aux_data d;
126 mqd_t mqdes;
127 size_t msg_len;
128 unsigned int msg_prio;
129 struct timespec abs_timeout;
132 struct audit_aux_data_mq_notify {
133 struct audit_aux_data d;
134 mqd_t mqdes;
135 struct sigevent notification;
138 struct audit_aux_data_mq_getsetattr {
139 struct audit_aux_data d;
140 mqd_t mqdes;
141 struct mq_attr mqstat;
144 struct audit_aux_data_ipcctl {
145 struct audit_aux_data d;
146 struct ipc_perm p;
147 unsigned long qbytes;
148 uid_t uid;
149 gid_t gid;
150 mode_t mode;
151 u32 osid;
154 struct audit_aux_data_execve {
155 struct audit_aux_data d;
156 int argc;
157 int envc;
158 char mem[0];
161 struct audit_aux_data_socketcall {
162 struct audit_aux_data d;
163 int nargs;
164 unsigned long args[0];
167 struct audit_aux_data_sockaddr {
168 struct audit_aux_data d;
169 int len;
170 char a[0];
173 struct audit_aux_data_fd_pair {
174 struct audit_aux_data d;
175 int fd[2];
178 struct audit_aux_data_path {
179 struct audit_aux_data d;
180 struct dentry *dentry;
181 struct vfsmount *mnt;
184 /* The per-task audit context. */
185 struct audit_context {
186 int dummy; /* must be the first element */
187 int in_syscall; /* 1 if task is in a syscall */
188 enum audit_state state;
189 unsigned int serial; /* serial number for record */
190 struct timespec ctime; /* time of syscall entry */
191 uid_t loginuid; /* login uid (identity) */
192 int major; /* syscall number */
193 unsigned long argv[4]; /* syscall arguments */
194 int return_valid; /* return code is valid */
195 long return_code;/* syscall return code */
196 int auditable; /* 1 if record should be written */
197 int name_count;
198 struct audit_names names[AUDIT_NAMES];
199 char * filterkey; /* key for rule that triggered record */
200 struct dentry * pwd;
201 struct vfsmount * pwdmnt;
202 struct audit_context *previous; /* For nested syscalls */
203 struct audit_aux_data *aux;
205 /* Save things to print about task_struct */
206 pid_t pid, ppid;
207 uid_t uid, euid, suid, fsuid;
208 gid_t gid, egid, sgid, fsgid;
209 unsigned long personality;
210 int arch;
212 #if AUDIT_DEBUG
213 int put_count;
214 int ino_count;
215 #endif
218 #define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE])
219 static inline int open_arg(int flags, int mask)
221 int n = ACC_MODE(flags);
222 if (flags & (O_TRUNC | O_CREAT))
223 n |= AUDIT_PERM_WRITE;
224 return n & mask;
227 static int audit_match_perm(struct audit_context *ctx, int mask)
229 unsigned n = ctx->major;
230 switch (audit_classify_syscall(ctx->arch, n)) {
231 case 0: /* native */
232 if ((mask & AUDIT_PERM_WRITE) &&
233 audit_match_class(AUDIT_CLASS_WRITE, n))
234 return 1;
235 if ((mask & AUDIT_PERM_READ) &&
236 audit_match_class(AUDIT_CLASS_READ, n))
237 return 1;
238 if ((mask & AUDIT_PERM_ATTR) &&
239 audit_match_class(AUDIT_CLASS_CHATTR, n))
240 return 1;
241 return 0;
242 case 1: /* 32bit on biarch */
243 if ((mask & AUDIT_PERM_WRITE) &&
244 audit_match_class(AUDIT_CLASS_WRITE_32, n))
245 return 1;
246 if ((mask & AUDIT_PERM_READ) &&
247 audit_match_class(AUDIT_CLASS_READ_32, n))
248 return 1;
249 if ((mask & AUDIT_PERM_ATTR) &&
250 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
251 return 1;
252 return 0;
253 case 2: /* open */
254 return mask & ACC_MODE(ctx->argv[1]);
255 case 3: /* openat */
256 return mask & ACC_MODE(ctx->argv[2]);
257 case 4: /* socketcall */
258 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
259 case 5: /* execve */
260 return mask & AUDIT_PERM_EXEC;
261 default:
262 return 0;
266 /* Determine if any context name data matches a rule's watch data */
267 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
268 * otherwise. */
269 static int audit_filter_rules(struct task_struct *tsk,
270 struct audit_krule *rule,
271 struct audit_context *ctx,
272 struct audit_names *name,
273 enum audit_state *state)
275 int i, j, need_sid = 1;
276 u32 sid;
278 for (i = 0; i < rule->field_count; i++) {
279 struct audit_field *f = &rule->fields[i];
280 int result = 0;
282 switch (f->type) {
283 case AUDIT_PID:
284 result = audit_comparator(tsk->pid, f->op, f->val);
285 break;
286 case AUDIT_PPID:
287 if (ctx) {
288 if (!ctx->ppid)
289 ctx->ppid = sys_getppid();
290 result = audit_comparator(ctx->ppid, f->op, f->val);
292 break;
293 case AUDIT_UID:
294 result = audit_comparator(tsk->uid, f->op, f->val);
295 break;
296 case AUDIT_EUID:
297 result = audit_comparator(tsk->euid, f->op, f->val);
298 break;
299 case AUDIT_SUID:
300 result = audit_comparator(tsk->suid, f->op, f->val);
301 break;
302 case AUDIT_FSUID:
303 result = audit_comparator(tsk->fsuid, f->op, f->val);
304 break;
305 case AUDIT_GID:
306 result = audit_comparator(tsk->gid, f->op, f->val);
307 break;
308 case AUDIT_EGID:
309 result = audit_comparator(tsk->egid, f->op, f->val);
310 break;
311 case AUDIT_SGID:
312 result = audit_comparator(tsk->sgid, f->op, f->val);
313 break;
314 case AUDIT_FSGID:
315 result = audit_comparator(tsk->fsgid, f->op, f->val);
316 break;
317 case AUDIT_PERS:
318 result = audit_comparator(tsk->personality, f->op, f->val);
319 break;
320 case AUDIT_ARCH:
321 if (ctx)
322 result = audit_comparator(ctx->arch, f->op, f->val);
323 break;
325 case AUDIT_EXIT:
326 if (ctx && ctx->return_valid)
