More meth updates.
[linux-2.6/linux-mips.git] / drivers / net / sis900.c
blobb9399795529129aeaf0cedac79f1db73e3c36200
1 /* sis900.c: A SiS 900/7016 PCI Fast Ethernet driver for Linux.
2 Copyright 1999 Silicon Integrated System Corporation
3 Revision: 1.08.06 Sep. 24 2002
5 Modified from the driver which is originally written by Donald Becker.
7 This software may be used and distributed according to the terms
8 of the GNU General Public License (GPL), incorporated herein by reference.
9 Drivers based on this skeleton fall under the GPL and must retain
10 the authorship (implicit copyright) notice.
12 References:
13 SiS 7016 Fast Ethernet PCI Bus 10/100 Mbps LAN Controller with OnNow Support,
14 preliminary Rev. 1.0 Jan. 14, 1998
15 SiS 900 Fast Ethernet PCI Bus 10/100 Mbps LAN Single Chip with OnNow Support,
16 preliminary Rev. 1.0 Nov. 10, 1998
17 SiS 7014 Single Chip 100BASE-TX/10BASE-T Physical Layer Solution,
18 preliminary Rev. 1.0 Jan. 18, 1998
19 http://www.sis.com.tw/support/databook.htm
21 Rev 1.08.06 Sep. 24 2002 Mufasa Yang bug fix for Tx timeout & add SiS963 support
22 Rev 1.08.05 Jun. 6 2002 Mufasa Yang bug fix for read_eeprom & Tx descriptor over-boundary
23 Rev 1.08.04 Apr. 25 2002 Mufasa Yang <mufasa@sis.com.tw> added SiS962 support
24 Rev 1.08.03 Feb. 1 2002 Matt Domsch <Matt_Domsch@dell.com> update to use library crc32 function
25 Rev 1.08.02 Nov. 30 2001 Hui-Fen Hsu workaround for EDB & bug fix for dhcp problem
26 Rev 1.08.01 Aug. 25 2001 Hui-Fen Hsu update for 630ET & workaround for ICS1893 PHY
27 Rev 1.08.00 Jun. 11 2001 Hui-Fen Hsu workaround for RTL8201 PHY and some bug fix
28 Rev 1.07.11 Apr. 2 2001 Hui-Fen Hsu updates PCI drivers to use the new pci_set_dma_mask for kernel 2.4.3
29 Rev 1.07.10 Mar. 1 2001 Hui-Fen Hsu <hfhsu@sis.com.tw> some bug fix & 635M/B support
30 Rev 1.07.09 Feb. 9 2001 Dave Jones <davej@suse.de> PCI enable cleanup
31 Rev 1.07.08 Jan. 8 2001 Lei-Chun Chang added RTL8201 PHY support
32 Rev 1.07.07 Nov. 29 2000 Lei-Chun Chang added kernel-doc extractable documentation and 630 workaround fix
33 Rev 1.07.06 Nov. 7 2000 Jeff Garzik <jgarzik@pobox.com> some bug fix and cleaning
34 Rev 1.07.05 Nov. 6 2000 metapirat<metapirat@gmx.de> contribute media type select by ifconfig
35 Rev 1.07.04 Sep. 6 2000 Lei-Chun Chang added ICS1893 PHY support
36 Rev 1.07.03 Aug. 24 2000 Lei-Chun Chang (lcchang@sis.com.tw) modified 630E eqaulizer workaround rule
37 Rev 1.07.01 Aug. 08 2000 Ollie Lho minor update for SiS 630E and SiS 630E A1
38 Rev 1.07 Mar. 07 2000 Ollie Lho bug fix in Rx buffer ring
39 Rev 1.06.04 Feb. 11 2000 Jeff Garzik <jgarzik@pobox.com> softnet and init for kernel 2.4
40 Rev 1.06.03 Dec. 23 1999 Ollie Lho Third release
41 Rev 1.06.02 Nov. 23 1999 Ollie Lho bug in mac probing fixed
42 Rev 1.06.01 Nov. 16 1999 Ollie Lho CRC calculation provide by Joseph Zbiciak (im14u2c@primenet.com)
43 Rev 1.06 Nov. 4 1999 Ollie Lho (ollie@sis.com.tw) Second release
44 Rev 1.05.05 Oct. 29 1999 Ollie Lho (ollie@sis.com.tw) Single buffer Tx/Rx
45 Chin-Shan Li (lcs@sis.com.tw) Added AMD Am79c901 HomePNA PHY support
46 Rev 1.05 Aug. 7 1999 Jim Huang (cmhuang@sis.com.tw) Initial release
49 #include <linux/module.h>
50 #include <linux/version.h>
51 #include <linux/kernel.h>
52 #include <linux/string.h>
53 #include <linux/timer.h>
54 #include <linux/errno.h>
55 #include <linux/ioport.h>
56 #include <linux/slab.h>
57 #include <linux/interrupt.h>
58 #include <linux/pci.h>
59 #include <linux/netdevice.h>
60 #include <linux/init.h>
61 #include <linux/mii.h>
62 #include <linux/etherdevice.h>
63 #include <linux/skbuff.h>
64 #include <linux/delay.h>
65 #include <linux/ethtool.h>
66 #include <linux/crc32.h>
68 #include <asm/processor.h> /* Processor type for cache alignment. */
69 #include <asm/bitops.h>
70 #include <asm/io.h>
71 #include <asm/uaccess.h> /* User space memory access functions */
73 #include "sis900.h"
75 #define SIS900_MODULE_NAME "sis900"
76 #define SIS900_DRV_VERSION "v1.08.06 9/24/2002"
78 static char version[] __devinitdata =
79 KERN_INFO "sis900.c: " SIS900_DRV_VERSION "\n";
81 static int max_interrupt_work = 40;
82 static int multicast_filter_limit = 128;
84 #define sis900_debug debug
85 static int sis900_debug;
87 /* Time in jiffies before concluding the transmitter is hung. */
88 #define TX_TIMEOUT (4*HZ)
89 /* SiS 900 is capable of 32 bits BM DMA */
90 #define SIS900_DMA_MASK 0xffffffff
92 enum {
93 SIS_900 = 0,
94 SIS_7016
96 static char * card_names[] = {
97 "SiS 900 PCI Fast Ethernet",
98 "SiS 7016 PCI Fast Ethernet"
100 static struct pci_device_id sis900_pci_tbl [] __devinitdata = {
101 {PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_900,
102 PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_900},
103 {PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_7016,
104 PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_7016},
105 {0,}
107 MODULE_DEVICE_TABLE (pci, sis900_pci_tbl);
109 static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex);
111 static struct mii_chip_info {
112 const char * name;
113 u16 phy_id0;
114 u16 phy_id1;
115 u8 phy_types;
116 #define HOME 0x0001
117 #define LAN 0x0002
118 #define MIX 0x0003
119 } mii_chip_table[] = {
120 { "SiS 900 Internal MII PHY", 0x001d, 0x8000, LAN },
121 { "SiS 7014 Physical Layer Solution", 0x0016, 0xf830, LAN },
122 { "AMD 79C901 10BASE-T PHY", 0x0000, 0x6B70, LAN },
123 { "AMD 79C901 HomePNA PHY", 0x0000, 0x6B90, HOME},
124 { "ICS LAN PHY", 0x0015, 0xF440, LAN },
125 { "NS 83851 PHY", 0x2000, 0x5C20, MIX },
126 { "Realtek RTL8201 PHY", 0x0000, 0x8200, LAN },
127 { "VIA 6103 PHY", 0x0101, 0x8f20, LAN },
128 {0,},
131 struct mii_phy {
132 struct mii_phy * next;
133 int phy_addr;
134 u16 phy_id0;
135 u16 phy_id1;
136 u16 status;
137 u8 phy_types;
140 typedef struct _BufferDesc {
141 u32 link;
142 u32 cmdsts;
143 u32 bufptr;
144 } BufferDesc;
146 struct sis900_private {
147 struct net_device_stats stats;
148 struct pci_dev * pci_dev;
150 spinlock_t lock;
152 struct mii_phy * mii;
153 struct mii_phy * first_mii; /* record the first mii structure */
154 unsigned int cur_phy;
156 struct timer_list timer; /* Link status detection timer. */
157 u8 autong_complete; /* 1: auto-negotiate complete */
159 unsigned int cur_rx, dirty_rx; /* producer/comsumer pointers for Tx/Rx ring */
160 unsigned int cur_tx, dirty_tx;
162 /* The saved address of a sent/receive-in-place packet buffer */
163 struct sk_buff *tx_skbuff[NUM_TX_DESC];
164 struct sk_buff *rx_skbuff[NUM_RX_DESC];
165 BufferDesc *tx_ring;
166 BufferDesc *rx_ring;
168 dma_addr_t tx_ring_dma;
169 dma_addr_t rx_ring_dma;
171 unsigned int tx_full; /* The Tx queue is full. */
174 MODULE_AUTHOR("Jim Huang <cmhuang@sis.com.tw>, Ollie Lho <ollie@sis.com.tw>");
175 MODULE_DESCRIPTION("SiS 900 PCI Fast Ethernet driver");
176 MODULE_LICENSE("GPL");
178 MODULE_PARM(multicast_filter_limit, "i");
179 MODULE_PARM(max_interrupt_work, "i");
180 MODULE_PARM(debug, "i");
181 MODULE_PARM_DESC(multicast_filter_limit, "SiS 900/7016 maximum number of filtered multicast addresses");
182 MODULE_PARM_DESC(max_interrupt_work, "SiS 900/7016 maximum events handled per interrupt");
183 MODULE_PARM_DESC(debug, "SiS 900/7016 debug level (2-4)");
185 static int sis900_open(struct net_device *net_dev);
186 static int sis900_mii_probe (struct net_device * net_dev);
187 static void sis900_init_rxfilter (struct net_device * net_dev);
188 static u16 read_eeprom(long ioaddr, int location);
189 static u16 mdio_read(struct net_device *net_dev, int phy_id, int location);
190 static void mdio_write(struct net_device *net_dev, int phy_id, int location, int val);
191 static void sis900_timer(unsigned long data);
192 static void sis900_check_mode (struct net_device *net_dev, struct mii_phy *mii_phy);
193 static void sis900_tx_timeout(struct net_device *net_dev);
194 static void sis900_init_tx_ring(struct net_device *net_dev);
195 static void sis900_init_rx_ring(struct net_device *net_dev);
196 static int sis900_start_xmit(struct sk_buff *skb, struct net_device *net_dev);
197 static int sis900_rx(struct net_device *net_dev);
198 static void sis900_finish_xmit (struct net_device *net_dev);
199 static irqreturn_t sis900_interrupt(int irq, void *dev_instance, struct pt_regs *regs);
200 static int sis900_close(struct net_device *net_dev);
201 static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd);
202 static struct net_device_stats *sis900_get_stats(struct net_device *net_dev);
203 static u16 sis900_mcast_bitnr(u8 *addr, u8 revision);
204 static void set_rx_mode(struct net_device *net_dev);
205 static void sis900_reset(struct net_device *net_dev);
206 static void sis630_set_eq(struct net_device *net_dev, u8 revision);
207 static int sis900_set_config(struct net_device *dev, struct ifmap *map);
208 static u16 sis900_default_phy(struct net_device * net_dev);
209 static void sis900_set_capability( struct net_device *net_dev ,struct mii_phy *phy);
210 static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr);
211 static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr);
212 static void sis900_set_mode (long ioaddr, int speed, int duplex);
215 * sis900_get_mac_addr - Get MAC address for stand alone SiS900 model
216 * @pci_dev: the sis900 pci device
217 * @net_dev: the net device to get address for
219 * Older SiS900 and friends, use EEPROM to store MAC address.
