2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5 * This version of the driver is specific to the FADS implementation,
6 * since the board contains control registers external to the processor
7 * for the control of the LevelOne LXT970 transceiver. The MPC860T manual
8 * describes connections using the internal parallel port I/O, which
9 * is basically all of Port D.
11 * Right now, I am very watseful with the buffers. I allocate memory
12 * pages and then divide them into 2K frame buffers. This way I know I
13 * have buffers large enough to hold one frame within one buffer descriptor.
14 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
15 * will be much more memory efficient and will easily handle lots of
18 * Much better multiple PHY support by Magnus Damm.
19 * Copyright (c) 2000 Ericsson Radio Systems AB.
21 * Support for FEC controller of ColdFire/5272.
22 * Copyrught (c) 2001-2002 Greg Ungerer (gerg@snapgear.com)
25 #include <linux/config.h>
26 #include <linux/module.h>
27 #include <linux/kernel.h>
28 #include <linux/string.h>
29 #include <linux/ptrace.h>
30 #include <linux/errno.h>
31 #include <linux/ioport.h>
32 #include <linux/slab.h>
33 #include <linux/interrupt.h>
34 #include <linux/pci.h>
35 #include <linux/init.h>
36 #include <linux/delay.h>
37 #include <linux/netdevice.h>
38 #include <linux/etherdevice.h>
39 #include <linux/skbuff.h>
40 #include <linux/spinlock.h>
41 #include <linux/workqueue.h>
44 #include <asm/bitops.h>
45 #include <asm/uaccess.h>
47 #include <asm/pgtable.h>
50 #include <asm/coldfire.h>
51 #include <asm/mcfsim.h>
54 #include <asm/8xx_immap.h>
55 #include <asm/mpc8xx.h>
59 static int opened
= 0;
63 * Define the fixed address of the FEC hardware.
66 static volatile fec_t
*fec_hwp
= (volatile fec_t
*) (MCF_MBAR
+ 0x840);
67 static ushort my_enet_addr
[] = { 0x00d0, 0xcf00, 0x0072 };
69 static volatile fec_t
*fec_hwp
= &(((immap_t
*)IMAP_ADDR
)->im_cpm
.cp_fec
)
70 static ushort my_enet_addr
[3];
71 #endif /* CONFIG_M5272 */
74 * Some hardware gets it MAC address out of local flash memory.
75 * if this is non-zero then assume it is the address to get MAC from.
77 #if defined(CONFIG_NETtel)
78 #define FEC_FLASHMAC 0xf0006006
79 #elif defined(CONFIG_GILBARCONAP)
80 #define FEC_FLASHMAC 0xf0006000
81 #elif defined (CONFIG_MTD_KeyTechnology)
82 #define FEC_FLASHMAC 0xffe04000
84 #define FEC_FLASHMAC 0
87 unsigned char *fec_flashmac
= (unsigned char *) FEC_FLASHMAC
;
89 /* Forward declarations of some structures to support different PHYs
94 void (*funct
)(uint mii_reg
, struct net_device
*dev
);
101 const phy_cmd_t
*config
;
102 const phy_cmd_t
*startup
;
103 const phy_cmd_t
*ack_int
;
104 const phy_cmd_t
*shutdown
;
107 /* The number of Tx and Rx buffers. These are allocated from the page
108 * pool. The code may assume these are power of two, so it it best
109 * to keep them that size.
110 * We don't need to allocate pages for the transmitter. We just use
111 * the skbuffer directly.
114 #define FEC_ENET_RX_PAGES 4
115 #define FEC_ENET_RX_FRSIZE 2048
116 #define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
117 #define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
118 #define TX_RING_SIZE 8 /* Must be power of two */
119 #define TX_RING_MOD_MASK 7 /* for this to work */
121 #define FEC_ENET_RX_PAGES 16
122 #define FEC_ENET_RX_FRSIZE 2048
123 #define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
124 #define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
125 #define TX_RING_SIZE 16 /* Must be power of two */
126 #define TX_RING_MOD_MASK 15 /* for this to work */
129 /* Interrupt events/masks.
131 #define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
132 #define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
133 #define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
134 #define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
135 #define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
136 #define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
137 #define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
138 #define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
139 #define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
140 #define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
142 /* The FEC stores dest/src/type, data, and checksum for receive packets.
144 #define PKT_MAXBUF_SIZE 1518
145 #define PKT_MINBUF_SIZE 64
146 #define PKT_MAXBLR_SIZE 1520
148 /* The FEC buffer descriptors track the ring buffers. The rx_bd_base and
149 * tx_bd_base always point to the base of the buffer descriptors. The
150 * cur_rx and cur_tx point to the currently available buffer.