327 result = audit_comparator(ctx->return_code, f->op, f->val);
328 break;
329 case AUDIT_SUCCESS:
330 if (ctx && ctx->return_valid) {
331 if (f->val)
332 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
333 else
334 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
336 break;
337 case AUDIT_DEVMAJOR:
338 if (name)
339 result = audit_comparator(MAJOR(name->dev),
340 f->op, f->val);
341 else if (ctx) {
342 for (j = 0; j < ctx->name_count; j++) {
343 if (audit_comparator(MAJOR(ctx->names[j].dev), f->op, f->val)) {
344 ++result;
345 break;
349 break;
350 case AUDIT_DEVMINOR:
351 if (name)
352 result = audit_comparator(MINOR(name->dev),
353 f->op, f->val);
354 else if (ctx) {
355 for (j = 0; j < ctx->name_count; j++) {
356 if (audit_comparator(MINOR(ctx->names[j].dev), f->op, f->val)) {
357 ++result;
358 break;
362 break;
363 case AUDIT_INODE:
364 if (name)
365 result = (name->ino == f->val);
366 else if (ctx) {
367 for (j = 0; j < ctx->name_count; j++) {
368 if (audit_comparator(ctx->names[j].ino, f->op, f->val)) {
369 ++result;
370 break;
374 break;
375 case AUDIT_WATCH:
376 if (name && rule->watch->ino != (unsigned long)-1)
377 result = (name->dev == rule->watch->dev &&
378 name->ino == rule->watch->ino);
379 break;
380 case AUDIT_LOGINUID:
381 result = 0;
382 if (ctx)
383 result = audit_comparator(ctx->loginuid, f->op, f->val);
384 break;
385 case AUDIT_SUBJ_USER:
386 case AUDIT_SUBJ_ROLE:
387 case AUDIT_SUBJ_TYPE:
388 case AUDIT_SUBJ_SEN:
389 case AUDIT_SUBJ_CLR:
390 /* NOTE: this may return negative values indicating
391 a temporary error. We simply treat this as a
392 match for now to avoid losing information that
393 may be wanted. An error message will also be
394 logged upon error */
395 if (f->se_rule) {
396 if (need_sid) {
397 selinux_get_task_sid(tsk, &sid);
398 need_sid = 0;
400 result = selinux_audit_rule_match(sid, f->type,
401 f->op,
402 f->se_rule,
403 ctx);
405 break;
406 case AUDIT_OBJ_USER:
407 case AUDIT_OBJ_ROLE:
408 case AUDIT_OBJ_TYPE:
409 case AUDIT_OBJ_LEV_LOW:
410 case AUDIT_OBJ_LEV_HIGH:
411 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
412 also applies here */
413 if (f->se_rule) {
414 /* Find files that match */
415 if (name) {
416 result = selinux_audit_rule_match(
417 name->osid, f->type, f->op,
418 f->se_rule, ctx);
419 } else if (ctx) {
420 for (j = 0; j < ctx->name_count; j++) {
421 if (selinux_audit_rule_match(
422 ctx->names[j].osid,
423 f->type, f->op,
424 f->se_rule, ctx)) {
425 ++result;
426 break;
430 /* Find ipc objects that match */
431 if (ctx) {
432 struct audit_aux_data *aux;
433 for (aux = ctx->aux; aux;
434 aux = aux->next) {
435 if (aux->type == AUDIT_IPC) {
436 struct audit_aux_data_ipcctl *axi = (void *)aux;
437 if (selinux_audit_rule_match(axi->osid, f->type, f->op, f->se_rule, ctx)) {
438 ++result;
439 break;
445 break;
446 case AUDIT_ARG0:
447 case AUDIT_ARG1:
448 case AUDIT_ARG2:
449 case AUDIT_ARG3:
450 if (ctx)
451 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
452 break;
453 case AUDIT_FILTERKEY:
454 /* ignore this field for filtering */
455 result = 1;
456 break;
457 case AUDIT_PERM:
458 result = audit_match_perm(ctx, f->val);
459 break;
462 if (!result)
463 return 0;
465 if (rule->filterkey)
466 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
467 switch (rule->action) {
468 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
469 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
471 return 1;
474 /* At process creation time, we can determine if system-call auditing is
475 * completely disabled for this task. Since we only have the task
476 * structure at this point, we can only check uid and gid.
478 static enum audit_state audit_filter_task(struct task_struct *tsk)
480 struct audit_entry *e;
481 enum audit_state state;
483 rcu_read_lock();
484 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
485 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, &state)) {
486 rcu_read_unlock();
487 return state;
490 rcu_read_unlock();
491 return AUDIT_BUILD_CONTEXT;
494 /* At syscall entry and exit time, this filter is called if the
495 * audit_state is not low enough that auditing cannot take place, but is
496 * also not high enough that we already know we have to write an audit
497 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
499 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
500 struct audit_context *ctx,
501 struct list_head *list)
503 struct audit_entry *e;
504 enum audit_state state;
506 if (audit_pid && tsk->tgid == audit_pid)
507 return AUDIT_DISABLED;
509 rcu_read_lock();
510 if (!list_empty(list)) {
511 int word = AUDIT_WORD(ctx->major);
512 int bit = AUDIT_BIT(ctx->major);
514 list_for_each_entry_rcu(e, list, list) {
515 if ((e->rule.mask[word] & bit) == bit &&
516 audit_filter_rules(tsk, &e->rule, ctx, NULL,
517 &state)) {
518 rcu_read_unlock();
519 return state;
523 rcu_read_unlock();
524 return AUDIT_BUILD_CONTEXT;
527 /* At syscall exit time, this filter is called if any audit_names[] have been
528 * collected during syscall processing. We only check rules in sublists at hash
529 * buckets applicable to the inode numbers in audit_names[].
530 * Regarding audit_state, same rules apply as for audit_filter_syscall().
