More meth updates.
[linux-2.6/linux-mips.git] / drivers / net / isa-skeleton.c
blob6bc03583c5d7063f90dabeeafb8a19c7694e6987
1 /* isa-skeleton.c: A network driver outline for linux.
3 * Written 1993-94 by Donald Becker.
5 * Copyright 1993 United States Government as represented by the
6 * Director, National Security Agency.
8 * This software may be used and distributed according to the terms
9 * of the GNU General Public License, incorporated herein by reference.
11 * The author may be reached as becker@scyld.com, or C/O
12 * Scyld Computing Corporation
13 * 410 Severn Ave., Suite 210
14 * Annapolis MD 21403
16 * This file is an outline for writing a network device driver for the
17 * the Linux operating system.
19 * To write (or understand) a driver, have a look at the "loopback.c" file to
20 * get a feel of what is going on, and then use the code below as a skeleton
21 * for the new driver.
25 static const char *version =
26 "isa-skeleton.c:v1.51 9/24/94 Donald Becker (becker@cesdis.gsfc.nasa.gov)\n";
29 * Sources:
30 * List your sources of programming information to document that
31 * the driver is your own creation, and give due credit to others
32 * that contributed to the work. Remember that GNU project code
33 * cannot use proprietary or trade secret information. Interface
34 * definitions are generally considered non-copyrightable to the
35 * extent that the same names and structures must be used to be
36 * compatible.
38 * Finally, keep in mind that the Linux kernel is has an API, not
39 * ABI. Proprietary object-code-only distributions are not permitted
40 * under the GPL.
43 #include <linux/module.h>
44 #include <linux/kernel.h>
45 #include <linux/types.h>
46 #include <linux/fcntl.h>
47 #include <linux/interrupt.h>
48 #include <linux/ioport.h>
49 #include <linux/in.h>
50 #include <linux/slab.h>
51 #include <linux/string.h>
52 #include <linux/spinlock.h>
53 #include <linux/errno.h>
54 #include <linux/init.h>
55 #include <linux/netdevice.h>
56 #include <linux/etherdevice.h>
57 #include <linux/skbuff.h>
59 #include <asm/system.h>
60 #include <asm/bitops.h>
61 #include <asm/io.h>
62 #include <asm/dma.h>
65 * The name of the card. Is used for messages and in the requests for
66 * io regions, irqs and dma channels
68 static const char* cardname = "netcard";
70 /* First, a few definitions that the brave might change. */
72 /* A zero-terminated list of I/O addresses to be probed. */
73 static unsigned int netcard_portlist[] __initdata =
74 { 0x200, 0x240, 0x280, 0x2C0, 0x300, 0x320, 0x340, 0};
76 /* use 0 for production, 1 for verification, >2 for debug */
77 #ifndef NET_DEBUG
78 #define NET_DEBUG 2
79 #endif
80 static unsigned int net_debug = NET_DEBUG;
82 /* The number of low I/O ports used by the ethercard. */
83 #define NETCARD_IO_EXTENT 32
85 #define MY_TX_TIMEOUT ((400*HZ)/1000)
87 /* Information that need to be kept for each board. */
88 struct net_local {
89 struct net_device_stats stats;
90 long open_time; /* Useless example local info. */
92 /* Tx control lock. This protects the transmit buffer ring
93 * state along with the "tx full" state of the driver. This
94 * means all netif_queue flow control actions are protected
95 * by this lock as well.
97 spinlock_t lock;
100 /* The station (ethernet) address prefix, used for IDing the board. */
101 #define SA_ADDR0 0x00
102 #define SA_ADDR1 0x42
103 #define SA_ADDR2 0x65
105 /* Index to functions, as function prototypes. */
107 extern int netcard_probe(struct net_device *dev);
109 static int netcard_probe1(struct net_device *dev, int ioaddr);
110 static int net_open(struct net_device *dev);
111 static int net_send_packet(struct sk_buff *skb, struct net_device *dev);
112 static irqreturn_t net_interrupt(int irq, void *dev_id, struct pt_regs *regs);
113 static void net_rx(struct net_device *dev);
114 static int net_close(struct net_device *dev);
115 static struct net_device_stats *net_get_stats(struct net_device *dev);
116 static void set_multicast_list(struct net_device *dev);
117 static void net_tx_timeout(struct net_device *dev);
120 /* Example routines you must write ;->. */
121 #define tx_done(dev) 1
122 static void hardware_send_packet(short ioaddr, char *buf, int length);
123 static void chipset_init(struct net_device *dev, int startp);
126 * Check for a network adaptor of this type, and return '0' iff one exists.