151 * The dirty_tx tracks the current buffer that is being sent by the
152 * controller. The cur_tx and dirty_tx are equal under both completely
153 * empty and completely full conditions. The empty/ready indicator in
154 * the buffer descriptor determines the actual condition.
156 struct fec_enet_private
{
157 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
158 struct sk_buff
* tx_skbuff
[TX_RING_SIZE
];
162 /* CPM dual port RAM relative addresses.
164 cbd_t
*rx_bd_base
; /* Address of Rx and Tx buffers. */
166 cbd_t
*cur_rx
, *cur_tx
; /* The next free ring entry */
167 cbd_t
*dirty_tx
; /* The ring entries to be free()ed. */
168 struct net_device_stats stats
;
177 struct work_struct phy_task
;
188 static int fec_enet_open(struct net_device
*dev
);
189 static int fec_enet_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
);
190 static void fec_enet_mii(struct net_device
*dev
);
191 static irqreturn_t
fec_enet_interrupt(int irq
, void * dev_id
, struct pt_regs
* regs
);
192 static void fec_enet_tx(struct net_device
*dev
);
193 static void fec_enet_rx(struct net_device
*dev
);
194 static int fec_enet_close(struct net_device
*dev
);
195 static struct net_device_stats
*fec_enet_get_stats(struct net_device
*dev
);
196 static void set_multicast_list(struct net_device
*dev
);
197 static void fec_restart(struct net_device
*dev
, int duplex
);
198 static void fec_stop(struct net_device
*dev
);
199 static void fec_set_mac_address(struct net_device
*dev
);
202 /* MII processing. We keep this as simple as possible. Requests are
203 * placed on the list (if there is room). When the request is finished
204 * by the MII, an optional function may be called.
206 typedef struct mii_list
{
208 void (*mii_func
)(uint val
, struct net_device
*dev
);
209 struct mii_list
*mii_next
;
213 mii_list_t mii_cmds
[NMII
];
214 mii_list_t
*mii_free
;
215 mii_list_t
*mii_head
;
216 mii_list_t
*mii_tail
;
218 static int mii_queue(struct net_device
*dev
, int request
,
219 void (*func
)(uint
, struct net_device
*));
221 /* Make MII read/write commands for the FEC.
223 #define mk_mii_read(REG) (0x60020000 | ((REG & 0x1f) << 18))
224 #define mk_mii_write(REG, VAL) (0x50020000 | ((REG & 0x1f) << 18) | \
228 /* Transmitter timeout.
230 #define TX_TIMEOUT (2*HZ)
232 /* Register definitions for the PHY.
235 #define MII_REG_CR 0 /* Control Register */
236 #define MII_REG_SR 1 /* Status Register */
237 #define MII_REG_PHYIR1 2 /* PHY Identification Register 1 */
238 #define MII_REG_PHYIR2 3 /* PHY Identification Register 2 */
239 #define MII_REG_ANAR 4 /* A-N Advertisement Register */
240 #define MII_REG_ANLPAR 5 /* A-N Link Partner Ability Register */
241 #define MII_REG_ANER 6 /* A-N Expansion Register */
242 #define MII_REG_ANNPTR 7 /* A-N Next Page Transmit Register */
243 #define MII_REG_ANLPRNPR 8 /* A-N Link Partner Received Next Page Reg. */
245 /* values for phy_status */
247 #define PHY_CONF_ANE 0x0001 /* 1 auto-negotiation enabled */
248 #define PHY_CONF_LOOP 0x0002 /* 1 loopback mode enabled */
249 #define PHY_CONF_SPMASK 0x00f0 /* mask for speed */
250 #define PHY_CONF_10HDX 0x0010 /* 10 Mbit half duplex supported */
251 #define PHY_CONF_10FDX 0x0020 /* 10 Mbit full duplex supported */
252 #define PHY_CONF_100HDX 0x0040 /* 100 Mbit half duplex supported */
253 #define PHY_CONF_100FDX 0x0080 /* 100 Mbit full duplex supported */
255 #define PHY_STAT_LINK 0x0100 /* 1 up - 0 down */
256 #define PHY_STAT_FAULT 0x0200 /* 1 remote fault */
257 #define PHY_STAT_ANC 0x0400 /* 1 auto-negotiation complete */
258 #define PHY_STAT_SPMASK 0xf000 /* mask for speed */
259 #define PHY_STAT_10HDX 0x1000 /* 10 Mbit half duplex selected */
260 #define PHY_STAT_10FDX 0x2000 /* 10 Mbit full duplex selected */
261 #define PHY_STAT_100HDX 0x4000 /* 100 Mbit half duplex selected */
262 #define PHY_STAT_100FDX 0x8000 /* 100 Mbit full duplex selected */
266 fec_enet_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
268 struct fec_enet_private
*fep
;
269 volatile fec_t
*fecp
;
273 fecp
= (volatile fec_t
*)dev
->base_addr
;
276 /* Link is down or autonegotiation is in progress. */
280 /* Fill in a Tx ring entry */
283 #ifndef final_version
284 if (bdp
->cbd_sc
& BD_ENET_TX_READY
) {
285 /* Ooops. All transmit buffers are full. Bail out.