220 * MAC address is read from read_eeprom() into @net_dev->dev_addr.
223 static int __devinit sis900_get_mac_addr(struct pci_dev * pci_dev, struct net_device *net_dev)
225 long ioaddr = pci_resource_start(pci_dev, 0);
226 u16 signature;
227 int i;
229 /* check to see if we have sane EEPROM */
230 signature = (u16) read_eeprom(ioaddr, EEPROMSignature);
231 if (signature == 0xffff || signature == 0x0000) {
232 printk (KERN_INFO "%s: Error EERPOM read %x\n",
233 net_dev->name, signature);
234 return 0;
237 /* get MAC address from EEPROM */
238 for (i = 0; i < 3; i++)
239 ((u16 *)(net_dev->dev_addr))[i] = read_eeprom(ioaddr, i+EEPROMMACAddr);
241 return 1;
245 * sis630e_get_mac_addr - Get MAC address for SiS630E model
246 * @pci_dev: the sis900 pci device
247 * @net_dev: the net device to get address for
249 * SiS630E model, use APC CMOS RAM to store MAC address.
250 * APC CMOS RAM is accessed through ISA bridge.
251 * MAC address is read into @net_dev->dev_addr.
254 static int __devinit sis630e_get_mac_addr(struct pci_dev * pci_dev, struct net_device *net_dev)
256 struct pci_dev *isa_bridge = NULL;
257 u8 reg;
258 int i;
260 if ((isa_bridge = pci_find_device(0x1039, 0x0008, isa_bridge)) == NULL) {
261 printk("%s: Can not find ISA bridge\n", net_dev->name);
262 return 0;
264 pci_read_config_byte(isa_bridge, 0x48, &reg);
265 pci_write_config_byte(isa_bridge, 0x48, reg | 0x40);
267 for (i = 0; i < 6; i++) {
268 outb(0x09 + i, 0x70);
269 ((u8 *)(net_dev->dev_addr))[i] = inb(0x71);
271 pci_write_config_byte(isa_bridge, 0x48, reg & ~0x40);
273 return 1;
278 * sis635_get_mac_addr - Get MAC address for SIS635 model
279 * @pci_dev: the sis900 pci device
280 * @net_dev: the net device to get address for
282 * SiS635 model, set MAC Reload Bit to load Mac address from APC
283 * to rfdr. rfdr is accessed through rfcr. MAC address is read into
284 * @net_dev->dev_addr.
287 static int __devinit sis635_get_mac_addr(struct pci_dev * pci_dev, struct net_device *net_dev)
289 long ioaddr = net_dev->base_addr;
290 u32 rfcrSave;
291 u32 i;
293 rfcrSave = inl(rfcr + ioaddr);
295 outl(rfcrSave | RELOAD, ioaddr + cr);
296 outl(0, ioaddr + cr);
298 /* disable packet filtering before setting filter */
299 outl(rfcrSave & ~RFEN, rfcr + ioaddr);
301 /* load MAC addr to filter data register */
302 for (i = 0 ; i < 3 ; i++) {
303 outl((i << RFADDR_shift), ioaddr + rfcr);
304 *( ((u16 *)net_dev->dev_addr) + i) = inw(ioaddr + rfdr);
307 /* enable packet filitering */
308 outl(rfcrSave | RFEN, rfcr + ioaddr);
310 return 1;
314 * sis96x_get_mac_addr - Get MAC address for SiS962 or SiS963 model
315 * @pci_dev: the sis900 pci device
316 * @net_dev: the net device to get address for
318 * SiS962 or SiS963 model, use EEPROM to store MAC address. And EEPROM
319 * is shared by
320 * LAN and 1394. When access EEPROM, send EEREQ signal to hardware first
321 * and wait for EEGNT. If EEGNT is ON, EEPROM is permitted to be access
322 * by LAN, otherwise is not. After MAC address is read from EEPROM, send
323 * EEDONE signal to refuse EEPROM access by LAN.
324 * The EEPROM map of SiS962 or SiS963 is different to SiS900.
325 * The signature field in SiS962 or SiS963 spec is meaningless.
326 * MAC address is read into @net_dev->dev_addr.
329 static int __devinit sis96x_get_mac_addr(struct pci_dev * pci_dev, struct net_device *net_dev)
331 long ioaddr = net_dev->base_addr;
332 long ee_addr = ioaddr + mear;
333 u32 waittime = 0;
334 int i;
336 outl(EEREQ, ee_addr);
337 while(waittime < 2000) {
338 if(inl(ee_addr) & EEGNT) {
340 /* get MAC address from EEPROM */
341 for (i = 0; i < 3; i++)
342 ((u16 *)(net_dev->dev_addr))[i] = read_eeprom(ioaddr, i+EEPROMMACAddr);
344 outl(EEDONE, ee_addr);
345 return 1;
346 } else {
347 udelay(1);
348 waittime ++;
351 outl(EEDONE, ee_addr);
352 return 0;
356 * sis900_probe - Probe for sis900 device
357 * @pci_dev: the sis900 pci device
358 * @pci_id: the pci device ID
360 * Check and probe sis900 net device for @pci_dev.
361 * Get mac address according to the chip revision,
362 * and assign SiS900-specific entries in the device structure.
363 * ie: sis900_open(), sis900_start_xmit(), sis900_close(), etc.
366 static int __devinit sis900_probe (struct pci_dev *pci_dev, const struct pci_device_id *pci_id)
368 struct sis900_private *sis_priv;
369 struct net_device *net_dev;
370 dma_addr_t ring_dma;
371 void *ring_space;
372 long ioaddr;
373 int i, ret;
374 u8 revision;
375 char *card_name = card_names[pci_id->driver_data];
377 /* when built into the kernel, we only print version if device is found */
378 #ifndef MODULE
379 static int printed_version;
380 if (!printed_version++)
381 printk(version);
382 #endif
384 /* setup various bits in PCI command register */
385 ret = pci_enable_device(pci_dev);
386 if(ret) return ret;
388 i = pci_set_dma_mask(pci_dev, SIS900_DMA_MASK);
389 if(i){
390 printk(KERN_ERR "sis900.c: architecture does not support"
391 "32bit PCI busmaster DMA\n");
392 return i;
395 pci_set_master(pci_dev);
397 net_dev = alloc_etherdev(sizeof(struct sis900_private));
398 if (!net_dev)
399 return -ENOMEM;
400 SET_MODULE_OWNER(net_dev);
401 SET_NETDEV_DEV(net_dev, &pci_dev->dev);
403 /* We do a request_region() to register /proc/ioports info. */
404 ioaddr = pci_resource_start(pci_dev, 0);
405 ret = pci_request_regions(pci_dev, "sis900");
406 if (ret)
407 goto err_out;
409 sis_priv = net_dev->priv;
410 net_dev->base_addr = ioaddr;
411 net_dev->irq = pci_dev->irq;
412 sis_priv->pci_dev = pci_dev;
413 spin_lock_init(&sis_priv->lock);
415 pci_set_drvdata(pci_dev, net_dev);
417 ring_space = pci_alloc_consistent(pci_dev, TX_TOTAL_SIZE, &ring_dma);
418 if (!ring_space) {
419 ret = -ENOMEM;
420 goto err_out_cleardev;
422 sis_priv->tx_ring = (BufferDesc *)ring_space;
423 sis_priv->tx_ring_dma = ring_dma;
425 ring_space = pci_alloc_consistent(pci_dev, RX_TOTAL_SIZE, &ring_dma);
426 if (!ring_space) {
427 ret = -ENOMEM;
428 goto err_unmap_tx;
430 sis_priv->rx_ring = (BufferDesc *)ring_space;
431 sis_priv->rx_ring_dma = ring_dma;
433 /* The SiS900-specific entries in the device structure. */
434 net_dev->open = &sis900_open;
435 net_dev->hard_start_xmit = &sis900_start_xmit;
436 net_dev->stop = &sis900_close;
437 net_dev->get_stats = &sis900_get_stats;
438 net_dev->set_config = &sis900_set_config;
439 net_dev->set_multicast_list = &set_rx_mode;
440 net_dev->do_ioctl = &mii_ioctl;
441 net_dev->tx_timeout = sis900_tx_timeout;
442 net_dev->watchdog_timeo = TX_TIMEOUT;
444 ret = register_netdev(net_dev);
445 if (ret)
446 goto err_unmap_rx;
448 /* Get Mac address according to the chip revision */
449 pci_read_config_byte(pci_dev, PCI_CLASS_REVISION, &revision);
450 ret = 0;
452 if (revision == SIS630E_900_REV)
453 ret = sis630e_get_mac_addr(pci_dev, net_dev);
454 else if ((revision > 0x81) && (revision <= 0x90) )
455 ret = sis635_get_mac_addr(pci_dev, net_dev);
456 else if (revision == SIS96x_900_REV)
457 ret = sis96x_get_mac_addr(pci_dev, net_dev);
458 else
459 ret = sis900_get_mac_addr(pci_dev, net_dev);
461 if (ret == 0) {
462 ret = -ENODEV;
463 goto err_out_unregister;
466 /* 630ET : set the mii access mode as software-mode */
467 if (revision == SIS630ET_900_REV)
468 outl(ACCESSMODE | inl(ioaddr + cr), ioaddr + cr);
470 /* probe for mii transceiver */
471 if (sis900_mii_probe(net_dev) == 0) {
472 ret = -ENODEV;
473 goto err_out_unregister;
476 /* print some information about our NIC */
477 printk(KERN_INFO "%s: %s at %#lx, IRQ %d, ", net_dev->name,
478 card_name, ioaddr, net_dev->irq);
479 for (i = 0; i < 5; i++)
480 printk("%2.2x:", (u8)net_dev->dev_addr[i]);
481 printk("%2.2x.\n", net_dev->dev_addr[i]);
483 return 0;
485 err_out_unregister:
486 unregister_netdev(net_dev);
487 err_unmap_rx:
488 pci_free_consistent(pci_dev, RX_TOTAL_SIZE, sis_priv->rx_ring,
489 sis_priv->rx_ring_dma);
490 err_unmap_tx:
491 pci_free_consistent(pci_dev, TX_TOTAL_SIZE, sis_priv->tx_ring,
492 sis_priv->tx_ring_dma);
493 err_out_cleardev:
494 pci_set_drvdata(pci_dev, NULL);
495 pci_release_regions(pci_dev);
496 err_out:
497 kfree(net_dev);
498 return ret;
502 * sis900_mii_probe - Probe MII PHY for sis900
503 * @net_dev: the net device to probe for
505 * Search for total of 32 possible mii phy addresses.