127 * If dev->base_addr == 0, probe all likely locations.
128 * If dev->base_addr == 1, always return failure.
129 * If dev->base_addr == 2, allocate space for the device and return success
130 * (detachable devices only).
132 int __init
133 netcard_probe(struct net_device *dev)
135 int i;
136 int base_addr = dev->base_addr;
138 SET_MODULE_OWNER(dev);
140 if (base_addr > 0x1ff) /* Check a single specified location. */
141 return netcard_probe1(dev, base_addr);
142 else if (base_addr != 0) /* Don't probe at all. */
143 return -ENXIO;
145 for (i = 0; netcard_portlist[i]; i++) {
146 int ioaddr = netcard_portlist[i];
147 if (check_region(ioaddr, NETCARD_IO_EXTENT))
148 continue;
149 if (netcard_probe1(dev, ioaddr) == 0)
150 return 0;
153 return -ENODEV;
157 * This is the real probe routine. Linux has a history of friendly device
158 * probes on the ISA bus. A good device probes avoids doing writes, and
159 * verifies that the correct device exists and functions.
161 static int __init netcard_probe1(struct net_device *dev, int ioaddr)
163 struct net_local *np;
164 static unsigned version_printed;
165 int i;
168 * For ethernet adaptors the first three octets of the station address
169 * contains the manufacturer's unique code. That might be a good probe
170 * method. Ideally you would add additional checks.
172 if (inb(ioaddr + 0) != SA_ADDR0
173 || inb(ioaddr + 1) != SA_ADDR1
174 || inb(ioaddr + 2) != SA_ADDR2) {
175 return -ENODEV;
178 if (net_debug && version_printed++ == 0)
179 printk(KERN_DEBUG "%s", version);
181 printk(KERN_INFO "%s: %s found at %#3x, ", dev->name, cardname, ioaddr);
183 /* Fill in the 'dev' fields. */
184 dev->base_addr = ioaddr;
186 /* Retrieve and print the ethernet address. */
187 for (i = 0; i < 6; i++)
188 printk(" %2.2x", dev->dev_addr[i] = inb(ioaddr + i));
190 #ifdef jumpered_interrupts
192 * If this board has jumpered interrupts, allocate the interrupt
193 * vector now. There is no point in waiting since no other device
194 * can use the interrupt, and this marks the irq as busy. Jumpered
195 * interrupts are typically not reported by the boards, and we must
196 * used autoIRQ to find them.
199 if (dev->irq == -1)
200 ; /* Do nothing: a user-level program will set it. */
201 else if (dev->irq < 2) { /* "Auto-IRQ" */
202 unsigned long irq_mask = probe_irq_on();
203 /* Trigger an interrupt here. */
205 dev->irq = probe_irq_off(irq_mask);
206 if (net_debug >= 2)
207 printk(" autoirq is %d", dev->irq);
208 } else if (dev->irq == 2)
210 * Fixup for users that don't know that IRQ 2 is really
211 * IRQ9, or don't know which one to set.
213 dev->irq = 9;
216 int irqval = request_irq(dev->irq, &net_interrupt, 0, cardname, dev);
217 if (irqval) {
218 printk("%s: unable to get IRQ %d (irqval=%d).\n",
219 dev->name, dev->irq, irqval);
220 return -EAGAIN;
223 #endif /* jumpered interrupt */
224 #ifdef jumpered_dma
226 * If we use a jumpered DMA channel, that should be probed for and
227 * allocated here as well. See lance.c for an example.
229 if (dev->dma == 0) {
230 if (request_dma(dev->dma, cardname)) {
231 printk("DMA %d allocation failed.\n", dev->dma);
232 return -EAGAIN;
233 } else
234 printk(", assigned DMA %d.\n", dev->dma);
235 } else {
236 short dma_status, new_dma_status;
238 /* Read the DMA channel status registers. */
239 dma_status = ((inb(DMA1_STAT_REG) >> 4) & 0x0f) |
240 (inb(DMA2_STAT_REG) & 0xf0);
241 /* Trigger a DMA request, perhaps pause a bit. */
242 outw(0x1234, ioaddr + 8);
243 /* Re-read the DMA status registers. */
244 new_dma_status = ((inb(DMA1_STAT_REG) >> 4) & 0x0f) |
245 (inb(DMA2_STAT_REG) & 0xf0);
247 * Eliminate the old and floating requests,
248 * and DMA4 the cascade.