286 * This should not happen, since dev->tbusy should be set.
288 printk("%s: tx queue full!.\n", dev
->name
);
293 /* Clear all of the status flags.
295 bdp
->cbd_sc
&= ~BD_ENET_TX_STATS
;
297 /* Set buffer length and buffer pointer.
299 bdp
->cbd_bufaddr
= __pa(skb
->data
);
300 bdp
->cbd_datlen
= skb
->len
;
304 fep
->tx_skbuff
[fep
->skb_cur
] = skb
;
306 fep
->stats
.tx_bytes
+= skb
->len
;
307 fep
->skb_cur
= (fep
->skb_cur
+1) & TX_RING_MOD_MASK
;
309 /* Push the data cache so the CPM does not get stale memory
312 flush_dcache_range((unsigned long)skb
->data
,
313 (unsigned long)skb
->data
+ skb
->len
);
315 spin_lock_irq(&fep
->lock
);
317 /* Send it on its way. Tell FEC its ready, interrupt when done,
318 * its the last BD of the frame, and to put the CRC on the end.
321 bdp
->cbd_sc
|= (BD_ENET_TX_READY
| BD_ENET_TX_INTR
322 | BD_ENET_TX_LAST
| BD_ENET_TX_TC
);
324 dev
->trans_start
= jiffies
;
326 /* Trigger transmission start */
327 fecp
->fec_x_des_active
= 0x01000000;
329 /* If this was the last BD in the ring, start at the beginning again.
331 if (bdp
->cbd_sc
& BD_ENET_TX_WRAP
) {
332 bdp
= fep
->tx_bd_base
;
337 if (bdp
== fep
->dirty_tx
) {
339 netif_stop_queue(dev
);
342 fep
->cur_tx
= (cbd_t
*)bdp
;
344 spin_unlock_irq(&fep
->lock
);
350 fec_timeout(struct net_device
*dev
)
352 struct fec_enet_private
*fep
= dev
->priv
;
354 printk("%s: transmit timed out.\n", dev
->name
);
355 fep
->stats
.tx_errors
++;
356 #ifndef final_version
361 printk("Ring data dump: cur_tx %lx%s, dirty_tx %lx cur_rx: %lx\n",
362 (unsigned long)fep
->cur_tx
, fep
->tx_full
? " (full)" : "",
363 (unsigned long)fep
->dirty_tx
,
364 (unsigned long)fep
->cur_rx
);
366 bdp
= fep
->tx_bd_base
;
367 printk(" tx: %u buffers\n", TX_RING_SIZE
);
368 for (i
= 0 ; i
< TX_RING_SIZE
; i
++) {
369 printk(" %08x: %04x %04x %08x\n",
373 (int) bdp
->cbd_bufaddr
);
377 bdp
= fep
->rx_bd_base
;
378 printk(" rx: %lu buffers\n", (unsigned long) RX_RING_SIZE
);
379 for (i
= 0 ; i
< RX_RING_SIZE
; i
++) {
380 printk(" %08x: %04x %04x %08x\n",
384 (int) bdp
->cbd_bufaddr
);
390 netif_wake_queue(dev
);
393 /* The interrupt handler.
394 * This is called from the MPC core interrupt.
397 fec_enet_interrupt(int irq
, void * dev_id
, struct pt_regs
* regs
)
399 struct net_device
*dev
= dev_id
;
400 volatile fec_t
*fecp
;
404 fecp
= (volatile fec_t
*)dev
->base_addr
;
406 /* Get the interrupt events that caused us to be here.
408 while ((int_events
= fecp
->fec_ievent
) != 0) {
409 fecp
->fec_ievent
= int_events
;
410 if ((int_events
& (FEC_ENET_HBERR
| FEC_ENET_BABR
|
411 FEC_ENET_BABT
| FEC_ENET_EBERR
)) != 0) {
412 printk("FEC ERROR %x\n", int_events
);
415 /* Handle receive event in its own function.