506 * Identify and set current phy if found one,
507 * return error if it failed to found.
510 static int __init sis900_mii_probe (struct net_device * net_dev)
512 struct sis900_private * sis_priv = net_dev->priv;
513 u16 poll_bit = MII_STAT_LINK, status = 0;
514 unsigned long timeout = jiffies + 5 * HZ;
515 int phy_addr;
516 u8 revision;
518 sis_priv->mii = NULL;
520 /* search for total of 32 possible mii phy addresses */
521 for (phy_addr = 0; phy_addr < 32; phy_addr++) {
522 struct mii_phy * mii_phy = NULL;
523 u16 mii_status;
524 int i;
526 mii_phy = NULL;
527 for(i = 0; i < 2; i++)
528 mii_status = mdio_read(net_dev, phy_addr, MII_STATUS);
530 if (mii_status == 0xffff || mii_status == 0x0000)
531 /* the mii is not accessible, try next one */
532 continue;
534 if ((mii_phy = kmalloc(sizeof(struct mii_phy), GFP_KERNEL)) == NULL) {
535 printk(KERN_INFO "Cannot allocate mem for struct mii_phy\n");
536 mii_phy = sis_priv->first_mii;
537 while (mii_phy) {
538 struct mii_phy *phy;
539 phy = mii_phy;
540 mii_phy = mii_phy->next;
541 kfree(phy);
543 return 0;
546 mii_phy->phy_id0 = mdio_read(net_dev, phy_addr, MII_PHY_ID0);
547 mii_phy->phy_id1 = mdio_read(net_dev, phy_addr, MII_PHY_ID1);
548 mii_phy->phy_addr = phy_addr;
549 mii_phy->status = mii_status;
550 mii_phy->next = sis_priv->mii;
551 sis_priv->mii = mii_phy;
552 sis_priv->first_mii = mii_phy;
554 for (i = 0; mii_chip_table[i].phy_id1; i++)
555 if ((mii_phy->phy_id0 == mii_chip_table[i].phy_id0 ) &&
556 ((mii_phy->phy_id1 & 0xFFF0) == mii_chip_table[i].phy_id1)){
557 mii_phy->phy_types = mii_chip_table[i].phy_types;
558 if (mii_chip_table[i].phy_types == MIX)
559 mii_phy->phy_types =
560 (mii_status & (MII_STAT_CAN_TX_FDX | MII_STAT_CAN_TX)) ? LAN : HOME;
561 printk(KERN_INFO "%s: %s transceiver found at address %d.\n",
562 net_dev->name, mii_chip_table[i].name, phy_addr);
563 break;
566 if( !mii_chip_table[i].phy_id1 )
567 printk(KERN_INFO "%s: Unknown PHY transceiver found at address %d.\n",
568 net_dev->name, phy_addr);
571 if (sis_priv->mii == NULL) {
572 printk(KERN_INFO "%s: No MII transceivers found!\n",
573 net_dev->name);
574 return 0;
577 /* select default PHY for mac */
578 sis_priv->mii = NULL;
579 sis900_default_phy( net_dev );
581 /* Reset phy if default phy is internal sis900 */
582 if ((sis_priv->mii->phy_id0 == 0x001D) &&
583 ((sis_priv->mii->phy_id1&0xFFF0) == 0x8000))
584 status = sis900_reset_phy(net_dev, sis_priv->cur_phy);
586 /* workaround for ICS1893 PHY */
587 if ((sis_priv->mii->phy_id0 == 0x0015) &&
588 ((sis_priv->mii->phy_id1&0xFFF0) == 0xF440))
589 mdio_write(net_dev, sis_priv->cur_phy, 0x0018, 0xD200);
591 if(status & MII_STAT_LINK){
592 while (poll_bit) {
593 yield();
595 poll_bit ^= (mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS) & poll_bit);
596 if (time_after_eq(jiffies, timeout)) {
597 printk(KERN_WARNING "%s: reset phy and link down now\n", net_dev->name);
598 return -ETIME;
603 pci_read_config_byte(sis_priv->pci_dev, PCI_CLASS_REVISION, &revision);
604 if (revision == SIS630E_900_REV) {
605 /* SiS 630E has some bugs on default value of PHY registers */
606 mdio_write(net_dev, sis_priv->cur_phy, MII_ANADV, 0x05e1);
607 mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG1, 0x22);
608 mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG2, 0xff00);
609 mdio_write(net_dev, sis_priv->cur_phy, MII_MASK, 0xffc0);
610 //mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, 0x1000);
613 if (sis_priv->mii->status & MII_STAT_LINK)
614 netif_carrier_on(net_dev);
615 else
616 netif_carrier_off(net_dev);
618 return 1;
622 * sis900_default_phy - Select default PHY for sis900 mac.
623 * @net_dev: the net device to probe for
625 * Select first detected PHY with link as default.
626 * If no one is link on, select PHY whose types is HOME as default.
627 * If HOME doesn't exist, select LAN.
630 static u16 sis900_default_phy(struct net_device * net_dev)
632 struct sis900_private * sis_priv = net_dev->priv;
633 struct mii_phy *phy = NULL, *phy_home = NULL, *default_phy = NULL;
634 u16 status;
636 for( phy=sis_priv->first_mii; phy; phy=phy->next ){
637 status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
638 status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
640 /* Link ON & Not select deafalut PHY */
641 if ( (status & MII_STAT_LINK) && !(default_phy) )
642 default_phy = phy;
643 else{
644 status = mdio_read(net_dev, phy->phy_addr, MII_CONTROL);
645 mdio_write(net_dev, phy->phy_addr, MII_CONTROL,
646 status | MII_CNTL_AUTO | MII_CNTL_ISOLATE);
647 if( phy->phy_types == HOME )
648 phy_home = phy;
652 if( (!default_phy) && phy_home )
653 default_phy = phy_home;
654 else if(!default_phy)
655 default_phy = sis_priv->first_mii;
657 if( sis_priv->mii != default_phy ){
658 sis_priv->mii = default_phy;
659 sis_priv->cur_phy = default_phy->phy_addr;
660 printk(KERN_INFO "%s: Using transceiver found at address %d as default\n", net_dev->name,sis_priv->cur_phy);
663 status = mdio_read(net_dev, sis_priv->cur_phy, MII_CONTROL);
664 status &= (~MII_CNTL_ISOLATE);
666 mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, status);
667 status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
668 status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
670 return status;
675 * sis900_set_capability - set the media capability of network adapter.
676 * @net_dev : the net device to probe for
677 * @phy : default PHY
679 * Set the media capability of network adapter according to
680 * mii status register. It's necessary before auto-negotiate.
683 static void sis900_set_capability( struct net_device *net_dev , struct mii_phy *phy )
685 u16 cap;
686 u16 status;
688 status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
689 status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
691 cap = MII_NWAY_CSMA_CD |
692 ((phy->status & MII_STAT_CAN_TX_FDX)? MII_NWAY_TX_FDX:0) |
693 ((phy->status & MII_STAT_CAN_TX) ? MII_NWAY_TX:0) |
694 ((phy->status & MII_STAT_CAN_T_FDX) ? MII_NWAY_T_FDX:0)|
695 ((phy->status & MII_STAT_CAN_T) ? MII_NWAY_T:0);
697 mdio_write(net_dev, phy->phy_addr, MII_ANADV, cap);
701 /* Delay between EEPROM clock transitions. */
702 #define eeprom_delay() inl(ee_addr)
705 * read_eeprom - Read Serial EEPROM
706 * @ioaddr: base i/o address
707 * @location: the EEPROM location to read
709 * Read Serial EEPROM through EEPROM Access Register.
710 * Note that location is in word (16 bits) unit
713 static u16 __devinit read_eeprom(long ioaddr, int location)
715 int i;
716 u16 retval = 0;
717 long ee_addr = ioaddr + mear;
718 u32 read_cmd = location | EEread;
720 outl(0, ee_addr);
721 eeprom_delay();
722 outl(EECS, ee_addr);
723 eeprom_delay();
725 /* Shift the read command (9) bits out. */
726 for (i = 8; i >= 0; i--) {
727 u32 dataval = (read_cmd & (1 << i)) ? EEDI | EECS : EECS;
728 outl(dataval, ee_addr);
729 eeprom_delay();
730 outl(dataval | EECLK, ee_addr);
731 eeprom_delay();
733 outl(EECS, ee_addr);
734 eeprom_delay();
736 /* read the 16-bits data in */
737 for (i = 16; i > 0; i--) {
738 outl(EECS, ee_addr);
739 eeprom_delay();
740 outl(EECS | EECLK, ee_addr);
741 eeprom_delay();
742 retval = (retval << 1) | ((inl(ee_addr) & EEDO) ? 1 : 0);
743 eeprom_delay();
746 /* Terminate the EEPROM access. */
747 outl(0, ee_addr);
748 eeprom_delay();
750 return (retval);
753 /* Read and write the MII management registers using software-generated
754 serial MDIO protocol. Note that the command bits and data bits are
755 send out separately */
756 #define mdio_delay() inl(mdio_addr)
758 static void mdio_idle(long mdio_addr)
760 outl(MDIO | MDDIR, mdio_addr);
761 mdio_delay();
762 outl(MDIO | MDDIR | MDC, mdio_addr);
765 /* Syncronize the MII management interface by shifting 32 one bits out. */
766 static void mdio_reset(long mdio_addr)
768 int i;
770 for (i = 31; i >= 0; i--) {
771 outl(MDDIR | MDIO, mdio_addr);
772 mdio_delay();
773 outl(MDDIR | MDIO | MDC, mdio_addr);
774 mdio_delay();
776 return;
780 * mdio_read - read MII PHY register
781 * @net_dev: the net device to read
782 * @phy_id: the phy address to read
783 * @location: the phy regiester id to read
785 * Read MII registers through MDIO and MDC
786 * using MDIO management frame structure and protocol(defined by ISO/IEC).
