1 /* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $
2 * sungem.c: Sun GEM ethernet driver.
4 * Copyright (C) 2000, 2001, 2002 David S. Miller (davem@redhat.com)
6 * Support for Apple GMAC and assorted PHYs by
7 * Benjamin Herrenscmidt (benh@kernel.crashing.org)
10 * - Get rid of all those nasty mdelay's and replace them
11 * with schedule_timeout.
15 #include <linux/module.h>
16 #include <linux/kernel.h>
17 #include <linux/types.h>
18 #include <linux/fcntl.h>
19 #include <linux/interrupt.h>
20 #include <linux/ioport.h>
22 #include <linux/slab.h>
23 #include <linux/string.h>
24 #include <linux/delay.h>
25 #include <linux/init.h>
26 #include <linux/errno.h>
27 #include <linux/pci.h>
28 #include <linux/netdevice.h>
29 #include <linux/etherdevice.h>
30 #include <linux/skbuff.h>
31 #include <linux/mii.h>
32 #include <linux/ethtool.h>
33 #include <linux/crc32.h>
34 #include <linux/random.h>
35 #include <linux/workqueue.h>
37 #include <asm/system.h>
38 #include <asm/bitops.h>
40 #include <asm/byteorder.h>
41 #include <asm/uaccess.h>
45 #include <asm/idprom.h>
46 #include <asm/openprom.h>
47 #include <asm/oplib.h>
51 #ifdef CONFIG_PPC_PMAC
52 #include <asm/pci-bridge.h>
54 #include <asm/machdep.h>
55 #include <asm/pmac_feature.h>
58 #include "sungem_phy.h"
61 /* Stripping FCS is causing problems, disabled for now */
64 #define DEFAULT_MSG (NETIF_MSG_DRV | \
68 #define ADVERTISE_MASK (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
69 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
70 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)
72 #define DRV_NAME "sungem"
73 #define DRV_VERSION "0.97"
74 #define DRV_RELDATE "3/20/02"
75 #define DRV_AUTHOR "David S. Miller (davem@redhat.com)"
77 static char version
[] __devinitdata
=
78 DRV_NAME
".c:v" DRV_VERSION
" " DRV_RELDATE
" " DRV_AUTHOR
"\n";
80 MODULE_AUTHOR(DRV_AUTHOR
);
81 MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver");
82 MODULE_LICENSE("GPL");
84 #define GEM_MODULE_NAME "gem"
85 #define PFX GEM_MODULE_NAME ": "
87 static struct pci_device_id gem_pci_tbl
[] __devinitdata
= {
88 { PCI_VENDOR_ID_SUN
, PCI_DEVICE_ID_SUN_GEM
,
89 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
91 /* These models only differ from the original GEM in
92 * that their tx/rx fifos are of a different size and
93 * they only support 10/100 speeds. -DaveM
95 * Apple's GMAC does support gigabit on machines with
96 * the BCM54xx PHYs. -BenH
98 { PCI_VENDOR_ID_SUN
, PCI_DEVICE_ID_SUN_RIO_GEM
,
99 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
100 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_UNI_N_GMAC
,
101 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
102 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_UNI_N_GMACP
,
103 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
104 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2
,
105 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
109 MODULE_DEVICE_TABLE(pci
, gem_pci_tbl
);
111 static u16
__phy_read(struct gem
*gp
, int phy_addr
, int reg
)
118 cmd
|= (phy_addr
<< 23) & MIF_FRAME_PHYAD
;
119 cmd
|= (reg
<< 18) & MIF_FRAME_REGAD
;
120 cmd
|= (MIF_FRAME_TAMSB
);
121 writel(cmd
, gp
->regs
+ MIF_FRAME
);
124 cmd
= readl(gp
->regs
+ MIF_FRAME
);
125 if (cmd
& MIF_FRAME_TALSB
)
134 return cmd
& MIF_FRAME_DATA
;
137 static inline int _phy_read(struct net_device
*dev
, int mii_id
, int reg
)
139 struct gem
*gp
= dev
->priv
;
140 return __phy_read(gp
, mii_id
, reg
);
143 static inline u16
phy_read(struct gem
*gp
, int reg
)
145 return __phy_read(gp
, gp
->mii_phy_addr
, reg
);
148 static void __phy_write(struct gem
*gp
, int phy_addr
, int reg
, u16 val
)
155 cmd
|= (phy_addr
<< 23) & MIF_FRAME_PHYAD
;
156 cmd
|= (reg
<< 18) & MIF_FRAME_REGAD
;
157 cmd
|= (MIF_FRAME_TAMSB
);
158 cmd
|= (val
& MIF_FRAME_DATA
);
159 writel(cmd
, gp
->regs
+ MIF_FRAME
);
162 cmd
= readl(gp
->regs
+ MIF_FRAME
);
163 if (cmd
& MIF_FRAME_TALSB
)
170 static inline void _phy_write(struct net_device
*dev
, int mii_id
, int reg
, int val
)
172 struct gem
*gp
= dev
->priv
;
173 __phy_write(gp
, mii_id
, reg
, val
& 0xffff);
176 static inline void phy_write(struct gem
*gp
, int reg
, u16 val
)
178 __phy_write(gp
, gp
->mii_phy_addr
, reg
, val
);
181 static void gem_handle_mif_event(struct gem
*gp
, u32 reg_val
, u32 changed_bits
)
183 if (netif_msg_intr(gp
))
184 printk(KERN_DEBUG
"%s: mif interrupt\n", gp
->dev
->name
);
187 static int gem_pcs_interrupt(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
189 u32 pcs_istat
= readl(gp
->regs
+ PCS_ISTAT
);
192 if (netif_msg_intr(gp
))
193 printk(KERN_DEBUG
"%s: pcs interrupt, pcs_istat: 0x%x\n",
194 gp
->dev
->name
, pcs_istat
);
196 if (!(pcs_istat
& PCS_ISTAT_LSC
)) {
197 printk(KERN_ERR
"%s: PCS irq but no link status change???\n",
202 /* The link status bit latches on zero, so you must
203 * read it twice in such a case to see a transition
204 * to the link being up.
206 pcs_miistat
= readl(gp
->regs
+ PCS_MIISTAT
);
207 if (!(pcs_miistat
& PCS_MIISTAT_LS
))
209 (readl(gp
->regs
+ PCS_MIISTAT
) &
212 if (pcs_miistat
& PCS_MIISTAT_ANC
) {
213 /* The remote-fault indication is only valid
214 * when autoneg has completed.
216 if (pcs_miistat
& PCS_MIISTAT_RF
)
217 printk(KERN_INFO
"%s: PCS AutoNEG complete, "
218 "RemoteFault\n", dev
->name
);
220 printk(KERN_INFO
"%s: PCS AutoNEG complete.\n",
224 if (pcs_miistat
& PCS_MIISTAT_LS
) {
225 printk(KERN_INFO
"%s: PCS link is now up.\n",
227 netif_carrier_on(gp
->dev
);
229 printk(KERN_INFO
"%s: PCS link is now down.\n",
231 netif_carrier_off(gp
->dev
);
232 /* If this happens and the link timer is not running,
233 * reset so we re-negotiate.
235 if (!timer_pending(&gp
->link_timer
))
242 static int gem_txmac_interrupt(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
244 u32 txmac_stat
= readl(gp
->regs
+ MAC_TXSTAT
);
246 if (netif_msg_intr(gp
))
247 printk(KERN_DEBUG
"%s: txmac interrupt, txmac_stat: 0x%x\n",
248 gp
->dev
->name
, txmac_stat
);
250 /* Defer timer expiration is quite normal,
251 * don't even log the event.
253 if ((txmac_stat
& MAC_TXSTAT_DTE
) &&
254 !(txmac_stat
& ~MAC_TXSTAT_DTE
))
257 if (txmac_stat
& MAC_TXSTAT_URUN
) {
258 printk(KERN_ERR
"%s: TX MAC xmit underrun.\n",
260 gp
->net_stats
.tx_fifo_errors
++;
263 if (txmac_stat
& MAC_TXSTAT_MPE
) {
264 printk(KERN_ERR
"%s: TX MAC max packet size error.\n",
266 gp
->net_stats
.tx_errors
++;
269 /* The rest are all cases of one of the 16-bit TX
272 if (txmac_stat
& MAC_TXSTAT_NCE
)
273 gp
->net_stats
.collisions
+= 0x10000;
275 if (txmac_stat
& MAC_TXSTAT_ECE
) {
276 gp
->net_stats
.tx_aborted_errors
+= 0x10000;
277 gp
->net_stats
.collisions
+= 0x10000;
280 if (txmac_stat
& MAC_TXSTAT_LCE
) {
281 gp
->net_stats
.tx_aborted_errors
+= 0x10000;
282 gp
->net_stats
.collisions
+= 0x10000;
285 /* We do not keep track of MAC_TXSTAT_FCE and
286 * MAC_TXSTAT_PCE events.
291 /* When we get a RX fifo overflow, the RX unit in GEM is probably hung
292 * so we do the following.
294 * If any part of the reset goes wrong, we return 1 and that causes the
295 * whole chip to be reset.
297 static int gem_rxmac_reset(struct gem
*gp
)
299 struct net_device
*dev
= gp
->dev
;
304 /* First, reset MAC RX. */
305 writel(gp
->mac_rx_cfg
& ~MAC_RXCFG_ENAB
,
306 gp
->regs
+ MAC_RXCFG
);
307 for (limit
= 0; limit
< 5000; limit
++) {
308 if (!(readl(gp
->regs
+ MAC_RXCFG
) & MAC_RXCFG_ENAB
))
313 printk(KERN_ERR
"%s: RX MAC will not disable, resetting whole "
314 "chip.\n", dev
->name
);
318 /* Second, disable RX DMA. */
319 writel(0, gp
->regs
+ RXDMA_CFG
);
320 for (limit
= 0; limit
< 5000; limit
++) {
321 if (!(readl(gp
->regs
+ RXDMA_CFG
) & RXDMA_CFG_ENABLE
))
326 printk(KERN_ERR
"%s: RX DMA will not disable, resetting whole "
327 "chip.\n", dev
->name
);
333 /* Execute RX reset command. */
334 writel(gp
->swrst_base
| GREG_SWRST_RXRST
,
335 gp
->regs
+ GREG_SWRST
);
336 for (limit
= 0; limit
< 5000; limit
++) {
337 if (!(readl(gp
->regs
+ GREG_SWRST
) & GREG_SWRST_RXRST
))
342 printk(KERN_ERR
"%s: RX reset command will not execute, resetting "
343 "whole chip.\n", dev
->name
);
347 /* Refresh the RX ring. */
348 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
349 struct gem_rxd
*rxd
= &gp
->init_block
->rxd
[i
];
351 if (gp
->rx_skbs
[i
] == NULL
) {
352 printk(KERN_ERR
"%s: Parts of RX ring empty, resetting "
353 "whole chip.\n", dev
->name
);
357 rxd
->status_word
= cpu_to_le64(RXDCTRL_FRESH(gp
));
359 gp
->rx_new
= gp
->rx_old
= 0;
361 /* Now we must reprogram the rest of RX unit. */
362 desc_dma
= (u64
) gp
->gblock_dvma
;
363 desc_dma
+= (INIT_BLOCK_TX_RING_SIZE
* sizeof(struct gem_txd
));
364 writel(desc_dma
>> 32, gp
->regs
+ RXDMA_DBHI
);
365 writel(desc_dma
& 0xffffffff, gp
->regs
+ RXDMA_DBLOW
);
366 writel(RX_RING_SIZE
- 4, gp
->regs
+ RXDMA_KICK
);
367 val
= (RXDMA_CFG_BASE
| (RX_OFFSET
<< 10) |
368 ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128
);
369 writel(val
, gp
->regs
+ RXDMA_CFG
);
370 if (readl(gp
->regs
+ GREG_BIFCFG
) & GREG_BIFCFG_M66EN
)
371 writel(((5 & RXDMA_BLANK_IPKTS
) |
372 ((8 << 12) & RXDMA_BLANK_ITIME
)),
373 gp
->regs
+ RXDMA_BLANK
);
375 writel(((5 & RXDMA_BLANK_IPKTS
) |
376 ((4 << 12) & RXDMA_BLANK_ITIME
)),
377 gp
->regs
+ RXDMA_BLANK
);
378 val
= (((gp
->rx_pause_off
/ 64) << 0) & RXDMA_PTHRESH_OFF
);
379 val
|= (((gp
->rx_pause_on
/ 64) << 12) & RXDMA_PTHRESH_ON
);
380 writel(val
, gp
->regs
+ RXDMA_PTHRESH
);
381 val
= readl(gp
->regs
+ RXDMA_CFG
);
382 writel(val
| RXDMA_CFG_ENABLE
, gp
->regs
+ RXDMA_CFG
);
383 writel(MAC_RXSTAT_RCV
, gp
->regs
+ MAC_RXMASK
);
384 val
= readl(gp
->regs
+ MAC_RXCFG
);
385 writel(val
| MAC_RXCFG_ENAB
, gp
->regs
+ MAC_RXCFG
);
390 static int gem_rxmac_interrupt(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
392 u32 rxmac_stat
= readl(gp
->regs
+ MAC_RXSTAT
);
395 if (netif_msg_intr(gp
))
396 printk(KERN_DEBUG
"%s: rxmac interrupt, rxmac_stat: 0x%x\n",
397 gp
->dev
->name
, rxmac_stat
);
399 if (rxmac_stat
& MAC_RXSTAT_OFLW
) {
400 u32 smac
= readl(gp
->regs
+ MAC_SMACHINE
);
402 printk(KERN_ERR
"%s: RX MAC fifo overflow smac[%08x].\n",
404 gp
->net_stats
.rx_over_errors
++;
405 gp
->net_stats
.rx_fifo_errors
++;
407 ret
= gem_rxmac_reset(gp
);
410 if (rxmac_stat
& MAC_RXSTAT_ACE
)
411 gp
->net_stats
.rx_frame_errors
+= 0x10000;
413 if (rxmac_stat
& MAC_RXSTAT_CCE
)
414 gp
->net_stats
.rx_crc_errors
+= 0x10000;
416 if (rxmac_stat
& MAC_RXSTAT_LCE
)
417 gp
->net_stats
.rx_length_errors
+= 0x10000;
419 /* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE
425 static int gem_mac_interrupt(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
427 u32 mac_cstat
= readl(gp
->regs
+ MAC_CSTAT
);
429 if (netif_msg_intr(gp
))
430 printk(KERN_DEBUG
"%s: mac interrupt, mac_cstat: 0x%x\n",
431 gp
->dev
->name
, mac_cstat
);
433 /* This interrupt is just for pause frame and pause
434 * tracking. It is useful for diagnostics and debug
435 * but probably by default we will mask these events.