417 if (int_events
& FEC_ENET_RXF
) {
422 /* Transmit OK, or non-fatal error. Update the buffer
423 descriptors. FEC handles all errors, we just discover
424 them as part of the transmit process.
426 if (int_events
& FEC_ENET_TXF
) {
431 if (int_events
& FEC_ENET_MII
) {
437 return IRQ_RETVAL(handled
);
442 fec_enet_tx(struct net_device
*dev
)
444 struct fec_enet_private
*fep
;
449 spin_lock(&fep
->lock
);
452 while ((bdp
->cbd_sc
&BD_ENET_TX_READY
) == 0) {
453 if (bdp
== fep
->cur_tx
&& fep
->tx_full
== 0) break;
455 skb
= fep
->tx_skbuff
[fep
->skb_dirty
];
456 /* Check for errors. */
457 if (bdp
->cbd_sc
& (BD_ENET_TX_HB
| BD_ENET_TX_LC
|
458 BD_ENET_TX_RL
| BD_ENET_TX_UN
|
460 fep
->stats
.tx_errors
++;
461 if (bdp
->cbd_sc
& BD_ENET_TX_HB
) /* No heartbeat */
462 fep
->stats
.tx_heartbeat_errors
++;
463 if (bdp
->cbd_sc
& BD_ENET_TX_LC
) /* Late collision */
464 fep
->stats
.tx_window_errors
++;
465 if (bdp
->cbd_sc
& BD_ENET_TX_RL
) /* Retrans limit */
466 fep
->stats
.tx_aborted_errors
++;
467 if (bdp
->cbd_sc
& BD_ENET_TX_UN
) /* Underrun */
468 fep
->stats
.tx_fifo_errors
++;
469 if (bdp
->cbd_sc
& BD_ENET_TX_CSL
) /* Carrier lost */
470 fep
->stats
.tx_carrier_errors
++;
472 fep
->stats
.tx_packets
++;
475 #ifndef final_version
476 if (bdp
->cbd_sc
& BD_ENET_TX_READY
)
477 printk("HEY! Enet xmit interrupt and TX_READY.\n");
479 /* Deferred means some collisions occurred during transmit,
480 * but we eventually sent the packet OK.
482 if (bdp
->cbd_sc
& BD_ENET_TX_DEF
)
483 fep
->stats
.collisions
++;
485 /* Free the sk buffer associated with this last transmit.
487 dev_kfree_skb_any(skb
);
488 fep
->tx_skbuff
[fep
->skb_dirty
] = NULL
;
489 fep
->skb_dirty
= (fep
->skb_dirty
+ 1) & TX_RING_MOD_MASK
;
491 /* Update pointer to next buffer descriptor to be transmitted.
493 if (bdp
->cbd_sc
& BD_ENET_TX_WRAP
)
494 bdp
= fep
->tx_bd_base
;
498 /* Since we have freed up a buffer, the ring is no longer
503 if (netif_queue_stopped(dev
))
504 netif_wake_queue(dev
);
507 fep
->dirty_tx
= (cbd_t
*)bdp
;
508 spin_unlock(&fep
->lock
);
512 /* During a receive, the cur_rx points to the current incoming buffer.
513 * When we update through the ring, if the next incoming buffer has
514 * not been given to the system, we just set the empty indicator,
515 * effectively tossing the packet.
518 fec_enet_rx(struct net_device
*dev
)
520 struct fec_enet_private
*fep
;
521 volatile fec_t
*fecp
;
528 fecp
= (volatile fec_t
*)dev
->base_addr
;
530 /* First, grab all of the stats for the incoming packet.
531 * These get messed up if we get called due to a busy condition.
535 while (!(bdp
->cbd_sc
& BD_ENET_RX_EMPTY
)) {
537 #ifndef final_version
538 /* Since we have allocated space to hold a complete frame,
539 * the last indicator should be set.
541 if ((bdp
->cbd_sc
& BD_ENET_RX_LAST
) == 0)
542 printk("FEC ENET: rcv is not +last\n");
546 goto rx_processing_done
;
548 /* Check for errors. */
549 if (bdp
->cbd_sc
& (BD_ENET_RX_LG
| BD_ENET_RX_SH
| BD_ENET_RX_NO
|
550 BD_ENET_RX_CR
| BD_ENET_RX_OV
)) {
551 fep
->stats
.rx_errors
++;
552 if (bdp
->cbd_sc
& (BD_ENET_RX_LG
| BD_ENET_RX_SH
)) {
553 /* Frame too long or too short. */
554 fep
->stats
.rx_length_errors
++;
556 if (bdp
->cbd_sc
& BD_ENET_RX_NO
) /* Frame alignment */
557 fep
->stats
.rx_frame_errors
++;
558 if (bdp
->cbd_sc
& BD_ENET_RX_CR
) /* CRC Error */
559 fep
->stats
.rx_crc_errors
++;
560 if (bdp
->cbd_sc
& BD_ENET_RX_OV
) /* FIFO overrun */
561 fep
->stats
.rx_crc_errors
++;
564 /* Report late collisions as a frame error.
