2 * linux/kernel/profile.c
3 * Simple profiling. Manages a direct-mapped profile hit count buffer,
4 * with configurable resolution, support for restricting the cpus on
5 * which profiling is done, and switching between cpu time and
6 * schedule() calls via kernel command line parameters passed at boot.
8 * Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
10 * Consolidation of architecture support code for profiling,
11 * William Irwin, Oracle, July 2004
12 * Amortized hit count accounting via per-cpu open-addressed hashtables
13 * to resolve timer interrupt livelocks, William Irwin, Oracle, 2004
16 #include <linux/config.h>
17 #include <linux/module.h>
18 #include <linux/profile.h>
19 #include <linux/bootmem.h>
20 #include <linux/notifier.h>
22 #include <linux/cpumask.h>
23 #include <linux/cpu.h>
24 #include <linux/profile.h>
25 #include <linux/highmem.h>
26 #include <asm/sections.h>
27 #include <asm/semaphore.h>
32 #define PROFILE_GRPSHIFT 3
33 #define PROFILE_GRPSZ (1 << PROFILE_GRPSHIFT)
34 #define NR_PROFILE_HIT (PAGE_SIZE/sizeof(struct profile_hit))
35 #define NR_PROFILE_GRP (NR_PROFILE_HIT/PROFILE_GRPSZ)
37 /* Oprofile timer tick hook */
38 int (*timer_hook
)(struct pt_regs
*);
40 static atomic_t
*prof_buffer
;
41 static unsigned long prof_len
, prof_shift
;
43 static cpumask_t prof_cpu_mask
= CPU_MASK_ALL
;
45 static DEFINE_PER_CPU(struct profile_hit
*[2], cpu_profile_hits
);
46 static DEFINE_PER_CPU(int, cpu_profile_flip
);
47 static DECLARE_MUTEX(profile_flip_mutex
);
48 #endif /* CONFIG_SMP */
50 static int __init
profile_setup(char * str
)
54 if (!strncmp(str
, "schedule", 8)) {
55 prof_on
= SCHED_PROFILING
;
56 printk(KERN_INFO
"kernel schedule profiling enabled\n");
60 if (get_option(&str
,&par
)) {
62 prof_on
= CPU_PROFILING
;
63 printk(KERN_INFO
"kernel profiling enabled (shift: %ld)\n",
68 __setup("profile=", profile_setup
);
71 void __init
profile_init(void)
76 /* only text is profiled */
77 prof_len
= (_etext
- _stext
) >> prof_shift
;
78 prof_buffer
= alloc_bootmem(prof_len
*sizeof(atomic_t
));
81 /* Profile event notifications */
83 #ifdef CONFIG_PROFILING
85 static DECLARE_RWSEM(profile_rwsem
);
86 static DEFINE_RWLOCK(handoff_lock
);
87 static struct notifier_block
* task_exit_notifier
;
88 static struct notifier_block
* task_free_notifier
;
89 static struct notifier_block
* munmap_notifier
;
91 void profile_task_exit(struct task_struct
* task
)
93 down_read(&profile_rwsem
);
94 notifier_call_chain(&task_exit_notifier
, 0, task
);
95 up_read(&profile_rwsem
);
98 int profile_handoff_task(struct task_struct
* task
)
101 read_lock(&handoff_lock
);
102 ret
= notifier_call_chain(&task_free_notifier
, 0, task
);
103 read_unlock(&handoff_lock
);
104 return (ret
== NOTIFY_OK
) ? 1 : 0;
107 void profile_munmap(unsigned long addr
)
109 down_read(&profile_rwsem
);
110 notifier_call_chain(&munmap_notifier
, 0, (void *)addr
);
111 up_read(&profile_rwsem
);
114 int task_handoff_register(struct notifier_block
* n
)
118 write_lock(&handoff_lock
);
119 err
= notifier_chain_register(&task_free_notifier
, n
);
120 write_unlock(&handoff_lock
);
124 int task_handoff_unregister(struct notifier_block
* n
)
128 write_lock(&handoff_lock
);
129 err
= notifier_chain_unregister(&task_free_notifier
, n
);
130 write_unlock(&handoff_lock
);
134 int profile_event_register(enum profile_type type
, struct notifier_block
* n
)
138 down_write(&profile_rwsem
);
141 case PROFILE_TASK_EXIT
:
142 err
= notifier_chain_register(&task_exit_notifier
, n
);
145 err
= notifier_chain_register(&munmap_notifier
, n
);
149 up_write(&profile_rwsem
);
155 int profile_event_unregister(enum profile_type type
, struct notifier_block
* n
)
159 down_write(&profile_rwsem
);
162 case PROFILE_TASK_EXIT
:
163 err
= notifier_chain_unregister(&task_exit_notifier
, n
);
166 err
= notifier_chain_unregister(&munmap_notifier
, n
);
170 up_write(&profile_rwsem
);
174 int register_timer_hook(int (*hook
)(struct pt_regs
*))
182 void unregister_timer_hook(int (*hook
)(struct pt_regs
*))
184 WARN_ON(hook
!= timer_hook
);
186 /* make sure all CPUs see the NULL hook */
187 synchronize_kernel();
190 EXPORT_SYMBOL_GPL(register_timer_hook
);
191 EXPORT_SYMBOL_GPL(unregister_timer_hook
);
192 EXPORT_SYMBOL_GPL(task_handoff_register
);
193 EXPORT_SYMBOL_GPL(task_handoff_unregister
);
195 #endif /* CONFIG_PROFILING */
197 EXPORT_SYMBOL_GPL(profile_event_register
);
198 EXPORT_SYMBOL_GPL(profile_event_unregister
);
202 * Each cpu has a pair of open-addressed hashtables for pending
203 * profile hits. read_profile() IPI's all cpus to request them
204 * to flip buffers and flushes their contents to prof_buffer itself.
205 * Flip requests are serialized by the profile_flip_mutex. The sole
206 * use of having a second hashtable is for avoiding cacheline
207 * contention that would otherwise happen during flushes of pending
208 * profile hits required for the accuracy of reported profile hits
209 * and so resurrect the interrupt livelock issue.
211 * The open-addressed hashtables are indexed by profile buffer slot
212 * and hold the number of pending hits to that profile buffer slot on
213 * a cpu in an entry. When the hashtable overflows, all pending hits
214 * are accounted to their corresponding profile buffer slots with
215 * atomic_add() and the hashtable emptied. As numerous pending hits
216 * may be accounted to a profile buffer slot in a hashtable entry,
217 * this amortizes a number of atomic profile buffer increments likely
218 * to be far larger than the number of entries in the hashtable,
219 * particularly given that the number of distinct profile buffer
220 * positions to which hits are accounted during short intervals (e.g.
221 * several seconds) is usually very small. Exclusion from buffer
222 * flipping is provided by interrupt disablement (note that for
223 * SCHED_PROFILING profile_hit() may be called from process context).
224 * The hash function is meant to be lightweight as opposed to strong,
225 * and was vaguely inspired by ppc64 firmware-supported inverted
226 * pagetable hash functions, but uses a full hashtable full of finite
227 * collision chains, not just pairs of them.
231 static void __profile_flip_buffers(void *unused
)
233 int cpu
= smp_processor_id();
235 per_cpu(cpu_profile_flip
, cpu
) = !per_cpu(cpu_profile_flip
, cpu
);
238 static void profile_flip_buffers(void)
242 down(&profile_flip_mutex
);
243 j
= per_cpu(cpu_profile_flip
, get_cpu());
245 on_each_cpu(__profile_flip_buffers
, NULL
, 0, 1);
246 for_each_online_cpu(cpu
) {
247 struct profile_hit
*hits
= per_cpu(cpu_profile_hits
, cpu
)[j
];
248 for (i
= 0; i
< NR_PROFILE_HIT
; ++i
) {
254 atomic_add(hits
[i
].hits
, &prof_buffer
[hits
[i
].pc
]);
255 hits
[i
].hits
= hits
[i
].pc
= 0;
258 up(&profile_flip_mutex
);
261 static void profile_discard_flip_buffers(void)
265 down(&profile_flip_mutex
);
266 i
= per_cpu(cpu_profile_flip
, get_cpu());
268 on_each_cpu(__profile_flip_buffers
, NULL
, 0, 1);
269 for_each_online_cpu(cpu
) {
270 struct profile_hit
*hits
= per_cpu(cpu_profile_hits
, cpu
)[i
];
271 memset(hits
, 0, NR_PROFILE_HIT
*sizeof(struct profile_hit
));
273 up(&profile_flip_mutex
);
276 void profile_hit(int type
, void *__pc
)
278 unsigned long primary
, secondary
, flags
, pc
= (unsigned long)__pc
;
280 struct profile_hit
*hits
;
282 if (prof_on
!= type
|| !prof_buffer
)
284 pc
= min((pc
- (unsigned long)_stext
) >> prof_shift
, prof_len
- 1);
285 i
= primary
= (pc
& (NR_PROFILE_GRP
- 1)) << PROFILE_GRPSHIFT
;
286 secondary
= (~(pc
<< 1) & (NR_PROFILE_GRP
- 1)) << PROFILE_GRPSHIFT
;
288 hits
= per_cpu(cpu_profile_hits
, cpu
)[per_cpu(cpu_profile_flip
, cpu
)];
293 local_irq_save(flags
);
295 for (j
= 0; j
< PROFILE_GRPSZ
; ++j
) {
296 if (hits
[i
+ j
].pc
== pc
) {
299 } else if (!hits
[i
+ j
].hits
) {
301 hits
[i
+ j
].hits
= 1;
305 i
= (i
+ secondary
) & (NR_PROFILE_HIT
- 1);
306 } while (i
!= primary
);
307 atomic_inc(&prof_buffer
[pc
]);
308 for (i
= 0; i
< NR_PROFILE_HIT
; ++i
) {
309 atomic_add(hits
[i
].hits
, &prof_buffer
[hits
[i
].pc
]);
310 hits
[i
].pc
= hits
[i
].hits
= 0;
313 local_irq_restore(flags
);
317 #ifdef CONFIG_HOTPLUG_CPU
318 static int __devinit
profile_cpu_callback(struct notifier_block
*info
,
319 unsigned long action
, void *__cpu
)
321 int node
, cpu
= (unsigned long)__cpu
;
326 node
= cpu_to_node(cpu
);
327 per_cpu(cpu_profile_flip
, cpu
) = 0;
328 if (!per_cpu(cpu_profile_hits
, cpu
)[1]) {
329 page
= alloc_pages_node(node
, GFP_KERNEL
| __GFP_ZERO
, 0);
332 per_cpu(cpu_profile_hits
, cpu
)[1] = page_address(page
);
334 if (!per_cpu(cpu_profile_hits
, cpu
)[0]) {
335 page
= alloc_pages_node(node
, GFP_KERNEL
| __GFP_ZERO
, 0);
338 per_cpu(cpu_profile_hits
, cpu
)[0] = page_address(page
);
342 page
= virt_to_page(per_cpu(cpu_profile_hits
, cpu
)[1]);
343 per_cpu(cpu_profile_hits
, cpu
)[1] = NULL
;
347 cpu_set(cpu
, prof_cpu_mask
);
349 case CPU_UP_CANCELED
:
351 cpu_clear(cpu
, prof_cpu_mask
);
352 if (per_cpu(cpu_profile_hits
, cpu
)[0]) {
353 page
= virt_to_page(per_cpu(cpu_profile_hits
, cpu
)[0]);
354 per_cpu(cpu_profile_hits
, cpu
)[0] = NULL
;
357 if (per_cpu(cpu_profile_hits
, cpu
)[1]) {
358 page
= virt_to_page(per_cpu(cpu_profile_hits
, cpu
)[1]);
359 per_cpu(cpu_profile_hits
, cpu
)[1] = NULL
;
366 #endif /* CONFIG_HOTPLUG_CPU */
367 #else /* !CONFIG_SMP */
368 #define profile_flip_buffers() do { } while (0)
369 #define profile_discard_flip_buffers() do { } while (0)
371 void profile_hit(int type
, void *__pc
)
375 if (prof_on
!= type
|| !prof_buffer
)
377 pc
= ((unsigned long)__pc
- (unsigned long)_stext
) >> prof_shift
;
378 atomic_inc(&prof_buffer
[min(pc
, prof_len
- 1)]);
380 #endif /* !CONFIG_SMP */
382 void profile_tick(int type
, struct pt_regs
*regs
)
384 if (type
== CPU_PROFILING
&& timer_hook
)
386 if (!user_mode(regs
) && cpu_isset(smp_processor_id(), prof_cpu_mask
))
387 profile_hit(type
, (void *)profile_pc(regs
));
390 #ifdef CONFIG_PROC_FS
391 #include <linux/proc_fs.h>
392 #include <asm/uaccess.h>
393 #include <asm/ptrace.h>
395 static int prof_cpu_mask_read_proc (char *page
, char **start
, off_t off
,
396 int count
, int *eof
, void *data
)
398 int len
= cpumask_scnprintf(page
, count
, *(cpumask_t
*)data
);
401 len
+= sprintf(page
+ len
, "\n");
405 static int prof_cpu_mask_write_proc (struct file
*file
, const char __user
*buffer
,
406 unsigned long count
, void *data
)
408 cpumask_t
*mask
= (cpumask_t
*)data
;
409 unsigned long full_count
= count
, err
;
412 err
= cpumask_parse(buffer
, count
, new_value
);
420 void create_prof_cpu_mask(struct proc_dir_entry
*root_irq_dir
)
422 struct proc_dir_entry
*entry
;
424 /* create /proc/irq/prof_cpu_mask */
425 if (!(entry
= create_proc_entry("prof_cpu_mask", 0600, root_irq_dir
)))
428 entry
->data
= (void *)&prof_cpu_mask
;
429 entry
->read_proc
= prof_cpu_mask_read_proc
;
430 entry
->write_proc
= prof_cpu_mask_write_proc
;
434 * This function accesses profiling information. The returned data is
435 * binary: the sampling step and the actual contents of the profile
436 * buffer. Use of the program readprofile is recommended in order to
437 * get meaningful info out of these data.
440 read_profile(struct file
*file
, char __user
*buf
, size_t count
, loff_t
*ppos
)
442 unsigned long p
= *ppos
;
445 unsigned int sample_step
= 1 << prof_shift
;
447 profile_flip_buffers();
448 if (p
>= (prof_len
+1)*sizeof(unsigned int))
450 if (count
> (prof_len
+1)*sizeof(unsigned int) - p
)
451 count
= (prof_len
+1)*sizeof(unsigned int) - p
;
454 while (p
< sizeof(unsigned int) && count
> 0) {
455 put_user(*((char *)(&sample_step
)+p
),buf
);
456 buf
++; p
++; count
--; read
++;
458 pnt
= (char *)prof_buffer
+ p
- sizeof(atomic_t
);
459 if (copy_to_user(buf
,(void *)pnt
,count
))
467 * Writing to /proc/profile resets the counters
469 * Writing a 'profiling multiplier' value into it also re-sets the profiling
470 * interrupt frequency, on architectures that support this.
472 static ssize_t
write_profile(struct file
*file
, const char __user
*buf
,
473 size_t count
, loff_t
*ppos
)
476 extern int setup_profiling_timer (unsigned int multiplier
);
478 if (count
== sizeof(int)) {
479 unsigned int multiplier
;
481 if (copy_from_user(&multiplier
, buf
, sizeof(int)))
484 if (setup_profiling_timer(multiplier
))
488 profile_discard_flip_buffers();
489 memset(prof_buffer
, 0, prof_len
* sizeof(atomic_t
));
493 static struct file_operations proc_profile_operations
= {
494 .read
= read_profile
,
495 .write
= write_profile
,
499 static void __init
profile_nop(void *unused
)
503 static int __init
create_hash_tables(void)
507 for_each_online_cpu(cpu
) {
508 int node
= cpu_to_node(cpu
);
511 page
= alloc_pages_node(node
, GFP_KERNEL
| __GFP_ZERO
, 0);
514 per_cpu(cpu_profile_hits
, cpu
)[1]
515 = (struct profile_hit
*)page_address(page
);
516 page
= alloc_pages_node(node
, GFP_KERNEL
| __GFP_ZERO
, 0);
519 per_cpu(cpu_profile_hits
, cpu
)[0]
520 = (struct profile_hit
*)page_address(page
);
526 on_each_cpu(profile_nop
, NULL
, 0, 1);
527 for_each_online_cpu(cpu
) {
530 if (per_cpu(cpu_profile_hits
, cpu
)[0]) {
531 page
= virt_to_page(per_cpu(cpu_profile_hits
, cpu
)[0]);
532 per_cpu(cpu_profile_hits
, cpu
)[0] = NULL
;
535 if (per_cpu(cpu_profile_hits
, cpu
)[1]) {
536 page
= virt_to_page(per_cpu(cpu_profile_hits
, cpu
)[1]);
537 per_cpu(cpu_profile_hits
, cpu
)[1] = NULL
;
544 #define create_hash_tables() ({ 0; })
547 static int __init
create_proc_profile(void)
549 struct proc_dir_entry
*entry
;
553 if (create_hash_tables())
555 if (!(entry
= create_proc_entry("profile", S_IWUSR
| S_IRUGO
, NULL
)))
557 entry
->proc_fops
= &proc_profile_operations
;
558 entry
->size
= (1+prof_len
) * sizeof(atomic_t
);
559 hotcpu_notifier(profile_cpu_callback
, 0);
562 module_init(create_proc_profile
);
563 #endif /* CONFIG_PROC_FS */