437 if (mac_cstat
& MAC_CSTAT_PS
)
440 if (mac_cstat
& MAC_CSTAT_PRCV
)
441 gp
->pause_last_time_recvd
= (mac_cstat
>> 16);
446 static int gem_mif_interrupt(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
448 u32 mif_status
= readl(gp
->regs
+ MIF_STATUS
);
449 u32 reg_val
, changed_bits
;
451 reg_val
= (mif_status
& MIF_STATUS_DATA
) >> 16;
452 changed_bits
= (mif_status
& MIF_STATUS_STAT
);
454 gem_handle_mif_event(gp
, reg_val
, changed_bits
);
459 static int gem_pci_interrupt(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
461 u32 pci_estat
= readl(gp
->regs
+ GREG_PCIESTAT
);
463 if (gp
->pdev
->vendor
== PCI_VENDOR_ID_SUN
&&
464 gp
->pdev
->device
== PCI_DEVICE_ID_SUN_GEM
) {
465 printk(KERN_ERR
"%s: PCI error [%04x] ",
466 dev
->name
, pci_estat
);
468 if (pci_estat
& GREG_PCIESTAT_BADACK
)
469 printk("<No ACK64# during ABS64 cycle> ");
470 if (pci_estat
& GREG_PCIESTAT_DTRTO
)
471 printk("<Delayed transaction timeout> ");
472 if (pci_estat
& GREG_PCIESTAT_OTHER
)
476 pci_estat
|= GREG_PCIESTAT_OTHER
;
477 printk(KERN_ERR
"%s: PCI error\n", dev
->name
);
480 if (pci_estat
& GREG_PCIESTAT_OTHER
) {
483 /* Interrogate PCI config space for the
486 pci_read_config_word(gp
->pdev
, PCI_STATUS
,
488 printk(KERN_ERR
"%s: Read PCI cfg space status [%04x]\n",
489 dev
->name
, pci_cfg_stat
);
490 if (pci_cfg_stat
& PCI_STATUS_PARITY
)
491 printk(KERN_ERR
"%s: PCI parity error detected.\n",
493 if (pci_cfg_stat
& PCI_STATUS_SIG_TARGET_ABORT
)
494 printk(KERN_ERR
"%s: PCI target abort.\n",
496 if (pci_cfg_stat
& PCI_STATUS_REC_TARGET_ABORT
)
497 printk(KERN_ERR
"%s: PCI master acks target abort.\n",
499 if (pci_cfg_stat
& PCI_STATUS_REC_MASTER_ABORT
)
500 printk(KERN_ERR
"%s: PCI master abort.\n",
502 if (pci_cfg_stat
& PCI_STATUS_SIG_SYSTEM_ERROR
)
503 printk(KERN_ERR
"%s: PCI system error SERR#.\n",
505 if (pci_cfg_stat
& PCI_STATUS_DETECTED_PARITY
)
506 printk(KERN_ERR
"%s: PCI parity error.\n",
509 /* Write the error bits back to clear them. */
510 pci_cfg_stat
&= (PCI_STATUS_PARITY
|
511 PCI_STATUS_SIG_TARGET_ABORT
|
512 PCI_STATUS_REC_TARGET_ABORT
|
513 PCI_STATUS_REC_MASTER_ABORT
|
514 PCI_STATUS_SIG_SYSTEM_ERROR
|
515 PCI_STATUS_DETECTED_PARITY
);
516 pci_write_config_word(gp
->pdev
,
517 PCI_STATUS
, pci_cfg_stat
);
520 /* For all PCI errors, we should reset the chip. */
524 /* All non-normal interrupt conditions get serviced here.
525 * Returns non-zero if we should just exit the interrupt
526 * handler right now (ie. if we reset the card which invalidates
527 * all of the other original irq status bits).
529 static int gem_abnormal_irq(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
531 if (gem_status
& GREG_STAT_RXNOBUF
) {
532 /* Frame arrived, no free RX buffers available. */
533 if (netif_msg_rx_err(gp
))
534 printk(KERN_DEBUG
"%s: no buffer for rx frame\n",
536 gp
->net_stats
.rx_dropped
++;
539 if (gem_status
& GREG_STAT_RXTAGERR
) {
540 /* corrupt RX tag framing */
541 if (netif_msg_rx_err(gp
))
542 printk(KERN_DEBUG
"%s: corrupt rx tag framing\n",
544 gp
->net_stats
.rx_errors
++;
549 if (gem_status
& GREG_STAT_PCS
) {
550 if (gem_pcs_interrupt(dev
, gp
, gem_status
))
554 if (gem_status
& GREG_STAT_TXMAC
) {
555 if (gem_txmac_interrupt(dev
, gp
, gem_status
))
559 if (gem_status
& GREG_STAT_RXMAC
) {
560 if (gem_rxmac_interrupt(dev
, gp
, gem_status
))
564 if (gem_status
& GREG_STAT_MAC
) {
565 if (gem_mac_interrupt(dev
, gp
, gem_status
))
569 if (gem_status
& GREG_STAT_MIF
) {
570 if (gem_mif_interrupt(dev
, gp
, gem_status
))
574 if (gem_status
& GREG_STAT_PCIERR
) {
575 if (gem_pci_interrupt(dev
, gp
, gem_status
))
582 gp
->reset_task_pending
= 2;
583 schedule_work(&gp
->reset_task
);
588 static __inline__
void gem_tx(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
592 if (netif_msg_intr(gp
))
593 printk(KERN_DEBUG
"%s: tx interrupt, gem_status: 0x%x\n",
594 gp
->dev
->name
, gem_status
);
597 limit
= ((gem_status
& GREG_STAT_TXNR
) >> GREG_STAT_TXNR_SHIFT
);
598 while (entry
!= limit
) {
605 if (netif_msg_tx_done(gp
))
606 printk(KERN_DEBUG
"%s: tx done, slot %d\n",
607 gp
->dev
->name
, entry
);
608 skb
= gp
->tx_skbs
[entry
];
609 if (skb_shinfo(skb
)->nr_frags
) {
610 int last
= entry
+ skb_shinfo(skb
)->nr_frags
;
614 last
&= (TX_RING_SIZE
- 1);
616 walk
= NEXT_TX(walk
);
625 gp
->tx_skbs
[entry
] = NULL
;
626 gp
->net_stats
.tx_bytes
+= skb
->len
;
628 for (frag
= 0; frag
<= skb_shinfo(skb
)->nr_frags
; frag
++) {
629 txd
= &gp
->init_block
->txd
[entry
];
631 dma_addr
= le64_to_cpu(txd
->buffer
);
632 dma_len
= le64_to_cpu(txd
->control_word
) & TXDCTRL_BUFSZ
;
634 pci_unmap_page(gp
->pdev
, dma_addr
, dma_len
, PCI_DMA_TODEVICE
);
635 entry
= NEXT_TX(entry
);
638 gp
->net_stats
.tx_packets
++;
639 dev_kfree_skb_irq(skb
);
643 if (netif_queue_stopped(dev
) &&
644 TX_BUFFS_AVAIL(gp
) > (MAX_SKB_FRAGS
+ 1))
645 netif_wake_queue(dev
);
648 static __inline__
void gem_post_rxds(struct gem
*gp
, int limit
)
650 int cluster_start
, curr
, count
, kick
;
652 cluster_start
= curr
= (gp
->rx_new
& ~(4 - 1));
655 while (curr
!= limit
) {
656 curr
= NEXT_RX(curr
);
658 struct gem_rxd
*rxd
=
659 &gp
->init_block
->rxd
[cluster_start
];
661 rxd
->status_word
= cpu_to_le64(RXDCTRL_FRESH(gp
));
663 cluster_start
= NEXT_RX(cluster_start
);
664 if (cluster_start
== curr
)
672 writel(kick
, gp
->regs
+ RXDMA_KICK
);
675 static void gem_rx(struct gem
*gp
)
679 if (netif_msg_intr(gp
))
680 printk(KERN_DEBUG
"%s: rx interrupt, done: %d, rx_new: %d\n",
681 gp
->dev
->name
, readl(gp
->regs
+ RXDMA_DONE
), gp
->rx_new
);
686 struct gem_rxd
*rxd
= &gp
->init_block
->rxd
[entry
];
688 u64 status
= cpu_to_le64(rxd
->status_word
);
692 if ((status
& RXDCTRL_OWN
) != 0)
695 skb
= gp
->rx_skbs
[entry
];
697 len
= (status
& RXDCTRL_BUFSZ
) >> 16;
698 if ((len
< ETH_ZLEN
) || (status
& RXDCTRL_BAD
)) {
699 gp
->net_stats
.rx_errors
++;
701 gp
->net_stats
.rx_length_errors
++;
702 if (len
& RXDCTRL_BAD
)
703 gp
->net_stats
.rx_crc_errors
++;
705 /* We'll just return it to GEM. */
707 gp
->net_stats
.rx_dropped
++;
711 dma_addr
= cpu_to_le64(rxd
->buffer
);
712 if (len
> RX_COPY_THRESHOLD
) {
713 struct sk_buff
*new_skb
;
715 new_skb
= gem_alloc_skb(RX_BUF_ALLOC_SIZE(gp
), GFP_ATOMIC
);
716 if (new_skb
== NULL
) {
720 pci_unmap_page(gp
->pdev
, dma_addr
,
721 RX_BUF_ALLOC_SIZE(gp
),
723 gp
->rx_skbs
[entry
] = new_skb
;
724 new_skb
->dev
= gp
->dev
;
725 skb_put(new_skb
, (ETH_FRAME_LEN
+ RX_OFFSET
));
726 rxd
->buffer
= cpu_to_le64(pci_map_page(gp
->pdev
,
727 virt_to_page(new_skb
->data
),
728 ((unsigned long) new_skb
->data
&
730 RX_BUF_ALLOC_SIZE(gp
),
731 PCI_DMA_FROMDEVICE
));
732 skb_reserve(new_skb
, RX_OFFSET
);
734 /* Trim the original skb for the netif. */
737 struct sk_buff
*copy_skb
= dev_alloc_skb(len
+ 2);
739 if (copy_skb
== NULL
) {
744 copy_skb
->dev
= gp
->dev
;
745 skb_reserve(copy_skb
, 2);
746 skb_put(copy_skb
, len
);
747 pci_dma_sync_single(gp
->pdev
, dma_addr
, len
, PCI_DMA_FROMDEVICE
);
748 memcpy(copy_skb
->data
, skb
->data
, len
);
750 /* We'll reuse the original ring buffer. */
754 skb
->csum
= ntohs((status
& RXDCTRL_TCPCSUM
) ^ 0xffff);
755 skb
->ip_summed
= CHECKSUM_HW
;
756 skb
->protocol
= eth_type_trans(skb
, gp
->dev
);
759 gp
->net_stats
.rx_packets
++;
760 gp
->net_stats
.rx_bytes
+= len
;
761 gp
->dev
->last_rx
= jiffies
;
764 entry
= NEXT_RX(entry
);
767 gem_post_rxds(gp
, entry
);
772 printk(KERN_INFO
"%s: Memory squeeze, deferring packet.\n",
776 static irqreturn_t
gem_interrupt(int irq
, void *dev_id
, struct pt_regs
*regs
)
778 struct net_device
*dev
= dev_id
;
779 struct gem
*gp
= dev
->priv
;
780 u32 gem_status
= readl(gp
->regs
+ GREG_STAT
);
782 spin_lock(&gp