250 new_dma_status ^= dma_status;
251 new_dma_status &= ~0x10;
252 for (i = 7; i > 0; i--)
253 if (test_bit(i, &new_dma_status)) {
254 dev->dma = i;
255 break;
257 if (i <= 0) {
258 printk("DMA probe failed.\n");
259 return -EAGAIN;
261 if (request_dma(dev->dma, cardname)) {
262 printk("probed DMA %d allocation failed.\n", dev->dma);
263 return -EAGAIN;
266 #endif /* jumpered DMA */
268 /* Initialize the device structure. */
269 if (dev->priv == NULL) {
270 dev->priv = kmalloc(sizeof(struct net_local), GFP_KERNEL);
271 if (dev->priv == NULL)
272 return -ENOMEM;
275 memset(dev->priv, 0, sizeof(struct net_local));
277 np = (struct net_local *)dev->priv;
278 spin_lock_init(&np->lock);
280 /* Grab the region so that no one else tries to probe our ioports. */
281 request_region(ioaddr, NETCARD_IO_EXTENT, cardname);
283 dev->open = net_open;
284 dev->stop = net_close;
285 dev->hard_start_xmit = net_send_packet;
286 dev->get_stats = net_get_stats;
287 dev->set_multicast_list = &set_multicast_list;
289 dev->tx_timeout = &net_tx_timeout;
290 dev->watchdog_timeo = MY_TX_TIMEOUT;
292 /* Fill in the fields of the device structure with ethernet values. */
293 ether_setup(dev);
295 return 0;
298 static void net_tx_timeout(struct net_device *dev)
300 struct net_local *np = (struct net_local *)dev->priv;
302 printk(KERN_WARNING "%s: transmit timed out, %s?\n", dev->name,
303 tx_done(dev) ? "IRQ conflict" : "network cable problem");
305 /* Try to restart the adaptor. */
306 chipset_init(dev, 1);
308 np->stats.tx_errors++;
310 /* If we have space available to accept new transmit
311 * requests, wake up the queueing layer. This would
312 * be the case if the chipset_init() call above just
313 * flushes out the tx queue and empties it.
315 * If instead, the tx queue is retained then the
316 * netif_wake_queue() call should be placed in the
317 * TX completion interrupt handler of the driver instead
318 * of here.
320 if (!tx_full(dev))
321 netif_wake_queue(dev);
325 * Open/initialize the board. This is called (in the current kernel)
326 * sometime after booting when the 'ifconfig' program is run.
328 * This routine should set everything up anew at each open, even
329 * registers that "should" only need to be set once at boot, so that
330 * there is non-reboot way to recover if something goes wrong.
332 static int
333 net_open(struct net_device *dev)
335 struct net_local *np = (struct net_local *)dev->priv;
336 int ioaddr = dev->base_addr;
338 * This is used if the interrupt line can turned off (shared).
339 * See 3c503.c for an example of selecting the IRQ at config-time.
341 if (request_irq(dev->irq, &net_interrupt, 0, cardname, dev)) {
342 return -EAGAIN;
345 * Always allocate the DMA channel after the IRQ,
346 * and clean up on failure.
348 if (request_dma(dev->dma, cardname)) {
349 free_irq(dev->irq, dev);
350 return -EAGAIN;
353 /* Reset the hardware here. Don't forget to set the station address. */
354 chipset_init(dev, 1);
355 outb(0x00, ioaddr);
356 np->open_time = jiffies;
358 /* We are now ready to accept transmit requeusts from
359 * the queueing layer of the networking.
361 netif_start_queue(dev);
363 return 0;
366 /* This will only be invoked if your driver is _not_ in XOFF state.
367 * What this means is that you need not check it, and that this
368 * invariant will hold if you make sure that the netif_*_queue()
369 * calls are done at the proper times.
371 static int net_send_packet(struct sk_buff *skb, struct net_device *dev)
373 struct net_local *np = (struct net_local *)dev->priv;
374 int ioaddr = dev->base_addr;
375 short length = ETH_ZLEN < skb->len ? skb->len : ETH_ZLEN;
376 unsigned char *buf = skb->data;
378 /* If some error occurs while trying to transmit this
379 * packet, you should return '1' from this function.