787 * Please see SiS7014 or ICS spec
790 static u16 mdio_read(struct net_device *net_dev, int phy_id, int location)
792 long mdio_addr = net_dev->base_addr + mear;
793 int mii_cmd = MIIread|(phy_id<<MIIpmdShift)|(location<<MIIregShift);
794 u16 retval = 0;
795 int i;
797 mdio_reset(mdio_addr);
798 mdio_idle(mdio_addr);
800 for (i = 15; i >= 0; i--) {
801 int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR;
802 outl(dataval, mdio_addr);
803 mdio_delay();
804 outl(dataval | MDC, mdio_addr);
805 mdio_delay();
808 /* Read the 16 data bits. */
809 for (i = 16; i > 0; i--) {
810 outl(0, mdio_addr);
811 mdio_delay();
812 retval = (retval << 1) | ((inl(mdio_addr) & MDIO) ? 1 : 0);
813 outl(MDC, mdio_addr);
814 mdio_delay();
816 outl(0x00, mdio_addr);
818 return retval;
822 * mdio_write - write MII PHY register
823 * @net_dev: the net device to write
824 * @phy_id: the phy address to write
825 * @location: the phy regiester id to write
826 * @value: the register value to write with
828 * Write MII registers with @value through MDIO and MDC
829 * using MDIO management frame structure and protocol(defined by ISO/IEC)
830 * please see SiS7014 or ICS spec
833 static void mdio_write(struct net_device *net_dev, int phy_id, int location, int value)
835 long mdio_addr = net_dev->base_addr + mear;
836 int mii_cmd = MIIwrite|(phy_id<<MIIpmdShift)|(location<<MIIregShift);
837 int i;
839 mdio_reset(mdio_addr);
840 mdio_idle(mdio_addr);
842 /* Shift the command bits out. */
843 for (i = 15; i >= 0; i--) {
844 int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR;
845 outb(dataval, mdio_addr);
846 mdio_delay();
847 outb(dataval | MDC, mdio_addr);
848 mdio_delay();
850 mdio_delay();
852 /* Shift the value bits out. */
853 for (i = 15; i >= 0; i--) {
854 int dataval = (value & (1 << i)) ? MDDIR | MDIO : MDDIR;
855 outl(dataval, mdio_addr);
856 mdio_delay();
857 outl(dataval | MDC, mdio_addr);
858 mdio_delay();
860 mdio_delay();
862 /* Clear out extra bits. */
863 for (i = 2; i > 0; i--) {
864 outb(0, mdio_addr);
865 mdio_delay();
866 outb(MDC, mdio_addr);
867 mdio_delay();
869 outl(0x00, mdio_addr);
871 return;
876 * sis900_reset_phy - reset sis900 mii phy.
877 * @net_dev: the net device to write
878 * @phy_addr: default phy address
880 * Some specific phy can't work properly without reset.
881 * This function will be called during initialization and
882 * link status change from ON to DOWN.
885 static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr)
887 int i = 0;
888 u16 status;
890 while (i++ < 2)
891 status = mdio_read(net_dev, phy_addr, MII_STATUS);
893 mdio_write( net_dev, phy_addr, MII_CONTROL, MII_CNTL_RESET );
895 return status;
899 * sis900_open - open sis900 device
900 * @net_dev: the net device to open
902 * Do some initialization and start net interface.
903 * enable interrupts and set sis900 timer.
906 static int
907 sis900_open(struct net_device *net_dev)
909 struct sis900_private *sis_priv = net_dev->priv;
910 long ioaddr = net_dev->base_addr;
911 u8 revision;
912 int ret;
914 /* Soft reset the chip. */
915 sis900_reset(net_dev);
917 /* Equalizer workaround Rule */
918 pci_read_config_byte(sis_priv->pci_dev, PCI_CLASS_REVISION, &revision);
919 sis630_set_eq(net_dev, revision);
921 ret = request_irq(net_dev->irq, &sis900_interrupt, SA_SHIRQ, net_dev->name, net_dev);
922 if (ret)
923 return ret;
925 sis900_init_rxfilter(net_dev);
927 sis900_init_tx_ring(net_dev);
928 sis900_init_rx_ring(net_dev);
930 set_rx_mode(net_dev);
932 netif_start_queue(net_dev);
934 /* Workaround for EDB */
935 sis900_set_mode(ioaddr, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED);
937 /* Enable all known interrupts by setting the interrupt mask. */
938 outl((RxSOVR|RxORN|RxERR|RxOK|TxURN|TxERR|TxIDLE), ioaddr + imr);
939 outl(RxENA | inl(ioaddr + cr), ioaddr + cr);
940 outl(IE, ioaddr + ier);
942 sis900_check_mode(net_dev, sis_priv->mii);
944 /* Set the timer to switch to check for link beat and perhaps switch
945 to an alternate media type. */
946 init_timer(&sis_priv->timer);
947 sis_priv->timer.expires = jiffies + HZ;
948 sis_priv->timer.data = (unsigned long)net_dev;
949 sis_priv->timer.function = &sis900_timer;
950 add_timer(&sis_priv->timer);
952 return 0;
956 * sis900_init_rxfilter - Initialize the Rx filter
957 * @net_dev: the net device to initialize for
959 * Set receive filter address to our MAC address
960 * and enable packet filtering.
963 static void
964 sis900_init_rxfilter (struct net_device * net_dev)
966 long ioaddr = net_dev->base_addr;
967 u32 rfcrSave;
968 u32 i;
970 rfcrSave = inl(rfcr + ioaddr);
972 /* disable packet filtering before setting filter */
973 outl(rfcrSave & ~RFEN, rfcr + ioaddr);
975 /* load MAC addr to filter data register */
976 for (i = 0 ; i < 3 ; i++) {
977 u32 w;
979 w = (u32) *((u16 *)(net_dev->dev_addr)+i);
980 outl((i << RFADDR_shift), ioaddr + rfcr);
981 outl(w, ioaddr + rfdr);
983 if (sis900_debug > 2) {
984 printk(KERN_INFO "%s: Receive Filter Addrss[%d]=%x\n",
985 net_dev->name, i, inl(ioaddr + rfdr));
989 /* enable packet filitering */
990 outl(rfcrSave | RFEN, rfcr + ioaddr);
994 * sis900_init_tx_ring - Initialize the Tx descriptor ring
995 * @net_dev: the net device to initialize for
997 * Initialize the Tx descriptor ring,
1000 static void
1001 sis900_init_tx_ring(struct net_device *net_dev)
1003 struct sis900_private *sis_priv = net_dev->priv;
1004 long ioaddr = net_dev->base_addr;
1005 int i;
1007 sis_priv->tx_full = 0;
1008 sis_priv->dirty_tx = sis_priv->cur_tx = 0;
1010 for (i = 0; i < NUM_TX_DESC; i++) {
1011 sis_priv->tx_skbuff[i] = NULL;
1013 sis_priv->tx_ring[i].link = sis_priv->tx_ring_dma +
1014 ((i+1)%NUM_TX_DESC)*sizeof(BufferDesc);
1015 sis_priv->tx_ring[i].cmdsts = 0;
1016 sis_priv->tx_ring[i].bufptr = 0;
1019 /* load Transmit Descriptor Register */
1020 outl(sis_priv->tx_ring_dma, ioaddr + txdp);
1021 if (sis900_debug > 2)
1022 printk(KERN_INFO "%s: TX descriptor register loaded with: %8.8x\n",
1023 net_dev->name, inl(ioaddr + txdp));
1027 * sis900_init_rx_ring - Initialize the Rx descriptor ring
1028 * @net_dev: the net device to initialize for
1030 * Initialize the Rx descriptor ring,
1031 * and pre-allocate recevie buffers (socket buffer)
1034 static void
1035 sis900_init_rx_ring(struct net_device *net_dev)
1037 struct sis900_private *sis_priv = net_dev->priv;
1038 long ioaddr = net_dev->base_addr;
1039 int i;
1041 sis_priv->cur_rx = 0;
1042 sis_priv->dirty_rx = 0;
1044 /* init RX descriptor */
1045 for (i = 0; i < NUM_RX_DESC; i++) {
1046 sis_priv->rx_skbuff[i] = NULL;
1048 sis_priv->rx_ring[i].link = sis_priv->rx_ring_dma +
1049 ((i+1)%NUM_RX_DESC)*sizeof(BufferDesc);
1050 sis_priv->rx_ring[i].cmdsts = 0;
1051 sis_priv->rx_ring[i].bufptr = 0;
1054 /* allocate sock buffers */
1055 for (i = 0; i < NUM_RX_DESC; i++) {
1056 struct sk_buff *skb;
1058 if ((skb = dev_alloc_skb(RX_BUF_SIZE)) == NULL) {
1059 /* not enough memory for skbuff, this makes a "hole"
1060 on the buffer ring, it is not clear how the
1061 hardware will react to this kind of degenerated
1062 buffer */
1063 break;
1065 skb->dev = net_dev;
1066 sis_priv->rx_skbuff[i] = skb;
1067 sis_priv->rx_ring[i].cmdsts = RX_BUF_SIZE;
1068 sis_priv->rx_ring[i].bufptr = pci_map_single(sis_priv->pci_dev,
1069 skb->tail, RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1071 sis_priv->dirty_rx = (unsigned int) (i - NUM_RX_DESC);
1073 /* load Receive Descriptor Register */
1074 outl(sis_priv->rx_ring_dma, ioaddr + rxdp);
1075 if (sis900_debug > 2)
1076 printk(KERN_INFO "%s: RX descriptor register loaded with: %8.8x\n",
1077 net_dev->name, inl(ioaddr + rxdp));
1081 * sis630_set_eq - set phy equalizer value for 630 LAN
1082 * @net_dev: the net device to set equalizer value
1083 * @revision: 630 LAN revision number
1085 * 630E equalizer workaround rule(Cyrus Huang 08/15)
1086 * PHY register 14h(Test)
1087 * Bit 14: 0 -- Automatically dectect (default)
1088 * 1 -- Manually set Equalizer filter
1089 * Bit 13: 0 -- (Default)
1090 * 1 -- Speed up convergence of equalizer setting
1091 * Bit 9 : 0 -- (Default)
1092 * 1 -- Disable Baseline Wander
1093 * Bit 3~7 -- Equalizer filter setting
1094 * Link ON: Set Bit 9, 13 to 1, Bit 14 to 0
1095 * Then calculate equalizer value
1096 * Then set equalizer value, and set Bit 14 to 1, Bit 9 to 0
1097 * Link Off:Set Bit 13 to 1, Bit 14 to 0
1098 * Calculate Equalizer value:
1099 * When Link is ON and Bit 14 is 0, SIS900PHY will auto-dectect proper equalizer value.