->lock
);
784 if (gem_status
& GREG_STAT_ABNORMAL
) {
785 if (gem_abnormal_irq(dev
, gp
, gem_status
))
788 if (gem_status
& (GREG_STAT_TXALL
| GREG_STAT_TXINTME
))
789 gem_tx(dev
, gp
, gem_status
);
790 if (gem_status
& GREG_STAT_RXDONE
)
794 spin_unlock(&gp
->lock
);
799 static void gem_tx_timeout(struct net_device
*dev
)
801 struct gem
*gp
= dev
->priv
;
803 printk(KERN_ERR
"%s: transmit timed out, resetting\n", dev
->name
);
804 if (!gp
->hw_running
) {
805 printk("%s: hrm.. hw not running !\n", dev
->name
);
808 printk(KERN_ERR
"%s: TX_STATE[%08x:%08x:%08x]\n",
810 readl(gp
->regs
+ TXDMA_CFG
),
811 readl(gp
->regs
+ MAC_TXSTAT
),
812 readl(gp
->regs
+ MAC_TXCFG
));
813 printk(KERN_ERR
"%s: RX_STATE[%08x:%08x:%08x]\n",
815 readl(gp
->regs
+ RXDMA_CFG
),
816 readl(gp
->regs
+ MAC_RXSTAT
),
817 readl(gp
->regs
+ MAC_RXCFG
));
819 spin_lock_irq(&gp
->lock
);
821 gp
->reset_task_pending
= 2;
822 schedule_work(&gp
->reset_task
);
824 spin_unlock_irq(&gp
->lock
);
827 static __inline__
int gem_intme(int entry
)
829 /* Algorithm: IRQ every 1/2 of descriptors. */
830 if (!(entry
& ((TX_RING_SIZE
>>1)-1)))
836 static int gem_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
838 struct gem
*gp
= dev
->priv
;
843 if (skb
->ip_summed
== CHECKSUM_HW
) {
844 u64 csum_start_off
, csum_stuff_off
;
846 csum_start_off
= (u64
) (skb
->h
.raw
- skb
->data
);
847 csum_stuff_off
= (u64
) ((skb
->h
.raw
+ skb
->csum
) - skb
->data
);
849 ctrl
= (TXDCTRL_CENAB
|
850 (csum_start_off
<< 15) |
851 (csum_stuff_off
<< 21));
854 spin_lock_irq(&gp
->lock
);
856 /* This is a hard error, log it. */
857 if (TX_BUFFS_AVAIL(gp
) <= (skb_shinfo(skb
)->nr_frags
+ 1)) {
858 netif_stop_queue(dev
);
859 spin_unlock_irq(&gp
->lock
);
860 printk(KERN_ERR PFX
"%s: BUG! Tx Ring full when queue awake!\n",
866 gp
->tx_skbs
[entry
] = skb
;
868 if (skb_shinfo(skb
)->nr_frags
== 0) {
869 struct gem_txd
*txd
= &gp
->init_block
->txd
[entry
];
874 mapping
= pci_map_page(gp
->pdev
,
875 virt_to_page(skb
->data
),
876 ((unsigned long) skb
->data
&
878 len
, PCI_DMA_TODEVICE
);
879 ctrl
|= TXDCTRL_SOF
| TXDCTRL_EOF
| len
;
880 if (gem_intme(entry
))
881 ctrl
|= TXDCTRL_INTME
;
882 txd
->buffer
= cpu_to_le64(mapping
);
883 txd
->control_word
= cpu_to_le64(ctrl
);
884 entry
= NEXT_TX(entry
);
889 dma_addr_t first_mapping
;
890 int frag
, first_entry
= entry
;
893 if (gem_intme(entry
))
894 intme
|= TXDCTRL_INTME
;
896 /* We must give this initial chunk to the device last.
897 * Otherwise we could race with the device.
899 first_len
= skb_headlen(skb
);
900 first_mapping
= pci_map_page(gp
->pdev
, virt_to_page(skb
->data
),
901 ((unsigned long) skb
->data
& ~PAGE_MASK
),
902 first_len
, PCI_DMA_TODEVICE
);
903 entry
= NEXT_TX(entry
);
905 for (frag
= 0; frag
< skb_shinfo(skb
)->nr_frags
; frag
++) {
906 skb_frag_t
*this_frag
= &skb_shinfo(skb
)->frags
[frag
];
911 len
= this_frag
->size
;
912 mapping
= pci_map_page(gp
->pdev
,
914 this_frag
->page_offset
,
915 len
, PCI_DMA_TODEVICE
);
917 if (frag
== skb_shinfo(skb
)->nr_frags
- 1)
918 this_ctrl
|= TXDCTRL_EOF
;
920 txd
= &gp
->init_block
->txd
[entry
];
921 txd
->buffer
= cpu_to_le64(mapping
);
922 txd
->control_word
= cpu_to_le64(this_ctrl
| len
);
924 if (gem_intme(entry
))
925 intme
|= TXDCTRL_INTME
;
927 entry
= NEXT_TX(entry
);
929 txd
= &gp
->init_block
->txd
[first_entry
];
930 txd
->buffer
= cpu_to_le64(first_mapping
);
932 cpu_to_le64(ctrl
| TXDCTRL_SOF
| intme
| first_len
);
936 if (TX_BUFFS_AVAIL(gp
) <= (MAX_SKB_FRAGS
+ 1))
937 netif_stop_queue(dev
);
939 if (netif_msg_tx_queued(gp
))
940 printk(KERN_DEBUG
"%s: tx queued, slot %d, skblen %d\n",
941 dev
->name
, entry
, skb
->len
);
942 writel(gp
->tx_new
, gp
->regs
+ TXDMA_KICK
);
943 spin_unlock_irq(&gp
->lock
);
945 dev
->trans_start
= jiffies
;
950 /* Jumbo-grams don't seem to work :-( */
951 #define GEM_MIN_MTU 68
953 #define GEM_MAX_MTU 1500
955 #define GEM_MAX_MTU 9000
958 static int gem_change_mtu(struct net_device
*dev
, int new_mtu
)
960 struct gem
*gp
= dev
->priv
;
962 if (new_mtu
< GEM_MIN_MTU
|| new_mtu
> GEM_MAX_MTU
)
965 if (!netif_running(dev
) || !netif_device_present(dev
)) {
966 /* We'll just catch it later when the
967 * device is up'd or resumed.
973 spin_lock_irq(&gp
->lock
);
975 gp
->reset_task_pending
= 1;
976 schedule_work(&gp
->reset_task
);
977 spin_unlock_irq(&gp
->lock
);
979 flush_scheduled_work();
984 #define STOP_TRIES 32
986 /* Must be invoked under gp->lock. */
987 static void gem_stop(struct gem
*gp
)
992 /* Make sure we won't get any more interrupts */
993 writel(0xffffffff, gp
->regs
+ GREG_IMASK
);
996 writel(gp
->swrst_base
| GREG_SWRST_TXRST
| GREG_SWRST_RXRST
,
997 gp
->regs
+ GREG_SWRST
);
1003 val
= readl(gp
->regs
+ GREG_SWRST
);
1006 } while (val
& (GREG_SWRST_TXRST
| GREG_SWRST_RXRST
));
1009 printk(KERN_ERR
"%s: SW reset is ghetto.\n", gp
->dev
->name
);
1012 /* Must be invoked under gp->lock. */
1013 static void gem_start_dma(struct gem
*gp
)
1017 /* We are ready to rock, turn everything on. */
1018 val
= readl(gp
->regs
+ TXDMA_CFG
);
1019 writel(val
| TXDMA_CFG_ENABLE
, gp
->regs
+ TXDMA_CFG
);
1020 val
= readl(gp
->regs
+ RXDMA_CFG
);
1021 writel(val
| RXDMA_CFG_ENABLE
, gp
->regs
+ RXDMA_CFG
);
1022 val
= readl(gp
->regs
+ MAC_TXCFG
);
1023 writel(val
| MAC_TXCFG_ENAB
, gp
->regs
+ MAC_TXCFG
);
1024 val
= readl(gp
->regs
+ MAC_RXCFG
);
1025 writel(val
| MAC_RXCFG_ENAB
, gp
->regs
+ MAC_RXCFG
);
1027 (void) readl(gp
->regs
+ MAC_RXCFG
);
1030 writel(GREG_STAT_TXDONE
, gp
->regs
+ GREG_IMASK
);
1032 writel(RX_RING_SIZE
- 4, gp
->regs
+ RXDMA_KICK
);
1037 /* Must be invoked under gp->lock. */
1038 // XXX dbl check what that function should do when called on PCS PHY
1039 static void gem_begin_auto_negotiation(struct gem
*gp
, struct ethtool_cmd
*ep
)
1041 u32 advertise
, features
;
1046 if (gp
->phy_type
!= phy_mii_mdio0
&&
1047 gp
->phy_type
!= phy_mii_mdio1
)
1050 /* Setup advertise */
1051 if (found_mii_phy(gp
))
1052 features
= gp
->phy_mii
.def
->features
;
1056 advertise
= features
& ADVERTISE_MASK
;
1057 if (gp
->phy_mii
.advertising
!= 0)
1058 advertise
&= gp
->phy_mii
.advertising
;
1060 autoneg
= gp
->want_autoneg
;
1061 speed
= gp
->phy_mii
.speed
;
1062 duplex
= gp
->phy_mii
.duplex
;
1064 /* Setup link parameters */
1067 if (ep
->autoneg
== AUTONEG_ENABLE
) {
1068 advertise
= ep
->advertising
;
1073 duplex
= ep
->duplex
;
1077 /* Sanitize settings based on PHY capabilities */
1078 if ((features
& SUPPORTED_Autoneg
) == 0)
1080 if (speed
== SPEED_1000
&&
1081 !(features
& (SUPPORTED_1000baseT_Half
| SUPPORTED_1000baseT_Full
)))
1083 if (speed
== SPEED_100
&&
1084 !(features
& (SUPPORTED_100baseT_Half
| SUPPORTED_100baseT_Full
)))
1086 if (duplex
== DUPLEX_FULL
&&
1087 !(features
& (SUPPORTED_1000baseT_Full
|
1088 SUPPORTED_100baseT_Full
|
1089 SUPPORTED_10baseT_Full
)))
1090 duplex
= DUPLEX_HALF
;
1094 /* If HW is down, we don't try to actually setup the PHY, we
1095 * just store the settings
1097 if (!gp
->hw_running
) {
1098 gp
->phy_mii
.autoneg
= gp
->want_autoneg
= autoneg
;
1099 gp
->phy_mii
.speed
= speed
;
1100 gp
->phy_mii
.duplex
= duplex
;
1104 /* Configure PHY & start aneg */
1105 gp
->want_autoneg
= autoneg
;
1107 if (found_mii_phy(gp
))
1108 gp
->phy_mii
.def
->ops
->setup_aneg(&gp
->phy_mii
, advertise
);
1109 gp
->lstate
= link_aneg
;
1111 if (found_mii_phy(gp
))
1112 gp
->phy_mii
.def
->ops
->setup_forced(&gp
->phy_mii
, speed
, duplex
);
1113 gp
->lstate
= link_force_ok
;
1117 gp
->timer_ticks
= 0;
1118 mod_timer(&gp
->link_timer
, jiffies
+ ((12 * HZ
) / 10));
1121 /* A link-up condition has occurred, initialize and enable the
1124 * Must be invoked under gp->lock.