380 * In such a case you _may not_ do anything to the
381 * SKB, it is still owned by the network queueing
382 * layer when an error is returned. This means you
383 * may not modify any SKB fields, you may not free
384 * the SKB, etc.
387 #if TX_RING
388 /* This is the most common case for modern hardware.
389 * The spinlock protects this code from the TX complete
390 * hardware interrupt handler. Queue flow control is
391 * thus managed under this lock as well.
393 spin_lock_irq(&np->lock);
395 add_to_tx_ring(np, skb, length);
396 dev->trans_start = jiffies;
398 /* If we just used up the very last entry in the
399 * TX ring on this device, tell the queueing
400 * layer to send no more.
402 if (tx_full(dev))
403 netif_stop_queue(dev);
405 /* When the TX completion hw interrupt arrives, this
406 * is when the transmit statistics are updated.
409 spin_unlock_irq(&np->lock);
410 #else
411 /* This is the case for older hardware which takes
412 * a single transmit buffer at a time, and it is
413 * just written to the device via PIO.
415 * No spin locking is needed since there is no TX complete
416 * event. If by chance your card does have a TX complete
417 * hardware IRQ then you may need to utilize np->lock here.
419 hardware_send_packet(ioaddr, buf, length);
420 np->stats.tx_bytes += skb->len;
422 dev->trans_start = jiffies;
424 /* You might need to clean up and record Tx statistics here. */
425 if (inw(ioaddr) == /*RU*/81)
426 np->stats.tx_aborted_errors++;
427 dev_kfree_skb (skb);
428 #endif
430 return 0;
433 #if TX_RING
434 /* This handles TX complete events posted by the device
435 * via interrupts.
437 void net_tx(struct net_device *dev)
439 struct net_local *np = (struct net_local *)dev->priv;
440 int entry;
442 /* This protects us from concurrent execution of
443 * our dev->hard_start_xmit function above.
445 spin_lock(&np->lock);
447 entry = np->tx_old;
448 while (tx_entry_is_sent(np, entry)) {
449 struct sk_buff *skb = np->skbs[entry];
451 np->stats.tx_bytes += skb->len;
452 dev_kfree_skb_irq (skb);
454 entry = next_tx_entry(np, entry);
456 np->tx_old = entry;
458 /* If we had stopped the queue due to a "tx full"
459 * condition, and space has now been made available,
460 * wake up the queue.
462 if (netif_queue_stopped(dev) && ! tx_full(dev))
463 netif_wake_queue(dev);
465 spin_unlock(&np->lock);
467 #endif
470 * The typical workload of the driver:
471 * Handle the network interface interrupts.
473 static irqreturn_t net_interrupt(int irq, void *dev_id, struct pt_regs * regs)
475 struct net_device *dev = dev_id;
476 struct net_local *np;
477 int ioaddr, status;
478 int handled = 0;
480 ioaddr = dev->base_addr;
482 np = (struct net_local *)dev->priv;
483 status = inw(ioaddr + 0);
485 if (status == 0)
486 goto out;
487 handled = 1;
489 if (status & RX_INTR) {
490 /* Got a packet(s). */
491 net_rx(dev);
493 #if TX_RING
494 if (status & TX_INTR) {
495 /* Transmit complete. */
496 net_tx(dev);
497 np->stats.tx_packets++;
498 netif_wake_queue(dev);
500 #endif
501 if (status & COUNTERS_INTR) {
502 /* Increment the appropriate 'localstats' field. */
503 np->stats.tx_window_errors++;
505 out:
506 return IRQ_RETVAL(handled);
509 /* We have a good packet(s), get it/them out of the buffers. */
510 static void
511 net_rx(struct net_device *dev)
513 struct net_local *lp = (struct net_local *)dev->priv;
514 int ioaddr = dev->base_addr;
515 int boguscount = 10;
517 do {
518 int status = inw(ioaddr);
519 int pkt_len = inw(ioaddr);
521 if (pkt_len == 0) /* Read all the frames? */
522 break; /* Done for now */
524 if (status & 0x40) { /* There was an error. */
525 lp->stats.rx_errors++;
526 if (status & 0x20) lp->stats.rx_frame_errors++;
527 if (status & 0x10) lp->stats.rx_over_errors++;
528 if (status & 0x08) lp->stats.rx_crc_errors++;