565 * On this error, the BD is closed, but we don't know what we
566 * have in the buffer. So, just drop this frame on the floor.
568 if (bdp
->cbd_sc
& BD_ENET_RX_CL
) {
569 fep
->stats
.rx_errors
++;
570 fep
->stats
.rx_frame_errors
++;
571 goto rx_processing_done
;
574 /* Process the incoming frame.
576 fep
->stats
.rx_packets
++;
577 pkt_len
= bdp
->cbd_datlen
;
578 fep
->stats
.rx_bytes
+= pkt_len
;
579 data
= (__u8
*)__va(bdp
->cbd_bufaddr
);
581 /* This does 16 byte alignment, exactly what we need.
582 * The packet length includes FCS, but we don't want to
583 * include that when passing upstream as it messes up
584 * bridging applications.
586 skb
= dev_alloc_skb(pkt_len
-4);
589 printk("%s: Memory squeeze, dropping packet.\n", dev
->name
);
590 fep
->stats
.rx_dropped
++;
593 skb_put(skb
,pkt_len
-4); /* Make room */
594 eth_copy_and_sum(skb
,
595 (unsigned char *)__va(bdp
->cbd_bufaddr
),
597 skb
->protocol
=eth_type_trans(skb
,dev
);
602 /* Clear the status flags for this buffer.
604 bdp
->cbd_sc
&= ~BD_ENET_RX_STATS
;
606 /* Mark the buffer empty.
608 bdp
->cbd_sc
|= BD_ENET_RX_EMPTY
;
610 /* Update BD pointer to next entry.
612 if (bdp
->cbd_sc
& BD_ENET_RX_WRAP
)
613 bdp
= fep
->rx_bd_base
;
618 /* Doing this here will keep the FEC running while we process
619 * incoming frames. On a heavily loaded network, we should be
620 * able to keep up at the expense of system resources.
622 fecp
->fec_r_des_active
= 0x01000000;
624 } /* while (!(bdp->cbd_sc & BD_ENET_RX_EMPTY)) */
625 fep
->cur_rx
= (cbd_t
*)bdp
;
628 /* Doing this here will allow us to process all frames in the
629 * ring before the FEC is allowed to put more there. On a heavily
630 * loaded network, some frames may be lost. Unfortunately, this
631 * increases the interrupt overhead since we can potentially work
632 * our way back to the interrupt return only to come right back
635 fecp
->fec_r_des_active
= 0x01000000;
641 fec_enet_mii(struct net_device
*dev
)
643 struct fec_enet_private
*fep
;
648 fep
= (struct fec_enet_private
*)dev
->priv
;
650 mii_reg
= ep
->fec_mii_data
;
652 if ((mip
= mii_head
) == NULL
) {
653 printk("MII and no head!\n");
657 if (mip
->mii_func
!= NULL
)
658 (*(mip
->mii_func
))(mii_reg
, dev
);
660 mii_head
= mip
->mii_next
;
661 mip
->mii_next
= mii_free
;
664 if ((mip
= mii_head
) != NULL
)
665 ep
->fec_mii_data
= mip
->mii_regval
;
669 mii_queue(struct net_device
*dev
, int regval
, void (*func
)(uint
, struct net_device
*))
671 struct fec_enet_private
*fep
;
676 /* Add PHY address to register command.