1100 * When the equalizer is stable, this value is not a fixed value. It will be within
1101 * a small range(eg. 7~9). Then we get a minimum and a maximum value(eg. min=7, max=9)
1102 * 0 <= max <= 4 --> set equalizer to max
1103 * 5 <= max <= 14 --> set equalizer to max+1 or set equalizer to max+2 if max == min
1104 * max >= 15 --> set equalizer to max+5 or set equalizer to max+6 if max == min
1107 static void sis630_set_eq(struct net_device *net_dev, u8 revision)
1109 struct sis900_private *sis_priv = net_dev->priv;
1110 u16 reg14h, eq_value=0, max_value=0, min_value=0;
1111 u8 host_bridge_rev;
1112 int i, maxcount=10;
1113 struct pci_dev *dev=NULL;
1115 if ( !(revision == SIS630E_900_REV || revision == SIS630EA1_900_REV ||
1116 revision == SIS630A_900_REV || revision == SIS630ET_900_REV) )
1117 return;
1119 dev = pci_find_device(PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_630, dev);
1120 if (dev)
1121 pci_read_config_byte(dev, PCI_CLASS_REVISION, &host_bridge_rev);
1123 if (netif_carrier_ok(net_dev)) {
1124 reg14h=mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1125 mdio_write(net_dev, sis_priv->cur_phy, MII_RESV, (0x2200 | reg14h) & 0xBFFF);
1126 for (i=0; i < maxcount; i++) {
1127 eq_value=(0x00F8 & mdio_read(net_dev, sis_priv->cur_phy, MII_RESV)) >> 3;
1128 if (i == 0)
1129 max_value=min_value=eq_value;
1130 max_value=(eq_value > max_value) ? eq_value : max_value;
1131 min_value=(eq_value < min_value) ? eq_value : min_value;
1133 /* 630E rule to determine the equalizer value */
1134 if (revision == SIS630E_900_REV || revision == SIS630EA1_900_REV ||
1135 revision == SIS630ET_900_REV) {
1136 if (max_value < 5)
1137 eq_value=max_value;
1138 else if (max_value >= 5 && max_value < 15)
1139 eq_value=(max_value == min_value) ? max_value+2 : max_value+1;
1140 else if (max_value >= 15)
1141 eq_value=(max_value == min_value) ? max_value+6 : max_value+5;
1143 /* 630B0&B1 rule to determine the equalizer value */
1144 if (revision == SIS630A_900_REV &&
1145 (host_bridge_rev == SIS630B0 || host_bridge_rev == SIS630B1)) {
1146 if (max_value == 0)
1147 eq_value=3;
1148 else
1149 eq_value=(max_value+min_value+1)/2;
1151 /* write equalizer value and setting */
1152 reg14h=mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1153 reg14h=(reg14h & 0xFF07) | ((eq_value << 3) & 0x00F8);
1154 reg14h=(reg14h | 0x6000) & 0xFDFF;
1155 mdio_write(net_dev, sis_priv->cur_phy, MII_RESV, reg14h);
1157 else {
1158 reg14h=mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1159 if (revision == SIS630A_900_REV &&
1160 (host_bridge_rev == SIS630B0 || host_bridge_rev == SIS630B1))
1161 mdio_write(net_dev, sis_priv->cur_phy, MII_RESV, (reg14h | 0x2200) & 0xBFFF);
1162 else
1163 mdio_write(net_dev, sis_priv->cur_phy, MII_RESV, (reg14h | 0x2000) & 0xBFFF);
1165 return;
1169 * sis900_timer - sis900 timer routine
1170 * @data: pointer to sis900 net device
1172 * On each timer ticks we check two things,
1173 * link status (ON/OFF) and link mode (10/100/Full/Half)
1176 static void sis900_timer(unsigned long data)
1178 struct net_device *net_dev = (struct net_device *)data;
1179 struct sis900_private *sis_priv = net_dev->priv;
1180 struct mii_phy *mii_phy = sis_priv->mii;
1181 static int next_tick = 5*HZ;
1182 u16 status;
1183 u8 revision;
1185 if (!sis_priv->autong_complete){
1186 int speed, duplex = 0;
1188 sis900_read_mode(net_dev, &speed, &duplex);
1189 if (duplex){
1190 sis900_set_mode(net_dev->base_addr, speed, duplex);
1191 pci_read_config_byte(sis_priv->pci_dev, PCI_CLASS_REVISION, &revision);
1192 sis630_set_eq(net_dev, revision);
1193 netif_start_queue(net_dev);
1196 sis_priv->timer.expires = jiffies + HZ;
1197 add_timer(&sis_priv->timer);
1198 return;
1201 status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
1202 status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
1204 /* Link OFF -> ON */
1205 if (!netif_carrier_ok(net_dev)) {
1206 LookForLink:
1207 /* Search for new PHY */
1208 status = sis900_default_phy(net_dev);
1209 mii_phy = sis_priv->mii;
1211 if (status & MII_STAT_LINK){
1212 sis900_check_mode(net_dev, mii_phy);
1213 netif_carrier_on(net_dev);
1216 /* Link ON -> OFF */
1217 else {
1218 if (!(status & MII_STAT_LINK)){
1219 netif_carrier_off(net_dev);
1220 printk(KERN_INFO "%s: Media Link Off\n", net_dev->name);
1222 /* Change mode issue */
1223 if ((mii_phy->phy_id0 == 0x001D) &&
1224 ((mii_phy->phy_id1 & 0xFFF0) == 0x8000))
1225 sis900_reset_phy(net_dev, sis_priv->cur_phy);
1227 pci_read_config_byte(sis_priv->pci_dev, PCI_CLASS_REVISION, &revision);
1228 sis630_set_eq(net_dev, revision);
1230 goto LookForLink;
1234 sis_priv->timer.expires = jiffies + next_tick;
1235 add_timer(&sis_priv->timer);
1239 * sis900_check_mode - check the media mode for sis900
1240 * @net_dev: the net device to be checked
1241 * @mii_phy: the mii phy
1243 * Older driver gets the media mode from mii status output
1244 * register. Now we set our media capability and auto-negotiate
1245 * to get the upper bound of speed and duplex between two ends.
1246 * If the types of mii phy is HOME, it doesn't need to auto-negotiate
1247 * and autong_complete should be set to 1.
1250 static void sis900_check_mode (struct net_device *net_dev, struct mii_phy *mii_phy)
1252 struct sis900_private *sis_priv = net_dev->priv;
1253 long ioaddr = net_dev->base_addr;
1254 int speed, duplex;
1256 if( mii_phy->phy_types == LAN ){
1257 outl( ~EXD & inl( ioaddr + cfg ), ioaddr + cfg);
1258 sis900_set_capability(net_dev , mii_phy);
1259 sis900_auto_negotiate(net_dev, sis_priv->cur_phy);
1260 }else{
1261 outl(EXD | inl( ioaddr + cfg ), ioaddr + cfg);
1262 speed = HW_SPEED_HOME;
1263 duplex = FDX_CAPABLE_HALF_SELECTED;
1264 sis900_set_mode(ioaddr, speed, duplex);
1265 sis_priv->autong_complete = 1;
1270 * sis900_set_mode - Set the media mode of mac register.
1271 * @ioaddr: the address of the device
1272 * @speed : the transmit speed to be determined
1273 * @duplex: the duplex mode to be determined
1275 * Set the media mode of mac register txcfg/rxcfg according to
1276 * speed and duplex of phy. Bit EDB_MASTER_EN indicates the EDB
1277 * bus is used instead of PCI bus. When this bit is set 1, the
1278 * Max DMA Burst Size for TX/RX DMA should be no larger than 16
1279 * double words.
1282 static void sis900_set_mode (long ioaddr, int speed, int duplex)
1284 u32 tx_flags = 0, rx_flags = 0;
1286 if( inl(ioaddr + cfg) & EDB_MASTER_EN ){
1287 tx_flags = TxATP | (DMA_BURST_64 << TxMXDMA_shift) | (TX_FILL_THRESH << TxFILLT_shift);
1288 rx_flags = DMA_BURST_64 << RxMXDMA_shift;
1290 else{
1291 tx_flags = TxATP | (DMA_BURST_512 << TxMXDMA_shift) | (TX_FILL_THRESH << TxFILLT_shift);
1292 rx_flags = DMA_BURST_512 << RxMXDMA_shift;
1295 if (speed == HW_SPEED_HOME || speed == HW_SPEED_10_MBPS ) {
1296 rx_flags |= (RxDRNT_10 << RxDRNT_shift);
1297 tx_flags |= (TxDRNT_10 << TxDRNT_shift);
1299 else {
1300 rx_flags |= (RxDRNT_100 << RxDRNT_shift);
1301 tx_flags |= (TxDRNT_100 << TxDRNT_shift);
1304 if (duplex == FDX_CAPABLE_FULL_SELECTED) {
1305 tx_flags |= (TxCSI | TxHBI);
1306 rx_flags |= RxATX;
1309 outl (tx_flags, ioaddr + txcfg);
1310 outl (rx_flags, ioaddr + rxcfg);
1314 * sis900_auto_negotiate - Set the Auto-Negotiation Enable/Reset bit.
1315 * @net_dev: the net device to read mode for
1316 * @phy_addr: mii phy address
1318 * If the adapter is link-on, set the auto-negotiate enable/reset bit.
1319 * autong_complete should be set to 0 when starting auto-negotiation.
1320 * autong_complete should be set to 1 if we didn't start auto-negotiation.
1321 * sis900_timer will wait for link on again if autong_complete = 0.
1324 static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr)
1326 struct sis900_private *sis_priv = net_dev->priv;
1327 int i = 0;
1328 u32 status;
1330 while (i++ < 2)
1331 status = mdio_read(net_dev, phy_addr, MII_STATUS);
1333 if (!(status & MII_STAT_LINK)){
1334 printk(KERN_INFO "%s: Media Link Off\n", net_dev->name);
1335 sis_priv->autong_complete = 1;
1336 netif_carrier_off(net_dev);
1337 return;
1340 /* (Re)start AutoNegotiate */
1341 mdio_write(net_dev, phy_addr, MII_CONTROL,
1342 MII_CNTL_AUTO | MII_CNTL_RST_AUTO);
1343 sis_priv->autong_complete = 0;
1348 * sis900_read_mode - read media mode for sis900 internal phy
1349 * @net_dev: the net device to read mode for
1350 * @speed : the transmit speed to be determined
1351 * @duplex : the duplex mode to be determined
1353 * The capability of remote end will be put in mii register autorec
1354 * after auto-negotiation. Use AND operation to get the upper bound
1355 * of speed and duplex between two ends.