529 if (status & 0x04) lp->stats.rx_fifo_errors++;
530 } else {
531 /* Malloc up new buffer. */
532 struct sk_buff *skb;
534 lp->stats.rx_bytes+=pkt_len;
536 skb = dev_alloc_skb(pkt_len);
537 if (skb == NULL) {
538 printk(KERN_NOTICE "%s: Memory squeeze, dropping packet.\n",
539 dev->name);
540 lp->stats.rx_dropped++;
541 break;
543 skb->dev = dev;
545 /* 'skb->data' points to the start of sk_buff data area. */
546 memcpy(skb_put(skb,pkt_len), (void*)dev->rmem_start,
547 pkt_len);
548 /* or */
549 insw(ioaddr, skb->data, (pkt_len + 1) >> 1);
551 netif_rx(skb);
552 dev->last_rx = jiffies;
553 lp->stats.rx_packets++;
554 lp->stats.rx_bytes += pkt_len;
556 } while (--boguscount);
558 return;
561 /* The inverse routine to net_open(). */
562 static int
563 net_close(struct net_device *dev)
565 struct net_local *lp = (struct net_local *)dev->priv;
566 int ioaddr = dev->base_addr;
568 lp->open_time = 0;
570 netif_stop_queue(dev);
572 /* Flush the Tx and disable Rx here. */
574 disable_dma(dev->dma);
576 /* If not IRQ or DMA jumpered, free up the line. */
577 outw(0x00, ioaddr+0); /* Release the physical interrupt line. */
579 free_irq(dev->irq, dev);
580 free_dma(dev->dma);
582 /* Update the statistics here. */
584 return 0;
589 * Get the current statistics.
590 * This may be called with the card open or closed.
592 static struct net_device_stats *net_get_stats(struct net_device *dev)
594 struct net_local *lp = (struct net_local *)dev->priv;
595 short ioaddr = dev->base_addr;
597 /* Update the statistics from the device registers. */
598 lp->stats.rx_missed_errors = inw(ioaddr+1);
599 return &lp->stats;
603 * Set or clear the multicast filter for this adaptor.
604 * num_addrs == -1 Promiscuous mode, receive all packets
605 * num_addrs == 0 Normal mode, clear multicast list
606 * num_addrs > 0 Multicast mode, receive normal and MC packets,
607 * and do best-effort filtering.
609 static void
610 set_multicast_list(struct net_device *dev)
612 short ioaddr = dev->base_addr;
613 if (dev->flags&IFF_PROMISC)
615 /* Enable promiscuous mode */
616 outw(MULTICAST|PROMISC, ioaddr);
618 else if((dev->flags&IFF_ALLMULTI) || dev->mc_count > HW_MAX_ADDRS)
620 /* Disable promiscuous mode, use normal mode. */
621 hardware_set_filter(NULL);
623 outw(MULTICAST, ioaddr);
625 else if(dev->mc_count)
627 /* Walk the address list, and load the filter */
628 hardware_set_filter(dev->mc_list);
630 outw(MULTICAST, ioaddr);
632 else
633 outw(0, ioaddr);
636 #ifdef MODULE
638 static struct net_device this_device;
639 static int io = 0x300;
640 static int irq;
641 static int dma;
642 static int mem;
643 MODULE_LICENSE("GPL");
645 int init_module(void)
647 int result;
649 if (io == 0)
650 printk(KERN_WARNING "%s: You shouldn't use auto-probing with insmod!\n",
651 cardname);
653 /* Copy the parameters from insmod into the device structure. */
654 this_device.base_addr = io;
655 this_device.irq = irq;
656 this_device.dma = dma;
657 this_device.mem_start = mem;
658 this_device.init = netcard_probe;
660 if ((result = register_netdev(&this_device)) != 0)
661 return result;
663 return 0;
666 void
667 cleanup_module(void)
669 unregister_netdev(&this_device);
671 * If we don't do this, we can't re-insmod it later.
672 * Release irq/dma here, when you have jumpered versions and
673 * allocate them in net_probe1().
676 free_irq(this_device.irq, dev);
677 free_dma(this_device.dma);
679 release_region(this_device.base_addr, NETCARD_IO_EXTENT);
681 if (this_device.priv)
682 kfree(this_device.priv);
685 #endif /* MODULE */
688 * Local variables:
689 * compile-command:
690 * gcc -D__KERNEL__ -Wall -Wstrict-prototypes -Wwrite-strings
691 * -Wredundant-decls -O2 -m486 -c skeleton.c
692 * version-control: t
693 * kept-new-versions: 5
694 * tab-width: 4
695 * c-indent-level: 4
696 * End: