2 * Copyright (C) 2001,2002,2003 Broadcom Corporation
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version 2
7 * of the License, or (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20 This driver is designed for the Broadcom SiByte SOC built-in
23 Written by Mitch Lichtenberg at Broadcom Corp.
28 #define CONFIG_SBMAC_COALESCE
30 /* A few user-configurable values.
31 These may be modified when a driver module is loaded. */
33 static int debug
= 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
34 static int noisy_mii
= 1; /* mii status msgs */
36 /* Used to pass the media type, etc.
37 Both 'options[]' and 'full_duplex[]' should exist for driver
39 The media type is usually passed in 'options[]'.
42 #define MAX_UNITS 3 /* More are supported, limit only on options */
44 static int options
[MAX_UNITS
] = {-1, -1, -1};
45 static int full_duplex
[MAX_UNITS
] = {-1, -1, -1};
48 #ifdef CONFIG_SBMAC_COALESCE
49 static int int_pktcnt
= 0;
50 static int int_timeout
= 0;
53 /* Operational parameters that usually are not changed. */
55 /* Time in jiffies before concluding the transmitter is hung. */
56 #define TX_TIMEOUT (2*HZ)
58 #if !defined(__OPTIMIZE__) || !defined(__KERNEL__)
59 #warning You must compile this file with the correct options!
60 #warning See the last lines of the source file.
61 #error You must compile this driver with "-O".
64 #include <linux/module.h>
65 #include <linux/kernel.h>
66 #include <linux/string.h>
67 #include <linux/timer.h>
68 #include <linux/errno.h>
69 #include <linux/ioport.h>
70 #include <linux/slab.h>
71 #include <linux/interrupt.h>
72 #include <linux/netdevice.h>
73 #include <linux/etherdevice.h>
74 #include <linux/skbuff.h>
75 #include <linux/init.h>
76 #include <linux/config.h>
77 #include <asm/processor.h> /* Processor type for cache alignment. */
78 #include <asm/bitops.h>
80 #include <asm/cache.h>
82 /* This is only here until the firmware is ready. In that case,
83 the firmware leaves the ethernet address in the register for us. */
84 #ifdef CONFIG_SIBYTE_STANDALONE
85 #define SBMAC_ETH0_HWADDR "40:00:00:00:01:00"
86 #define SBMAC_ETH1_HWADDR "40:00:00:00:01:01"
87 #define SBMAC_ETH2_HWADDR "40:00:00:00:01:02"
91 /* These identify the driver base version and may not be removed. */
93 static char version1
[] __devinitdata
=
94 "sb1250-mac.c:1.00 1/11/2001 Written by Mitch Lichtenberg\n";
99 MODULE_AUTHOR("Mitch Lichtenberg (Broadcom Corp.)");
100 MODULE_DESCRIPTION("Broadcom SiByte SOC GB Ethernet driver");
101 MODULE_PARM(debug
, "i");
102 MODULE_PARM(noisy_mii
, "i");
103 MODULE_PARM(options
, "1-" __MODULE_STRING(MAX_UNITS
) "i");
104 MODULE_PARM(full_duplex
, "1-" __MODULE_STRING(MAX_UNITS
) "i");
106 MODULE_PARM(int_pktcnt
, "i");
107 MODULE_PARM(int_timeout
, "i");
109 #include <asm/sibyte/sb1250.h>
110 #include <asm/sibyte/sb1250_defs.h>
111 #include <asm/sibyte/sb1250_regs.h>
112 #include <asm/sibyte/sb1250_mac.h>
113 #include <asm/sibyte/sb1250_dma.h>
114 #include <asm/sibyte/sb1250_int.h>
115 #include <asm/sibyte/sb1250_scd.h>
116 #include <asm/sibyte/64bit.h>
119 /**********************************************************************
121 ********************************************************************* */
124 typedef unsigned long sbmac_port_t
;
126 typedef enum { sbmac_speed_auto
, sbmac_speed_10
,
127 sbmac_speed_100
, sbmac_speed_1000
} sbmac_speed_t
;
129 typedef enum { sbmac_duplex_auto
, sbmac_duplex_half
,
130 sbmac_duplex_full
} sbmac_duplex_t
;
132 typedef enum { sbmac_fc_auto
, sbmac_fc_disabled
, sbmac_fc_frame
,
133 sbmac_fc_collision
, sbmac_fc_carrier
} sbmac_fc_t
;
135 typedef enum { sbmac_state_uninit
, sbmac_state_off
, sbmac_state_on
,
136 sbmac_state_broken
} sbmac_state_t
;
139 /**********************************************************************
141 ********************************************************************* */
144 #define SBDMA_NEXTBUF(d,f) ((((d)->f+1) == (d)->sbdma_dscrtable_end) ? \
145 (d)->sbdma_dscrtable : (d)->f+1)
148 #define NUMCACHEBLKS(x) (((x)+SMP_CACHE_BYTES-1)/SMP_CACHE_BYTES)
150 #define SBMAC_READCSR(t) in64((unsigned long)t)
151 #define SBMAC_WRITECSR(t,v) out64(v, (unsigned long)t)
154 #define SBMAC_MAX_TXDESCR 32
155 #define SBMAC_MAX_RXDESCR 32
157 #define ETHER_ALIGN 2
158 #define ETHER_ADDR_LEN 6
159 #define ENET_PACKET_SIZE 1518
160 /*#define ENET_PACKET_SIZE 9216 */
162 /**********************************************************************
163 * DMA Descriptor structure
164 ********************************************************************* */
166 typedef struct sbdmadscr_s
{
171 typedef unsigned long paddr_t
;
173 /**********************************************************************
174 * DMA Controller structure
175 ********************************************************************* */
177 typedef struct sbmacdma_s
{
180 * This stuff is used to identify the channel and the registers
181 * associated with it.
184 struct sbmac_softc
*sbdma_eth
; /* back pointer to associated MAC */
185 int sbdma_channel
; /* channel number */
186 int sbdma_txdir
; /* direction (1=transmit) */
187 int sbdma_maxdescr
; /* total # of descriptors in ring */
188 #ifdef CONFIG_SBMAC_COALESCE
189 int sbdma_int_pktcnt
; /* # descriptors rx/tx before interrupt*/
190 int sbdma_int_timeout
; /* # usec rx/tx interrupt */
193 sbmac_port_t sbdma_config0
; /* DMA config register 0 */
194 sbmac_port_t sbdma_config1
; /* DMA config register 1 */
195 sbmac_port_t sbdma_dscrbase
; /* Descriptor base address */
196 sbmac_port_t sbdma_dscrcnt
; /* Descriptor count register */
197 sbmac_port_t sbdma_curdscr
; /* current descriptor address */
200 * This stuff is for maintenance of the ring
203 sbdmadscr_t
*sbdma_dscrtable
; /* base of descriptor table */
204 sbdmadscr_t
*sbdma_dscrtable_end
; /* end of descriptor table */
206 struct sk_buff
**sbdma_ctxtable
; /* context table, one per descr */
208 paddr_t sbdma_dscrtable_phys
; /* and also the phys addr */
209 sbdmadscr_t
*sbdma_addptr
; /* next dscr for sw to add */
210 sbdmadscr_t
*sbdma_remptr
; /* next dscr for sw to remove */
214 /**********************************************************************
215 * Ethernet softc structure
216 ********************************************************************* */
221 * Linux-specific things
224 struct net_device
*sbm_dev
; /* pointer to linux device */
225 spinlock_t sbm_lock
; /* spin lock */
226 struct timer_list sbm_timer
; /* for monitoring MII */
227 struct net_device_stats sbm_stats
;
228 int sbm_devflags
; /* current device flags */
231 int sbm_phy_oldanlpar
;
232 int sbm_phy_oldk1stsr
;
233 int sbm_phy_oldlinkstat
;
236 unsigned char sbm_phys
[2];
239 * Controller-specific things
242 unsigned long sbm_base
; /* MAC's base address */
243 sbmac_state_t sbm_state
; /* current state */
245 sbmac_port_t sbm_macenable
; /* MAC Enable Register */
246 sbmac_port_t sbm_maccfg
; /* MAC Configuration Register */
247 sbmac_port_t sbm_fifocfg
; /* FIFO configuration register */
248 sbmac_port_t sbm_framecfg
; /* Frame configuration register */
249 sbmac_port_t sbm_rxfilter
; /* receive filter register */
250 sbmac_port_t sbm_isr
; /* Interrupt status register */
251 sbmac_port_t sbm_imr
; /* Interrupt mask register */
252 sbmac_port_t sbm_mdio
; /* MDIO register */
254 sbmac_speed_t sbm_speed
; /* current speed */
255 sbmac_duplex_t sbm_duplex
; /* current duplex */
256 sbmac_fc_t sbm_fc
; /* current flow control setting */
258 unsigned char sbm_hwaddr
[ETHER_ADDR_LEN
];
260 sbmacdma_t sbm_txdma
; /* for now, only use channel 0 */
261 sbmacdma_t sbm_rxdma
;
267 /**********************************************************************
269 ********************************************************************* */
271 /**********************************************************************
273 ********************************************************************* */
275 static void sbdma_initctx(sbmacdma_t
*d
,
276 struct sbmac_softc
*s
,
280 static void sbdma_channel_start(sbmacdma_t
*d
, int rxtx
);
281 static int sbdma_add_rcvbuffer(sbmacdma_t
*d
,struct sk_buff
*m
);
282 static int sbdma_add_txbuffer(sbmacdma_t
*d
,struct sk_buff
*m
);
283 static void sbdma_emptyring(sbmacdma_t
*d
);
284 static void sbdma_fillring(sbmacdma_t
*d
);
285 static void sbdma_rx_process(struct sbmac_softc
*sc
,sbmacdma_t
*d
);
286 static void sbdma_tx_process(struct sbmac_softc
*sc
,sbmacdma_t
*d
);
287 static int sbmac_initctx(struct sbmac_softc
*s
);
288 static void sbmac_channel_start(struct sbmac_softc
*s
);
289 static void sbmac_channel_stop(struct sbmac_softc
*s
);
290 static sbmac_state_t
sbmac_set_channel_state(struct sbmac_softc
*,sbmac_state_t
);
291 static void sbmac_promiscuous_mode(struct sbmac_softc