532 enum audit_state audit_filter_inodes(struct task_struct *tsk,
533 struct audit_context *ctx)
535 int i;
536 struct audit_entry *e;
537 enum audit_state state;
539 if (audit_pid && tsk->tgid == audit_pid)
540 return AUDIT_DISABLED;
542 rcu_read_lock();
543 for (i = 0; i < ctx->name_count; i++) {
544 int word = AUDIT_WORD(ctx->major);
545 int bit = AUDIT_BIT(ctx->major);
546 struct audit_names *n = &ctx->names[i];
547 int h = audit_hash_ino((u32)n->ino);
548 struct list_head *list = &audit_inode_hash[h];
550 if (list_empty(list))
551 continue;
553 list_for_each_entry_rcu(e, list, list) {
554 if ((e->rule.mask[word] & bit) == bit &&
555 audit_filter_rules(tsk, &e->rule, ctx, n, &state)) {
556 rcu_read_unlock();
557 return state;
561 rcu_read_unlock();
562 return AUDIT_BUILD_CONTEXT;
565 void audit_set_auditable(struct audit_context *ctx)
567 ctx->auditable = 1;
570 static inline struct audit_context *audit_get_context(struct task_struct *tsk,
571 int return_valid,
572 int return_code)
574 struct audit_context *context = tsk->audit_context;
576 if (likely(!context))
577 return NULL;
578 context->return_valid = return_valid;
579 context->return_code = return_code;
581 if (context->in_syscall && !context->dummy && !context->auditable) {
582 enum audit_state state;
584 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
585 if (state == AUDIT_RECORD_CONTEXT) {
586 context->auditable = 1;
587 goto get_context;
590 state = audit_filter_inodes(tsk, context);
591 if (state == AUDIT_RECORD_CONTEXT)
592 context->auditable = 1;
596 get_context:
598 tsk->audit_context = NULL;
599 return context;
602 static inline void audit_free_names(struct audit_context *context)
604 int i;
606 #if AUDIT_DEBUG == 2
607 if (context->auditable
608 ||context->put_count + context->ino_count != context->name_count) {
609 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
610 " name_count=%d put_count=%d"
611 " ino_count=%d [NOT freeing]\n",
612 __FILE__, __LINE__,
613 context->serial, context->major, context->in_syscall,
614 context->name_count, context->put_count,
615 context->ino_count);
616 for (i = 0; i < context->name_count; i++) {
617 printk(KERN_ERR "names[%d] = %p = %s\n", i,
618 context->names[i].name,
619 context->names[i].name ?: "(null)");
621 dump_stack();
622 return;
624 #endif
625 #if AUDIT_DEBUG
626 context->put_count = 0;
627 context->ino_count = 0;
628 #endif
630 for (i = 0; i < context->name_count; i++) {
631 if (context->names[i].name && context->names[i].name_put)
632 __putname(context->names[i].name);
634 context->name_count = 0;
635 if (context->pwd)
636 dput(context->pwd);
637 if (context->pwdmnt)
638 mntput(context->pwdmnt);
639 context->pwd = NULL;
640 context->pwdmnt = NULL;
643 static inline void audit_free_aux(struct audit_context *context)
645 struct audit_aux_data *aux;
647 while ((aux = context->aux)) {
648 if (aux->type == AUDIT_AVC_PATH) {
649 struct audit_aux_data_path *axi = (void *)aux;
650 dput(axi->dentry);
651 mntput(axi->mnt);
654 context->aux = aux->next;
655 kfree(aux);
659 static inline void audit_zero_context(struct audit_context *context,
660 enum audit_state state)
662 uid_t loginuid = context->loginuid;
664 memset(context, 0, sizeof(*context));
665 context->state = state;
666 context->loginuid = loginuid;
669 static inline struct audit_context *audit_alloc_context(enum audit_state state)
671 struct audit_context *context;
673 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
674 return NULL;
675 audit_zero_context(context, state);
676 return context;
680 * audit_alloc - allocate an audit context block for a task
681 * @tsk: task
683 * Filter on the task information and allocate a per-task audit context
684 * if necessary. Doing so turns on system call auditing for the
685 * specified task. This is called from copy_process, so no lock is
686 * needed.
688 int audit_alloc(struct task_struct *tsk)
690 struct audit_context *context;
691 enum audit_state state;
693 if (likely(!audit_enabled))
694 return 0; /* Return if not auditing. */
696 state = audit_filter_task(tsk);
697 if (likely(state == AUDIT_DISABLED))
698 return 0;
700 if (!(context = audit_alloc_context(state))) {
701 audit_log_lost("out of memory in audit_alloc");
702 return -ENOMEM;
705 /* Preserve login uid */
706 context->loginuid = -1;
707 if (current->audit_context)
708 context->loginuid = current->audit_context->loginuid;
710 tsk->audit_context = context;
711 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
712 return 0;
715 static inline void audit_free_context(struct audit_context *context)
717 struct audit_context *previous;
718 int count = 0;
720 do {
721 previous = context->previous;
722 if (previous || (count && count < 10)) {
723 ++count;
724 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
725 " freeing multiple contexts (%d)\n",
726 context->serial, context->major,
727 context->name_count, count);
729 audit_free_names(context);
730 audit_free_aux(context);
731 kfree(context->filterkey);
732 kfree(context);
733 context = previous;
734 } while (context);
735 if (count >= 10)
736 printk(KERN_ERR "audit: freed %d contexts\n", count);
739 void audit_log_task_context(struct audit_buffer *ab)
741 char *ctx = NULL;
742 ssize_t len = 0;
744 len = security_getprocattr(current, "current", NULL, 0);
745 if (len < 0) {
746 if (len != -EINVAL)
747 goto error_path;
748 return;
751 ctx = kmalloc(len, GFP_KERNEL);
752 if (!ctx)
753 goto error_path;
755 len = security_getprocattr(current, "current", ctx, len);
756 if (len < 0 )
757 goto error_path;
759 audit_log_format(ab, " subj=%s", ctx);
760 return;
762 error_path:
763 kfree(ctx);
764 audit_panic("error in audit_log_task_context");
765 return;
768 EXPORT_SYMBOL(audit_log_task_context);
770 static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
772 char name[sizeof(tsk->comm)];
773 struct mm_struct *mm = tsk->mm;
774 struct vm_area_struct *vma;
776 /* tsk == current */
778 get_task_comm(name, tsk);
779 audit_log_format(ab, " comm=");
780 audit_log_untrustedstring(ab, name);
782 if (mm) {
783 down_read(&mm->mmap_sem);
784 vma = mm->mmap;
785 while (vma) {
786 if ((vma->vm_flags & VM_EXECUTABLE) &&
787 vma->vm_file) {
788 audit_log_d_path(ab, "exe=",
789 vma->vm_file->f_path.dentry,
790 vma->vm_file->f_path.mnt);
791 break;
793 vma = vma->vm_next;
795 up_read(&mm->mmap_sem);
797 audit_log_task_context(ab);
800 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
802 int i, call_panic = 0;
803 struct audit_buffer *ab;
804 struct audit_aux_data *aux;
805 const char *tty;
807 /* tsk == current */
808 context->pid = tsk->pid;
809 if (!context->ppid)
810 context->ppid = sys_getppid();
811 context->uid = tsk->uid;
812 context->gid = tsk->gid;
813 context->euid = tsk->euid;
814 context->suid = tsk->suid;
815 context->fsuid = tsk->fsuid;
816 context->egid = tsk->egid;