679 regval
|= fep
->phy_addr
<< 23;
686 if ((mip
= mii_free
) != NULL
) {
687 mii_free
= mip
->mii_next
;
688 mip
->mii_regval
= regval
;
689 mip
->mii_func
= func
;
690 mip
->mii_next
= NULL
;
692 mii_tail
->mii_next
= mip
;
696 mii_head
= mii_tail
= mip
;
697 fec_hwp
->fec_mii_data
= regval
;
704 restore_flags(flags
);
709 static void mii_do_cmd(struct net_device
*dev
, const phy_cmd_t
*c
)
716 for(k
= 0; (c
+k
)->mii_data
!= mk_mii_end
; k
++) {
717 mii_queue(dev
, (c
+k
)->mii_data
, (c
+k
)->funct
);
721 static void mii_parse_sr(uint mii_reg
, struct net_device
*dev
)
723 struct fec_enet_private
*fep
= dev
->priv
;
724 volatile uint
*s
= &(fep
->phy_status
);
726 *s
&= ~(PHY_STAT_LINK
| PHY_STAT_FAULT
| PHY_STAT_ANC
);
728 if (mii_reg
& 0x0004)
730 if (mii_reg
& 0x0010)
731 *s
|= PHY_STAT_FAULT
;
732 if (mii_reg
& 0x0020)
736 static void mii_parse_cr(uint mii_reg
, struct net_device
*dev
)
738 struct fec_enet_private
*fep
= dev
->priv
;
739 volatile uint
*s
= &(fep
->phy_status
);
741 *s
&= ~(PHY_CONF_ANE
| PHY_CONF_LOOP
);
743 if (mii_reg
& 0x1000)
745 if (mii_reg
& 0x4000)
749 static void mii_parse_anar(uint mii_reg
, struct net_device
*dev
)
751 struct fec_enet_private
*fep
= dev
->priv
;
752 volatile uint
*s
= &(fep
->phy_status
);
754 *s
&= ~(PHY_CONF_SPMASK
);
756 if (mii_reg
& 0x0020)
757 *s
|= PHY_CONF_10HDX
;
758 if (mii_reg
& 0x0040)
759 *s
|= PHY_CONF_10FDX
;
760 if (mii_reg
& 0x0080)
761 *s
|= PHY_CONF_100HDX
;
762 if (mii_reg
& 0x00100)
763 *s
|= PHY_CONF_100FDX
;
766 /* ------------------------------------------------------------------------- */
767 /* The Level one LXT970 is used by many boards */
769 #define MII_LXT970_MIRROR 16 /* Mirror register */
770 #define MII_LXT970_IER 17 /* Interrupt Enable Register */
771 #define MII_LXT970_ISR 18 /* Interrupt Status Register */
772 #define MII_LXT970_CONFIG 19 /* Configuration Register */
773 #define MII_LXT970_CSR 20 /* Chip Status Register */
775 static void mii_parse_lxt970_csr(uint mii_reg
, struct net_device
*dev
)
777 struct fec_enet_private
*fep
= dev
->priv
;
778 volatile uint
*s
= &(fep
->phy_status
);
780 *s
&= ~(PHY_STAT_SPMASK
);
782 if (mii_reg
& 0x0800) {
783 if (mii_reg
& 0x1000)
784 *s
|= PHY_STAT_100FDX
;
786 *s
|= PHY_STAT_100HDX
;
788 if (mii_reg
& 0x1000)
789 *s
|= PHY_STAT_10FDX
;
791 *s
|= PHY_STAT_10HDX
;
795 static phy_info_t phy_info_lxt970
= {
799 (const phy_cmd_t
[]) { /* config */
800 { mk_mii_read(MII_REG_CR
), mii_parse_cr
},
801 { mk_mii_read(MII_REG_ANAR
), mii_parse_anar
},
804 (const phy_cmd_t
[]) { /* startup - enable interrupts */
805 { mk_mii_write(MII_LXT970_IER
, 0x0002), NULL
},
806 { mk_mii_write(MII_REG_CR
, 0x1200), NULL
}, /* autonegotiate */
809 (const phy_cmd_t
[]) { /* ack_int */
810 /* read SR and ISR to acknowledge */
811 { mk_mii_read(MII_REG_SR
), mii_parse_sr
},
812 { mk_mii_read(MII_LXT970_ISR
), NULL
},
814 /* find out the current status */
815 { mk_mii_read(MII_LXT970_CSR
), mii_parse_lxt970_csr
},
818 (const phy_cmd_t
[]) { /* shutdown - disable interrupts */
819 { mk_mii_write(MII_LXT970_IER
, 0x0000), NULL
},
824 /* ------------------------------------------------------------------------- */
825 /* The Level one LXT971 is used on some of my custom boards */
827 /* register definitions for the 971 */
829 #define MII_LXT971_PCR 16 /* Port Control Register */
830 #define MII_LXT971_SR2 17 /* Status Register 2 */
831 #define MII_LXT971_IER 18 /* Interrupt Enable Register */
832 #define MII_LXT971_ISR 19 /* Interrupt Status Register */
833 #define MII_LXT971_LCR 20 /* LED Control Register */
834 #define MII_LXT971_TCR 30 /* Transmit Control Register */
837 * I had some nice ideas of running the MDIO faster...
838 * The 971 should support 8MHz and I tried it, but things acted really
839 * weird, so 2.5 MHz ought to be enough for anyone...