*sc
,int onoff
);
292 static uint64_t sbmac_addr2reg(unsigned char *ptr
);
293 static irqreturn_t
sbmac_intr(int irq
,void *dev_instance
,struct pt_regs
*rgs
);
294 static int sbmac_start_tx(struct sk_buff
*skb
, struct net_device
*dev
);
295 static void sbmac_setmulti(struct sbmac_softc
*sc
);
296 static int sbmac_init(struct net_device
*dev
, int idx
);
297 static int sbmac_set_speed(struct sbmac_softc
*s
,sbmac_speed_t speed
);
298 static int sbmac_set_duplex(struct sbmac_softc
*s
,sbmac_duplex_t duplex
,sbmac_fc_t fc
);
300 static int sbmac_open(struct net_device
*dev
);
301 static void sbmac_timer(unsigned long data
);
302 static void sbmac_tx_timeout (struct net_device
*dev
);
303 static struct net_device_stats
*sbmac_get_stats(struct net_device
*dev
);
304 static void sbmac_set_rx_mode(struct net_device
*dev
);
305 static int sbmac_mii_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
);
306 static int sbmac_close(struct net_device
*dev
);
307 static int sbmac_mii_poll(struct sbmac_softc
*s
,int noisy
);
309 static void sbmac_mii_sync(struct sbmac_softc
*s
);
310 static void sbmac_mii_senddata(struct sbmac_softc
*s
,unsigned int data
, int bitcnt
);
311 static unsigned int sbmac_mii_read(struct sbmac_softc
*s
,int phyaddr
,int regidx
);
312 static void sbmac_mii_write(struct sbmac_softc
*s
,int phyaddr
,int regidx
,
313 unsigned int regval
);
316 /**********************************************************************
318 ********************************************************************* */
320 static uint64_t sbmac_orig_hwaddr
[MAX_UNITS
];
323 /**********************************************************************
325 ********************************************************************* */
327 #define MII_COMMAND_START 0x01
328 #define MII_COMMAND_READ 0x02
329 #define MII_COMMAND_WRITE 0x01
330 #define MII_COMMAND_ACK 0x02
332 #define BMCR_RESET 0x8000
333 #define BMCR_LOOPBACK 0x4000
334 #define BMCR_SPEED0 0x2000
335 #define BMCR_ANENABLE 0x1000
336 #define BMCR_POWERDOWN 0x0800
337 #define BMCR_ISOLATE 0x0400
338 #define BMCR_RESTARTAN 0x0200
339 #define BMCR_DUPLEX 0x0100
340 #define BMCR_COLTEST 0x0080
341 #define BMCR_SPEED1 0x0040
342 #define BMCR_SPEED1000 BMCR_SPEED1
343 #define BMCR_SPEED100 BMCR_SPEED0
344 #define BMCR_SPEED10 0
346 #define BMSR_100BT4 0x8000
347 #define BMSR_100BT_FDX 0x4000
348 #define BMSR_100BT_HDX 0x2000
349 #define BMSR_10BT_FDX 0x1000
350 #define BMSR_10BT_HDX 0x0800
351 #define BMSR_100BT2_FDX 0x0400
352 #define BMSR_100BT2_HDX 0x0200
353 #define BMSR_1000BT_XSR 0x0100
354 #define BMSR_PRESUP 0x0040
355 #define BMSR_ANCOMPLT 0x0020
356 #define BMSR_REMFAULT 0x0010
357 #define BMSR_AUTONEG 0x0008
358 #define BMSR_LINKSTAT 0x0004
359 #define BMSR_JABDETECT 0x0002
360 #define BMSR_EXTCAPAB 0x0001
362 #define PHYIDR1 0x2000
363 #define PHYIDR2 0x5C60
365 #define ANAR_NP 0x8000
366 #define ANAR_RF 0x2000
367 #define ANAR_ASYPAUSE 0x0800
368 #define ANAR_PAUSE 0x0400
369 #define ANAR_T4 0x0200
370 #define ANAR_TXFD 0x0100
371 #define ANAR_TXHD 0x0080
372 #define ANAR_10FD 0x0040
373 #define ANAR_10HD 0x0020
374 #define ANAR_PSB 0x0001
376 #define ANLPAR_NP 0x8000
377 #define ANLPAR_ACK 0x4000
378 #define ANLPAR_RF 0x2000
379 #define ANLPAR_ASYPAUSE 0x0800
380 #define ANLPAR_PAUSE 0x0400
381 #define ANLPAR_T4 0x0200
382 #define ANLPAR_TXFD 0x0100
383 #define ANLPAR_TXHD 0x0080
384 #define ANLPAR_10FD 0x0040
385 #define ANLPAR_10HD 0x0020
386 #define ANLPAR_PSB 0x0001 /* 802.3 */
388 #define ANER_PDF 0x0010
389 #define ANER_LPNPABLE 0x0008
390 #define ANER_NPABLE 0x0004
391 #define ANER_PAGERX 0x0002
392 #define ANER_LPANABLE 0x0001
394 #define ANNPTR_NP 0x8000
395 #define ANNPTR_MP 0x2000
396 #define ANNPTR_ACK2 0x1000
397 #define ANNPTR_TOGTX 0x0800
398 #define ANNPTR_CODE 0x0008
400 #define ANNPRR_NP 0x8000
401 #define ANNPRR_MP 0x2000
402 #define ANNPRR_ACK3 0x1000
403 #define ANNPRR_TOGTX 0x0800
404 #define ANNPRR_CODE 0x0008
406 #define K1TCR_TESTMODE 0x0000
407 #define K1TCR_MSMCE 0x1000
408 #define K1TCR_MSCV 0x0800
409 #define K1TCR_RPTR 0x0400
410 #define K1TCR_1000BT_FDX 0x200
411 #define K1TCR_1000BT_HDX 0x100
413 #define K1STSR_MSMCFLT 0x8000
414 #define K1STSR_MSCFGRES 0x4000
415 #define K1STSR_LRSTAT 0x2000
416 #define K1STSR_RRSTAT 0x1000
417 #define K1STSR_LP1KFD 0x0800
418 #define K1STSR_LP1KHD 0x0400
419 #define K1STSR_LPASMDIR 0x0200
421 #define K1SCR_1KX_FDX 0x8000
422 #define K1SCR_1KX_HDX 0x4000
423 #define K1SCR_1KT_FDX 0x2000
424 #define K1SCR_1KT_HDX 0x1000
426 #define STRAP_PHY1 0x0800
427 #define STRAP_NCMODE 0x0400
428 #define STRAP_MANMSCFG 0x0200
429 #define STRAP_ANENABLE 0x0100
430 #define STRAP_MSVAL 0x0080
431 #define STRAP_1KHDXADV 0x0010
432 #define STRAP_1KFDXADV 0x0008
433 #define STRAP_100ADV 0x0004
434 #define STRAP_SPEEDSEL 0x0000
435 #define STRAP_SPEED100 0x0001
437 #define PHYSUP_SPEED1000 0x10
438 #define PHYSUP_SPEED100 0x08
439 #define PHYSUP_SPEED10 0x00
440 #define PHYSUP_LINKUP 0x04
441 #define PHYSUP_FDX 0x02
443 #define MII_BMCR 0x00 /* Basic mode control register (rw) */
444 #define MII_BMSR 0x01 /* Basic mode status register (ro) */
445 #define MII_K1STSR 0x0A /* 1K Status Register (ro) */
446 #define MII_ANLPAR 0x05 /* Autonegotiation lnk partner abilities (rw) */
449 #define M_MAC_MDIO_DIR_OUTPUT 0 /* for clarity */
454 /**********************************************************************
457 * Synchronize with the MII - send a pattern of bits to the MII
458 * that will guarantee that it is ready to accept a command.
461 * s - sbmac structure
465 ********************************************************************* */
467 static void sbmac_mii_sync(struct sbmac_softc
*s
)
472 bits
= M_MAC_MDIO_DIR_OUTPUT
| M_MAC_MDIO_OUT
;
474 SBMAC_WRITECSR(s
->sbm_mdio
,bits
);
476 for (cnt
= 0; cnt
< 32; cnt
++) {
477 SBMAC_WRITECSR(s
->sbm_mdio
,bits
| M_MAC_MDC
);
478 SBMAC_WRITECSR(s
->sbm_mdio
,bits
);
482 /**********************************************************************
483 * SBMAC_MII_SENDDATA(s,data,bitcnt)
485 * Send some bits to the MII. The bits to be sent are right-
486 * justified in the 'data' parameter.
489 * s - sbmac structure
490 * data - data to send
491 * bitcnt - number of bits to send
492 ********************************************************************* */
494 static void sbmac_mii_senddata(struct sbmac_softc
*s
,unsigned int data
, int bitcnt
)
498 unsigned int curmask
;
500 bits
= M_MAC_MDIO_DIR_OUTPUT
;
501 SBMAC_WRITECSR(s
->sbm_mdio
,bits
);
503 curmask
= 1 << (bitcnt
- 1);
505 for (i
= 0; i
< bitcnt
; i
++) {
507 bits
|= M_MAC_MDIO_OUT
;
508 else bits
&= ~M_MAC_MDIO_OUT
;
509 SBMAC_WRITECSR(s
->sbm_mdio
,bits
);
510 SBMAC_WRITECSR(s
->sbm_mdio
,bits
| M_MAC_MDC
);
511 SBMAC_WRITECSR(s
->sbm_mdio
,bits
);
518 /**********************************************************************
519 * SBMAC_MII_READ(s,phyaddr,regidx)
521 * Read a PHY register.
524 * s - sbmac structure
525 * phyaddr - PHY's address
526 * regidx = index of register to read
529 * value read, or 0 if an error occurred.
530 ********************************************************************* */
532 static unsigned int sbmac_mii_read(struct sbmac_softc
*s
,int phyaddr
,int regidx
)
539 * Synchronize ourselves so that the PHY knows the next
540 * thing coming down is a command
546 * Send the data to the PHY. The sequence is
547 * a "start" command (2 bits)
548 * a "read" command (2 bits)
549 * the PHY addr (5 bits)
550 * the register index (5 bits)
553 sbmac_mii_senddata(s
,MII_COMMAND_START
, 2);
554 sbmac_mii_senddata(s
,MII_COMMAND_READ
, 2);
555 sbmac_mii_senddata(s
,phyaddr
, 5);
556 sbmac_mii_senddata(s
,regidx
, 5);
559 * Switch the port around without a clock transition.
561 SBMAC_WRITECSR(s
->sbm_mdio
,M_MAC_MDIO_DIR_INPUT
);
564 * Send out a clock pulse to signal we want the status
567 SBMAC_WRITECSR(s
->sbm_mdio
,M_MAC_MDIO_DIR_INPUT
| M_MAC_MDC
);
568 SBMAC_WRITECSR(s
->sbm_mdio
,M_MAC_MDIO_DIR_INPUT
);
571 * If an error occurred, the PHY will signal '1' back
573 error
= SBMAC_READCSR(s
->sbm_mdio
) & M_MAC_MDIO_IN
;
576 * Issue an 'idle' clock pulse, but keep the direction
579 SBMAC_WRITECSR(s
->sbm_mdio
,M_MAC_MDIO_DIR_INPUT
| M_MAC_MDC
);
580 SBMAC_WRITECSR(s
->sbm_mdio
,M_MAC_MDIO_DIR_INPUT
);
584 for (idx
= 0; idx
< 16; idx
++) {
588 if (SBMAC_READCSR(s
->sbm_mdio
) & M_MAC_MDIO_IN
)
592 SBMAC_WRITECSR(s
->sbm_mdio
,M_MAC_MDIO_DIR_INPUT
| M_MAC_MDC
);
593 SBMAC_WRITECSR(s
->sbm_mdio
,M_MAC_MDIO_DIR_INPUT
);
596 /* Switch back to output */
597 SBMAC_WRITECSR(s
->sbm_mdio
,M_MAC_MDIO_DIR_OUTPUT
);
605 /**********************************************************************
606 * SBMAC_MII_WRITE(s,phyaddr,regidx,regval)
608 * Write a value to a PHY register.