817 context->sgid = tsk->sgid;
818 context->fsgid = tsk->fsgid;
819 context->personality = tsk->personality;
821 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
822 if (!ab)
823 return; /* audit_panic has been called */
824 audit_log_format(ab, "arch=%x syscall=%d",
825 context->arch, context->major);
826 if (context->personality != PER_LINUX)
827 audit_log_format(ab, " per=%lx", context->personality);
828 if (context->return_valid)
829 audit_log_format(ab, " success=%s exit=%ld",
830 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
831 context->return_code);
833 mutex_lock(&tty_mutex);
834 read_lock(&tasklist_lock);
835 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
836 tty = tsk->signal->tty->name;
837 else
838 tty = "(none)";
839 read_unlock(&tasklist_lock);
840 audit_log_format(ab,
841 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
842 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
843 " euid=%u suid=%u fsuid=%u"
844 " egid=%u sgid=%u fsgid=%u tty=%s",
845 context->argv[0],
846 context->argv[1],
847 context->argv[2],
848 context->argv[3],
849 context->name_count,
850 context->ppid,
851 context->pid,
852 context->loginuid,
853 context->uid,
854 context->gid,
855 context->euid, context->suid, context->fsuid,
856 context->egid, context->sgid, context->fsgid, tty);
858 mutex_unlock(&tty_mutex);
860 audit_log_task_info(ab, tsk);
861 if (context->filterkey) {
862 audit_log_format(ab, " key=");
863 audit_log_untrustedstring(ab, context->filterkey);
864 } else
865 audit_log_format(ab, " key=(null)");
866 audit_log_end(ab);
868 for (aux = context->aux; aux; aux = aux->next) {
870 ab = audit_log_start(context, GFP_KERNEL, aux->type);
871 if (!ab)
872 continue; /* audit_panic has been called */
874 switch (aux->type) {
875 case AUDIT_MQ_OPEN: {
876 struct audit_aux_data_mq_open *axi = (void *)aux;
877 audit_log_format(ab,
878 "oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
879 "mq_msgsize=%ld mq_curmsgs=%ld",
880 axi->oflag, axi->mode, axi->attr.mq_flags,
881 axi->attr.mq_maxmsg, axi->attr.mq_msgsize,
882 axi->attr.mq_curmsgs);
883 break; }
885 case AUDIT_MQ_SENDRECV: {
886 struct audit_aux_data_mq_sendrecv *axi = (void *)aux;
887 audit_log_format(ab,
888 "mqdes=%d msg_len=%zd msg_prio=%u "
889 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
890 axi->mqdes, axi->msg_len, axi->msg_prio,
891 axi->abs_timeout.tv_sec, axi->abs_timeout.tv_nsec);
892 break; }
894 case AUDIT_MQ_NOTIFY: {
895 struct audit_aux_data_mq_notify *axi = (void *)aux;
896 audit_log_format(ab,
897 "mqdes=%d sigev_signo=%d",
898 axi->mqdes,
899 axi->notification.sigev_signo);
900 break; }
902 case AUDIT_MQ_GETSETATTR: {
903 struct audit_aux_data_mq_getsetattr *axi = (void *)aux;
904 audit_log_format(ab,
905 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
906 "mq_curmsgs=%ld ",
907 axi->mqdes,
908 axi->mqstat.mq_flags, axi->mqstat.mq_maxmsg,
909 axi->mqstat.mq_msgsize, axi->mqstat.mq_curmsgs);
910 break; }
912 case AUDIT_IPC: {
913 struct audit_aux_data_ipcctl *axi = (void *)aux;
914 audit_log_format(ab,
915 "ouid=%u ogid=%u mode=%x",
916 axi->uid, axi->gid, axi->mode);
917 if (axi->osid != 0) {
918 char *ctx = NULL;
919 u32 len;
920 if (selinux_sid_to_string(
921 axi->osid, &ctx, &len)) {
922 audit_log_format(ab, " osid=%u",
923 axi->osid);
924 call_panic = 1;
925 } else
926 audit_log_format(ab, " obj=%s", ctx);
927 kfree(ctx);
929 break; }
931 case AUDIT_IPC_SET_PERM: {
932 struct audit_aux_data_ipcctl *axi = (void *)aux;
933 audit_log_format(ab,
934 "qbytes=%lx ouid=%u ogid=%u mode=%x",
935 axi->qbytes, axi->uid, axi->gid, axi->mode);
936 break; }
938 case AUDIT_EXECVE: {
939 struct audit_aux_data_execve *axi = (void *)aux;
940 int i;
941 const char *p;
942 for (i = 0, p = axi->mem; i < axi->argc; i++) {
943 audit_log_format(ab, "a%d=", i);
944 p = audit_log_untrustedstring(ab, p);
945 audit_log_format(ab, "\n");
947 break; }
949 case AUDIT_SOCKETCALL: {
950 int i;
951 struct audit_aux_data_socketcall *axs = (void *)aux;
952 audit_log_format(ab, "nargs=%d", axs->nargs);
953 for (i=0; i<axs->nargs; i++)
954 audit_log_format(ab, " a%d=%lx", i, axs->args[i]);
955 break; }
957 case AUDIT_SOCKADDR: {
958 struct audit_aux_data_sockaddr *axs = (void *)aux;
960 audit_log_format(ab, "saddr=");
961 audit_log_hex(ab, axs->a, axs->len);
962 break; }
964 case AUDIT_AVC_PATH: {
965 struct audit_aux_data_path *axi = (void *)aux;
966 audit_log_d_path(ab, "path=", axi->dentry, axi->mnt);
967 break; }
969 case AUDIT_FD_PAIR: {
970 struct audit_aux_data_fd_pair *axs = (void *)aux;
971 audit_log_format(ab, "fd0=%d fd1=%d", axs->fd[0], axs->fd[1]);
972 break; }
975 audit_log_end(ab);
978 if (context->pwd && context->pwdmnt) {
979 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
980 if (ab) {
981 audit_log_d_path(ab, "cwd=", context->pwd, context->pwdmnt);
982 audit_log_end(ab);
985 for (i = 0; i < context->name_count; i++) {
986 struct audit_names *n = &context->names[i];
988 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
989 if (!ab)
990 continue; /* audit_panic has been called */
992 audit_log_format(ab, "item=%d", i);
994 if (n->name) {
995 switch(n->name_len) {
996 case AUDIT_NAME_FULL:
997 /* log the full path */
998 audit_log_format(ab, " name=");
999 audit_log_untrustedstring(ab, n->name);
1000 break;
1001 case 0:
1002 /* name was specified as a relative path and the
1003 * directory component is the cwd */
1004 audit_log_d_path(ab, " name=", context->pwd,
1005 context->pwdmnt);
1006 break;
1007 default:
1008 /* log the name's directory component */
1009 audit_log_format(ab, " name=");
1010 audit_log_n_untrustedstring(ab, n->name_len,
1011 n->name);
1013 } else
1014 audit_log_format(ab, " name=(null)");
1016 if (n->ino != (unsigned long)-1) {
1017 audit_log_format(ab, " inode=%lu"
1018 " dev=%02x:%02x mode=%#o"
1019 " ouid=%u ogid=%u rdev=%02x:%02x",
1020 n->ino,
1021 MAJOR(n->dev),
1022 MINOR(n->dev),
1023 n->mode,
1024 n->uid,
1025 n->gid,
1026 MAJOR(n->rdev),
1027 MINOR(n->rdev));
1029 if (n->osid != 0) {
1030 char *ctx = NULL;
1031 u32 len;
1032 if (selinux_sid_to_string(
1033 n->osid, &ctx, &len)) {
1034 audit_log_format(ab, " osid=%u", n->osid);
1035 call_panic = 2;
1036 } else
1037 audit_log_format(ab, " obj=%s", ctx);
1038 kfree(ctx);
1041 audit_log_end(ab);
1043 if (call_panic)
1044 audit_panic("error converting sid to string");
1048 * audit_free - free a per-task audit context
1049 * @tsk: task whose audit context block to free
1051 * Called from copy_process and do_exit
1053 void audit_free(struct task_struct *tsk)
1055 struct audit_context *context;
1057 context = audit_get_context(tsk, 0, 0);
1058 if (likely(!context))
1059 return;
1061 /* Check for system calls that do not go through the exit
1062 * function (e.g., exit_group), then free context block.
1063 * We use GFP_ATOMIC here because we might be doing this
1064 * in the context of the idle thread */
1065 /* that can happen only if we are called from do_exit() */
1066 if (context->in_syscall && context->auditable)
1067 audit_log_exit(context, tsk);
1069 audit_free_context(context);
1073 * audit_syscall_entry - fill in an audit record at syscall entry
1074 * @tsk: task being audited
1075 * @arch: architecture type
1076 * @major: major syscall type (function)
1077 * @a1: additional syscall register 1
1078 * @a2: additional syscall register 2
1079 * @a3: additional syscall register 3
1080 * @a4: additional syscall register 4
1082 * Fill in audit context at syscall entry. This only happens if the
1083 * audit context was created when the task was created and the state or
1084 * filters demand the audit context be built. If the state from the
1085 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1086 * then the record will be written at syscall exit time (otherwise, it
1087 * will only be written if another part of the kernel requests that it
1088 * be written).
1090 void audit_syscall_entry(int arch, int major,
1091 unsigned long a1, unsigned long a2,
1092 unsigned long a3, unsigned long a4)
1094 struct task_struct *tsk = current;
1095 struct audit_context *context = tsk->audit_context;
1096 enum audit_state state;
1098 BUG_ON(!context);
1101 * This happens only on certain architectures that make system
1102 * calls in kernel_thread via the entry.S interface, instead of
1103 * with direct calls. (If you are porting to a new
1104 * architecture, hitting this condition can indicate that you
1105 * got the _exit/_leave calls backward in entry.S.)
1107 * i386 no
1108 * x86_64 no
1109 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1111 * This also happens with vm86 emulation in a non-nested manner
1112 * (entries without exits), so this case must be caught.
1114 if (context->in_syscall) {
1115 struct audit_context *newctx;
1117 #if AUDIT_DEBUG
1118 printk(KERN_ERR
1119 "audit(:%d) pid=%d in syscall=%d;"
1120 " entering syscall=%d\n",
1121 context->serial, tsk->pid, context->major, major);
1122 #endif
1123 newctx = audit_alloc_context(context->state);
1124 if (newctx) {
1125 newctx->previous = context;
1126 context = newctx;
1127 tsk->audit_context = newctx;
1128 } else {
1129 /* If we can't alloc a new context, the best we
1130 * can do is to leak memory (any pending putname
1131 * will be lost). The only other alternative is
1132 * to abandon auditing. */
1133 audit_zero_context(context, context->state);
1136 BUG_ON(context->in_syscall || context->name_count);
1138 if (!audit_enabled)
1139 return;
1141 context->arch = arch;
1142 context->major = major;
1143 context->argv[0] = a1;
1144 context->argv[1] = a2;
1145 context->argv[2] = a3;
1146 context->argv[3] = a4;
1148 state = context->state;
1149 context->dummy = !audit_n_rules;
1150 if (!context->dummy && (state == AUDIT_SETUP_CONTEXT || state == AUDIT_BUILD_CONTEXT))
1151 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1152 if (likely(state == AUDIT_DISABLED))
1153 return;
1155 context->serial = 0;
1156 context->ctime = CURRENT_TIME;
1157 context->in_syscall = 1;
1158 context->auditable = !!(state == AUDIT_RECORD_CONTEXT);
1159 context->ppid = 0;
1163 * audit_syscall_exit - deallocate audit context after a system call
1164 * @tsk: task being audited
1165 * @valid: success/failure flag
1166 * @return_code: syscall return value
1168 * Tear down after system call. If the audit context has been marked as
1169 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1170 * filtering, or because some other part of the kernel write an audit
1171 * message), then write out the syscall information. In call cases,
1172 * free the names stored from getname().
1174 void audit_syscall_exit(int valid, long return_code)
1176 struct task_struct *tsk = current;
1177 struct audit_context *context;
1179 context = audit_get_context(tsk, valid, return_code);
1181 if (likely(!context))
1182 return;
1184 if (context->in_syscall && context->auditable)
1185 audit_log_exit(context, tsk);
1187 context->in_syscall = 0;
1188 context->auditable = 0;
1190 if (context->previous) {
1191 struct audit_context *new_context = context->previous;
1192 context->previous = NULL;
1193 audit_free_context(context);
1194 tsk->audit_context = new_context;
1195 } else {
1196 audit_free_names(context);
1197 audit_free_aux(context);
1198 kfree(context->filterkey);
1199 context->filterkey = NULL;
1200 tsk->audit_context = context;
1205 * audit_getname - add a name to the list
1206 * @name: name to add
1208 * Add a name to the list of audit names for this context.
1209 * Called from fs/namei.c:getname().
1211 void __audit_getname(const char *name)
1213 struct audit_context *context = current->audit_context;
1215 if (IS_ERR(name) || !name)
1216 return;
1218 if (!context->in_syscall) {
1219 #if AUDIT_DEBUG == 2
1220 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1221 __FILE__, __LINE__, context->serial, name);
1222 dump_stack();
1223 #endif
1224 return;
1226 BUG_ON(context->name_count >= AUDIT_NAMES);
1227 context->names[context->name_count].name = name;
1228 context->names[context->name_count].name_len = AUDIT_NAME_FULL;
1229 context->names[context->name_count].name_put = 1;
1230 context->names[context->name_count].ino = (unsigned long)-1;
1231 ++context->name_count;
1232 if (!context->pwd) {
1233 read_lock(&current->fs->lock);
1234 context->pwd = dget(current->fs->pwd);
1235 context->pwdmnt = mntget(current->fs->pwdmnt);
1236 read_unlock(&current->fs->lock);
1241 /* audit_putname - intercept a putname request
1242 * @name: name to intercept and delay for putname
1244 * If we have stored the name from getname in the audit context,
1245 * then we delay the putname until syscall exit.
1246 * Called from include/linux/fs.h:putname().
1248 void audit_putname(const char *name)
1250 struct audit_context *context = current->audit_context;
1252 BUG_ON(!context);
1253 if (!context->in_syscall) {
1254 #if AUDIT_DEBUG == 2
1255 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
1256 __FILE__, __LINE__, context->serial, name);
1257 if (context->name_count) {
1258 int i;
1259 for (i = 0; i < context->name_count; i++)
1260 printk(KERN_ERR "name[%d] = %p = %s\n", i,
1261 context->names[i].name,
1262 context->names[i].name ?: "(null)");
1264 #endif
1265 __putname(name);
1267 #if AUDIT_DEBUG
1268 else {
1269 ++context->put_count;
1270 if (context->put_count > context->name_count) {
1271 printk(KERN_ERR "%s:%d(:%d): major=%d"
1272 " in_syscall=%d putname(%p) name_count=%d"
1273 " put_count=%d\n",
1274 __FILE__, __LINE__,
1275 context->serial, context->major,
1276 context->in_syscall, name, context->name_count,
1277 context->put_count);
1278 dump_stack();
1281 #endif
1284 /* Copy inode data into an audit_names. */
1285 static void audit_copy_inode(struct audit_names *name, const struct inode *inode)
1287 name->ino = inode->i_ino;
1288 name->dev = inode->i_sb->s_dev;
1289 name->mode = inode->i_mode;
1290 name->uid = inode->i_uid;
1291 name->gid = inode->i_gid;
1292 name->rdev = inode->i_rdev;
1293 selinux_get_inode_sid(inode, &name->osid);
1297 * audit_inode - store the inode and device from a lookup
1298 * @name: name being audited
1299 * @inode: inode being audited
1301 * Called from fs/namei.c:path_lookup().
1303 void __audit_inode(const char *name, const struct inode *inode)
1305 int idx;
1306 struct audit_context *context = current->audit_context;
1308 if (!context->in_syscall)
1309 return;
1310 if (context->name_count
1311 && context->names[context->name_count-1].name
1312 && context->names[context->name_count-1].name == name)
1313 idx = context->name_count - 1;
1314 else if (context->name_count > 1
1315 && context->names[context->name_count-2].name
1316 && context->names[context->name_count-2].name == name)
1317 idx = context->name_count - 2;
1318 else {
1319 /* FIXME: how much do we care about inodes that have no
1320 * associated name? */
1321 if (context->name_count >= AUDIT_NAMES - AUDIT_NAMES_RESERVED)
1322 return;
1323 idx = context->name_count++;
1324 context->names[idx].name = NULL;
1325 #if AUDIT_DEBUG
1326 ++context->ino_count;
1327 #endif
1329 audit_copy_inode(&context->names[idx], inode);
1333 * audit_inode_child - collect inode info for created/removed objects
1334 * @dname: inode's dentry name
1335 * @inode: inode being audited
1336 * @parent: inode of dentry parent
1338 * For syscalls that create or remove filesystem objects, audit_inode
1339 * can only collect information for the filesystem object's parent.
1340 * This call updates the audit context with the child's information.
1341 * Syscalls that create a new filesystem object must be hooked after
1342 * the object is created. Syscalls that remove a filesystem object
1343 * must be hooked prior, in order to capture the target inode during
1344 * unsuccessful attempts.
1346 void __audit_inode_child(const char *dname, const struct inode *inode,
1347 const struct inode *parent)
1349 int idx;
1350 struct audit_context *context = current->audit_context;
1351 const char *found_name = NULL;
1352 int dirlen = 0;
1354 if (!context->in_syscall)
1355 return;
1357 /* determine matching parent */
1358 if (!dname)
1359 goto update_context;
1360 for (idx = 0; idx < context->name_count; idx++)
1361 if (context->names[idx].ino == parent->i_ino) {
1362 const char *name = context->names[idx].name;
1364 if (!name)
1365 continue;
1367 if (audit_compare_dname_path(dname, name, &dirlen) == 0) {
1368 context->names[idx].name_len = dirlen;
1369 found_name = name;
1370 break;
1374 update_context:
1375 idx = context->name_count;
1376 if (context->name_count == AUDIT_NAMES) {
1377 printk(KERN_DEBUG "name_count maxed and losing %s\n",
1378 found_name ?: "(null)");
1379 return;
1381 context->name_count++;
1382 #if AUDIT_DEBUG
1383 context->ino_count++;
1384 #endif
1385 /* Re-use the name belonging to the slot for a matching parent directory.
1386 * All names for this context are relinquished in audit_free_names() */
1387 context->names[idx].name = found_name;
1388 context->names[idx].name_len = AUDIT_NAME_FULL;
1389 context->names[idx].name_put = 0; /* don't call __putname() */
1391 if (!inode)
1392 context->names[idx].ino = (unsigned long)-1;
1393 else
1394 audit_copy_inode(&context->names[idx], inode);
1396 /* A parent was not found in audit_names, so copy the inode data for the
1397 * provided parent. */
1398 if (!found_name) {
1399 idx = context->name_count;
1400 if (context->name_count == AUDIT_NAMES) {
1401 printk(KERN_DEBUG
1402 "name_count maxed and losing parent inode data: dev=%02x:%02x, inode=%lu",
1403 MAJOR(parent->i_sb->s_dev),
1404 MINOR(parent->i_sb->s_dev),
1405 parent->i_ino);
1406 return;
1408 context->name_count++;
1409 #if AUDIT_DEBUG
1410 context->ino_count++;
1411 #endif
1412 audit_copy_inode(&context->names[idx], parent);
1417 * audit_inode_update - update inode info for last collected name
1418 * @inode: inode being audited
1420 * When open() is called on an existing object with the O_CREAT flag, the inode
1421 * data audit initially collects is incorrect. This additional hook ensures
1422 * audit has the inode data for the actual object to be opened.
1424 void __audit_inode_update(const struct inode *inode)
1426 struct audit_context *context = current->audit_context;
1427 int idx;
1429 if (!context->in_syscall || !inode)
1430 return;
1432 if (context->name_count == 0) {
1433 context->name_count++;
1434 #if AUDIT_DEBUG
1435 context->ino_count++;
1436 #endif
1438 idx = context->name_count - 1;
1440 audit_copy_inode(&context->names[idx], inode);
1444 * auditsc_get_stamp - get local copies of audit_context values
1445 * @ctx: audit_context for the task
1446 * @t: timespec to store time recorded in the audit_context
1447 * @serial: serial value that is recorded in the audit_context
1449 * Also sets the context as auditable.
1451 void auditsc_get_stamp(struct audit_context *ctx,
1452 struct timespec *t, unsigned int *serial)
1454 if (!ctx->serial)
1455 ctx->serial = audit_serial();
1456 t->tv_sec = ctx->ctime.tv_sec;
1457 t->tv_nsec = ctx->ctime.tv_nsec;
1458 *serial = ctx->serial;
1459 ctx->auditable = 1;
1463 * audit_set_loginuid - set a task's audit_context loginuid
1464 * @task: task whose audit context is being modified
1465 * @loginuid: loginuid value
1467 * Returns 0.
1469 * Called (set) from fs/proc/base.c::proc_loginuid_write().
1471 int audit_set_loginuid(struct task_struct *task, uid_t loginuid)
1473 struct audit_context *context = task->audit_context;
1475 if (context) {
1476 /* Only log if audit is enabled */
1477 if (context->in_syscall) {
1478 struct audit_buffer *ab;
1480 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
1481 if (ab) {
1482 audit_log_format(ab, "login pid=%d uid=%u "
1483 "old auid=%u new auid=%u",
1484 task->pid, task->uid,
1485 context->loginuid, loginuid);
1486 audit_log_end(ab);
1489 context->loginuid = loginuid;
1491 return 0;
1495 * audit_get_loginuid - get the loginuid for an audit_context
1496 * @ctx: the audit_context
1498 * Returns the context's loginuid or -1 if @ctx is NULL.
1500 uid_t audit_get_loginuid(struct audit_context *ctx)
1502 return ctx ? ctx->loginuid : -1;
1505 EXPORT_SYMBOL(audit_get_loginuid);
1508 * __audit_mq_open - record audit data for a POSIX MQ open
1509 * @oflag: open flag
1510 * @mode: mode bits
1511 * @u_attr: queue attributes
1513 * Returns 0 for success or NULL context or < 0 on error.
1515 int __audit_mq_open(int oflag, mode_t mode, struct mq_attr __user *u_attr)
1517 struct audit_aux_data_mq_open *ax;
1518 struct audit_context *context = current->audit_context;
1520 if (!audit_enabled)
1521 return 0;
1523 if (likely(!context))
1524 return 0;
1526 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1527 if (!ax)
1528 return -ENOMEM;
1530 if (u_attr != NULL) {
1531 if (copy_from_user(&ax->attr, u_attr, sizeof(ax->attr))) {
1532 kfree(ax);
1533 return -EFAULT;
1535 } else
1536 memset(&ax->attr, 0, sizeof(ax->attr));
1538 ax->oflag = oflag;
1539 ax->mode = mode;
1541 ax->d.type = AUDIT_MQ_OPEN;
1542 ax->d.next = context->aux;
1543 context->aux = (void *)ax;
1544 return 0;
1548 * __audit_mq_timedsend - record audit data for a POSIX MQ timed send
1549 * @mqdes: MQ descriptor
1550 * @msg_len: Message length
1551 * @msg_prio: Message priority
1552 * @u_abs_timeout: Message timeout in absolute time
1554 * Returns 0 for success or NULL context or < 0 on error.
1556 int __audit_mq_timedsend(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
1557 const struct timespec __user *u_abs_timeout)
1559 struct audit_aux_data_mq_sendrecv *ax;
1560 struct audit_context *context = current->audit_context;
1562 if (!audit_enabled)
1563 return 0;
1565 if (likely(!context))
1566 return 0;
1568 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1569 if (!ax)
1570 return -ENOMEM;
1572 if (u_abs_timeout != NULL) {
1573 if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) {
1574 kfree(ax);
1575 return -EFAULT;
1577 } else
1578 memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout));
1580 ax->mqdes = mqdes;
1581 ax->msg_len = msg_len;
1582 ax->msg_prio = msg_prio;
1584 ax->d.type = AUDIT_MQ_SENDRECV;
1585 ax->d.next = context->aux;
1586 context->aux = (void *)ax;
1587 return 0;
1591 * __audit_mq_timedreceive - record audit data for a POSIX MQ timed receive
1592 * @mqdes: MQ descriptor
1593 * @msg_len: Message length
1594 * @u_msg_prio: Message priority
1595 * @u_abs_timeout: Message timeout in absolute time
1597 * Returns 0 for success or NULL context or < 0 on error.
1599 int __audit_mq_timedreceive(mqd_t mqdes, size_t msg_len,
1600 unsigned int __user *u_msg_prio,
1601 const struct timespec __user *u_abs_timeout)
1603 struct audit_aux_data_mq_sendrecv *ax;
1604 struct audit_context *context = current->audit_context;
1606 if (!audit_enabled)
1607 return 0;
1609 if (likely(!context))
1610 return 0;
1612 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1613 if (!ax)
1614 return -ENOMEM;
1616 if (u_msg_prio != NULL) {
1617 if (get_user(ax->msg_prio, u_msg_prio)) {
1618 kfree(ax);
1619 return -EFAULT;
1621 } else
1622 ax->msg_prio = 0;
1624 if (u_abs_timeout != NULL) {
1625 if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) {
1626 kfree(ax);
1627 return -EFAULT;
1629 } else
1630 memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout));
1632 ax->mqdes = mqdes;
1633 ax->msg_len = msg_len;
1635 ax->d.type = AUDIT_MQ_SENDRECV;
1636 ax->d.next = context->aux;
1637 context->aux = (void *)ax;
1638 return 0;
1642 * __audit_mq_notify - record audit data for a POSIX MQ notify
1643 * @mqdes: MQ descriptor
1644 * @u_notification: Notification event
1646 * Returns 0 for success or NULL context or < 0 on error.
1649 int __audit_mq_notify(mqd_t mqdes, const struct sigevent __user *u_notification)
1651 struct audit_aux_data_mq_notify *ax;
1652 struct audit_context *context = current->audit_context;
1654 if (!audit_enabled)
1655 return 0;
1657 if (likely(!context))
1658 return 0;
1660 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1661 if (!ax)
1662 return -ENOMEM;
1664 if (u_notification != NULL) {
1665 if (copy_from_user(&ax->notification, u_notification, sizeof(ax->notification))) {
1666 kfree(ax);
1667 return -EFAULT;
1669 } else
1670 memset(&ax->notification, 0, sizeof(ax->notification));
1672 ax->mqdes = mqdes;
1674 ax->d.type = AUDIT_MQ_NOTIFY;
1675 ax->d.next = context->aux;
1676 context->aux = (void *)ax;
1677 return 0;
1681 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
1682 * @mqdes: MQ descriptor
1683 * @mqstat: MQ flags
1685 * Returns 0 for success or NULL context or < 0 on error.
1687 int __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
1689 struct audit_aux_data_mq_getsetattr *ax;
1690 struct audit_context *context = current->audit_context;
1692 if (!audit_enabled)
1693 return 0;
1695 if (likely(!context))
1696 return 0;
1698 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1699 if (!ax)
1700 return -ENOMEM;
1702 ax->mqdes = mqdes;
1703 ax->mqstat = *mqstat;
1705 ax->d.type = AUDIT_MQ_GETSETATTR;
1706 ax->d.next = context->aux;
1707 context->aux = (void *)ax;
1708 return 0;
1712 * audit_ipc_obj - record audit data for ipc object
1713 * @ipcp: ipc permissions
1715 * Returns 0 for success or NULL context or < 0 on error.