842 static void mii_parse_lxt971_sr2(uint mii_reg
, struct net_device
*dev
)
844 struct fec_enet_private
*fep
= dev
->priv
;
845 volatile uint
*s
= &(fep
->phy_status
);
847 *s
&= ~(PHY_STAT_SPMASK
| PHY_STAT_LINK
| PHY_STAT_ANC
);
849 if (mii_reg
& 0x0400) {
855 if (mii_reg
& 0x0080)
857 if (mii_reg
& 0x4000) {
858 if (mii_reg
& 0x0200)
859 *s
|= PHY_STAT_100FDX
;
861 *s
|= PHY_STAT_100HDX
;
863 if (mii_reg
& 0x0200)
864 *s
|= PHY_STAT_10FDX
;
866 *s
|= PHY_STAT_10HDX
;
868 if (mii_reg
& 0x0008)
869 *s
|= PHY_STAT_FAULT
;
872 static phy_info_t phy_info_lxt971
= {
876 (const phy_cmd_t
[]) { /* config */
877 /* limit to 10MBit because my protorype board
878 * doesn't work with 100. */
879 { mk_mii_read(MII_REG_CR
), mii_parse_cr
},
880 { mk_mii_read(MII_REG_ANAR
), mii_parse_anar
},
881 { mk_mii_read(MII_LXT971_SR2
), mii_parse_lxt971_sr2
},
884 (const phy_cmd_t
[]) { /* startup - enable interrupts */
885 { mk_mii_write(MII_LXT971_IER
, 0x00f2), NULL
},
886 { mk_mii_write(MII_REG_CR
, 0x1200), NULL
}, /* autonegotiate */
887 { mk_mii_write(MII_LXT971_LCR
, 0xd422), NULL
}, /* LED config */
888 /* Somehow does the 971 tell me that the link is down
889 * the first read after power-up.
890 * read here to get a valid value in ack_int */
891 { mk_mii_read(MII_REG_SR
), mii_parse_sr
},
894 (const phy_cmd_t
[]) { /* ack_int */
895 /* find out the current status */
896 { mk_mii_read(MII_REG_SR
), mii_parse_sr
},
897 { mk_mii_read(MII_LXT971_SR2
), mii_parse_lxt971_sr2
},
898 /* we only need to read ISR to acknowledge */
899 { mk_mii_read(MII_LXT971_ISR
), NULL
},
902 (const phy_cmd_t
[]) { /* shutdown - disable interrupts */
903 { mk_mii_write(MII_LXT971_IER
, 0x0000), NULL
},
908 /* ------------------------------------------------------------------------- */
909 /* The Quality Semiconductor QS6612 is used on the RPX CLLF */
911 /* register definitions */
913 #define MII_QS6612_MCR 17 /* Mode Control Register */
914 #define MII_QS6612_FTR 27 /* Factory Test Register */
915 #define MII_QS6612_MCO 28 /* Misc. Control Register */
916 #define MII_QS6612_ISR 29 /* Interrupt Source Register */
917 #define MII_QS6612_IMR 30 /* Interrupt Mask Register */
918 #define MII_QS6612_PCR 31 /* 100BaseTx PHY Control Reg. */
920 static void mii_parse_qs6612_pcr(uint mii_reg
, struct net_device
*dev
)
922 struct fec_enet_private
*fep
= dev
->priv
;
923 volatile uint
*s
= &(fep
->phy_status
);
925 *s
&= ~(PHY_STAT_SPMASK
);
927 switch((mii_reg
>> 2) & 7) {
928 case 1: *s
|= PHY_STAT_10HDX
; break;
929 case 2: *s
|= PHY_STAT_100HDX
; break;
930 case 5: *s
|= PHY_STAT_10FDX
; break;
931 case 6: *s
|= PHY_STAT_100FDX
; break;
935 static phy_info_t phy_info_qs6612
= {
939 (const phy_cmd_t
[]) { /* config */
940 /* The PHY powers up isolated on the RPX,
941 * so send a command to allow operation.