1358 static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex)
1360 struct sis900_private *sis_priv = net_dev->priv;
1361 struct mii_phy *phy = sis_priv->mii;
1362 int phy_addr = sis_priv->cur_phy;
1363 u32 status;
1364 u16 autoadv, autorec;
1365 int i = 0;
1367 while (i++ < 2)
1368 status = mdio_read(net_dev, phy_addr, MII_STATUS);
1370 if (!(status & MII_STAT_LINK))
1371 return;
1373 /* AutoNegotiate completed */
1374 autoadv = mdio_read(net_dev, phy_addr, MII_ANADV);
1375 autorec = mdio_read(net_dev, phy_addr, MII_ANLPAR);
1376 status = autoadv & autorec;
1378 *speed = HW_SPEED_10_MBPS;
1379 *duplex = FDX_CAPABLE_HALF_SELECTED;
1381 if (status & (MII_NWAY_TX | MII_NWAY_TX_FDX))
1382 *speed = HW_SPEED_100_MBPS;
1383 if (status & ( MII_NWAY_TX_FDX | MII_NWAY_T_FDX))
1384 *duplex = FDX_CAPABLE_FULL_SELECTED;
1386 sis_priv->autong_complete = 1;
1388 /* Workaround for Realtek RTL8201 PHY issue */
1389 if((phy->phy_id0 == 0x0000) && ((phy->phy_id1 & 0xFFF0) == 0x8200)){
1390 if(mdio_read(net_dev, phy_addr, MII_CONTROL) & MII_CNTL_FDX)
1391 *duplex = FDX_CAPABLE_FULL_SELECTED;
1392 if(mdio_read(net_dev, phy_addr, 0x0019) & 0x01)
1393 *speed = HW_SPEED_100_MBPS;
1396 printk(KERN_INFO "%s: Media Link On %s %s-duplex \n",
1397 net_dev->name,
1398 *speed == HW_SPEED_100_MBPS ?
1399 "100mbps" : "10mbps",
1400 *duplex == FDX_CAPABLE_FULL_SELECTED ?
1401 "full" : "half");
1405 * sis900_tx_timeout - sis900 transmit timeout routine
1406 * @net_dev: the net device to transmit
1408 * print transmit timeout status
1409 * disable interrupts and do some tasks
1412 static void sis900_tx_timeout(struct net_device *net_dev)
1414 struct sis900_private *sis_priv = net_dev->priv;
1415 long ioaddr = net_dev->base_addr;
1416 unsigned long flags;
1417 int i;
1419 printk(KERN_INFO "%s: Transmit timeout, status %8.8x %8.8x \n",
1420 net_dev->name, inl(ioaddr + cr), inl(ioaddr + isr));
1422 /* Disable interrupts by clearing the interrupt mask. */
1423 outl(0x0000, ioaddr + imr);
1425 /* use spinlock to prevent interrupt handler accessing buffer ring */
1426 spin_lock_irqsave(&sis_priv->lock, flags);
1428 /* discard unsent packets */
1429 sis_priv->dirty_tx = sis_priv->cur_tx = 0;
1430 for (i = 0; i < NUM_TX_DESC; i++) {
1431 struct sk_buff *skb = sis_priv->tx_skbuff[i];
1433 if (skb) {
1434 pci_unmap_single(sis_priv->pci_dev,
1435 sis_priv->tx_ring[i].bufptr, skb->len,
1436 PCI_DMA_TODEVICE);
1437 dev_kfree_skb(skb);
1438 sis_priv->tx_skbuff[i] = 0;
1439 sis_priv->tx_ring[i].cmdsts = 0;
1440 sis_priv->tx_ring[i].bufptr = 0;
1441 sis_priv->stats.tx_dropped++;
1444 sis_priv->tx_full = 0;
1445 netif_wake_queue(net_dev);
1447 spin_unlock_irqrestore(&sis_priv->lock, flags);
1449 net_dev->trans_start = jiffies;
1451 /* load Transmit Descriptor Register */
1452 outl(sis_priv->tx_ring_dma, ioaddr + txdp);
1454 /* Enable all known interrupts by setting the interrupt mask. */
1455 outl((RxSOVR|RxORN|RxERR|RxOK|TxURN|TxERR|TxIDLE), ioaddr + imr);
1456 return;
1460 * sis900_start_xmit - sis900 start transmit routine
1461 * @skb: socket buffer pointer to put the data being transmitted
1462 * @net_dev: the net device to transmit with
1464 * Set the transmit buffer descriptor,
1465 * and write TxENA to enable transimt state machine.
1466 * tell upper layer if the buffer is full
1469 static int
1470 sis900_start_xmit(struct sk_buff *skb, struct net_device *net_dev)
1472 struct sis900_private *sis_priv = net_dev->priv;
1473 long ioaddr = net_dev->base_addr;
1474 unsigned int entry;
1475 unsigned long flags;
1476 unsigned int index_cur_tx, index_dirty_tx;
1477 unsigned int count_dirty_tx;
1479 /* Don't transmit data before the complete of auto-negotiation */
1480 if(!sis_priv->autong_complete){
1481 netif_stop_queue(net_dev);
1482 return 1;
1485 spin_lock_irqsave(&sis_priv->lock, flags);
1487 /* Calculate the next Tx descriptor entry. */
1488 entry = sis_priv->cur_tx % NUM_TX_DESC;
1489 sis_priv->tx_skbuff[entry] = skb;
1491 /* set the transmit buffer descriptor and enable Transmit State Machine */
1492 sis_priv->tx_ring[entry].bufptr = pci_map_single(sis_priv->pci_dev,
1493 skb->data, skb->len, PCI_DMA_TODEVICE);
1494 sis_priv->tx_ring[entry].cmdsts = (OWN | skb->len);
1495 outl(TxENA | inl(ioaddr + cr), ioaddr + cr);
1497 sis_priv->cur_tx ++;
1498 index_cur_tx = sis_priv->cur_tx;
1499 index_dirty_tx = sis_priv->dirty_tx;
1501 for (count_dirty_tx = 0; index_cur_tx != index_dirty_tx; index_dirty_tx++)
1502 count_dirty_tx ++;
1504 if (index_cur_tx == index_dirty_tx) {
1505 /* dirty_tx is met in the cycle of cur_tx, buffer full */
1506 sis_priv->tx_full = 1;
1507 netif_stop_queue(net_dev);
1508 } else if (count_dirty_tx < NUM_TX_DESC) {
1509 /* Typical path, tell upper layer that more transmission is possible */
1510 netif_start_queue(net_dev);
1511 } else {
1512 /* buffer full, tell upper layer no more transmission */
1513 sis_priv->tx_full = 1;
1514 netif_stop_queue(net_dev);
1517 spin_unlock_irqrestore(&sis_priv->lock, flags);
1519 net_dev->trans_start = jiffies;
1521 if (sis900_debug > 3)
1522 printk(KERN_INFO "%s: Queued Tx packet at %p size %d "
1523 "to slot %d.\n",
1524 net_dev->name, skb->data, (int)skb->len, entry);
1526 return 0;
1530 * sis900_interrupt - sis900 interrupt handler
1531 * @irq: the irq number
1532 * @dev_instance: the client data object
1533 * @regs: snapshot of processor context
1535 * The interrupt handler does all of the Rx thread work,
1536 * and cleans up after the Tx thread
1539 static irqreturn_t sis900_interrupt(int irq, void *dev_instance, struct pt_regs *regs)
1541 struct net_device *net_dev = dev_instance;
1542 struct sis900_private *sis_priv = net_dev->priv;
1543 int boguscnt = max_interrupt_work;
1544 long ioaddr = net_dev->base_addr;
1545 u32 status;
1546 unsigned int handled = 0;
1548 spin_lock (&sis_priv->lock);
1550 do {
1551 status = inl(ioaddr + isr);
1553 if ((status & (HIBERR|TxURN|TxERR|TxIDLE|RxORN|RxERR|RxOK)) == 0)
1554 /* nothing intresting happened */
1555 break;
1556 handled = 1;
1558 /* why dow't we break after Tx/Rx case ?? keyword: full-duplex */
1559 if (status & (RxORN | RxERR | RxOK))
1560 /* Rx interrupt */
1561 sis900_rx(net_dev);
1563 if (status & (TxURN | TxERR | TxIDLE))
1564 /* Tx interrupt */
1565 sis900_finish_xmit(net_dev);
1567 /* something strange happened !!! */
1568 if (status & HIBERR) {
1569 printk(KERN_INFO "%s: Abnormal interrupt,"
1570 "status %#8.8x.\n", net_dev->name, status);
1571 break;
1573 if (--boguscnt < 0) {
1574 printk(KERN_INFO "%s: Too much work at interrupt, "
1575 "interrupt status = %#8.8x.\n",
1576 net_dev->name, status);
1577 break;
1579 } while (1);
1581 if (sis900_debug > 3)
1582 printk(KERN_INFO "%s: exiting interrupt, "
1583 "interrupt status = 0x%#8.8x.\n",
1584 net_dev->name, inl(ioaddr + isr));
1586 spin_unlock (&sis_priv->lock);
1587 return IRQ_RETVAL(handled);
1591 * sis900_rx - sis900 receive routine
1592 * @net_dev: the net device which receives data
1594 * Process receive interrupt events,
1595 * put buffer to higher layer and refill buffer pool
1596 * Note: This fucntion is called by interrupt handler,
1597 * don't do "too much" work here
1600 static int sis900_rx(struct net_device *net_dev)
1602 struct sis900_private *sis_priv = net_dev->priv;
1603 long ioaddr = net_dev->base_addr;
1604 unsigned int entry = sis_priv->cur_rx % NUM_RX_DESC;
1605 u32 rx_status = sis_priv->rx_ring[entry].cmdsts;
1607 if (sis900_debug > 3)
1608 printk(KERN_INFO "sis900_rx, cur_rx:%4.4d, dirty_rx:%4.4d "
1609 "status:0x%8.8x\n",
1610 sis_priv->cur_rx, sis_priv->dirty_rx, rx_status);
1612 while (rx_status & OWN) {
1613 unsigned int rx_size;
1615 rx_size = (rx_status & DSIZE) - CRC_SIZE;
1617 if (rx_status & (ABORT|OVERRUN|TOOLONG|RUNT|RXISERR|CRCERR|FAERR)) {
1618 /* corrupted packet received */
1619 if (sis900_debug > 3)
1620 printk(KERN_INFO "%s: Corrupted packet "
1621 "received, buffer status = 0x%8.8x.\n",
1622 net_dev->name, rx_status);
1623 sis_priv->stats.rx_errors++;
1624 if (rx_status & OVERRUN)
1625 sis_priv->stats.rx_over_errors++;
1626 if (rx_status & (TOOLONG|RUNT))
1627 sis_priv->stats.rx_length_errors++;
1628 if (rx_status & (RXISERR | FAERR))
1629 sis_priv->stats.rx_frame_errors++;
1630 if (rx_status & CRCERR)
1631 sis_priv->stats.rx_crc_errors++;
1632 /* reset buffer descriptor state */
1633 sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1634 } else {
1635 struct sk_buff * skb;
1637 /* This situation should never happen, but due to
1638 some unknow bugs, it is possible that
1639 we are working on NULL sk_buff :-( */
1640 if (sis_priv->rx_skbuff[entry] == NULL) {
1641 printk(KERN_INFO "%s: NULL pointer "
1642 "encountered in Rx ring, skipping\n",
1643 net_dev->name);
1644 break;
1647 pci_dma_sync_single(sis_priv->pci_dev,
1648 sis_priv->rx_ring[entry].bufptr, RX_BUF_SIZE,
1649 PCI_DMA_FROMDEVICE);
1650 pci_unmap_single(sis_priv->pci_dev,
1651 sis_priv->rx_ring[entry].bufptr, RX_BUF_SIZE,
1652 PCI_DMA_FROMDEVICE);
1653 /* give the socket buffer to upper layers */
1654 skb = sis_priv->rx_skbuff[entry];