1717 int __audit_ipc_obj(struct kern_ipc_perm *ipcp)
1719 struct audit_aux_data_ipcctl *ax;
1720 struct audit_context *context = current->audit_context;
1722 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1723 if (!ax)
1724 return -ENOMEM;
1726 ax->uid = ipcp->uid;
1727 ax->gid = ipcp->gid;
1728 ax->mode = ipcp->mode;
1729 selinux_get_ipc_sid(ipcp, &ax->osid);
1731 ax->d.type = AUDIT_IPC;
1732 ax->d.next = context->aux;
1733 context->aux = (void *)ax;
1734 return 0;
1738 * audit_ipc_set_perm - record audit data for new ipc permissions
1739 * @qbytes: msgq bytes
1740 * @uid: msgq user id
1741 * @gid: msgq group id
1742 * @mode: msgq mode (permissions)
1744 * Returns 0 for success or NULL context or < 0 on error.
1746 int __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode)
1748 struct audit_aux_data_ipcctl *ax;
1749 struct audit_context *context = current->audit_context;
1751 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1752 if (!ax)
1753 return -ENOMEM;
1755 ax->qbytes = qbytes;
1756 ax->uid = uid;
1757 ax->gid = gid;
1758 ax->mode = mode;
1760 ax->d.type = AUDIT_IPC_SET_PERM;
1761 ax->d.next = context->aux;
1762 context->aux = (void *)ax;
1763 return 0;
1766 int audit_bprm(struct linux_binprm *bprm)
1768 struct audit_aux_data_execve *ax;
1769 struct audit_context *context = current->audit_context;
1770 unsigned long p, next;
1771 void *to;
1773 if (likely(!audit_enabled || !context || context->dummy))
1774 return 0;
1776 ax = kmalloc(sizeof(*ax) + PAGE_SIZE * MAX_ARG_PAGES - bprm->p,
1777 GFP_KERNEL);
1778 if (!ax)
1779 return -ENOMEM;
1781 ax->argc = bprm->argc;
1782 ax->envc = bprm->envc;
1783 for (p = bprm->p, to = ax->mem; p < MAX_ARG_PAGES*PAGE_SIZE; p = next) {
1784 struct page *page = bprm->page[p / PAGE_SIZE];
1785 void *kaddr = kmap(page);
1786 next = (p + PAGE_SIZE) & ~(PAGE_SIZE - 1);
1787 memcpy(to, kaddr + (p & (PAGE_SIZE - 1)), next - p);
1788 to += next - p;
1789 kunmap(page);
1792 ax->d.type = AUDIT_EXECVE;
1793 ax->d.next = context->aux;
1794 context->aux = (void *)ax;
1795 return 0;
1800 * audit_socketcall - record audit data for sys_socketcall
1801 * @nargs: number of args
1802 * @args: args array
1804 * Returns 0 for success or NULL context or < 0 on error.
1806 int audit_socketcall(int nargs, unsigned long *args)
1808 struct audit_aux_data_socketcall *ax;
1809 struct audit_context *context = current->audit_context;
1811 if (likely(!context || context->dummy))
1812 return 0;
1814 ax = kmalloc(sizeof(*ax) + nargs * sizeof(unsigned long), GFP_KERNEL);
1815 if (!ax)
1816 return -ENOMEM;
1818 ax->nargs = nargs;
1819 memcpy(ax->args, args, nargs * sizeof(unsigned long));
1821 ax->d.type = AUDIT_SOCKETCALL;
1822 ax->d.next = context->aux;
1823 context->aux = (void *)ax;
1824 return 0;
1828 * __audit_fd_pair - record audit data for pipe and socketpair
1829 * @fd1: the first file descriptor
1830 * @fd2: the second file descriptor
1832 * Returns 0 for success or NULL context or < 0 on error.
1834 int __audit_fd_pair(int fd1, int fd2)
1836 struct audit_context *context = current->audit_context;
1837 struct audit_aux_data_fd_pair *ax;
1839 if (likely(!context)) {
1840 return 0;
1843 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
1844 if (!ax) {
1845 return -ENOMEM;
1848 ax->fd[0] = fd1;
1849 ax->fd[1] = fd2;
1851 ax->d.type = AUDIT_FD_PAIR;
1852 ax->d.next = context->aux;
1853 context->aux = (void *)ax;
1854 return 0;
1858 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
1859 * @len: data length in user space
1860 * @a: data address in kernel space
1862 * Returns 0 for success or NULL context or < 0 on error.
1864 int audit_sockaddr(int len, void *a)
1866 struct audit_aux_data_sockaddr *ax;
1867 struct audit_context *context = current->audit_context;
1869 if (likely(!context || context->dummy))
1870 return 0;
1872 ax = kmalloc(sizeof(*ax) + len, GFP_KERNEL);
1873 if (!ax)
1874 return -ENOMEM;
1876 ax->len = len;
1877 memcpy(ax->a, a, len);
1879 ax->d.type = AUDIT_SOCKADDR;
1880 ax->d.next = context->aux;
1881 context->aux = (void *)ax;
1882 return 0;
1886 * audit_avc_path - record the granting or denial of permissions
1887 * @dentry: dentry to record
1888 * @mnt: mnt to record
1890 * Returns 0 for success or NULL context or < 0 on error.
1892 * Called from security/selinux/avc.c::avc_audit()
1894 int audit_avc_path(struct dentry *dentry, struct vfsmount *mnt)
1896 struct audit_aux_data_path *ax;
1897 struct audit_context *context = current->audit_context;
1899 if (likely(!context))
1900 return 0;
1902 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1903 if (!ax)
1904 return -ENOMEM;
1906 ax->dentry = dget(dentry);
1907 ax->mnt = mntget(mnt);
1909 ax->d.type = AUDIT_AVC_PATH;
1910 ax->d.next = context->aux;
1911 context->aux = (void *)ax;
1912 return 0;
1916 * audit_signal_info - record signal info for shutting down audit subsystem
1917 * @sig: signal value
1918 * @t: task being signaled
1920 * If the audit subsystem is being terminated, record the task (pid)
1921 * and uid that is doing that.
1923 void __audit_signal_info(int sig, struct task_struct *t)
1925 extern pid_t audit_sig_pid;
1926 extern uid_t audit_sig_uid;
1927 extern u32 audit_sig_sid;
1929 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1) {
1930 struct task_struct *tsk = current;
1931 struct audit_context *ctx = tsk->audit_context;
1932 audit_sig_pid = tsk->pid;
1933 if (ctx)
1934 audit_sig_uid = ctx->loginuid;
1935 else
1936 audit_sig_uid = tsk->uid;
1937 selinux_get_task_sid(tsk, &audit_sig_sid);