1126 static int gem_set_link_modes(struct gem
*gp
)
1129 int full_duplex
, speed
, pause
;
1135 if (found_mii_phy(gp
)) {
1136 if (gp
->phy_mii
.def
->ops
->read_link(&gp
->phy_mii
))
1138 full_duplex
= (gp
->phy_mii
.duplex
== DUPLEX_FULL
);
1139 speed
= gp
->phy_mii
.speed
;
1140 pause
= gp
->phy_mii
.pause
;
1141 } else if (gp
->phy_type
== phy_serialink
||
1142 gp
->phy_type
== phy_serdes
) {
1143 u32 pcs_lpa
= readl(gp
->regs
+ PCS_MIILP
);
1145 if (pcs_lpa
& PCS_MIIADV_FD
)
1150 if (netif_msg_link(gp
))
1151 printk(KERN_INFO
"%s: Link is up at %d Mbps, %s-duplex.\n",
1152 gp
->dev
->name
, speed
, (full_duplex
? "full" : "half"));
1154 val
= (MAC_TXCFG_EIPG0
| MAC_TXCFG_NGU
);
1156 val
|= (MAC_TXCFG_ICS
| MAC_TXCFG_ICOLL
);
1158 /* MAC_TXCFG_NBO must be zero. */
1160 writel(val
, gp
->regs
+ MAC_TXCFG
);
1162 val
= (MAC_XIFCFG_OE
| MAC_XIFCFG_LLED
);
1164 (gp
->phy_type
== phy_mii_mdio0
||
1165 gp
->phy_type
== phy_mii_mdio1
)) {
1166 val
|= MAC_XIFCFG_DISE
;
1167 } else if (full_duplex
) {
1168 val
|= MAC_XIFCFG_FLED
;
1171 if (speed
== SPEED_1000
)
1172 val
|= (MAC_XIFCFG_GMII
);
1174 writel(val
, gp
->regs
+ MAC_XIFCFG
);
1176 /* If gigabit and half-duplex, enable carrier extension
1177 * mode. Else, disable it.
1179 if (speed
== SPEED_1000
&& !full_duplex
) {
1180 val
= readl(gp
->regs
+ MAC_TXCFG
);
1181 writel(val
| MAC_TXCFG_TCE
, gp
->regs
+ MAC_TXCFG
);
1183 val
= readl(gp
->regs
+ MAC_RXCFG
);
1184 writel(val
| MAC_RXCFG_RCE
, gp
->regs
+ MAC_RXCFG
);
1186 val
= readl(gp
->regs
+ MAC_TXCFG
);
1187 writel(val
& ~MAC_TXCFG_TCE
, gp
->regs
+ MAC_TXCFG
);
1189 val
= readl(gp
->regs
+ MAC_RXCFG
);
1190 writel(val
& ~MAC_RXCFG_RCE
, gp
->regs
+ MAC_RXCFG
);
1193 if (gp
->phy_type
== phy_serialink
||
1194 gp
->phy_type
== phy_serdes
) {
1195 u32 pcs_lpa
= readl(gp
->regs
+ PCS_MIILP
);
1197 if (pcs_lpa
& (PCS_MIIADV_SP
| PCS_MIIADV_AP
))
1201 if (netif_msg_link(gp
)) {
1203 printk(KERN_INFO
"%s: Pause is enabled "
1204 "(rxfifo: %d off: %d on: %d)\n",
1210 printk(KERN_INFO
"%s: Pause is disabled\n",
1216 writel(512, gp
->regs
+ MAC_STIME
);
1218 writel(64, gp
->regs
+ MAC_STIME
);
1219 val
= readl(gp
->regs
+ MAC_MCCFG
);
1221 val
|= (MAC_MCCFG_SPE
| MAC_MCCFG_RPE
);
1223 val
&= ~(MAC_MCCFG_SPE
| MAC_MCCFG_RPE
);
1224 writel(val
, gp
->regs
+ MAC_MCCFG
);
1231 /* Must be invoked under gp->lock. */
1232 static int gem_mdio_link_not_up(struct gem
*gp
)
1234 switch (gp
->lstate
) {
1235 case link_force_ret
:
1236 if (netif_msg_link(gp
))
1237 printk(KERN_INFO
"%s: Autoneg failed again, keeping"
1238 " forced mode\n", gp
->dev
->name
);
1239 gp
->phy_mii
.def
->ops
->setup_forced(&gp
->phy_mii
,
1240 gp
->last_forced_speed
, DUPLEX_HALF
);
1241 gp
->timer_ticks
= 5;
1242 gp
->lstate
= link_force_ok
;
1245 if (netif_msg_link(gp
))
1246 printk(KERN_INFO
"%s: switching to forced 100bt\n",
1248 /* Try forced modes. */
1249 gp
->phy_mii
.def
->ops
->setup_forced(&gp
->phy_mii
, SPEED_100
,
1251 gp
->timer_ticks
= 5;
1252 gp
->lstate
= link_force_try
;
1254 case link_force_try
:
1255 /* Downgrade from 100 to 10 Mbps if necessary.
1256 * If already at 10Mbps, warn user about the
1257 * situation every 10 ticks.
1259 if (gp
->phy_mii
.speed
== SPEED_100
) {
1260 gp
->phy_mii
.def
->ops
->setup_forced(&gp
->phy_mii
, SPEED_10
,
1262 gp
->timer_ticks
= 5;
1263 if (netif_msg_link(gp
))
1264 printk(KERN_INFO
"%s: switching to forced 10bt\n",
1274 static void gem_init_rings(struct gem
*);
1275 static void gem_init_hw(struct gem
*, int);
1277 static void gem_reset_task(void *data
)
1279 struct gem
*gp
= (struct gem
*) data
;
1281 /* The link went down, we reset the ring, but keep
1282 * DMA stopped. Todo: Use this function for reset
1286 spin_lock_irq(&gp
->lock
);
1288 if (gp
->hw_running
&& gp
->opened
) {
1289 /* Make sure we don't get interrupts or tx packets */
1290 netif_stop_queue(gp
->dev
);
1292 writel(0xffffffff, gp
->regs
+ GREG_IMASK
);
1294 /* Reset the chip & rings */
1299 (gp
->reset_task_pending
== 2));
1301 netif_wake_queue(gp
->dev
);
1303 gp
->reset_task_pending
= 0;
1305 spin_unlock_irq(&gp
->lock
);
1308 static void gem_link_timer(unsigned long data
)
1310 struct gem
*gp
= (struct gem
*) data
;
1311 int restart_aneg
= 0;
1313 if (!gp
->hw_running
)
1316 spin_lock_irq(&gp
->lock
);
1318 /* If the link of task is still pending, we just
1319 * reschedule the link timer
1321 if (gp
->reset_task_pending
)
1324 if (gp
->phy_type
== phy_serialink
||
1325 gp
->phy_type
== phy_serdes
) {
1326 u32 val
= readl(gp
->regs
+ PCS_MIISTAT
);
1328 if (!(val
& PCS_MIISTAT_LS
))
1329 val
= readl(gp
->regs
+ PCS_MIISTAT
);
1331 if ((val
& PCS_MIISTAT_LS
) != 0) {
1332 gp
->lstate
= link_up
;
1333 netif_carrier_on(gp
->dev
);
1335 (void)gem_set_link_modes(gp
);
1339 if (found_mii_phy(gp
) && gp
->phy_mii
.def
->ops
->poll_link(&gp
->phy_mii
)) {
1340 /* Ok, here we got a link. If we had it due to a forced
1341 * fallback, and we were configured for autoneg, we do
1342 * retry a short autoneg pass. If you know your hub is
1343 * broken, use ethtool ;)
1345 if (gp
->lstate
== link_force_try
&& gp
->want_autoneg
) {
1346 gp
->lstate
= link_force_ret
;
1347 gp
->last_forced_speed
= gp
->phy_mii
.speed
;
1348 gp
->timer_ticks
= 5;
1349 if (netif_msg_link(gp
))
1350 printk(KERN_INFO
"%s: Got link after fallback, retrying"
1351 " autoneg once...\n", gp
->dev
->name
);
1352 gp
->phy_mii
.def
->ops
->setup_aneg(&gp
->phy_mii
, gp
->phy_mii
.advertising
);
1353 } else if (gp
->lstate
!= link_up
) {
1354 gp
->lstate
= link_up
;
1355 netif_carrier_on(gp
->dev
);
1356 if (gp
->opened
&& gem_set_link_modes(gp
))
1360 /* If the link was previously up, we restart the
1363 if (gp
->lstate
== link_up
) {
1364 gp
->lstate
= link_down
;
1365 if (netif_msg_link(gp
))
1366 printk(KERN_INFO
"%s: Link down\n",
1368 netif_carrier_off(gp
->dev
);
1369 gp
->reset_task_pending
= 2;
1370 schedule_work(&gp
->reset_task
);
1372 } else if (++gp
->timer_ticks
> 10) {
1373 if (found_mii_phy(gp
))
1374 restart_aneg
= gem_mdio_link_not_up(gp
);
1380 gem_begin_auto_negotiation(gp
, NULL
);
1384 mod_timer(&gp
->link_timer
, jiffies
+ ((12 * HZ
) / 10));
1386 spin_unlock_irq(&gp
->lock
);
1389 /* Must be invoked under gp->lock. */
1390 static void gem_clean_rings(struct gem
*gp
)
1392 struct gem_init_block
*gb
= gp
->init_block
;
1393 struct sk_buff
*skb
;
1395 dma_addr_t dma_addr
;
1397 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
1398 struct gem_rxd
*rxd
;
1401 if (gp
->rx_skbs
[i
] != NULL
) {
1402 skb
= gp
->rx_skbs
[i
];
1403 dma_addr
= le64_to_cpu(rxd
->buffer
);
1404 pci_unmap_page(gp
->pdev
, dma_addr
,
1405 RX_BUF_ALLOC_SIZE(gp
),
1406 PCI_DMA_FROMDEVICE
);
1407 dev_kfree_skb_any(skb
);
1408 gp
->rx_skbs
[i
] = NULL
;
1410 rxd
->status_word
= 0;
1414 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
1415 if (gp
->tx_skbs
[i
] != NULL
) {
1416 struct gem_txd
*txd
;
1419 skb
= gp
->tx_skbs
[i
];
1420 gp
->tx_skbs
[i
] = NULL
;
1422 for (frag
= 0; frag
<= skb_shinfo(skb
)->nr_frags
; frag
++) {
1423 int ent
= i
& (TX_RING_SIZE
- 1);
1425 txd
= &gb
->txd
[ent
];
1426 dma_addr
= le64_to_cpu(txd
->buffer
);
1427 pci_unmap_page(gp
->pdev
, dma_addr
,
1428 le64_to_cpu(txd
->control_word
) &
1429 TXDCTRL_BUFSZ
, PCI_DMA_TODEVICE
);
1431 if (frag
!= skb_shinfo(skb
)->nr_frags
)
1434 dev_kfree_skb_any(skb
);
1439 /* Must be invoked under gp->lock. */
1440 static void gem_init_rings(struct gem
*gp
)
1442 struct gem_init_block
*gb
= gp
->init_block
;
1443 struct net_device
*dev
= gp
->dev
;
1445 dma_addr_t dma_addr
;
1447 gp
->rx_new
= gp
->rx_old
= gp
->tx_new
= gp
->tx_old
= 0;
1449 gem_clean_rings(gp
);
1451 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
1452 struct sk_buff
*skb
;
1453 struct gem_rxd
*rxd
= &gb
->rxd
[i
];
1455 skb
= gem_alloc_skb(RX_BUF_ALLOC_SIZE(gp
), GFP_ATOMIC
);
1458 rxd
->status_word
= 0;
1462 gp
->rx_skbs
[i
] = skb
;
1464 skb_put(skb
, (ETH_FRAME_LEN
+ RX_OFFSET
));
1465 dma_addr
= pci_map_page(gp
->pdev
,
1466 virt_to_page(skb
->data
),
1467 ((unsigned long) skb
->data
&
1469 RX_BUF_ALLOC_SIZE(gp
),
1470 PCI_DMA_FROMDEVICE
);
1471 rxd
->buffer
= cpu_to_le64(dma_addr
);
1472 rxd
->status_word
= cpu_to_le64(RXDCTRL_FRESH(gp
));
1473 skb_reserve(skb
, RX_OFFSET
);
1476 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
1477 struct gem_txd
*txd
= &gb
->txd
[i
];
1479 txd
->control_word
= 0;
1484 /* Must be invoked under gp->lock. */
1485 static void gem_init_phy(struct gem
*gp
)
1489 /* Revert MIF CFG setting done on stop_phy */
1490 mifcfg
= readl(gp
->regs
+ MIF_CFG
);
1491 mifcfg
&= ~MIF_CFG_BBMODE
;
1492 writel(mifcfg
, gp
->regs
+ MIF_CFG
);
1494 #ifdef CONFIG_PPC_PMAC
1495 if (gp
->pdev
->vendor
== PCI_VENDOR_ID_APPLE
) {
1498 /* Those delay sucks, the HW seem to love them though, I'll
1499 * serisouly consider breaking some locks here to be able
1500 * to schedule instead
1502 pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET
, gp
->of_node
, 0, 0);
1504 for (j
= 0; j
< 3; j
++) {
1505 /* Some PHYs used by apple have problem getting back to us,
1506 * we _know_ it's actually at addr 0, that's a hack, but
1507 * it helps to do that reset now. I suspect some motherboards
1508 * don't wire the PHY reset line properly, thus the PHY doesn't
1509 * come back with the above pmac_call_feature.