611 * s - sbmac structure
612 * phyaddr - PHY to use
613 * regidx - register within the PHY
614 * regval - data to write to register
618 ********************************************************************* */
620 static void sbmac_mii_write(struct sbmac_softc
*s
,int phyaddr
,int regidx
,
626 sbmac_mii_senddata(s
,MII_COMMAND_START
,2);
627 sbmac_mii_senddata(s
,MII_COMMAND_WRITE
,2);
628 sbmac_mii_senddata(s
,phyaddr
, 5);
629 sbmac_mii_senddata(s
,regidx
, 5);
630 sbmac_mii_senddata(s
,MII_COMMAND_ACK
,2);
631 sbmac_mii_senddata(s
,regval
,16);
633 SBMAC_WRITECSR(s
->sbm_mdio
,M_MAC_MDIO_DIR_OUTPUT
);
638 /**********************************************************************
639 * SBDMA_INITCTX(d,s,chan,txrx,maxdescr)
641 * Initialize a DMA channel context. Since there are potentially
642 * eight DMA channels per MAC, it's nice to do this in a standard
646 * d - sbmacdma_t structure (DMA channel context)
647 * s - sbmac_softc structure (pointer to a MAC)
648 * chan - channel number (0..1 right now)
649 * txrx - Identifies DMA_TX or DMA_RX for channel direction
650 * maxdescr - number of descriptors
654 ********************************************************************* */
656 static void sbdma_initctx(sbmacdma_t
*d
,
657 struct sbmac_softc
*s
,
663 * Save away interesting stuff in the structure
667 d
->sbdma_channel
= chan
;
668 d
->sbdma_txdir
= txrx
;
672 s
->sbe_idx
=(s
->sbm_base
- A_MAC_BASE_0
)/MAC_SPACING
;
675 SBMAC_WRITECSR(KSEG1ADDR(
676 A_MAC_REGISTER(s
->sbe_idx
, R_MAC_RMON_TX_BYTES
)), 0);
677 SBMAC_WRITECSR(KSEG1ADDR(
678 A_MAC_REGISTER(s
->sbe_idx
, R_MAC_RMON_COLLISIONS
)), 0);
679 SBMAC_WRITECSR(KSEG1ADDR(
680 A_MAC_REGISTER(s
->sbe_idx
, R_MAC_RMON_LATE_COL
)), 0);
681 SBMAC_WRITECSR(KSEG1ADDR(
682 A_MAC_REGISTER(s
->sbe_idx
, R_MAC_RMON_EX_COL
)), 0);
683 SBMAC_WRITECSR(KSEG1ADDR(
684 A_MAC_REGISTER(s
->sbe_idx
, R_MAC_RMON_FCS_ERROR
)), 0);
685 SBMAC_WRITECSR(KSEG1ADDR(
686 A_MAC_REGISTER(s
->sbe_idx
, R_MAC_RMON_TX_ABORT
)), 0);
687 SBMAC_WRITECSR(KSEG1ADDR(
688 A_MAC_REGISTER(s
->sbe_idx
, R_MAC_RMON_TX_BAD
)), 0);
689 SBMAC_WRITECSR(KSEG1ADDR(
690 A_MAC_REGISTER(s
->sbe_idx
, R_MAC_RMON_TX_GOOD
)), 0);
691 SBMAC_WRITECSR(KSEG1ADDR(
692 A_MAC_REGISTER(s
->sbe_idx
, R_MAC_RMON_TX_RUNT
)), 0);
693 SBMAC_WRITECSR(KSEG1ADDR(
694 A_MAC_REGISTER(s
->sbe_idx
, R_MAC_RMON_TX_OVERSIZE
)), 0);
695 SBMAC_WRITECSR(KSEG1ADDR(
696 A_MAC_REGISTER(s
->sbe_idx
, R_MAC_RMON_RX_BYTES
)), 0);
697 SBMAC_WRITECSR(KSEG1ADDR(
698 A_MAC_REGISTER(s
->sbe_idx
, R_MAC_RMON_RX_MCAST
)), 0);
699 SBMAC_WRITECSR(KSEG1ADDR(
700 A_MAC_REGISTER(s
->sbe_idx
, R_MAC_RMON_RX_BCAST
)), 0);
701 SBMAC_WRITECSR(KSEG1ADDR(
702 A_MAC_REGISTER(s
->sbe_idx
, R_MAC_RMON_RX_BAD
)), 0);
703 SBMAC_WRITECSR(KSEG1ADDR(
704 A_MAC_REGISTER(s
->sbe_idx
, R_MAC_RMON_RX_GOOD
)), 0);
705 SBMAC_WRITECSR(KSEG1ADDR(
706 A_MAC_REGISTER(s
->sbe_idx
, R_MAC_RMON_RX_RUNT
)), 0);
707 SBMAC_WRITECSR(KSEG1ADDR(
708 A_MAC_REGISTER(s
->sbe_idx
, R_MAC_RMON_RX_OVERSIZE
)), 0);
709 SBMAC_WRITECSR(KSEG1ADDR(
710 A_MAC_REGISTER(s
->sbe_idx
, R_MAC_RMON_RX_FCS_ERROR
)), 0);
711 SBMAC_WRITECSR(KSEG1ADDR(
712 A_MAC_REGISTER(s
->sbe_idx
, R_MAC_RMON_RX_LENGTH_ERROR
)), 0);
713 SBMAC_WRITECSR(KSEG1ADDR(
714 A_MAC_REGISTER(s
->sbe_idx
, R_MAC_RMON_RX_CODE_ERROR
)), 0);
715 SBMAC_WRITECSR(KSEG1ADDR(
716 A_MAC_REGISTER(s
->sbe_idx
, R_MAC_RMON_RX_ALIGN_ERROR
)), 0);
719 * initialize register pointers
723 s
->sbm_base
+ R_MAC_DMA_REGISTER(txrx
,chan
,R_MAC_DMA_CONFIG0
);
725 s
->sbm_base
+ R_MAC_DMA_REGISTER(txrx
,chan
,R_MAC_DMA_CONFIG1
);
727 s
->sbm_base
+ R_MAC_DMA_REGISTER(txrx
,chan
,R_MAC_DMA_DSCR_BASE
);
729 s
->sbm_base
+ R_MAC_DMA_REGISTER(txrx
,chan
,R_MAC_DMA_DSCR_CNT
);
731 s
->sbm_base
+ R_MAC_DMA_REGISTER(txrx
,chan
,R_MAC_DMA_CUR_DSCRADDR
);
734 * Allocate memory for the ring
737 d
->sbdma_maxdescr
= maxdescr
;
739 d
->sbdma_dscrtable
= (sbdmadscr_t
*)
740 kmalloc(d
->sbdma_maxdescr
*sizeof(sbdmadscr_t
), GFP_KERNEL
);
742 memset(d
->sbdma_dscrtable
,0,d
->sbdma_maxdescr
*sizeof(sbdmadscr_t
));
744 d
->sbdma_dscrtable_end
= d
->sbdma_dscrtable
+ d
->sbdma_maxdescr
;
746 d
->sbdma_dscrtable_phys
= virt_to_phys(d
->sbdma_dscrtable
);
752 d
->sbdma_ctxtable
= (struct sk_buff
**)
753 kmalloc(d
->sbdma_maxdescr
*sizeof(struct sk_buff
*), GFP_KERNEL
);
755 memset(d
->sbdma_ctxtable
,0,d
->sbdma_maxdescr
*sizeof(struct sk_buff
*));
757 #ifdef CONFIG_SBMAC_COALESCE
759 * Setup Rx/Tx DMA coalescing defaults
763 d
->sbdma_int_pktcnt
= int_pktcnt
;
765 d
->sbdma_int_pktcnt
= 1;
769 d
->sbdma_int_timeout
= int_timeout
;
771 d
->sbdma_int_timeout
= 0;
777 /**********************************************************************
778 * SBDMA_CHANNEL_START(d)
780 * Initialize the hardware registers for a DMA channel.
783 * d - DMA channel to init (context must be previously init'd
784 * rxtx - DMA_RX or DMA_TX depending on what type of channel
788 ********************************************************************* */
790 static void sbdma_channel_start(sbmacdma_t
*d
, int rxtx
)
793 * Turn on the DMA channel
796 #ifdef CONFIG_SBMAC_COALESCE
797 SBMAC_WRITECSR(d
->sbdma_config1
,
798 V_DMA_INT_TIMEOUT(d
->sbdma_int_timeout
) |
800 SBMAC_WRITECSR(d
->sbdma_config0
,
802 V_DMA_RINGSZ(d
->sbdma_maxdescr
) |
803 V_DMA_INT_PKTCNT(d
->sbdma_int_pktcnt
) |
806 SBMAC_WRITECSR(d
->sbdma_config1
,0);
807 SBMAC_WRITECSR(d
->sbdma_config0
,
808 V_DMA_RINGSZ(d
->sbdma_maxdescr
) |
812 SBMAC_WRITECSR(d
->sbdma_dscrbase
,d
->sbdma_dscrtable_phys
);
815 * Initialize ring pointers
818 d
->sbdma_addptr
= d
->sbdma_dscrtable
;
819 d
->sbdma_remptr
= d
->sbdma_dscrtable
;
822 /**********************************************************************
823 * SBDMA_CHANNEL_STOP(d)
825 * Initialize the hardware registers for a DMA channel.
828 * d - DMA channel to init (context must be previously init'd
832 ********************************************************************* */
834 static void sbdma_channel_stop(sbmacdma_t
*d
)
837 * Turn off the DMA channel
840 SBMAC_WRITECSR(d
->sbdma_config1
,0);
842 SBMAC_WRITECSR(d
->sbdma_dscrbase
,0);
844 SBMAC_WRITECSR(d
->sbdma_config0
,0);
854 static void sbdma_align_skb(struct sk_buff
*skb
,int power2
,int offset
)
857 unsigned long newaddr
;
859 addr
= (unsigned long) skb
->data
;
861 newaddr
= (addr
+ power2
- 1) & ~(power2
- 1);
863 skb_reserve(skb
,newaddr
-addr
+offset
);
867 /**********************************************************************
868 * SBDMA_ADD_RCVBUFFER(d,sb)
870 * Add a buffer to the specified DMA channel. For receive channels,
871 * this queues a buffer for inbound packets.
874 * d - DMA channel descriptor
875 * sb - sk_buff to add, or NULL if we should allocate one
878 * 0 if buffer could not be added (ring is full)
879 * 1 if buffer added successfully
880 ********************************************************************* */
883 static int sbdma_add_rcvbuffer(sbmacdma_t
*d
,struct sk_buff
*sb
)
886 sbdmadscr_t
*nextdsc
;
887 struct sk_buff
*sb_new
= NULL
;
888 int pktsize
= ENET_PACKET_SIZE
;
890 /* get pointer to our current place in the ring */
892 dsc
= d
->sbdma_addptr
;
893 nextdsc
= SBDMA_NEXTBUF(d
,sbdma_addptr
);
896 * figure out if the ring is full - if the next descriptor
897 * is the same as the one that we're going to remove from
898 * the ring, the ring is full
901 if (nextdsc
== d
->sbdma_remptr
) {
906 * Allocate a sk_buff if we don't already have one.
907 * If we do have an sk_buff, reset it so that it's empty.
909 * Note: sk_buffs don't seem to be guaranteed to have any sort
910 * of alignment when they are allocated. Therefore, allocate enough
911 * extra space to make sure that:
913 * 1. the data does not start in the middle of a cache line.
914 * 2. The data does not end in the middle of a cache line
915 * 3. The buffer can be aligned such that the IP addresses are
918 * Remember, the SOCs MAC writes whole cache lines at a time,
919 * without reading the old contents first. So, if the sk_buff's
920 * data portion starts in the middle of a cache line, the SOC
921 * DMA will trash the beginning (and ending) portions.
925 sb_new
= dev_alloc_skb(ENET_PACKET_SIZE
+ SMP_CACHE_BYTES
* 2 + ETHER_ALIGN
);
926 if (sb_new
== NULL
) {
927 printk(KERN_INFO
"%s: sk_buff allocation failed\n",
928 d
->sbdma_eth
->sbm_dev
->name
);
932 sbdma_align_skb(sb_new
, SMP_CACHE_BYTES
, ETHER_ALIGN
);
934 /* mark skbuff owned by our device */
935 sb_new
->dev
= d
->sbdma_eth
->sbm_dev
;
940 * nothing special to reinit buffer, it's already aligned
941 * and sb->data already points to a good place.
946 * fill in the descriptor
949 #ifdef CONFIG_SBMAC_COALESCE
951 * Do not interrupt per DMA transfer.
953 dsc
->dscr_a
= virt_to_phys(sb_new
->tail
) |
954 V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize
+ETHER_ALIGN
)) |
957 dsc
->dscr_a
= virt_to_phys(sb_new
->tail
) |
958 V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize
+ETHER_ALIGN
)) |
959 M_DMA_DSCRA_INTERRUPT
;
962 /* receiving: no options */
966 * fill in the context
969 d
->sbdma_ctxtable
[dsc
-d
->sbdma_dscrtable
] = sb_new
;
972 * point at next packet
975 d
->sbdma_addptr
= nextdsc
;
978 * Give the buffer to the DMA engine.
981 SBMAC_WRITECSR(d
->sbdma_dscrcnt
,1);
983 return 0; /* we did it */
986 /**********************************************************************
987 * SBDMA_ADD_TXBUFFER(d,sb)
989 * Add a transmit buffer to the specified DMA channel, causing a
993 * d - DMA channel descriptor
994 * sb - sk_buff to add
997 * 0 transmit queued successfully
998 * otherwise error code
999 ********************************************************************* */
1002 static int sbdma_add_txbuffer(sbmacdma_t
*d
,struct sk_buff
*sb
)
1005 sbdmadscr_t
*nextdsc
;
1010 /* get pointer to our current place in the ring */
1012 dsc
= d
->sbdma_addptr
;
1013 nextdsc
= SBDMA_NEXTBUF(d
,sbdma_addptr
);
1016 * figure out if the ring is full - if the next descriptor
1017 * is the same as the one that we're going to remove from
1018 * the ring, the ring is full
1021 if (nextdsc
== d
->sbdma_remptr
) {
1026 * Under Linux, it's not necessary to copy/coalesce buffers
1027 * like it is on NetBSD. We think they're all contiguous,
1028 * but that may not be true for GBE.
1034 * fill in the descriptor. Note that the number of cache
1035 * blocks in the descriptor is the number of blocks
1036 * *spanned*, so we need to add in the offset (if any)
1037 * while doing the calculation.
1040 phys
= virt_to_phys(sb
->data
);
1041 ncb
= NUMCACHEBLKS(length
+(phys
& (SMP_CACHE_BYTES
- 1)));
1043 dsc
->dscr_a
= phys
|
1044 V_DMA_DSCRA_A_SIZE(ncb
) |
1045 #ifndef CONFIG_SBMAC_COALESCE
1046 M_DMA_DSCRA_INTERRUPT
|
1050 /* transmitting: set outbound options and length */
1052 dsc
->dscr_b
= V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD
) |
1053 V_DMA_DSCRB_PKT_SIZE(length
);
1056 * fill in the context
1059 d
->sbdma_ctxtable
[dsc
-d
->sbdma_dscrtable
] = sb
;
1062 * point at next packet
1065 d
->sbdma_addptr
= nextdsc
;
1068 * Give the buffer to the DMA engine.
1071 SBMAC_WRITECSR(d
->sbdma_dscrcnt
,1);
1073 return 0; /* we did it */
1079 /**********************************************************************
1080 * SBDMA_EMPTYRING(d)
1082 * Free all allocated sk_buffs on the specified DMA channel;
1089 ********************************************************************* */
1091 static void sbdma_emptyring(sbmacdma_t
*d
)
1096 for (idx
= 0; idx
< d
->sbdma_maxdescr
; idx
++) {
1097 sb
= d
->sbdma_ctxtable
[idx
];
1100 d
->sbdma_ctxtable
[idx
] = NULL
;
1106 /**********************************************************************
1109 * Fill the specified DMA channel (must be receive channel)
1117 ********************************************************************* */
1119 static void sbdma_fillring(sbmacdma_t
*d
)
1123 for (idx
= 0; idx
< SBMAC_MAX_RXDESCR
-1; idx
++) {
1124 if (sbdma_add_rcvbuffer(d
,NULL
) != 0)
1130 /**********************************************************************
1131 * SBDMA_RX_PROCESS(sc,d)
1133 * Process "completed" receive buffers on the specified DMA channel.
1134 * Note that this isn't really ideal for priority channels, since
1135 * it processes all of the packets on a given channel before
1139 * sc - softc structure
1140 * d - DMA channel context
1144 ********************************************************************* */
1146 static void sbdma_rx_process(struct sbmac_softc
*sc
,sbmacdma_t
*d
)
1156 * figure out where we are (as an index) and where
1157 * the hardware is (also as an index)
1159 * This could be done faster if (for example) the
1160 * descriptor table was page-aligned and contiguous in
1161 * both virtual and physical memory -- you could then
1162 * just compare the low-order bits of the virtual address
1163 * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1166 curidx
= d
->sbdma_remptr
- d
->sbdma_dscrtable
;
1167 hwidx
= (int) (((SBMAC_READCSR(d
->sbdma_curdscr
) & M_DMA_CURDSCR_ADDR
) -
1168 d
->sbdma_dscrtable_phys
) / sizeof(sbdmadscr_t
));
1171 * If they're the same, that means we've processed all
1172 * of the descriptors up to (but not including) the one that
1173 * the hardware is working on right now.
1176 if (curidx
== hwidx
)
1180 * Otherwise, get the packet's sk_buff ptr back
1183 dsc
= &(d
->sbdma_dscrtable
[curidx
]);
1184 sb
= d
->sbdma_ctxtable
[curidx
];
1185 d
->sbdma_ctxtable
[curidx
] = NULL
;
1187 len
= (int)G_DMA_DSCRB_PKT_SIZE(dsc
->dscr_b
) - 4;
1190 * Check packet status. If good, process it.
1191 * If not, silently drop it and put it back on the
1195 if (!(dsc
->dscr_a
& M_DMA_ETHRX_BAD
)) {
1198 * Add a new buffer to replace the old one. If we fail
1199 * to allocate a buffer, we're going to drop this
1200 * packet and put it right back on the receive ring.
1203 if (sbdma_add_rcvbuffer(d
,NULL
) == -ENOBUFS
) {
1204 sc
->sbm_stats
.rx_dropped
++;
1205 sbdma_add_rcvbuffer(d
,sb
); /* re-add old buffer */
1208 * Set length into the packet
1213 * Buffer has been replaced on the
1214 * receive ring. Pass the buffer to
1216 sc
->sbm_stats
.rx_bytes
+= len
;
1217 sc
->sbm_stats
.rx_packets
++;
1218 sb
->protocol
= eth_type_trans(sb
,d
->sbdma_eth
->sbm_dev
);
1219 if (sc
->rx_hw_checksum
== ENABLE
) {
1220 /* if the ip checksum is good
1221 indicate in skb. else set
1222 CHECKSUM_NONE as device
1223 failed to checksum the
1226 if (((dsc
->dscr_b
) |M_DMA_ETHRX_BADTCPCS
) ||
1227 ((dsc
->dscr_a
)| M_DMA_ETHRX_BADIP4CS
)) {
1228 sb
->ip_summed
= CHECKSUM_NONE
;
1230 printk(KERN_DEBUG
"hw checksum fail .\n");
1231 sb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1233 } /* rx_hw_checksum */
1239 * Packet was mangled somehow. Just drop it and
1240 * put it back on the receive ring.
1242 sc
->sbm_stats
.rx_errors
++;
1243 sbdma_add_rcvbuffer(d
,sb
);
1248 * .. and advance to the next buffer.
1251 d
->sbdma_remptr
= SBDMA_NEXTBUF(d
,sbdma_remptr
);
1258 /**********************************************************************
1259 * SBDMA_TX_PROCESS(sc,d)
1261 * Process "completed" transmit buffers on the specified DMA channel.
1262 * This is normally called within the interrupt service routine.
1263 * Note that this isn't really ideal for priority channels, since
1264 * it processes all of the packets on a given channel before
1268 * sc - softc structure
1269 * d - DMA channel context
1273 ********************************************************************* */
1275 static void sbdma_tx_process(struct sbmac_softc
*sc
,sbmacdma_t
*d
)
1281 unsigned long flags
;
1283 spin_lock_irqsave(&(sc
->sbm_lock
), flags
);
1287 * figure out where we are (as an index) and where
1288 * the hardware is (also as an index)
1290 * This could be done faster if (for example) the
1291 * descriptor table was page-aligned and contiguous in
1292 * both virtual and physical memory -- you could then
1293 * just compare the low-order bits of the virtual address
1294 * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1297 curidx
= d
->sbdma_remptr
- d
->sbdma_dscrtable
;
1299 /* XXX This is gross, ugly, and only here
1300 * because justin hacked it in to fix a
1301 * problem without really understanding it.
1303 * It seems that, for whatever reason, this
1304 * routine is invoked immediately upon the
1305 * enabling of interrupts. So then the Read
1306 * below returns zero, making hwidx a negative
1307 * number, and anti-hilarity ensues.
1309 * I'm guessing there's a proper fix involving
1310 * clearing out interrupt state from old
1311 * packets before enabling interrupts, but I'm
1314 * Anyways, this hack seems to work, and is
1315 * Good Enough for 11 PM. :)
1320 uint64_t tmp
= SBMAC_READCSR(d
->sbdma_curdscr
);
1324 hwidx
= (int) (((tmp
& M_DMA_CURDSCR_ADDR
) -
1325 d
->sbdma_dscrtable_phys
) / sizeof(sbdmadscr_t
));
1328 * If they're the same, that means we've processed all
1329 * of the descriptors up to (but not including) the one that
1330 * the hardware is working on right now.
1333 if (curidx
== hwidx
)
1337 * Otherwise, get the packet's sk_buff ptr back
1340 dsc
= &(d
->sbdma_dscrtable
[curidx
]);
1341 sb
= d
->sbdma_ctxtable
[curidx
];
1342 d
->sbdma_ctxtable
[curidx
] = NULL
;
1348 sc
->sbm_stats
.tx_bytes
+= sb
->len
;
1349 sc
->sbm_stats
.tx_packets
++;
1352 * for transmits, we just free buffers.
1355 dev_kfree_skb_irq(sb
);
1358 * .. and advance to the next buffer.
1361 d
->sbdma_remptr
= SBDMA_NEXTBUF(d
,sbdma_remptr
);
1366 * Decide if we should wake up the protocol or not.
1367 * Other drivers seem to do this when we reach a low
1368 * watermark on the transmit queue.
1371 netif_wake_queue(d
->sbdma_eth
->sbm_dev
);
1373 spin_unlock_irqrestore(&(sc
->sbm_lock
), flags
);
1379 /**********************************************************************
1382 * Initialize an Ethernet context structure - this is called
1383 * once per MAC on the 1250. Memory is allocated here, so don't
1384 * call it again from inside the ioctl routines that bring the
1388 * s - sbmac context structure
1392 ********************************************************************* */
1394 static int sbmac_initctx(struct sbmac_softc
*s
)
1398 * figure out the addresses of some ports
1401 s
->sbm_macenable
= s
->sbm_base
+ R_MAC_ENABLE
;
1402 s
->sbm_maccfg
= s
->sbm_base
+ R_MAC_CFG
;
1403 s
->sbm_fifocfg
= s
->sbm_base
+ R_MAC_THRSH_CFG
;
1404 s
->sbm_framecfg
= s
->sbm_base
+ R_MAC_FRAMECFG
;
1405 s
->sbm_rxfilter
= s
->sbm_base
+ R_MAC_ADFILTER_CFG
;
1406 s
->sbm_isr
= s
->sbm_base
+ R_MAC_STATUS
;
1407 s
->sbm_imr
= s
->sbm_base
+ R_MAC_INT_MASK
;
1408 s
->sbm_mdio
= s
->sbm_base
+ R_MAC_MDIO
;
1413 s
->sbm_phy_oldbmsr
= 0;
1414 s
->sbm_phy_oldanlpar
= 0;
1415 s
->sbm_phy_oldk1stsr
= 0;
1416 s
->sbm_phy_oldlinkstat
= 0;
1419 * Initialize the DMA channels. Right now, only one per MAC is used
1420 * Note: Only do this _once_, as it allocates memory from the kernel!
1423 sbdma_initctx(&(s
->sbm_txdma
),s
,0,DMA_TX
,SBMAC_MAX_TXDESCR
);
1424 sbdma_initctx(&(s
->sbm_rxdma
),s
,0,DMA_RX
,SBMAC_MAX_RXDESCR
);
1427 * initial state is OFF
1430 s
->sbm_state
= sbmac_state_off
;
1433 * Initial speed is (XXX TEMP) 10MBit/s HDX no FC
1436 s
->sbm_speed
= sbmac_speed_10
;
1437 s
->sbm_duplex
= sbmac_duplex_half
;
1438 s
->sbm_fc
= sbmac_fc_disabled
;
1444 static void sbdma_uninitctx(struct sbmacdma_s
*d
)
1446 if (d
->sbdma_dscrtable
) {
1447 kfree(d
->sbdma_dscrtable
);
1448 d
->sbdma_dscrtable
= NULL
;
1451 if (d
->sbdma_ctxtable
) {
1452 kfree(d
->sbdma_ctxtable
);
1453 d
->sbdma_ctxtable
= NULL
;
1458 static void sbmac_uninitctx(struct sbmac_softc
*sc
)
1460 sbdma_uninitctx(&(sc
->sbm_txdma
));
1461 sbdma_uninitctx(&(sc
->sbm_rxdma
));
1465 /**********************************************************************
1466 * SBMAC_CHANNEL_START(s)
1468 * Start packet processing on this MAC.
1471 * s - sbmac structure
1475 ********************************************************************* */
1477 static void sbmac_channel_start(struct sbmac_softc
*s
)
1481 uint64_t cfg
,fifo
,framecfg
;
1485 * Don't do this if running
1488 if (s
->sbm_state
== sbmac_state_on
)
1492 * Bring the controller out of reset, but leave it off.
1495 SBMAC_WRITECSR(s
->sbm_macenable
,0);
1498 * Ignore all received packets
1501 SBMAC_WRITECSR(s
->sbm_rxfilter
,0);
1504 * Calculate values for various control registers.
1507 cfg
= M_MAC_RETRY_EN
|
1508 M_MAC_TX_HOLD_SOP_EN
|
1509 V_MAC_TX_PAUSE_CNT_16K
|
1516 * Be sure that RD_THRSH+WR_THRSH <= 32 for pass1 pars
1517 * and make sure that RD_THRSH + WR_THRSH <=128 for pass2 and above
1518 * Use a larger RD_THRSH for gigabit
1520 if (periph_rev
>= 2)
1525 fifo
= V_MAC_TX_WR_THRSH(4) | /* Must be '4' or '8' */
1526 ((s
->sbm_speed
== sbmac_speed_1000
)
1527 ? V_MAC_TX_RD_THRSH(th_value
) : V_MAC_TX_RD_THRSH(4)) |
1528 V_MAC_TX_RL_THRSH(4) |
1529 V_MAC_RX_PL_THRSH(4) |
1530 V_MAC_RX_RD_THRSH(4) | /* Must be '4' */
1531 V_MAC_RX_PL_THRSH(4) |
1532 V_MAC_RX_RL_THRSH(8) |
1535 framecfg
= V_MAC_MIN_FRAMESZ_DEFAULT
|
1536 V_MAC_MAX_FRAMESZ_DEFAULT
|
1537 V_MAC_BACKOFF_SEL(1);
1540 * Clear out the hash address map
1543 port
= s
->sbm_base
+ R_MAC_HASH_BASE
;
1544 for (idx
= 0; idx
< MAC_HASH_COUNT
; idx
++) {
1545 SBMAC_WRITECSR(port
,0);
1546 port
+= sizeof(uint64_t);
1550 * Clear out the exact-match table
1553 port
= s
->sbm_base
+ R_MAC_ADDR_BASE
;
1554 for (idx
= 0; idx
< MAC_ADDR_COUNT
; idx
++) {
1555 SBMAC_WRITECSR(port
,0);
1556 port
+= sizeof(uint64_t);
1560 * Clear out the DMA Channel mapping table registers
1563 port
= s
->sbm_base
+ R_MAC_CHUP0_BASE
;
1564 for (idx
= 0; idx
< MAC_CHMAP_COUNT
; idx
++) {
1565 SBMAC_WRITECSR(port
,0);
1566 port
+= sizeof(uint64_t);
1570 port
= s
->sbm_base
+ R_MAC_CHLO0_BASE
;
1571 for (idx
= 0; idx
< MAC_CHMAP_COUNT
; idx
++) {
1572 SBMAC_WRITECSR(port
,0);
1573 port
+= sizeof(uint64_t);
1577 * Program the hardware address. It goes into the hardware-address
1578 * register as well as the first filter register.
1581 reg
= sbmac_addr2reg(s
->sbm_hwaddr
);
1583 port
= s
->sbm_base
+ R_MAC_ADDR_BASE
;
1584 SBMAC_WRITECSR(port
,reg
);
1585 port
= s
->sbm_base
+ R_MAC_ETHERNET_ADDR
;
1587 #ifdef CONFIG_SB1_PASS_1_WORKAROUNDS
1589 * Pass1 SOCs do not receive packets addressed to the
1590 * destination address in the R_MAC_ETHERNET_ADDR register.
1591 * Set the value to zero.
1593 SBMAC_WRITECSR(port
,0);
1595 SBMAC_WRITECSR(port
,reg
);
1599 * Set the receive filter for no packets, and write values
1600 * to the various config registers
1603 SBMAC_WRITECSR(s
->sbm_rxfilter
,0);
1604 SBMAC_WRITECSR(s
->sbm_imr
,0);
1605 SBMAC_WRITECSR(s
->sbm_framecfg
,framecfg
);
1606 SBMAC_WRITECSR(s
->sbm_fifocfg
,fifo
);
1607 SBMAC_WRITECSR(s
->sbm_maccfg
,cfg
);
1610 * Initialize DMA channels (rings should be ok now)
1613 sbdma_channel_start(&(s
->sbm_rxdma
), DMA_RX
);
1614 sbdma_channel_start(&(s
->sbm_txdma
), DMA_TX
);
1617 * Configure the speed, duplex, and flow control
1620 sbmac_set_speed(s
,s
->sbm_speed
);
1621 sbmac_set_duplex(s
,s
->sbm_duplex
,s
->sbm_fc
);
1624 * Fill the receive ring
1627 sbdma_fillring(&(s
->sbm_rxdma
));
1630 * Turn on the rest of the bits in the enable register
1633 SBMAC_WRITECSR(s
->sbm_macenable
,
1642 #ifdef CONFIG_SBMAC_COALESCE
1644 * Accept any TX interrupt and EOP count/timer RX interrupts on ch 0
1646 SBMAC_WRITECSR(s
->sbm_imr
,
1647 ((M_MAC_INT_EOP_COUNT
| M_MAC_INT_EOP_TIMER
) << S_MAC_TX_CH0
) |
1648 ((M_MAC_INT_EOP_COUNT
| M_MAC_INT_EOP_TIMER
) << S_MAC_RX_CH0
));
1651 * Accept any kind of interrupt on TX and RX DMA channel 0
1653 SBMAC_WRITECSR(s
->sbm_imr
,
1654 (M_MAC_INT_CHANNEL
<< S_MAC_TX_CH0
) |
1655 (M_MAC_INT_CHANNEL
<< S_MAC_RX_CH0
));
1659 * Enable receiving unicasts and broadcasts
1662 SBMAC_WRITECSR(s
->sbm_rxfilter
,M_MAC_UCAST_EN
| M_MAC_BCAST_EN
);
1665 * we're running now.
1668 s
->sbm_state
= sbmac_state_on
;
1671 * Program multicast addresses
1677 * If channel was in promiscuous mode before, turn that on
1680 if (s
->sbm_devflags
& IFF_PROMISC
) {
1681 sbmac_promiscuous_mode(s
,1);
1687 /**********************************************************************
1688 * SBMAC_CHANNEL_STOP(s)
1690 * Stop packet processing on this MAC.
1693 * s - sbmac structure
1697 ********************************************************************* */
1699 static void sbmac_channel_stop(struct sbmac_softc
*s
)
1701 /* don't do this if already stopped */
1703 if (s
->sbm_state
== sbmac_state_off
)
1706 /* don't accept any packets, disable all interrupts */
1708 SBMAC_WRITECSR(s
->sbm_rxfilter
,0);
1709 SBMAC_WRITECSR(s
->sbm_imr
,0);
1711 /* Turn off ticker */
1715 /* turn off receiver and transmitter */
1717 SBMAC_WRITECSR(s
->sbm_macenable
,0);
1719 /* We're stopped now. */
1721 s
->sbm_state
= sbmac_state_off
;
1724 * Stop DMA channels (rings should be ok now)
1727 sbdma_channel_stop(&(s
->sbm_rxdma
));
1728 sbdma_channel_stop(&(s
->sbm_txdma
));
1730 /* Empty the receive and transmit rings */
1732 sbdma_emptyring(&(s
->sbm_rxdma
));
1733 sbdma_emptyring(&(s
->sbm_txdma
));
1737 /**********************************************************************
1738 * SBMAC_SET_CHANNEL_STATE(state)
1740 * Set the channel's state ON or OFF
1747 ********************************************************************* */
1748 static sbmac_state_t
sbmac_set_channel_state(struct sbmac_softc
*sc
,
1749 sbmac_state_t state
)
1751 sbmac_state_t oldstate
= sc
->sbm_state
;
1754 * If same as previous state, return
1757 if (state
== oldstate
) {
1762 * If new state is ON, turn channel on
1765 if (state
== sbmac_state_on
) {
1766 sbmac_channel_start(sc
);
1769 sbmac_channel_stop(sc
);
1773 * Return previous state
1780 /**********************************************************************
1781 * SBMAC_PROMISCUOUS_MODE(sc,onoff)
1783 * Turn on or off promiscuous mode
1787 * onoff - 1 to turn on, 0 to turn off
1791 ********************************************************************* */
1793 static void sbmac_promiscuous_mode(struct sbmac_softc
*sc
,int onoff
)
1797 if (sc
->sbm_state
!= sbmac_state_on
)
1801 reg
= SBMAC_READCSR(sc
->sbm_rxfilter
);
1802 reg
|= M_MAC_ALLPKT_EN
;
1803 SBMAC_WRITECSR(sc
->sbm_rxfilter
,reg
);
1806 reg
= SBMAC_READCSR(sc
->sbm_rxfilter
);
1807 reg
&= ~M_MAC_ALLPKT_EN
;
1808 SBMAC_WRITECSR(sc
->sbm_rxfilter
,reg
);
1812 /**********************************************************************
1813 * SBMAC_SETIPHDR_OFFSET(sc,onoff)
1815 * Set the iphdr offset as 15 assuming ethernet encapsulation
1822 ********************************************************************* */
1824 static void sbmac_set_iphdr_offset(struct sbmac_softc
*sc
)
1828 /* Hard code the off set to 15 for now */
1829 reg
= SBMAC_READCSR(sc
->sbm_rxfilter
);
1830 reg
&= ~M_MAC_IPHDR_OFFSET
| V_MAC_IPHDR_OFFSET(15);
1831 SBMAC_WRITECSR(sc
->sbm_rxfilter
,reg
);
1833 /* read system identification to determine revision */
1834 if (periph_rev
>= 2) {
1835 printk(KERN_INFO
"%s: enabling TCP rcv checksum\n",
1837 sc
->rx_hw_checksum
= ENABLE
;
1839 sc
->rx_hw_checksum
= DISABLE
;
1844 /**********************************************************************
1845 * SBMAC_ADDR2REG(ptr)
1847 * Convert six bytes into the 64-bit register value that
1848 * we typically write into the SBMAC's address/mcast registers
1851 * ptr - pointer to 6 bytes
1855 ********************************************************************* */
1857 static uint64_t sbmac_addr2reg(unsigned char *ptr
)
1863 reg
|= (uint64_t) *(--ptr
);
1865 reg
|= (uint64_t) *(--ptr
);
1867 reg
|= (uint64_t) *(--ptr
);
1869 reg
|= (uint64_t) *(--ptr
);
1871 reg
|= (uint64_t) *(--ptr
);
1873 reg
|= (uint64_t) *(--ptr
);
1879 /**********************************************************************
1880 * SBMAC_SET_SPEED(s,speed)
1882 * Configure LAN speed for the specified MAC.
1883 * Warning: must be called when MAC is off!
1886 * s - sbmac structure
1887 * speed - speed to set MAC to (see sbmac_speed_t enum)
1891 * 0 indicates invalid parameters
1892 ********************************************************************* */
1894 static int sbmac_set_speed(struct sbmac_softc
*s
,sbmac_speed_t speed
)
1900 * Save new current values
1903 s
->sbm_speed
= speed
;
1905 if (s
->sbm_state
== sbmac_state_on
)
1906 return 0; /* save for next restart */
1909 * Read current register values
1912 cfg
= SBMAC_READCSR(s
->sbm_maccfg
);
1913 framecfg
= SBMAC_READCSR(s
->sbm_framecfg
);
1916 * Mask out the stuff we want to change
1919 cfg
&= ~(M_MAC_BURST_EN
| M_MAC_SPEED_SEL
);
1920 framecfg
&= ~(M_MAC_IFG_RX
| M_MAC_IFG_TX
| M_MAC_IFG_THRSH
|
1924 * Now add in the new bits
1928 case sbmac_speed_10
:
1929 framecfg
|= V_MAC_IFG_RX_10
|
1931 K_MAC_IFG_THRSH_10
|
1933 cfg
|= V_MAC_SPEED_SEL_10MBPS
;
1936 case sbmac_speed_100
:
1937 framecfg
|= V_MAC_IFG_RX_100
|
1939 V_MAC_IFG_THRSH_100
|
1940 V_MAC_SLOT_SIZE_100
;
1941 cfg
|= V_MAC_SPEED_SEL_100MBPS
;
1944 case sbmac_speed_1000
:
1945 framecfg
|= V_MAC_IFG_RX_1000
|
1947 V_MAC_IFG_THRSH_1000
|
1948 V_MAC_SLOT_SIZE_1000
;
1949 cfg
|= V_MAC_SPEED_SEL_1000MBPS
| M_MAC_BURST_EN
;
1952 case sbmac_speed_auto
: /* XXX not implemented */
1959 * Send the bits back to the hardware
1962 SBMAC_WRITECSR(s
->sbm_framecfg
,framecfg
);
1963 SBMAC_WRITECSR(s
->sbm_maccfg
,cfg
);
1968 /**********************************************************************
1969 * SBMAC_SET_DUPLEX(s,duplex,fc)
1971 * Set Ethernet duplex and flow control options for this MAC
1972 * Warning: must be called when MAC is off!
1975 * s - sbmac structure
1976 * duplex - duplex setting (see sbmac_duplex_t)
1977 * fc - flow control setting (see sbmac_fc_t)
1981 * 0 if an invalid parameter combination was specified
1982 ********************************************************************* */
1984 static int sbmac_set_duplex(struct sbmac_softc
*s
,sbmac_duplex_t duplex
,sbmac_fc_t fc
)
1989 * Save new current values
1992 s
->sbm_duplex
= duplex
;
1995 if (s
->sbm_state
== sbmac_state_on
)
1996 return 0; /* save for next restart */
1999 * Read current register values
2002 cfg
= SBMAC_READCSR(s
->sbm_maccfg
);
2005 * Mask off the stuff we're about to change
2008 cfg
&= ~(M_MAC_FC_SEL
| M_MAC_FC_CMD
| M_MAC_HDX_EN
);
2012 case sbmac_duplex_half
:
2014 case sbmac_fc_disabled
:
2015 cfg
|= M_MAC_HDX_EN
| V_MAC_FC_CMD_DISABLED
;
2018 case sbmac_fc_collision
:
2019 cfg
|= M_MAC_HDX_EN
| V_MAC_FC_CMD_ENABLED
;
2022 case sbmac_fc_carrier
:
2023 cfg
|= M_MAC_HDX_EN
| V_MAC_FC_CMD_ENAB_FALSECARR
;
2026 case sbmac_fc_auto
: /* XXX not implemented */
2028 case sbmac_fc_frame
: /* not valid in half duplex */
2029 default: /* invalid selection */
2034 case sbmac_duplex_full
:
2036 case sbmac_fc_disabled
:
2037 cfg
|= V_MAC_FC_CMD_DISABLED
;
2040 case sbmac_fc_frame
:
2041 cfg
|= V_MAC_FC_CMD_ENABLED
;
2044 case sbmac_fc_collision
: /* not valid in full duplex */
2045 case sbmac_fc_carrier
: /* not valid in full duplex */
2046 case sbmac_fc_auto
: /* XXX not implemented */
2052 case sbmac_duplex_auto
:
2053 /* XXX not implemented */
2058 * Send the bits back to the hardware
2061 SBMAC_WRITECSR(s
->sbm_maccfg
,cfg
);
2069 /**********************************************************************
2072 * Interrupt handler for MAC interrupts
2079 ********************************************************************* */
2080 static irqreturn_t
sbmac_intr(int irq
,void *dev_instance
,struct pt_regs
*rgs
)
2082 struct net_device
*dev
= (struct net_device
*) dev_instance
;
2083 struct sbmac_softc
*sc
= (struct sbmac_softc
*) (dev
->priv
);
2090 * Read the ISR (this clears the bits in the real
2091 * register, except for counter addr)
2094 isr
= SBMAC_READCSR(sc
->sbm_isr
) & ~M_MAC_COUNTER_ADDR
;
2102 * Transmits on channel 0
2105 if (isr
& (M_MAC_INT_CHANNEL
<< S_MAC_TX_CH0
)) {
2106 sbdma_tx_process(sc
,&(sc
->sbm_txdma
));
2110 * Receives on channel 0
2114 * It's important to test all the bits (or at least the
2115 * EOP_SEEN bit) when deciding to do the RX process
2116 * particularly when coalescing, to make sure we
2117 * take care of the following:
2119 * If you have some packets waiting (have been received
2120 * but no interrupt) and get a TX interrupt before
2121 * the RX timer or counter expires, reading the ISR
2122 * above will clear the timer and counter, and you
2123 * won't get another interrupt until a packet shows
2124 * up to start the timer again. Testing
2125 * EOP_SEEN here takes care of this case.
2126 * (EOP_SEEN is part of M_MAC_INT_CHANNEL << S_MAC_RX_CH0)
2130 if (isr
& (M_MAC_INT_CHANNEL
<< S_MAC_RX_CH0
)) {
2131 sbdma_rx_process(sc
,&(sc
->sbm_rxdma
));
2134 return IRQ_RETVAL(handled
);
2138 /**********************************************************************
2139 * SBMAC_START_TX(skb,dev)
2141 * Start output on the specified interface. Basically, we
2142 * queue as many buffers as we can until the ring fills up, or
2143 * we run off the end of the queue, whichever comes first.
2150 ********************************************************************* */
2151 static int sbmac_start_tx(struct sk_buff
*skb
, struct net_device
*dev
)
2153 struct sbmac_softc
*sc
= (struct sbmac_softc
*)dev
->priv
;
2156 spin_lock_irq (&sc
->sbm_lock
);
2159 * Put the buffer on the transmit ring. If we
2160 * don't have room, stop the queue.
2163 if (sbdma_add_txbuffer(&(sc
->sbm_txdma
),skb
)) {
2164 /* XXX save skb that we could not send */
2165 netif_stop_queue(dev
);
2166 spin_unlock_irq(&sc
->sbm_lock
);
2171 dev
->trans_start
= jiffies
;
2173 spin_unlock_irq (&sc
->sbm_lock
);
2178 /**********************************************************************
2179 * SBMAC_SETMULTI(sc)
2181 * Reprogram the multicast table into the hardware, given
2182 * the list of multicasts associated with the interface
2190 ********************************************************************* */
2192 static void sbmac_setmulti(struct sbmac_softc
*sc
)
2197 struct dev_mc_list
*mclist
;
2198 struct net_device
*dev
= sc
->sbm_dev
;
2201 * Clear out entire multicast table. We do this by nuking
2202 * the entire hash table and all the direct matches except
2203 * the first one, which is used for our station address
2206 for (idx
= 1; idx
< MAC_ADDR_COUNT
; idx
++) {
2207 port
= sc
->sbm_base
+ R_MAC_ADDR_BASE
+(idx
*sizeof(uint64_t));
2208 SBMAC_WRITECSR(port
,0);
2211 for (idx
= 0; idx
< MAC_HASH_COUNT
; idx
++) {
2212 port
= sc
->sbm_base
+ R_MAC_HASH_BASE
+(idx
*sizeof(uint64_t));
2213 SBMAC_WRITECSR(port
,0);
2217 * Clear the filter to say we don't want any multicasts.
2220 reg
= SBMAC_READCSR(sc
->sbm_rxfilter
);
2221 reg
&= ~(M_MAC_MCAST_INV
| M_MAC_MCAST_EN
);
2222 SBMAC_WRITECSR(sc
->sbm_rxfilter
,reg
);
2224 if (dev
->flags
& IFF_ALLMULTI
) {
2226 * Enable ALL multicasts. Do this by inverting the
2227 * multicast enable bit.
2229 reg
= SBMAC_READCSR(sc
->sbm_rxfilter
);
2230 reg
|= (M_MAC_MCAST_INV
| M_MAC_MCAST_EN
);
2231 SBMAC_WRITECSR(sc
->sbm_rxfilter
,reg
);
2237 * Progam new multicast entries. For now, only use the
2238 * perfect filter. In the future we'll need to use the
2239 * hash filter if the perfect filter overflows
2242 /* XXX only using perfect filter for now, need to use hash
2243 * XXX if the table overflows */
2245 idx
= 1; /* skip station address */
2246 mclist
= dev
->mc_list
;
2247 while (mclist
&& (idx
< MAC_ADDR_COUNT
)) {
2248 reg
= sbmac_addr2reg(mclist
->dmi_addr
);
2249 port
= sc
->sbm_base
+ R_MAC_ADDR_BASE
+(idx
* sizeof(uint64_t));
2250 SBMAC_WRITECSR(port
,reg
);
2252 mclist
= mclist
->next
;
2256 * Enable the "accept multicast bits" if we programmed at least one
2261 reg
= SBMAC_READCSR(sc
->sbm_rxfilter
);
2262 reg
|= M_MAC_MCAST_EN
;
2263 SBMAC_WRITECSR(sc
->sbm_rxfilter
,reg
);
2269 #if defined(SBMAC_ETH0_HWADDR) || defined(SBMAC_ETH1_HWADDR) || defined(SBMAC_ETH2_HWADDR)
2270 /**********************************************************************
2271 * SBMAC_PARSE_XDIGIT(str)
2273 * Parse a hex digit, returning its value
2279 * hex value, or -1 if invalid
2280 ********************************************************************* */
2282 static int sbmac_parse_xdigit(char str
)
2286 if ((str
>= '0') && (str
<= '9'))
2288 else if ((str
>= 'a') && (str
<= 'f'))
2289 digit
= str
- 'a' + 10;
2290 else if ((str
>= 'A') && (str
<= 'F'))
2291 digit
= str
- 'A' + 10;
2298 /**********************************************************************
2299 * SBMAC_PARSE_HWADDR(str,hwaddr)
2301 * Convert a string in the form xx:xx:xx:xx:xx:xx into a 6-byte
2306 * hwaddr - pointer to hardware address
2310 ********************************************************************* */
2312 static int sbmac_parse_hwaddr(char *str
, unsigned char *hwaddr
)
2317 while (*str
&& (idx
> 0)) {
2318 digit1
= sbmac_parse_xdigit(*str
);
2325 if ((*str
== ':') || (*str
== '-')) {
2330 digit2
= sbmac_parse_xdigit(*str
);
2336 *hwaddr
++ = (digit1
<< 4) | digit2
;
2348 static int sb1250_change_mtu(struct net_device
*_dev
, int new_mtu
)
2350 if (new_mtu
> ENET_PACKET_SIZE
)
2352 _dev
->mtu
= new_mtu
;
2353 printk(KERN_INFO
"changing the mtu to %d\n", new_mtu
);
2357 /**********************************************************************
2360 * Attach routine - init hardware and hook ourselves into linux
2363 * dev - net_device structure
2367 ********************************************************************* */
2369 static int sbmac_init(struct net_device
*dev
, int idx
)
2371 struct sbmac_softc
*sc
;
2372 unsigned char *eaddr
;
2376 sc
= (struct sbmac_softc
*)dev
->priv
;
2378 /* Determine controller base address */
2380 sc
->sbm_base
= KSEG1ADDR(dev
->base_addr
);
2384 eaddr
= sc
->sbm_hwaddr
;
2387 * Read the ethernet address. The firwmare left this programmed
2388 * for us in the ethernet address register for each mac.
2391 ea_reg
= SBMAC_READCSR(sc
->sbm_base
+ R_MAC_ETHERNET_ADDR
);
2392 SBMAC_WRITECSR(sc
->sbm_base
+ R_MAC_ETHERNET_ADDR
, 0);
2393 for (i
= 0; i
< 6; i
++) {
2394 eaddr
[i
] = (uint8_t) (ea_reg
& 0xFF);
2398 for (i
= 0; i
< 6; i
++) {
2399 dev
->dev_addr
[i
] = eaddr
[i
];
2407 sc
->sbm_buffersize
= ENET_PACKET_SIZE
+ SMP_CACHE_BYTES
* 2 + ETHER_ALIGN
;
2410 * Initialize context (get pointers to registers and stuff), then
2411 * allocate the memory for the descriptor tables.
2418 * Display Ethernet address (this is called during the config
2419 * process so we need to finish off the config message that
2420 * was being displayed)
2423 "%s: SiByte Ethernet at 0x%08lX, address: %02X-%02X-%02X-%02X-%02X-%02X\n",
2424 dev
->name
, dev
->base_addr
,
2425 eaddr
[0],eaddr
[1],eaddr
[2],eaddr
[3],eaddr
[4],eaddr
[5]);
2428 * Set up Linux device callins
2431 spin_lock_init(&(sc
->sbm_lock
));
2434 dev
->open
= sbmac_open
;
2435 dev
->hard_start_xmit
= sbmac_start_tx
;
2436 dev
->stop
= sbmac_close
;
2437 dev
->get_stats
= sbmac_get_stats
;
2438 dev
->set_multicast_list
= sbmac_set_rx_mode
;
2439 dev
->do_ioctl
= sbmac_mii_ioctl
;
2440 dev
->tx_timeout
= sbmac_tx_timeout
;
2441 dev
->watchdog_timeo
= TX_TIMEOUT
;
2443 dev
->change_mtu
= sb1250_change_mtu
;
2445 /* This is needed for PASS2 for Rx H/W checksum feature */
2446 sbmac_set_iphdr_offset(sc
);
2452 static int sbmac_open(struct net_device
*dev
)
2454 struct sbmac_softc
*sc
= (struct sbmac_softc
*)dev
->priv
;
2459 printk(KERN_DEBUG
"%s: sbmac_open() irq %d.\n", dev
->name
, dev
->irq
);
2463 * map/route interrupt
2466 if (request_irq(dev
->irq
, &sbmac_intr
, SA_SHIRQ
, dev
->name
, dev
)) {
2472 * Configure default speed
2475 sbmac_mii_poll(sc
,noisy_mii
);
2478 * Turn on the channel
2481 sbmac_set_channel_state(sc
,sbmac_state_on
);
2484 * XXX Station address is in dev->dev_addr
2487 if (dev
->if_port
== 0)
2490 netif_start_queue(dev
);
2492 sbmac_set_rx_mode(dev
);
2494 /* Set the timer to check for link beat. */
2495 init_timer(&sc
->sbm_timer
);
2496 sc
->sbm_timer
.expires
= jiffies
+ 2;
2497 sc
->sbm_timer
.data
= (unsigned long)dev
;
2498 sc
->sbm_timer
.function
= &sbmac_timer
;
2499 add_timer(&sc
->sbm_timer
);
2506 static int sbmac_mii_poll(struct sbmac_softc
*s
,int noisy
)
2508 int bmsr
,bmcr
,k1stsr
,anlpar
;
2513 /* Read the mode status and mode control registers. */
2514 bmsr
= sbmac_mii_read(s
,s
->sbm_phys
[0],MII_BMSR
);
2515 bmcr
= sbmac_mii_read(s
,s
->sbm_phys
[0],MII_BMCR
);
2517 /* get the link partner status */
2518 anlpar
= sbmac_mii_read(s
,s
->sbm_phys
[0],MII_ANLPAR
);
2520 /* if supported, read the 1000baseT register */
2521 if (bmsr
& BMSR_1000BT_XSR
) {
2522 k1stsr
= sbmac_mii_read(s
,s
->sbm_phys
[0],MII_K1STSR
);
2530 if ((bmsr
& BMSR_LINKSTAT
) == 0) {
2532 * If link status is down, clear out old info so that when
2533 * it comes back up it will force us to reconfigure speed
2535 s
->sbm_phy_oldbmsr
= 0;
2536 s
->sbm_phy_oldanlpar
= 0;
2537 s
->sbm_phy_oldk1stsr
= 0;
2541 if ((s
->sbm_phy_oldbmsr
!= bmsr
) ||
2542 (s
->sbm_phy_oldanlpar
!= anlpar
) ||
2543 (s
->sbm_phy_oldk1stsr
!= k1stsr
)) {
2545 printk(KERN_DEBUG
"%s: bmsr:%x/%x anlpar:%x/%x k1stsr:%x/%x\n",
2547 s
->sbm_phy_oldbmsr
,bmsr
,
2548 s
->sbm_phy_oldanlpar
,anlpar
,
2549 s
->sbm_phy_oldk1stsr
,k1stsr
);
2551 s
->sbm_phy_oldbmsr
= bmsr
;
2552 s
->sbm_phy_oldanlpar
= anlpar
;
2553 s
->sbm_phy_oldk1stsr
= k1stsr
;
2560 p
+= sprintf(p
,"Link speed: ");
2562 if (k1stsr
& K1STSR_LP1KFD
) {
2563 s
->sbm_speed
= sbmac_speed_1000
;
2564 s
->sbm_duplex
= sbmac_duplex_full
;
2565 s
->sbm_fc
= sbmac_fc_frame
;
2566 p
+= sprintf(p
,"1000BaseT FDX");
2568 else if (k1stsr
& K1STSR_LP1KHD
) {
2569 s
->sbm_speed
= sbmac_speed_1000
;
2570 s
->sbm_duplex
= sbmac_duplex_half
;
2571 s
->sbm_fc
= sbmac_fc_disabled
;
2572 p
+= sprintf(p
,"1000BaseT HDX");
2574 else if (anlpar
& ANLPAR_TXFD
) {
2575 s
->sbm_speed
= sbmac_speed_100
;
2576 s
->sbm_duplex
= sbmac_duplex_full
;
2577 s
->sbm_fc
= (anlpar
& ANLPAR_PAUSE
) ? sbmac_fc_frame
: sbmac_fc_disabled
;
2578 p
+= sprintf(p
,"100BaseT FDX");
2580 else if (anlpar
& ANLPAR_TXHD
) {
2581 s
->sbm_speed
= sbmac_speed_100
;
2582 s
->sbm_duplex
= sbmac_duplex_half
;
2583 s
->sbm_fc
= sbmac_fc_disabled
;
2584 p
+= sprintf(p
,"100BaseT HDX");
2586 else if (anlpar
& ANLPAR_10FD
) {
2587 s
->sbm_speed
= sbmac_speed_10
;
2588 s
->sbm_duplex
= sbmac_duplex_full
;
2589 s
->sbm_fc
= sbmac_fc_frame
;
2590 p
+= sprintf(p
,"10BaseT FDX");
2592 else if (anlpar
& ANLPAR_10HD
) {
2593 s
->sbm_speed
= sbmac_speed_10
;
2594 s
->sbm_duplex
= sbmac_duplex_half
;
2595 s
->sbm_fc
= sbmac_fc_collision
;
2596 p
+= sprintf(p
,"10BaseT HDX");
2599 p
+= sprintf(p
,"Unknown");
2603 printk(KERN_INFO
"%s: %s\n",s
->sbm_dev
->name
,buffer
);
2610 static void sbmac_timer(unsigned long data
)
2612 struct net_device
*dev
= (struct net_device
*)data
;
2613 struct sbmac_softc
*sc
= (struct sbmac_softc
*)dev
->priv
;
2617 spin_lock_irq (&sc
->sbm_lock
);
2619 /* make IFF_RUNNING follow the MII status bit "Link established" */
2620 mii_status
= sbmac_mii_read(sc
, sc
->sbm_phys
[0], MII_BMSR
);
2622 if ( (mii_status
& BMSR_LINKSTAT
) != (sc
->sbm_phy_oldlinkstat
) ) {
2623 sc
->sbm_phy_oldlinkstat
= mii_status
& BMSR_LINKSTAT
;
2624 if (mii_status
& BMSR_LINKSTAT
) {
2625 netif_carrier_on(dev
);
2628 netif_carrier_off(dev
);
2633 * Poll the PHY to see what speed we should be running at
2636 if (sbmac_mii_poll(sc
,noisy_mii
)) {
2637 if (sc
->sbm_state
!= sbmac_state_off
) {
2639 * something changed, restart the channel
2642 printk("%s: restarting channel because speed changed\n",
2645 sbmac_channel_stop(sc
);
2646 sbmac_channel_start(sc
);
2650 spin_unlock_irq (&sc
->sbm_lock
);
2652 sc
->sbm_timer
.expires
= jiffies
+ next_tick
;
2653 add_timer(&sc
->sbm_timer
);
2657 static void sbmac_tx_timeout (struct net_device
*dev
)
2659 struct sbmac_softc
*sc
= (struct sbmac_softc
*) dev
->priv
;
2661 spin_lock_irq (&sc
->sbm_lock
);
2664 dev
->trans_start
= jiffies
;
2665 sc
->sbm_stats
.tx_errors
++;
2667 spin_unlock_irq (&sc
->sbm_lock
);
2669 printk (KERN_WARNING
"%s: Transmit timed out\n",dev
->name
);
2675 static struct net_device_stats
*sbmac_get_stats(struct net_device
*dev
)
2677 struct sbmac_softc
*sc
= (struct sbmac_softc
*)dev
->priv
;
2678 unsigned long flags
;
2680 spin_lock_irqsave(&sc
->sbm_lock
, flags
);
2682 /* XXX update other stats here */
2684 spin_unlock_irqrestore(&sc
->sbm_lock
, flags
);
2686 return &sc
->sbm_stats
;
2691 static void sbmac_set_rx_mode(struct net_device
*dev
)
2693 unsigned long flags
;
2695 struct sbmac_softc
*sc
= (struct sbmac_softc
*)dev
->priv
;
2697 spin_lock_irqsave(&sc
->sbm_lock
, flags
);
2698 if ((dev
->flags
^ sc
->sbm_devflags
) & IFF_PROMISC
) {
2700 * Promiscuous changed.
2703 if (dev
->flags
& IFF_PROMISC
) {
2704 /* Unconditionally log net taps. */
2706 sbmac_promiscuous_mode(sc
,1);
2710 sbmac_promiscuous_mode(sc
,0);
2713 spin_unlock_irqrestore(&sc
->sbm_lock
, flags
);
2716 printk(KERN_NOTICE
"%s: Promiscuous mode %sabled.\n",
2717 dev
->name
,(msg_flag
==1)?"en":"dis");
2721 * Program the multicasts. Do this every time.
2728 static int sbmac_mii_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
2730 struct sbmac_softc
*sc
= (struct sbmac_softc
*)dev
->priv
;
2731 u16
*data
= (u16
*)&rq
->ifr_data
;
2732 unsigned long flags
;
2735 spin_lock_irqsave(&sc
->sbm_lock
, flags
);
2739 case SIOCDEVPRIVATE
: /* Get the address of the PHY in use. */
2740 data
[0] = sc
->sbm_phys
[0] & 0x1f;
2742 case SIOCDEVPRIVATE
+1: /* Read the specified MII register. */
2743 data
[3] = sbmac_mii_read(sc
, data
[0] & 0x1f, data
[1] & 0x1f);
2745 case SIOCDEVPRIVATE
+2: /* Write the specified MII register */
2746 if (!capable(CAP_NET_ADMIN
)) {
2751 printk(KERN_DEBUG
"%s: sbmac_mii_ioctl: write %02X %02X %02X\n",dev
->name
,
2752 data
[0],data
[1],data
[2]);
2754 sbmac_mii_write(sc
, data
[0] & 0x1f, data
[1] & 0x1f, data
[2]);
2757 retval
= -EOPNOTSUPP
;
2760 spin_unlock_irqrestore(&sc
->sbm_lock
, flags
);
2764 static int sbmac_close(struct net_device
*dev
)
2766 struct sbmac_softc
*sc
= (struct sbmac_softc
*)dev
->priv
;
2767 unsigned long flags
;
2770 sbmac_set_channel_state(sc
,sbmac_state_off
);
2772 del_timer_sync(&sc
->sbm_timer
);
2774 spin_lock_irqsave(&sc
->sbm_lock
, flags
);
2776 netif_stop_queue(dev
);
2779 printk(KERN_DEBUG
"%s: Shutting down ethercard\n",dev
->name
);
2782 spin_unlock_irqrestore(&sc
->sbm_lock
, flags
);
2785 synchronize_irq(irq
);
2788 sbdma_emptyring(&(sc
->sbm_txdma
));
2789 sbdma_emptyring(&(sc
->sbm_rxdma
));
2798 #if defined(SBMAC_ETH0_HWADDR) || defined(SBMAC_ETH1_HWADDR) || defined(SBMAC_ETH2_HWADDR)
2800 sbmac_setup_hwaddr(int chan
,char *addr
)
2806 port
= A_MAC_CHANNEL_BASE(chan
);
2807 sbmac_parse_hwaddr(addr
,eaddr
);
2808 val
= sbmac_addr2reg(eaddr
);
2809 SBMAC_WRITECSR(KSEG1ADDR(port
+R_MAC_ETHERNET_ADDR
),val
);
2810 val
= SBMAC_READCSR(KSEG1ADDR(port
+R_MAC_ETHERNET_ADDR
));
2814 static struct net_device
*dev_sbmac
[MAX_UNITS
] = {0,0,0};
2817 sbmac_init_module(void)
2821 struct net_device
*dev
;
2826 * For bringup when not using the firmware, we can pre-fill
2827 * the MAC addresses using the environment variables
2828 * specified in this file (or maybe from the config file?)
2830 #ifdef SBMAC_ETH0_HWADDR
2831 sbmac_setup_hwaddr(0,SBMAC_ETH0_HWADDR
);
2833 #ifdef SBMAC_ETH1_HWADDR
2834 sbmac_setup_hwaddr(1,SBMAC_ETH1_HWADDR
);
2836 #ifdef SBMAC_ETH2_HWADDR
2837 sbmac_setup_hwaddr(2,SBMAC_ETH2_HWADDR
);
2841 * Walk through the Ethernet controllers and find
2842 * those who have their MAC addresses set.
2845 case K_SYS_SOC_TYPE_BCM1250
:
2846 case K_SYS_SOC_TYPE_BCM1250_ALT
:
2849 case K_SYS_SOC_TYPE_BCM1120
:
2850 case K_SYS_SOC_TYPE_BCM1125
:
2851 case K_SYS_SOC_TYPE_BCM1125H
:
2852 case K_SYS_SOC_TYPE_BCM1250_ALT2
: /* Hybrid */
2859 if (chip_max_units
> MAX_UNITS
)
2860 chip_max_units
= MAX_UNITS
;
2862 for (idx
= 0; idx
< chip_max_units
; idx
++) {
2865 * This is the base address of the MAC.
2868 port
= A_MAC_CHANNEL_BASE(idx
);
2871 * The R_MAC_ETHERNET_ADDR register will be set to some nonzero
2872 * value for us by the firmware if we're going to use this MAC.
2873 * If we find a zero, skip this MAC.
2876 sbmac_orig_hwaddr
[idx
] = SBMAC_READCSR(KSEG1ADDR(port
+R_MAC_ETHERNET_ADDR
));
2877 if (sbmac_orig_hwaddr
[idx
] == 0) {
2878 printk(KERN_DEBUG
"sbmac: not configuring MAC at "
2884 * Okay, cool. Initialize this MAC.
2887 dev
= init_etherdev(NULL
,sizeof(struct sbmac_softc
));
2889 return -ENOMEM
; /* return ENOMEM */
2891 printk(KERN_DEBUG
"sbmac: configuring MAC at %lx\n", port
);
2893 dev
->irq
= K_INT_MAC_0
+ idx
;
2894 dev
->base_addr
= port
;
2896 /*dev->init = sbmac_init;*/
2897 sbmac_init(dev
, macidx
);
2899 dev_sbmac
[macidx
] = dev
;
2904 * Should we care, 'macidx' is the total number of enabled MACs.
2912 sbmac_cleanup_module(void)
2915 struct net_device
*dev
;
2917 for (idx
= 0; idx
< MAX_UNITS
; idx
++) {
2918 dev
= dev_sbmac
[idx
];
2921 if (dev
->priv
!= NULL
) {
2922 struct sbmac_softc
*sc
= (struct sbmac_softc
*) dev
->priv
;
2924 unregister_netdev(dev
);
2926 sbmac_uninitctx(sc
);
2930 port
= A_MAC_CHANNEL_BASE(idx
);
2931 SBMAC_WRITECSR(KSEG1ADDR(port
+R_MAC_ETHERNET_ADDR
), sbmac_orig_hwaddr
[idx
] );
2933 dev_sbmac
[idx
] = NULL
;
2937 module_init(sbmac_init_module
);
2938 module_exit(sbmac_cleanup_module
);