1655 skb_put(skb, rx_size);
1656 skb->protocol = eth_type_trans(skb, net_dev);
1657 netif_rx(skb);
1659 /* some network statistics */
1660 if ((rx_status & BCAST) == MCAST)
1661 sis_priv->stats.multicast++;
1662 net_dev->last_rx = jiffies;
1663 sis_priv->stats.rx_bytes += rx_size;
1664 sis_priv->stats.rx_packets++;
1666 /* refill the Rx buffer, what if there is not enought memory for
1667 new socket buffer ?? */
1668 if ((skb = dev_alloc_skb(RX_BUF_SIZE)) == NULL) {
1669 /* not enough memory for skbuff, this makes a "hole"
1670 on the buffer ring, it is not clear how the
1671 hardware will react to this kind of degenerated
1672 buffer */
1673 printk(KERN_INFO "%s: Memory squeeze,"
1674 "deferring packet.\n",
1675 net_dev->name);
1676 sis_priv->rx_skbuff[entry] = NULL;
1677 /* reset buffer descriptor state */
1678 sis_priv->rx_ring[entry].cmdsts = 0;
1679 sis_priv->rx_ring[entry].bufptr = 0;
1680 sis_priv->stats.rx_dropped++;
1681 break;
1683 skb->dev = net_dev;
1684 sis_priv->rx_skbuff[entry] = skb;
1685 sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1686 sis_priv->rx_ring[entry].bufptr =
1687 pci_map_single(sis_priv->pci_dev, skb->tail,
1688 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1689 sis_priv->dirty_rx++;
1691 sis_priv->cur_rx++;
1692 entry = sis_priv->cur_rx % NUM_RX_DESC;
1693 rx_status = sis_priv->rx_ring[entry].cmdsts;
1694 } // while
1696 /* refill the Rx buffer, what if the rate of refilling is slower than
1697 consuming ?? */
1698 for (;sis_priv->cur_rx - sis_priv->dirty_rx > 0; sis_priv->dirty_rx++) {
1699 struct sk_buff *skb;
1701 entry = sis_priv->dirty_rx % NUM_RX_DESC;
1703 if (sis_priv->rx_skbuff[entry] == NULL) {
1704 if ((skb = dev_alloc_skb(RX_BUF_SIZE)) == NULL) {
1705 /* not enough memory for skbuff, this makes a "hole"
1706 on the buffer ring, it is not clear how the
1707 hardware will react to this kind of degenerated
1708 buffer */
1709 printk(KERN_INFO "%s: Memory squeeze,"
1710 "deferring packet.\n",
1711 net_dev->name);
1712 sis_priv->stats.rx_dropped++;
1713 break;
1715 skb->dev = net_dev;
1716 sis_priv->rx_skbuff[entry] = skb;
1717 sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1718 sis_priv->rx_ring[entry].bufptr =
1719 pci_map_single(sis_priv->pci_dev, skb->tail,
1720 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1723 /* re-enable the potentially idle receive state matchine */
1724 outl(RxENA | inl(ioaddr + cr), ioaddr + cr );
1726 return 0;
1730 * sis900_finish_xmit - finish up transmission of packets
1731 * @net_dev: the net device to be transmitted on
1733 * Check for error condition and free socket buffer etc
1734 * schedule for more transmission as needed
1735 * Note: This fucntion is called by interrupt handler,
1736 * don't do "too much" work here
1739 static void sis900_finish_xmit (struct net_device *net_dev)
1741 struct sis900_private *sis_priv = net_dev->priv;
1743 for (; sis_priv->dirty_tx != sis_priv->cur_tx; sis_priv->dirty_tx++) {
1744 struct sk_buff *skb;
1745 unsigned int entry;
1746 u32 tx_status;
1748 entry = sis_priv->dirty_tx % NUM_TX_DESC;
1749 tx_status = sis_priv->tx_ring[entry].cmdsts;
1751 if (tx_status & OWN) {
1752 /* The packet is not transmitted yet (owned by hardware) !
1753 Note: the interrupt is generated only when Tx Machine
1754 is idle, so this is an almost impossible case */
1755 break;
1758 if (tx_status & (ABORT | UNDERRUN | OWCOLL)) {
1759 /* packet unsuccessfully transmitted */
1760 if (sis900_debug > 3)
1761 printk(KERN_INFO "%s: Transmit "
1762 "error, Tx status %8.8x.\n",
1763 net_dev->name, tx_status);
1764 sis_priv->stats.tx_errors++;
1765 if (tx_status & UNDERRUN)
1766 sis_priv->stats.tx_fifo_errors++;
1767 if (tx_status & ABORT)
1768 sis_priv->stats.tx_aborted_errors++;
1769 if (tx_status & NOCARRIER)
1770 sis_priv->stats.tx_carrier_errors++;
1771 if (tx_status & OWCOLL)
1772 sis_priv->stats.tx_window_errors++;
1773 } else {
1774 /* packet successfully transmitted */
1775 sis_priv->stats.collisions += (tx_status & COLCNT) >> 16;
1776 sis_priv->stats.tx_bytes += tx_status & DSIZE;
1777 sis_priv->stats.tx_packets++;
1779 /* Free the original skb. */
1780 skb = sis_priv->tx_skbuff[entry];
1781 pci_unmap_single(sis_priv->pci_dev,
1782 sis_priv->tx_ring[entry].bufptr, skb->len,
1783 PCI_DMA_TODEVICE);
1784 dev_kfree_skb_irq(skb);
1785 sis_priv->tx_skbuff[entry] = NULL;
1786 sis_priv->tx_ring[entry].bufptr = 0;
1787 sis_priv->tx_ring[entry].cmdsts = 0;
1790 if (sis_priv->tx_full && netif_queue_stopped(net_dev) &&
1791 sis_priv->cur_tx - sis_priv->dirty_tx < NUM_TX_DESC - 4) {
1792 /* The ring is no longer full, clear tx_full and schedule more transmission
1793 by netif_wake_queue(net_dev) */
1794 sis_priv->tx_full = 0;
1795 netif_wake_queue (net_dev);
1800 * sis900_close - close sis900 device
1801 * @net_dev: the net device to be closed
1803 * Disable interrupts, stop the Tx and Rx Status Machine
1804 * free Tx and RX socket buffer
1807 static int
1808 sis900_close(struct net_device *net_dev)
1810 long ioaddr = net_dev->base_addr;
1811 struct sis900_private *sis_priv = net_dev->priv;
1812 struct sk_buff *skb;
1813 int i;
1815 netif_stop_queue(net_dev);
1817 /* Disable interrupts by clearing the interrupt mask. */
1818 outl(0x0000, ioaddr + imr);
1819 outl(0x0000, ioaddr + ier);
1821 /* Stop the chip's Tx and Rx Status Machine */
1822 outl(RxDIS | TxDIS | inl(ioaddr + cr), ioaddr + cr);
1824 del_timer(&sis_priv->timer);
1826 free_irq(net_dev->irq, net_dev);
1828 /* Free Tx and RX skbuff */
1829 for (i = 0; i < NUM_RX_DESC; i++) {
1830 skb = sis_priv->rx_skbuff[i];
1831 if (skb) {
1832 pci_unmap_single(sis_priv->pci_dev,
1833 sis_priv->rx_ring[i].bufptr,
1834 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1835 dev_kfree_skb(skb);
1836 sis_priv->rx_skbuff[i] = 0;
1839 for (i = 0; i < NUM_TX_DESC; i++) {
1840 skb = sis_priv->tx_skbuff[i];
1841 if (skb) {
1842 pci_unmap_single(sis_priv->pci_dev,
1843 sis_priv->tx_ring[i].bufptr, skb->len,
1844 PCI_DMA_TODEVICE);
1845 dev_kfree_skb(skb);
1846 sis_priv->tx_skbuff[i] = 0;
1850 /* Green! Put the chip in low-power mode. */
1852 return 0;
1856 * netdev_ethtool_ioctl - For the basic support of ethtool
1857 * @net_dev: the net device to command for
1858 * @useraddr: start address of interface request
1860 * Process ethtool command such as "ehtool -i" to show information
1863 static int netdev_ethtool_ioctl (struct net_device *net_dev, void *useraddr)
1865 struct sis900_private *sis_priv = net_dev->priv;
1866 u32 ethcmd;
1868 if (copy_from_user (&ethcmd, useraddr, sizeof (ethcmd)))
1869 return -EFAULT;
1871 switch (ethcmd) {
1872 case ETHTOOL_GDRVINFO:
1874 struct ethtool_drvinfo info = { ETHTOOL_GDRVINFO };
1875 strcpy (info.driver, SIS900_MODULE_NAME);
1876 strcpy (info.version, SIS900_DRV_VERSION);
1877 strcpy (info.bus_info, sis_priv->pci_dev->slot_name);
1878 if (copy_to_user (useraddr, &info, sizeof (info)))
1879 return -EFAULT;
1880 return 0;
1882 default:
1883 break;
1886 return -EOPNOTSUPP;
1890 * mii_ioctl - process MII i/o control command
1891 * @net_dev: the net device to command for
1892 * @rq: parameter for command
1893 * @cmd: the i/o command
1895 * Process MII command like read/write MII register
1898 static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd)
1900 struct sis900_private *sis_priv = net_dev->priv;
1901 struct mii_ioctl_data *data = (struct mii_ioctl_data *)&rq->ifr_data;
1903 switch(cmd) {
1904 case SIOCETHTOOL:
1905 return netdev_ethtool_ioctl(net_dev, (void *) rq->ifr_data);
1907 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
1908 data->phy_id = sis_priv->mii->phy_addr;
1909 /* Fall Through */
1911 case SIOCGMIIREG: /* Read MII PHY register. */
1912 data->val_out = mdio_read(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f);
1913 return 0;
1915 case SIOCSMIIREG: /* Write MII PHY register. */
1916 if (!capable(CAP_NET_ADMIN))
1917 return -EPERM;
1918 mdio_write(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in);
1919 return 0;
1920 default:
1921 return -EOPNOTSUPP;
1926 * sis900_get_stats - Get sis900 read/write statistics
1927 * @net_dev: the net device to get statistics for
1929 * get tx/rx statistics for sis900
1932 static struct net_device_stats *
1933 sis900_get_stats(struct net_device *net_dev)
1935 struct sis900_private *sis_priv = net_dev->priv;
1937 return &sis_priv->stats;
1941 * sis900_set_config - Set media type by net_device.set_config
1942 * @dev: the net device for media type change
1943 * @map: ifmap passed by ifconfig
1945 * Set media type to 10baseT, 100baseT or 0(for auto) by ifconfig
1946 * we support only port changes. All other runtime configuration
1947 * changes will be ignored
1950 static int sis900_set_config(struct net_device *dev, struct ifmap *map)
1952 struct sis900_private *sis_priv = dev->priv;
1953 struct mii_phy *mii_phy = sis_priv->mii;
1955 u16 status;
1957 if ((map->port != (u_char)(-1)) && (map->port != dev->if_port)) {
1958 /* we switch on the ifmap->port field. I couldn't find anything
1959 like a definition or standard for the values of that field.