1511 gp
->mii_phy_addr
= 0;
1512 phy_write(gp
, MII_BMCR
, BMCR_RESET
);
1513 /* We should probably break some locks here and schedule... */
1515 for (i
= 0; i
< 32; i
++) {
1516 gp
->mii_phy_addr
= i
;
1517 if (phy_read(gp
, MII_BMCR
) != 0xffff)
1521 printk(KERN_WARNING
"%s: GMAC PHY not responding !\n",
1523 gp
->mii_phy_addr
= 0;
1528 #endif /* CONFIG_PPC_PMAC */
1530 if (gp
->pdev
->vendor
== PCI_VENDOR_ID_SUN
&&
1531 gp
->pdev
->device
== PCI_DEVICE_ID_SUN_GEM
) {
1534 /* Init datapath mode register. */
1535 if (gp
->phy_type
== phy_mii_mdio0
||
1536 gp
->phy_type
== phy_mii_mdio1
) {
1537 val
= PCS_DMODE_MGM
;
1538 } else if (gp
->phy_type
== phy_serialink
) {
1539 val
= PCS_DMODE_SM
| PCS_DMODE_GMOE
;
1541 val
= PCS_DMODE_ESM
;
1544 writel(val
, gp
->regs
+ PCS_DMODE
);
1547 if (gp
->phy_type
== phy_mii_mdio0
||
1548 gp
->phy_type
== phy_mii_mdio1
) {
1549 // XXX check for errors
1550 mii_phy_probe(&gp
->phy_mii
, gp
->mii_phy_addr
);
1553 if (gp
->phy_mii
.def
&& gp
->phy_mii
.def
->ops
->init
)
1554 gp
->phy_mii
.def
->ops
->init(&gp
->phy_mii
);
1559 /* Reset PCS unit. */
1560 val
= readl(gp
->regs
+ PCS_MIICTRL
);
1561 val
|= PCS_MIICTRL_RST
;
1562 writeb(val
, gp
->regs
+ PCS_MIICTRL
);
1565 while (readl(gp
->regs
+ PCS_MIICTRL
) & PCS_MIICTRL_RST
) {
1571 printk(KERN_WARNING
"%s: PCS reset bit would not clear.\n",
1574 /* Make sure PCS is disabled while changing advertisement
1577 val
= readl(gp
->regs
+ PCS_CFG
);
1578 val
&= ~(PCS_CFG_ENABLE
| PCS_CFG_TO
);
1579 writel(val
, gp
->regs
+ PCS_CFG
);
1581 /* Advertise all capabilities except assymetric
1584 val
= readl(gp
->regs
+ PCS_MIIADV
);
1585 val
|= (PCS_MIIADV_FD
| PCS_MIIADV_HD
|
1586 PCS_MIIADV_SP
| PCS_MIIADV_AP
);
1587 writel(val
, gp
->regs
+ PCS_MIIADV
);
1589 /* Enable and restart auto-negotiation, disable wrapback/loopback,
1590 * and re-enable PCS.
1592 val
= readl(gp
->regs
+ PCS_MIICTRL
);
1593 val
|= (PCS_MIICTRL_RAN
| PCS_MIICTRL_ANE
);
1594 val
&= ~PCS_MIICTRL_WB
;
1595 writel(val
, gp
->regs
+ PCS_MIICTRL
);
1597 val
= readl(gp
->regs
+ PCS_CFG
);
1598 val
|= PCS_CFG_ENABLE
;
1599 writel(val
, gp
->regs
+ PCS_CFG
);
1601 /* Make sure serialink loopback is off. The meaning
1602 * of this bit is logically inverted based upon whether
1603 * you are in Serialink or SERDES mode.
1605 val
= readl(gp
->regs
+ PCS_SCTRL
);
1606 if (gp
->phy_type
== phy_serialink
)
1607 val
&= ~PCS_SCTRL_LOOP
;
1609 val
|= PCS_SCTRL_LOOP
;
1610 writel(val
, gp
->regs
+ PCS_SCTRL
);
1614 /* Must be invoked under gp->lock. */
1615 static void gem_init_dma(struct gem
*gp
)
1617 u64 desc_dma
= (u64
) gp
->gblock_dvma
;
1620 val
= (TXDMA_CFG_BASE
| (0x7ff << 10) | TXDMA_CFG_PMODE
);
1621 writel(val
, gp
->regs
+ TXDMA_CFG
);
1623 writel(desc_dma
>> 32, gp
->regs
+ TXDMA_DBHI
);
1624 writel(desc_dma
& 0xffffffff, gp
->regs
+ TXDMA_DBLOW
);
1625 desc_dma
+= (INIT_BLOCK_TX_RING_SIZE
* sizeof(struct gem_txd
));
1627 writel(0, gp
->regs
+ TXDMA_KICK
);
1629 val
= (RXDMA_CFG_BASE
| (RX_OFFSET
<< 10) |
1630 ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128
);
1631 writel(val
, gp
->regs
+ RXDMA_CFG
);
1633 writel(desc_dma
>> 32, gp
->regs
+ RXDMA_DBHI
);
1634 writel(desc_dma
& 0xffffffff, gp
->regs
+ RXDMA_DBLOW
);
1636 writel(RX_RING_SIZE
- 4, gp
->regs
+ RXDMA_KICK
);
1638 val
= (((gp
->rx_pause_off
/ 64) << 0) & RXDMA_PTHRESH_OFF
);
1639 val
|= (((gp
->rx_pause_on
/ 64) << 12) & RXDMA_PTHRESH_ON
);
1640 writel(val
, gp
->regs
+ RXDMA_PTHRESH
);
1642 if (readl(gp
->regs
+ GREG_BIFCFG
) & GREG_BIFCFG_M66EN
)
1643 writel(((5 & RXDMA_BLANK_IPKTS
) |
1644 ((8 << 12) & RXDMA_BLANK_ITIME
)),
1645 gp
->regs
+ RXDMA_BLANK
);
1647 writel(((5 & RXDMA_BLANK_IPKTS
) |
1648 ((4 << 12) & RXDMA_BLANK_ITIME
)),
1649 gp
->regs
+ RXDMA_BLANK
);
1652 /* Must be invoked under gp->lock. */
1654 gem_setup_multicast(struct gem
*gp
)
1659 if ((gp
->dev
->flags
& IFF_ALLMULTI
) ||
1660 (gp
->dev
->mc_count
> 256)) {
1661 for (i
=0; i
<16; i
++)
1662 writel(0xffff, gp
->regs
+ MAC_HASH0
+ (i
<< 2));
1663 rxcfg
|= MAC_RXCFG_HFE
;
1664 } else if (gp
->dev
->flags
& IFF_PROMISC
) {
1665 rxcfg
|= MAC_RXCFG_PROM
;
1669 struct dev_mc_list
*dmi
= gp
->dev
->mc_list
;
1672 for (i
= 0; i
< 16; i
++)
1675 for (i
= 0; i
< gp
->dev
->mc_count
; i
++) {
1676 char *addrs
= dmi
->dmi_addr
;
1683 crc
= ether_crc_le(6, addrs
);
1685 hash_table
[crc
>> 4] |= 1 << (15 - (crc
& 0xf));
1687 for (i
=0; i
<16; i
++)
1688 writel(hash_table
[i
], gp
->regs
+ MAC_HASH0
+ (i
<< 2));
1689 rxcfg
|= MAC_RXCFG_HFE
;
1695 /* Must be invoked under gp->lock. */
1696 static void gem_init_mac(struct gem
*gp
)
1698 unsigned char *e
= &gp
->dev
->dev_addr
[0];
1700 writel(0x1bf0, gp
->regs
+ MAC_SNDPAUSE
);
1702 writel(0x00, gp
->regs
+ MAC_IPG0
);
1703 writel(0x08, gp
->regs
+ MAC_IPG1
);
1704 writel(0x04, gp
->regs
+ MAC_IPG2
);
1705 writel(0x40, gp
->regs
+ MAC_STIME
);
1706 writel(0x40, gp
->regs
+ MAC_MINFSZ
);
1708 /* Ethernet payload + header + FCS + optional VLAN tag. */
1709 writel(0x20000000 | (gp
->dev
->mtu
+ ETH_HLEN
+ 4 + 4), gp
->regs
+ MAC_MAXFSZ
);
1711 writel(0x07, gp
->regs
+ MAC_PASIZE
);
1712 writel(0x04, gp
->regs
+ MAC_JAMSIZE
);
1713 writel(0x10, gp
->regs
+ MAC_ATTLIM
);
1714 writel(0x8808, gp
->regs
+ MAC_MCTYPE
);
1716 writel((e
[5] | (e
[4] << 8)) & 0x3ff, gp
->regs
+ MAC_RANDSEED
);
1718 writel((e
[4] << 8) | e
[5], gp
->regs
+ MAC_ADDR0
);
1719 writel((e
[2] << 8) | e
[3], gp
->regs
+ MAC_ADDR1
);
1720 writel((e
[0] << 8) | e
[1], gp
->regs
+ MAC_ADDR2
);
1722 writel(0, gp
->regs
+ MAC_ADDR3
);
1723 writel(0, gp
->regs
+ MAC_ADDR4
);
1724 writel(0, gp
->regs
+ MAC_ADDR5
);
1726 writel(0x0001, gp
->regs
+ MAC_ADDR6
);
1727 writel(0xc200, gp
->regs
+ MAC_ADDR7
);
1728 writel(0x0180, gp
->regs
+ MAC_ADDR8
);
1730 writel(0, gp
->regs
+ MAC_AFILT0
);
1731 writel(0, gp
->regs
+ MAC_AFILT1
);
1732 writel(0, gp
->regs
+ MAC_AFILT2
);
1733 writel(0, gp
->regs
+ MAC_AF21MSK
);
1734 writel(0, gp
->regs
+ MAC_AF0MSK
);
1736 gp
->mac_rx_cfg
= gem_setup_multicast(gp
);
1738 gp
->mac_rx_cfg
|= MAC_RXCFG_SFCS
;
1740 writel(0, gp
->regs
+ MAC_NCOLL
);
1741 writel(0, gp
->regs
+ MAC_FASUCC
);
1742 writel(0, gp
->regs
+ MAC_ECOLL
);
1743 writel(0, gp
->regs
+ MAC_LCOLL
);
1744 writel(0, gp
->regs
+ MAC_DTIMER
);
1745 writel(0, gp
->regs
+ MAC_PATMPS
);
1746 writel(0, gp
->regs
+ MAC_RFCTR
);
1747 writel(0, gp
->regs
+ MAC_LERR
);
1748 writel(0, gp
->regs
+ MAC_AERR
);
1749 writel(0, gp
->regs
+ MAC_FCSERR
);
1750 writel(0, gp
->regs
+ MAC_RXCVERR
);
1752 /* Clear RX/TX/MAC/XIF config, we will set these up and enable
1753 * them once a link is established.
1755 writel(0, gp
->regs
+ MAC_TXCFG
);
1756 writel(gp
->mac_rx_cfg
, gp
->regs
+ MAC_RXCFG
);
1757 writel(0, gp
->regs
+ MAC_MCCFG
);
1758 writel(0, gp
->regs
+ MAC_XIFCFG
);
1760 /* Setup MAC interrupts. We want to get all of the interesting
1761 * counter expiration events, but we do not want to hear about
1762 * normal rx/tx as the DMA engine tells us that.
1764 writel(MAC_TXSTAT_XMIT
, gp
->regs
+ MAC_TXMASK
);
1765 writel(MAC_RXSTAT_RCV
, gp
->regs
+ MAC_RXMASK
);
1767 /* Don't enable even the PAUSE interrupts for now, we
1768 * make no use of those events other than to record them.