1960 I think the meaning of those values is device specific. But
1961 since I would like to change the media type via the ifconfig
1962 command I use the definition from linux/netdevice.h
1963 (which seems to be different from the ifport(pcmcia) definition)
1965 switch(map->port){
1966 case IF_PORT_UNKNOWN: /* use auto here */
1967 dev->if_port = map->port;
1968 /* we are going to change the media type, so the Link will
1969 be temporary down and we need to reflect that here. When
1970 the Link comes up again, it will be sensed by the sis_timer
1971 procedure, which also does all the rest for us */
1972 netif_carrier_off(dev);
1974 /* read current state */
1975 status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
1977 /* enable auto negotiation and reset the negotioation
1978 (I don't really know what the auto negatiotiation reset
1979 really means, but it sounds for me right to do one here)*/
1980 mdio_write(dev, mii_phy->phy_addr,
1981 MII_CONTROL, status | MII_CNTL_AUTO | MII_CNTL_RST_AUTO);
1983 break;
1985 case IF_PORT_10BASET: /* 10BaseT */
1986 dev->if_port = map->port;
1988 /* we are going to change the media type, so the Link will
1989 be temporary down and we need to reflect that here. When
1990 the Link comes up again, it will be sensed by the sis_timer
1991 procedure, which also does all the rest for us */
1992 netif_carrier_off(dev);
1994 /* set Speed to 10Mbps */
1995 /* read current state */
1996 status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
1998 /* disable auto negotiation and force 10MBit mode*/
1999 mdio_write(dev, mii_phy->phy_addr,
2000 MII_CONTROL, status & ~(MII_CNTL_SPEED | MII_CNTL_AUTO));
2001 break;
2003 case IF_PORT_100BASET: /* 100BaseT */
2004 case IF_PORT_100BASETX: /* 100BaseTx */
2005 dev->if_port = map->port;
2007 /* we are going to change the media type, so the Link will
2008 be temporary down and we need to reflect that here. When
2009 the Link comes up again, it will be sensed by the sis_timer
2010 procedure, which also does all the rest for us */
2011 netif_carrier_off(dev);
2013 /* set Speed to 100Mbps */
2014 /* disable auto negotiation and enable 100MBit Mode */
2015 status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2016 mdio_write(dev, mii_phy->phy_addr,
2017 MII_CONTROL, (status & ~MII_CNTL_SPEED) | MII_CNTL_SPEED);
2019 break;
2021 case IF_PORT_10BASE2: /* 10Base2 */
2022 case IF_PORT_AUI: /* AUI */
2023 case IF_PORT_100BASEFX: /* 100BaseFx */
2024 /* These Modes are not supported (are they?)*/
2025 printk(KERN_INFO "Not supported");
2026 return -EOPNOTSUPP;
2027 break;
2029 default:
2030 printk(KERN_INFO "Invalid");
2031 return -EINVAL;
2034 return 0;
2038 * sis900_mcast_bitnr - compute hashtable index
2039 * @addr: multicast address
2040 * @revision: revision id of chip
2042 * SiS 900 uses the most sigificant 7 bits to index a 128 bits multicast
2043 * hash table, which makes this function a little bit different from other drivers
2044 * SiS 900 B0 & 635 M/B uses the most significat 8 bits to index 256 bits
2045 * multicast hash table.
2048 static inline u16 sis900_mcast_bitnr(u8 *addr, u8 revision)
2051 u32 crc = ether_crc(6, addr);
2053 /* leave 8 or 7 most siginifant bits */
2054 if ((revision >= SIS635A_900_REV) || (revision == SIS900B_900_REV))
2055 return ((int)(crc >> 24));
2056 else
2057 return ((int)(crc >> 25));
2061 * set_rx_mode - Set SiS900 receive mode
2062 * @net_dev: the net device to be set
2064 * Set SiS900 receive mode for promiscuous, multicast, or broadcast mode.
2065 * And set the appropriate multicast filter.
2066 * Multicast hash table changes from 128 to 256 bits for 635M/B & 900B0.
2069 static void set_rx_mode(struct net_device *net_dev)
2071 long ioaddr = net_dev->base_addr;
2072 struct sis900_private * sis_priv = net_dev->priv;
2073 u16 mc_filter[16] = {0}; /* 256/128 bits multicast hash table */
2074 int i, table_entries;
2075 u32 rx_mode;
2076 u8 revision;
2078 /* 635 Hash Table entires = 256(2^16) */
2079 pci_read_config_byte(sis_priv->pci_dev, PCI_CLASS_REVISION, &revision);
2080 if((revision >= SIS635A_900_REV) || (revision == SIS900B_900_REV))
2081 table_entries = 16;
2082 else
2083 table_entries = 8;
2085 if (net_dev->flags & IFF_PROMISC) {
2086 /* Accept any kinds of packets */
2087 rx_mode = RFPromiscuous;
2088 for (i = 0; i < table_entries; i++)
2089 mc_filter[i] = 0xffff;
2090 } else if ((net_dev->mc_count > multicast_filter_limit) ||
2091 (net_dev->flags & IFF_ALLMULTI)) {
2092 /* too many multicast addresses or accept all multicast packet */
2093 rx_mode = RFAAB | RFAAM;
2094 for (i = 0; i < table_entries; i++)
2095 mc_filter[i] = 0xffff;
2096 } else {
2097 /* Accept Broadcast packet, destination address matchs our MAC address,
2098 use Receive Filter to reject unwanted MCAST packet */
2099 struct dev_mc_list *mclist;
2100 rx_mode = RFAAB;
2101 for (i = 0, mclist = net_dev->mc_list; mclist && i < net_dev->mc_count;
2102 i++, mclist = mclist->next) {
2103 unsigned int bit_nr =
2104 sis900_mcast_bitnr(mclist->dmi_addr, revision);
2105 mc_filter[bit_nr >> 4] |= (1 << bit_nr);
2109 /* update Multicast Hash Table in Receive Filter */
2110 for (i = 0; i < table_entries; i++) {
2111 /* why plus 0x04 ??, That makes the correct value for hash table. */
2112 outl((u32)(0x00000004+i) << RFADDR_shift, ioaddr + rfcr);
2113 outl(mc_filter[i], ioaddr + rfdr);
2116 outl(RFEN | rx_mode, ioaddr + rfcr);
2118 /* sis900 is capatable of looping back packet at MAC level for debugging purpose */
2119 if (net_dev->flags & IFF_LOOPBACK) {
2120 u32 cr_saved;
2121 /* We must disable Tx/Rx before setting loopback mode */
2122 cr_saved = inl(ioaddr + cr);
2123 outl(cr_saved | TxDIS | RxDIS, ioaddr + cr);
2124 /* enable loopback */
2125 outl(inl(ioaddr + txcfg) | TxMLB, ioaddr + txcfg);
2126 outl(inl(ioaddr + rxcfg) | RxATX, ioaddr + rxcfg);
2127 /* restore cr */
2128 outl(cr_saved, ioaddr + cr);
2131 return;
2135 * sis900_reset - Reset sis900 MAC
2136 * @net_dev: the net device to reset
2138 * reset sis900 MAC and wait until finished
2139 * reset through command register
2140 * change backoff algorithm for 900B0 & 635 M/B
2143 static void sis900_reset(struct net_device *net_dev)
2145 struct sis900_private * sis_priv = net_dev->priv;
2146 long ioaddr = net_dev->base_addr;
2147 int i = 0;
2148 u32 status = TxRCMP | RxRCMP;
2149 u8 revision;
2151 outl(0, ioaddr + ier);
2152 outl(0, ioaddr + imr);
2153 outl(0, ioaddr + rfcr);
2155 outl(RxRESET | TxRESET | RESET | inl(ioaddr + cr), ioaddr + cr);
2157 /* Check that the chip has finished the reset. */
2158 while (status && (i++ < 1000)) {
2159 status ^= (inl(isr + ioaddr) & status);
2162 pci_read_config_byte(sis_priv->pci_dev, PCI_CLASS_REVISION, &revision);
2163 if( (revision >= SIS635A_900_REV) || (revision == SIS900B_900_REV) )
2164 outl(PESEL | RND_CNT, ioaddr + cfg);
2165 else
2166 outl(PESEL, ioaddr + cfg);
2170 * sis900_remove - Remove sis900 device
2171 * @pci_dev: the pci device to be removed
2173 * remove and release SiS900 net device
2176 static void __devexit sis900_remove(struct pci_dev *pci_dev)
2178 struct net_device *net_dev = pci_get_drvdata(pci_dev);
2179 struct sis900_private * sis_priv = net_dev->priv;
2180 struct mii_phy *phy = NULL;
2182 while (sis_priv->first_mii) {
2183 phy = sis_priv->first_mii;
2184 sis_priv->first_mii = phy->next;
2185 kfree(phy);
2188 pci_free_consistent(pci_dev, RX_TOTAL_SIZE, sis_priv->rx_ring,
2189 sis_priv->rx_ring_dma);
2190 pci_free_consistent(pci_dev, TX_TOTAL_SIZE, sis_priv->tx_ring,
2191 sis_priv->tx_ring_dma);
2192 unregister_netdev(net_dev);
2193 kfree(net_dev);
2194 pci_release_regions(pci_dev);
2195 pci_set_drvdata(pci_dev, NULL);
2198 static struct pci_driver sis900_pci_driver = {
2199 .name = SIS900_MODULE_NAME,
2200 .id_table = sis900_pci_tbl,
2201 .probe = sis900_probe,
2202 .remove = __devexit_p(sis900_remove),
2205 static int __init sis900_init_module(void)
2207 /* when a module, this is printed whether or not devices are found in probe */
2208 #ifdef MODULE
2209 printk(version);
2210 #endif
2212 return pci_module_init(&sis900_pci_driver);
2215 static void __exit sis900_cleanup_module(void)
2217 pci_unregister_driver(&sis900_pci_driver);
2220 module_init(sis900_init_module);
2221 module_exit(sis900_cleanup_module);