1770 writel(0xffffffff, gp
->regs
+ MAC_MCMASK
);
1773 /* Must be invoked under gp->lock. */
1774 static void gem_init_pause_thresholds(struct gem
*gp
)
1776 /* Calculate pause thresholds. Setting the OFF threshold to the
1777 * full RX fifo size effectively disables PAUSE generation which
1778 * is what we do for 10/100 only GEMs which have FIFOs too small
1779 * to make real gains from PAUSE.
1781 if (gp
->rx_fifo_sz
<= (2 * 1024)) {
1782 gp
->rx_pause_off
= gp
->rx_pause_on
= gp
->rx_fifo_sz
;
1784 int max_frame
= (gp
->dev
->mtu
+ ETH_HLEN
+ 4 + 4 + 64) & ~63;
1785 int off
= (gp
->rx_fifo_sz
- (max_frame
* 2));
1786 int on
= off
- max_frame
;
1788 gp
->rx_pause_off
= off
;
1789 gp
->rx_pause_on
= on
;
1796 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
1797 cfg
|= GREG_CFG_IBURST
;
1799 cfg
|= ((31 << 1) & GREG_CFG_TXDMALIM
);
1800 cfg
|= ((31 << 6) & GREG_CFG_RXDMALIM
);
1801 writel(cfg
, gp
->regs
+ GREG_CFG
);
1805 static int gem_check_invariants(struct gem
*gp
)
1807 struct pci_dev
*pdev
= gp
->pdev
;
1810 /* On Apple's sungem, we can't rely on registers as the chip
1811 * was been powered down by the firmware. The PHY is looked
1814 if (pdev
->vendor
== PCI_VENDOR_ID_APPLE
) {
1815 gp
->phy_type
= phy_mii_mdio0
;
1816 gp
->tx_fifo_sz
= readl(gp
->regs
+ TXDMA_FSZ
) * 64;
1817 gp
->rx_fifo_sz
= readl(gp
->regs
+ RXDMA_FSZ
) * 64;
1822 mif_cfg
= readl(gp
->regs
+ MIF_CFG
);
1824 if (pdev
->vendor
== PCI_VENDOR_ID_SUN
&&
1825 pdev
->device
== PCI_DEVICE_ID_SUN_RIO_GEM
) {
1826 /* One of the MII PHYs _must_ be present
1827 * as this chip has no gigabit PHY.
1829 if ((mif_cfg
& (MIF_CFG_MDI0
| MIF_CFG_MDI1
)) == 0) {
1830 printk(KERN_ERR PFX
"RIO GEM lacks MII phy, mif_cfg[%08x]\n",
1836 /* Determine initial PHY interface type guess. MDIO1 is the
1837 * external PHY and thus takes precedence over MDIO0.
1840 if (mif_cfg
& MIF_CFG_MDI1
) {
1841 gp
->phy_type
= phy_mii_mdio1
;
1842 mif_cfg
|= MIF_CFG_PSELECT
;
1843 writel(mif_cfg
, gp
->regs
+ MIF_CFG
);
1844 } else if (mif_cfg
& MIF_CFG_MDI0
) {
1845 gp
->phy_type
= phy_mii_mdio0
;
1846 mif_cfg
&= ~MIF_CFG_PSELECT
;
1847 writel(mif_cfg
, gp
->regs
+ MIF_CFG
);
1849 gp
->phy_type
= phy_serialink
;
1851 if (gp
->phy_type
== phy_mii_mdio1
||
1852 gp
->phy_type
== phy_mii_mdio0
) {
1855 for (i
= 0; i
< 32; i
++) {
1856 gp
->mii_phy_addr
= i
;
1857 if (phy_read(gp
, MII_BMCR
) != 0xffff)
1861 if (pdev
->device
!= PCI_DEVICE_ID_SUN_GEM
) {
1862 printk(KERN_ERR PFX
"RIO MII phy will not respond.\n");
1865 gp
->phy_type
= phy_serdes
;
1869 /* Fetch the FIFO configurations now too. */
1870 gp
->tx_fifo_sz
= readl(gp
->regs
+ TXDMA_FSZ
) * 64;
1871 gp
->rx_fifo_sz
= readl(gp
->regs
+ RXDMA_FSZ
) * 64;
1873 if (pdev
->vendor
== PCI_VENDOR_ID_SUN
) {
1874 if (pdev
->device
== PCI_DEVICE_ID_SUN_GEM
) {
1875 if (gp
->tx_fifo_sz
!= (9 * 1024) ||
1876 gp
->rx_fifo_sz
!= (20 * 1024)) {
1877 printk(KERN_ERR PFX
"GEM has bogus fifo sizes tx(%d) rx(%d)\n",
1878 gp
->tx_fifo_sz
, gp
->rx_fifo_sz
);
1883 if (gp
->tx_fifo_sz
!= (2 * 1024) ||
1884 gp
->rx_fifo_sz
!= (2 * 1024)) {
1885 printk(KERN_ERR PFX
"RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n",
1886 gp
->tx_fifo_sz
, gp
->rx_fifo_sz
);
1889 gp
->swrst_base
= (64 / 4) << GREG_SWRST_CACHE_SHIFT
;
1896 /* Must be invoked under gp->lock. */
1897 static void gem_init_hw(struct gem
*gp
, int restart_link
)
1899 /* On Apple's gmac, I initialize the PHY only after
1900 * setting up the chip. It appears the gigabit PHYs
1901 * don't quite like beeing talked to on the GII when
1902 * the chip is not running, I suspect it might not
1903 * be clocked at that point. --BenH
1907 gem_init_pause_thresholds(gp
);
1912 /* Default aneg parameters */
1913 gp
->timer_ticks
= 0;
1914 gp
->lstate
= link_down
;
1915 netif_carrier_off(gp
->dev
);
1917 /* Can I advertise gigabit here ? I'd need BCM PHY docs... */
1918 gem_begin_auto_negotiation(gp
, NULL
);
1920 if (gp
->lstate
== link_up
) {
1921 netif_carrier_on(gp
->dev
);
1922 gem_set_link_modes(gp
);
1927 #ifdef CONFIG_PPC_PMAC
1928 /* Enable the chip's clock and make sure it's config space is
1929 * setup properly. There appear to be no need to restore the
1932 static void gem_apple_powerup(struct gem
*gp
)
1937 pmac_call_feature(PMAC_FTR_GMAC_ENABLE
, gp
->of_node
, 0, 1);
1939 current
->state
= TASK_UNINTERRUPTIBLE
;
1940 schedule_timeout((21 * HZ
) / 1000);
1942 pci_read_config_word(gp
->pdev
, PCI_COMMAND
, &cmd
);
1943 cmd
|= PCI_COMMAND_MEMORY
| PCI_COMMAND_MASTER
| PCI_COMMAND_INVALIDATE
;
1944 pci_write_config_word(gp
->pdev
, PCI_COMMAND
, cmd
);
1945 pci_write_config_byte(gp
->pdev
, PCI_LATENCY_TIMER
, 6);
1946 pci_write_config_byte(gp
->pdev
, PCI_CACHE_LINE_SIZE
, 8);
1950 mif_cfg
= readl(gp
->regs
+ MIF_CFG
);
1951 mif_cfg
&= ~(MIF_CFG_PSELECT
|MIF_CFG_POLL
|MIF_CFG_BBMODE
|MIF_CFG_MDI1
);
1952 mif_cfg
|= MIF_CFG_MDI0
;
1953 writel(mif_cfg
, gp
->regs
+ MIF_CFG
);
1954 writel(PCS_DMODE_MGM
, gp
->regs
+ PCS_DMODE
);
1955 writel(MAC_XIFCFG_OE
, gp
->regs
+ MAC_XIFCFG
);
1960 /* Turn off the chip's clock */
1961 static void gem_apple_powerdown(struct gem
*gp
)
1963 pmac_call_feature(PMAC_FTR_GMAC_ENABLE
, gp
->of_node
, 0, 0);
1966 #endif /* CONFIG_PPC_PMAC */
1968 /* Must be invoked under gp->lock. */
1969 static void gem_stop_phy(struct gem
*gp
)
1973 /* Make sure we aren't polling PHY status change. We
1974 * don't currently use that feature though
1976 mifcfg
= readl(gp
->regs
+ MIF_CFG
);
1977 mifcfg
&= ~MIF_CFG_POLL
;
1978 writel(mifcfg
, gp
->regs
+ MIF_CFG
);
1980 if (gp
->wake_on_lan
) {
1981 /* Setup wake-on-lan */
1983 writel(0, gp
->regs
+ MAC_RXCFG
);
1984 writel(0, gp
->regs
+ MAC_TXCFG
);
1985 writel(0, gp
->regs
+ MAC_XIFCFG
);
1986 writel(0, gp
->regs
+ TXDMA_CFG
);
1987 writel(0, gp
->regs
+ RXDMA_CFG
);
1989 if (!gp
->wake_on_lan
) {
1991 writel(MAC_TXRST_CMD
, gp
->regs
+ MAC_TXRST
);
1992 writel(MAC_RXRST_CMD
, gp
->regs
+ MAC_RXRST
);
1995 if (found_mii_phy(gp
) && gp
->phy_mii
.def
->ops
->suspend
)
1996 gp
->phy_mii
.def
->ops
->suspend(&gp
->phy_mii
, 0 /* wake on lan options */);
1998 if (!gp
->wake_on_lan
) {
1999 /* According to Apple, we must set the MDIO pins to this begnign
2000 * state or we may 1) eat more current, 2) damage some PHYs
2002 writel(mifcfg
| MIF_CFG_BBMODE
, gp
->regs
+ MIF_CFG
);
2003 writel(0, gp
->regs
+ MIF_BBCLK
);
2004 writel(0, gp
->regs
+ MIF_BBDATA
);
2005 writel(0, gp
->regs
+ MIF_BBOENAB
);
2006 writel(MAC_XIFCFG_GMII
| MAC_XIFCFG_LBCK
, gp
->regs
+ MAC_XIFCFG
);
2007 (void) readl(gp
->regs
+ MAC_XIFCFG
);
2011 /* Shut down the chip, must be called with pm_sem held. */
2012 static void gem_shutdown(struct gem
*gp
)
2014 /* Make us not-running to avoid timers respawning */
2017 /* Stop the link timer */
2018 del_timer_sync(&gp
->link_timer
);
2020 /* Stop the reset task */
2021 while (gp
->reset_task_pending
)
2024 /* Actually stop the chip */
2025 spin_lock_irq(&gp
->lock
);
2026 if (gp
->pdev
->vendor
== PCI_VENDOR_ID_APPLE
) {
2029 spin_unlock_irq(&gp
->lock
);
2031 #ifdef CONFIG_PPC_PMAC
2032 /* Power down the chip */
2033 gem_apple_powerdown(gp
);
2034 #endif /* CONFIG_PPC_PMAC */
2038 spin_unlock_irq(&gp
->lock
);
2042 static void gem_pm_task(void *data
)
2044 struct gem
*gp
= (struct gem
*) data
;
2046 /* We assume if we can't lock the pm_sem, then open() was
2047 * called again (or suspend()), and we can safely ignore
2050 if (down_trylock(&gp
->pm_sem
))
2053 /* Driver was re-opened or already shut down */
2054 if (gp
->opened
|| !gp
->hw_running
) {
2064 static void gem_pm_timer(unsigned long data
)
2066 struct gem
*gp
= (struct gem
*) data
;
2068 schedule_work(&gp
->pm_task
);
2071 static int gem_open(struct net_device
*dev
)
2073 struct gem
*gp
= dev
->priv
;
2078 hw_was_up
= gp
->hw_running
;
2080 /* Stop the PM timer/task */
2081 del_timer(&gp
->pm_timer
);
2082 flush_scheduled_work();
2084 /* The power-management semaphore protects the hw_running
2085 * etc. state so it is safe to do this bit without gp->lock
2087 if (!gp
->hw_running
) {
2088 #ifdef CONFIG_PPC_PMAC
2089 /* First, we need to bring up the chip */
2090 if (gp
->pdev
->vendor
== PCI_VENDOR_ID_APPLE
) {
2091 gem_apple_powerup(gp
);
2092 gem_check_invariants(gp
);
2094 #endif /* CONFIG_PPC_PMAC */
2096 /* Reset the chip */
2097 spin_lock_irq(&gp
->lock
);
2099 spin_unlock_irq(&gp
->lock
);
2104 spin_lock_irq(&gp
->lock
);
2106 /* We can now request the interrupt as we know it's masked
2109 if (request_irq(gp
->pdev
->irq
, gem_interrupt
,
2110 SA_SHIRQ
, dev
->name
, (void *)dev
)) {
2111 spin_unlock_irq(&gp
->lock
);
2113 printk(KERN_ERR
"%s: failed to request irq !\n", gp
->dev
->name
);
2115 #ifdef CONFIG_PPC_PMAC
2116 if (!hw_was_up
&& gp
->pdev
->vendor
== PCI_VENDOR_ID_APPLE
)
2117 gem_apple_powerdown(gp
);
2118 #endif /* CONFIG_PPC_PMAC */
2119 /* Fire the PM timer that will shut us down in about 10 seconds */
2120 gp
->pm_timer
.expires
= jiffies
+ 10*HZ
;
2121 add_timer(&gp
->pm_timer
);
2127 /* Allocate & setup ring buffers */
2130 /* Init & setup chip hardware */
2131 gem_init_hw(gp
, !hw_was_up
);
2135 spin_unlock_irq(&gp
->lock
);
2142 static int gem_close(struct net_device
*dev
)
2144 struct gem
*gp
= dev
->priv
;
2146 /* Make sure we don't get distracted by suspend/resume */
2149 /* Stop traffic, mark us closed */
2150 spin_lock_irq(&gp
->lock
);
2153 writel(0xffffffff, gp
->regs
+ GREG_IMASK
);
2154 netif_stop_queue(dev
);
2159 /* Get rid of rings */
2160 gem_clean_rings(gp
);
2162 /* Bye, the pm timer will finish the job */
2163 free_irq(gp
->pdev
->irq
, (void *) dev
);
2165 spin_unlock_irq(&gp
->lock
);
2167 /* Fire the PM timer that will shut us down in about 10 seconds */
2168 gp
->pm_timer
.expires
= jiffies
+ 10*HZ
;
2169 add_timer(&gp
->pm_timer
);
2177 static int gem_suspend(struct pci_dev
*pdev
, u32 state
)
2179 struct net_device
*dev
= pci_get_drvdata(pdev
);
2180 struct gem
*gp
= dev
->priv
;
2182 /* We hold the PM semaphore during entire driver
2187 printk(KERN_INFO
"%s: suspending, WakeOnLan %s\n",
2188 dev
->name
, gp
->wake_on_lan
? "enabled" : "disabled");
2190 /* If the driver is opened, we stop the DMA */
2192 spin_lock_irq(&gp
->lock
);
2194 /* Stop traffic, mark us closed */
2195 netif_device_detach(dev
);
2197 writel(0xffffffff, gp
->regs
+ GREG_IMASK
);
2202 /* Get rid of ring buffers */
2203 gem_clean_rings(gp
);
2205 spin_unlock_irq(&gp
->lock
);
2207 if (gp
->pdev
->vendor
== PCI_VENDOR_ID_APPLE
)
2208 disable_irq(gp
->pdev
->irq
);
2211 if (gp
->hw_running
) {
2212 /* Kill PM timer if any */
2213 del_timer_sync(&gp
->pm_timer
);
2214 flush_scheduled_work();
2222 static int gem_resume(struct pci_dev
*pdev
)
2224 struct net_device
*dev
= pci_get_drvdata(pdev
);
2225 struct gem
*gp
= dev
->priv
;
2227 printk(KERN_INFO
"%s: resuming\n", dev
->name
);
2230 #ifdef CONFIG_PPC_PMAC
2231 /* First, we need to bring up the chip */
2232 if (gp
->pdev
->vendor
== PCI_VENDOR_ID_APPLE
) {
2233 gem_apple_powerup(gp
);
2234 gem_check_invariants(gp
);
2236 #endif /* CONFIG_PPC_PMAC */
2237 spin_lock_irq(&gp
->lock
);
2244 spin_unlock_irq(&gp
->lock
);
2246 netif_device_attach(dev
);
2247 if (gp
->pdev
->vendor
== PCI_VENDOR_ID_APPLE
)
2248 enable_irq(gp
->pdev
->irq
);
2254 #endif /* CONFIG_PM */
2256 static struct net_device_stats
*gem_get_stats(struct net_device
*dev
)
2258 struct gem
*gp
= dev
->priv
;
2259 struct net_device_stats
*stats
= &gp
->net_stats
;
2261 spin_lock_irq(&gp
->lock
);
2263 if (gp
->hw_running
) {
2264 stats
->rx_crc_errors
+= readl(gp
->regs
+ MAC_FCSERR
);
2265 writel(0, gp
->regs
+ MAC_FCSERR
);
2267 stats
->rx_frame_errors
+= readl(gp
->regs
+ MAC_AERR
);
2268 writel(0, gp
->regs
+ MAC_AERR
);
2270 stats
->rx_length_errors
+= readl(gp
->regs
+ MAC_LERR
);
2271 writel(0, gp
->regs
+ MAC_LERR
);
2273 stats
->tx_aborted_errors
+= readl(gp
->regs
+ MAC_ECOLL
);
2274 stats
->collisions
+=
2275 (readl(gp
->regs
+ MAC_ECOLL
) +
2276 readl(gp
->regs
+ MAC_LCOLL
));
2277 writel(0, gp
->regs
+ MAC_ECOLL
);
2278 writel(0, gp
->regs
+ MAC_LCOLL
);
2281 spin_unlock_irq(&gp
->lock
);
2283 return &gp
->net_stats
;
2286 static void gem_set_multicast(struct net_device
*dev
)
2288 struct gem
*gp
= dev
->priv
;
2289 u32 rxcfg
, rxcfg_new
;
2292 if (!gp
->hw_running
)
2295 spin_lock_irq(&gp
->lock
);
2297 netif_stop_queue(dev
);
2299 rxcfg
= readl(gp
->regs
+ MAC_RXCFG
);
2300 rxcfg_new
= gem_setup_multicast(gp
);
2302 rxcfg_new
|= MAC_RXCFG_SFCS
;
2304 gp
->mac_rx_cfg
= rxcfg_new
;
2306 writel(rxcfg
& ~MAC_RXCFG_ENAB
, gp
->regs
+ MAC_RXCFG
);
2307 while (readl(gp
->regs
+ MAC_RXCFG
) & MAC_RXCFG_ENAB
) {
2313 rxcfg
&= ~(MAC_RXCFG_PROM
| MAC_RXCFG_HFE
);
2316 writel(rxcfg
, gp
->regs
+ MAC_RXCFG
);
2318 netif_wake_queue(dev
);
2320 spin_unlock_irq(&gp
->lock
);
2323 /* Eventually add support for changing the advertisement
2326 static int gem_ethtool_ioctl(struct net_device
*dev
, void *ep_user
)
2328 struct gem
*gp
= dev
->priv
;
2329 struct ethtool_cmd ecmd
;
2331 if (copy_from_user(&ecmd
, ep_user
, sizeof(ecmd
)))
2335 case ETHTOOL_GDRVINFO
: {
2336 struct ethtool_drvinfo info
= { .cmd
= ETHTOOL_GDRVINFO
};
2338 strncpy(info
.driver
, DRV_NAME
, ETHTOOL_BUSINFO_LEN
);
2339 strncpy(info
.version
, DRV_VERSION
, ETHTOOL_BUSINFO_LEN
);
2340 info
.fw_version
[0] = '\0';
2341 strncpy(info
.bus_info
, gp
->pdev
->slot_name
, ETHTOOL_BUSINFO_LEN
);
2342 info
.regdump_len
= 0; /*SUNGEM_NREGS;*/
2344 if (copy_to_user(ep_user
, &info
, sizeof(info
)))
2351 if (gp
->phy_type
== phy_mii_mdio0
||
2352 gp
->phy_type
== phy_mii_mdio1
) {
2353 if (gp
->phy_mii
.def
)
2354 ecmd
.supported
= gp
->phy_mii
.def
->features
;
2356 ecmd
.supported
= SUPPORTED_10baseT_Half
| SUPPORTED_10baseT_Full
;
2358 /* XXX hardcoded stuff for now */
2359 ecmd
.port
= PORT_MII
;
2360 ecmd
.transceiver
= XCVR_EXTERNAL
;
2361 ecmd
.phy_address
= 0; /* XXX fixed PHYAD */
2363 /* Return current PHY settings */
2364 spin_lock_irq(&gp
->lock
);
2365 ecmd
.autoneg
= gp
->want_autoneg
;
2366 ecmd
.speed
= gp
->phy_mii
.speed
;
2367 ecmd
.duplex
= gp
->phy_mii
.duplex
;
2368 ecmd
.advertising
= gp
->phy_mii
.advertising
;
2369 /* If we started with a forced mode, we don't have a default
2370 * advertise set, we need to return something sensible so
2371 * userland can re-enable autoneg properly */
2372 if (ecmd
.advertising
== 0)
2373 ecmd
.advertising
= ecmd
.supported
;
2374 spin_unlock_irq(&gp
->lock
);
2375 } else { // XXX PCS ?
2377 (SUPPORTED_10baseT_Half
| SUPPORTED_10baseT_Full
|
2378 SUPPORTED_100baseT_Half
| SUPPORTED_100baseT_Full
|
2380 ecmd
.advertising
= ecmd
.supported
;
2382 if (copy_to_user(ep_user
, &ecmd
, sizeof(ecmd
)))
2387 if (!capable(CAP_NET_ADMIN
))
2390 /* Verify the settings we care about. */
2391 if (ecmd
.autoneg
!= AUTONEG_ENABLE
&&
2392 ecmd
.autoneg
!= AUTONEG_DISABLE
)
2395 if (ecmd
.autoneg
== AUTONEG_ENABLE
&&
2396 ecmd
.advertising
== 0)
2399 if (ecmd
.autoneg
== AUTONEG_DISABLE
&&
2400 ((ecmd
.speed
!= SPEED_1000
&&
2401 ecmd
.speed
!= SPEED_100
&&
2402 ecmd
.speed
!= SPEED_10
) ||
2403 (ecmd
.duplex
!= DUPLEX_HALF
&&
2404 ecmd
.duplex
!= DUPLEX_FULL
)))
2407 /* Apply settings and restart link process. */
2408 spin_lock_irq(&gp
->lock
);
2409 gem_begin_auto_negotiation(gp
, &ecmd
);
2410 spin_unlock_irq(&gp
->lock
);
2414 case ETHTOOL_NWAY_RST
:
2415 if (!gp
->want_autoneg
)
2418 /* Restart link process. */
2419 spin_lock_irq(&gp
->lock
);
2420 gem_begin_auto_negotiation(gp
, NULL
);
2421 spin_unlock_irq(&gp
->lock
);
2429 /* get link status */
2430 case ETHTOOL_GLINK
: {
2431 struct ethtool_value edata
= { .cmd
= ETHTOOL_GLINK
};
2433 edata
.data
= (gp
->lstate
== link_up
);
2434 if (copy_to_user(ep_user
, &edata
, sizeof(edata
)))
2439 /* get message-level */
2440 case ETHTOOL_GMSGLVL
: {
2441 struct ethtool_value edata
= { .cmd
= ETHTOOL_GMSGLVL
};
2443 edata
.data
= gp
->msg_enable
;
2444 if (copy_to_user(ep_user
, &edata
, sizeof(edata
)))
2449 /* set message-level */
2450 case ETHTOOL_SMSGLVL
: {
2451 struct ethtool_value edata
;
2453 if (copy_from_user(&edata
, ep_user
, sizeof(edata
)))
2455 gp
->msg_enable
= edata
.data
;
2460 case ETHTOOL_GREGS
: {
2461 struct ethtool_regs regs
;
2465 if (copy_from_user(®s
, useraddr
, sizeof(regs
)))
2468 if (regs
.len
> SUNGEM_NREGS
) {
2469 regs
.len
= SUNGEM_NREGS
;
2472 if (copy_to_user(useraddr
, ®s
, sizeof(regs
)))
2475 if (!gp
->hw_running
)
2477 useraddr
+= offsetof(struct ethtool_regs
, data
);
2479 /* Use kmalloc to avoid bloating the stack */
2480 regbuf
= kmalloc(4 * SUNGEM_NREGS
, GFP_KERNEL
);
2483 spin_lock_irq(&np
->lock
);
2484 gem_get_regs(gp
, regbuf
);
2485 spin_unlock_irq(&np
->lock
);
2487 if (copy_to_user(useraddr
, regbuf
, regs
.len
*sizeof(u32
)))
2498 static int gem_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
2500 struct gem
*gp
= dev
->priv
;
2501 struct mii_ioctl_data
*data
= (struct mii_ioctl_data
*)&ifr
->ifr_data
;
2502 int rc
= -EOPNOTSUPP
;
2504 /* Hold the PM semaphore while doing ioctl's or we may collide
2505 * with open/close and power management and oops.
2511 rc
= gem_ethtool_ioctl(dev
, ifr
->ifr_data
);
2514 case SIOCGMIIPHY
: /* Get address of MII PHY in use. */
2515 data
->phy_id
= gp
->mii_phy_addr
;
2516 /* Fallthrough... */
2518 case SIOCGMIIREG
: /* Read MII PHY register. */
2519 if (!gp
->hw_running
)
2522 data
->val_out
= __phy_read(gp
, data
->phy_id
& 0x1f, data
->reg_num
& 0x1f);
2527 case SIOCSMIIREG
: /* Write MII PHY register. */
2528 if (!capable(CAP_NET_ADMIN
))
2530 else if (!gp
->hw_running
)
2533 __phy_write(gp
, data
->phy_id
& 0x1f, data
->reg_num
& 0x1f, data
->val_in
);
2544 #if (!defined(__sparc__) && !defined(CONFIG_PPC))
2545 /* Fetch MAC address from vital product data of PCI ROM. */
2546 static void find_eth_addr_in_vpd(void *rom_base
, int len
, unsigned char *dev_addr
)
2550 for (this_offset
= 0x20; this_offset
< len
; this_offset
++) {
2551 void *p
= rom_base
+ this_offset
;
2554 if (readb(p
+ 0) != 0x90 ||
2555 readb(p
+ 1) != 0x00 ||
2556 readb(p
+ 2) != 0x09 ||
2557 readb(p
+ 3) != 0x4e ||
2558 readb(p
+ 4) != 0x41 ||
2559 readb(p
+ 5) != 0x06)
2565 for (i
= 0; i
< 6; i
++)
2566 dev_addr
[i
] = readb(p
+ i
);
2571 static void get_gem_mac_nonobp(struct pci_dev
*pdev
, unsigned char *dev_addr
)
2576 if (pdev
->resource
[PCI_ROM_RESOURCE
].parent
== NULL
) {
2577 if (pci_assign_resource(pdev
, PCI_ROM_RESOURCE
) < 0)
2581 pci_read_config_dword(pdev
, pdev
->rom_base_reg
, &rom_reg_orig
);
2582 pci_write_config_dword(pdev
, pdev
->rom_base_reg
,
2583 rom_reg_orig
| PCI_ROM_ADDRESS_ENABLE
);
2585 p
= ioremap(pci_resource_start(pdev
, PCI_ROM_RESOURCE
), (64 * 1024));
2586 if (p
!= NULL
&& readb(p
) == 0x55 && readb(p
+ 1) == 0xaa)
2587 find_eth_addr_in_vpd(p
, (64 * 1024), dev_addr
);
2592 pci_write_config_dword(pdev
, pdev
->rom_base_reg
, rom_reg_orig
);
2596 /* Sun MAC prefix then 3 random bytes. */
2600 get_random_bytes(dev_addr
+ 3, 3);
2603 #endif /* not Sparc and not PPC */
2605 static int __devinit
gem_get_device_address(struct gem
*gp
)
2607 #if defined(__sparc__) || defined(CONFIG_PPC_PMAC)
2608 struct net_device
*dev
= gp
->dev
;
2611 #if defined(__sparc__)
2612 struct pci_dev
*pdev
= gp
->pdev
;
2613 struct pcidev_cookie
*pcp
= pdev
->sysdata
;
2617 node
= pcp
->prom_node
;
2618 if (prom_getproplen(node
, "local-mac-address") == 6)
2619 prom_getproperty(node
, "local-mac-address",
2625 memcpy(dev
->dev_addr
, idprom
->id_ethaddr
, 6);
2626 #elif defined(CONFIG_PPC_PMAC)
2627 unsigned char *addr
;
2629 addr
= get_property(gp
->of_node
, "local-mac-address", NULL
);
2632 printk(KERN_ERR
"%s: can't get mac-address\n", dev
->name
);
2635 memcpy(dev
->dev_addr
, addr
, 6);
2637 get_gem_mac_nonobp(gp
->pdev
, gp
->dev
->dev_addr
);
2642 static int __devinit
gem_init_one(struct pci_dev
*pdev
,
2643 const struct pci_device_id
*ent
)
2645 static int gem_version_printed
= 0;
2646 unsigned long gemreg_base
, gemreg_len
;
2647 struct net_device
*dev
;
2649 int i
, err
, pci_using_dac
;
2651 if (gem_version_printed
++ == 0)
2652 printk(KERN_INFO
"%s", version
);
2654 /* Apple gmac note: during probe, the chip is powered up by
2655 * the arch code to allow the code below to work (and to let
2656 * the chip be probed on the config space. It won't stay powered
2657 * up until the interface is brought up however, so we can't rely
2658 * on register configuration done at this point.
2660 err
= pci_enable_device(pdev
);
2662 printk(KERN_ERR PFX
"Cannot enable MMIO operation, "
2666 pci_set_master(pdev
);
2668 /* Configure DMA attributes. */
2670 /* All of the GEM documentation states that 64-bit DMA addressing
2671 * is fully supported and should work just fine. However the
2672 * front end for RIO based GEMs is different and only supports
2673 * 32-bit addressing.
2675 * For now we assume the various PPC GEMs are 32-bit only as well.
2677 if (pdev
->vendor
== PCI_VENDOR_ID_SUN
&&
2678 pdev
->device
== PCI_DEVICE_ID_SUN_GEM
&&
2679 !pci_set_dma_mask(pdev
, (u64
) 0xffffffffffffffffULL
)) {
2682 err
= pci_set_dma_mask(pdev
, (u64
) 0xffffffff);
2684 printk(KERN_ERR PFX
"No usable DMA configuration, "
2691 gemreg_base
= pci_resource_start(pdev
, 0);
2692 gemreg_len
= pci_resource_len(pdev
, 0);
2694 if ((pci_resource_flags(pdev
, 0) & IORESOURCE_IO
) != 0) {
2695 printk(KERN_ERR PFX
"Cannot find proper PCI device "
2696 "base address, aborting.\n");
2700 dev
= alloc_etherdev(sizeof(*gp
));
2702 printk(KERN_ERR PFX
"Etherdev alloc failed, aborting.\n");
2705 SET_MODULE_OWNER(dev
);
2706 SET_NETDEV_DEV(dev
, &pdev
->dev
);
2710 if (pci_request_regions(pdev
, dev
->name
)) {
2711 printk(KERN_ERR PFX
"Cannot obtain PCI resources, "
2713 goto err_out_free_netdev
;
2717 dev
->base_addr
= (long) pdev
;
2720 gp
->msg_enable
= DEFAULT_MSG
;
2722 spin_lock_init(&gp
->lock
);
2723 init_MUTEX(&gp
->pm_sem
);
2725 init_timer(&gp
->link_timer
);
2726 gp
->link_timer
.function
= gem_link_timer
;
2727 gp
->link_timer
.data
= (unsigned long) gp
;
2729 init_timer(&gp
->pm_timer
);
2730 gp
->pm_timer
.function
= gem_pm_timer
;
2731 gp
->pm_timer
.data
= (unsigned long) gp
;
2733 INIT_WORK(&gp
->pm_task
, gem_pm_task
, gp
);
2734 INIT_WORK(&gp
->reset_task
, gem_reset_task
, gp
);
2736 gp
->lstate
= link_down
;
2737 gp
->timer_ticks
= 0;
2738 netif_carrier_off(dev
);
2740 gp
->regs
= (unsigned long) ioremap(gemreg_base
, gemreg_len
);
2741 if (gp
->regs
== 0UL) {
2742 printk(KERN_ERR PFX
"Cannot map device registers, "
2744 goto err_out_free_res
;
2747 /* On Apple, we power the chip up now in order for check
2748 * invariants to work, but also because the firmware might
2749 * not have properly shut down the PHY.
2751 #ifdef CONFIG_PPC_PMAC
2752 if (pdev
->vendor
== PCI_VENDOR_ID_APPLE
)
2753 gem_apple_powerup(gp
);
2755 spin_lock_irq(&gp
->lock
);
2757 spin_unlock_irq(&gp
->lock
);
2759 /* Fill up the mii_phy structure (even if we won't use it) */
2760 gp
->phy_mii
.dev
= dev
;
2761 gp
->phy_mii
.mdio_read
= _phy_read
;
2762 gp
->phy_mii
.mdio_write
= _phy_write
;
2764 /* By default, we start with autoneg */
2765 gp
->want_autoneg
= 1;
2767 if (gem_check_invariants(gp
))
2768 goto err_out_iounmap
;
2770 /* It is guaranteed that the returned buffer will be at least
2771 * PAGE_SIZE aligned.
2773 gp
->init_block
= (struct gem_init_block
*)
2774 pci_alloc_consistent(pdev
, sizeof(struct gem_init_block
),
2776 if (!gp
->init_block
) {
2777 printk(KERN_ERR PFX
"Cannot allocate init block, "
2779 goto err_out_iounmap
;
2782 #ifdef CONFIG_PPC_PMAC
2783 gp
->of_node
= pci_device_to_OF_node(pdev
);
2785 if (gem_get_device_address(gp
))
2786 goto err_out_free_consistent
;
2788 if (register_netdev(dev
)) {
2789 printk(KERN_ERR PFX
"Cannot register net device, "
2791 goto err_out_free_consistent
;
2794 printk(KERN_INFO
"%s: Sun GEM (PCI) 10/100/1000BaseT Ethernet ",
2796 for (i
= 0; i
< 6; i
++)
2797 printk("%2.2x%c", dev
->dev_addr
[i
],
2798 i
== 5 ? ' ' : ':');
2801 /* Detect & init PHY, start autoneg */
2802 spin_lock_irq(&gp
->lock
);
2805 gem_begin_auto_negotiation(gp
, NULL
);
2806 spin_unlock_irq(&gp
->lock
);
2808 if (gp
->phy_type
== phy_mii_mdio0
||
2809 gp
->phy_type
== phy_mii_mdio1
)
2810 printk(KERN_INFO
"%s: Found %s PHY\n", dev
->name
,
2811 gp
->phy_mii
.def
? gp
->phy_mii
.def
->name
: "no");
2813 pci_set_drvdata(pdev
, dev
);
2815 dev
->open
= gem_open
;
2816 dev
->stop
= gem_close
;
2817 dev
->hard_start_xmit
= gem_start_xmit
;
2818 dev
->get_stats
= gem_get_stats
;
2819 dev
->set_multicast_list
= gem_set_multicast
;
2820 dev
->do_ioctl
= gem_ioctl
;
2821 dev
->tx_timeout
= gem_tx_timeout
;
2822 dev
->watchdog_timeo
= 5 * HZ
;
2823 dev
->change_mtu
= gem_change_mtu
;
2824 dev
->irq
= pdev
->irq
;
2827 /* GEM can do it all... */
2828 dev
->features
|= NETIF_F_SG
| NETIF_F_HW_CSUM
;
2830 dev
->features
|= NETIF_F_HIGHDMA
;
2832 /* Fire the PM timer that will shut us down in about 10 seconds */
2833 gp
->pm_timer
.expires
= jiffies
+ 10*HZ
;
2834 add_timer(&gp
->pm_timer
);
2838 err_out_free_consistent
:
2839 pci_free_consistent(pdev
,
2840 sizeof(struct gem_init_block
),
2846 /* Stop the PM timer & task */
2847 del_timer_sync(&gp
->pm_timer
);
2848 flush_scheduled_work();
2853 iounmap((void *) gp
->regs
);
2856 pci_release_regions(pdev
);
2858 err_out_free_netdev
:
2865 static void __devexit
gem_remove_one(struct pci_dev
*pdev
)
2867 struct net_device
*dev
= pci_get_drvdata(pdev
);
2870 struct gem
*gp
= dev
->priv
;
2872 unregister_netdev(dev
);
2875 /* Stop the PM timer & task */
2876 del_timer_sync(&gp
->pm_timer
);
2877 flush_scheduled_work();
2882 pci_free_consistent(pdev
,
2883 sizeof(struct gem_init_block
),
2886 iounmap((void *) gp
->regs
);
2887 pci_release_regions(pdev
);
2890 pci_set_drvdata(pdev
, NULL
);
2894 static struct pci_driver gem_driver
= {
2895 .name
= GEM_MODULE_NAME
,
2896 .id_table
= gem_pci_tbl
,
2897 .probe
= gem_init_one
,
2898 .remove
= __devexit_p(gem_remove_one
),
2900 .suspend
= gem_suspend
,
2901 .resume
= gem_resume
,
2902 #endif /* CONFIG_PM */
2905 static int __init
gem_init(void)
2907 return pci_module_init(&gem_driver
);
2910 static void __exit
gem_cleanup(void)
2912 pci_unregister_driver(&gem_driver
);
2915 module_init(gem_init
);
2916 module_exit(gem_cleanup
);