943 { mk_mii_write(MII_QS6612_PCR
, 0x0dc0), NULL
},
945 /* parse cr and anar to get some info */
946 { mk_mii_read(MII_REG_CR
), mii_parse_cr
},
947 { mk_mii_read(MII_REG_ANAR
), mii_parse_anar
},
950 (const phy_cmd_t
[]) { /* startup - enable interrupts */
951 { mk_mii_write(MII_QS6612_IMR
, 0x003a), NULL
},
952 { mk_mii_write(MII_REG_CR
, 0x1200), NULL
}, /* autonegotiate */
955 (const phy_cmd_t
[]) { /* ack_int */
956 /* we need to read ISR, SR and ANER to acknowledge */
957 { mk_mii_read(MII_QS6612_ISR
), NULL
},
958 { mk_mii_read(MII_REG_SR
), mii_parse_sr
},
959 { mk_mii_read(MII_REG_ANER
), NULL
},
961 /* read pcr to get info */
962 { mk_mii_read(MII_QS6612_PCR
), mii_parse_qs6612_pcr
},
965 (const phy_cmd_t
[]) { /* shutdown - disable interrupts */
966 { mk_mii_write(MII_QS6612_IMR
, 0x0000), NULL
},
971 /* ------------------------------------------------------------------------- */
972 /* AMD AM79C874 phy */
974 /* register definitions for the 874 */
976 #define MII_AM79C874_MFR 16 /* Miscellaneous Feature Register */
977 #define MII_AM79C874_ICSR 17 /* Interrupt/Status Register */
978 #define MII_AM79C874_DR 18 /* Diagnostic Register */
979 #define MII_AM79C874_PMLR 19 /* Power and Loopback Register */
980 #define MII_AM79C874_MCR 21 /* ModeControl Register */
981 #define MII_AM79C874_DC 23 /* Disconnect Counter */
982 #define MII_AM79C874_REC 24 /* Recieve Error Counter */
984 static void mii_parse_am79c874_dr(uint mii_reg
, struct net_device
*dev
)
986 struct fec_enet_private
*fep
= dev
->priv
;
987 volatile uint
*s
= &(fep
->phy_status
);
989 *s
&= ~(PHY_STAT_SPMASK
| PHY_STAT_ANC
);
991 if (mii_reg
& 0x0080)
993 if (mii_reg
& 0x0400)
994 *s
|= ((mii_reg
& 0x0800) ? PHY_STAT_100FDX
: PHY_STAT_100HDX
);
996 *s
|= ((mii_reg
& 0x0800) ? PHY_STAT_10FDX
: PHY_STAT_10HDX
);
999 static phy_info_t phy_info_am79c874
= {
1003 (const phy_cmd_t
[]) { /* config */
1004 /* limit to 10MBit because my protorype board
1005 * doesn't work with 100. */
1006 { mk_mii_read(MII_REG_CR
), mii_parse_cr
},
1007 { mk_mii_read(MII_REG_ANAR
), mii_parse_anar
},
1008 { mk_mii_read(MII_AM79C874_DR
), mii_parse_am79c874_dr
},
1011 (const phy_cmd_t
[]) { /* startup - enable interrupts */
1012 { mk_mii_write(MII_AM79C874_ICSR
, 0xff00), NULL
},
1013 { mk_mii_write(MII_REG_CR
, 0x1200), NULL
}, /* autonegotiate */
1014 { mk_mii_read(MII_REG_SR
), mii_parse_sr
},
1017 (const phy_cmd_t
[]) { /* ack_int */
1018 /* find out the current status */
1019 { mk_mii_read(MII_REG_SR
), mii_parse_sr
},
1020 { mk_mii_read(MII_AM79C874_DR
), mii_parse_am79c874_dr
},
1021 /* we only need to read ISR to acknowledge */
1022 { mk_mii_read(MII_AM79C874_ICSR
), NULL
},
1025 (const phy_cmd_t
[]) { /* shutdown - disable interrupts */
1026 { mk_mii_write(MII_AM79C874_ICSR
, 0x0000), NULL
},
1031 /* ------------------------------------------------------------------------- */
1033 static phy_info_t
*phy_info
[] = {
1041 /* ------------------------------------------------------------------------- */
1044 #ifdef CONFIG_RPXCLASSIC
1045 mii_link_interrupt(void *dev_id
);
1047 mii_link_interrupt(int irq
, void * dev_id
, struct pt_regs
* regs
);
1053 * Code specific to Coldfire 5272 setup.
1055 static void __inline__
fec_request_intrs(struct net_device
*dev
, volatile fec_t
*fecp
)
1057 volatile unsigned long *icrp
;
1059 /* Setup interrupt handlers. */
1060 if (request_irq(86, fec_enet_interrupt
, 0, "fec(RX)", dev
) != 0)
1061 printk("FEC: Could not allocate FEC(RC) IRQ(86)!\n");
1062 if (request_irq(87, fec_enet_interrupt
, 0, "fec(TX)", dev
) != 0)
1063 printk("FEC: Could not allocate FEC(RC) IRQ(87)!\n");
1064 if (request_irq(88, fec_enet_interrupt
, 0, "fec(OTHER)", dev
) != 0)
1065 printk("FEC: Could not allocate FEC(OTHER) IRQ(88)!\n");
1066 if (request_irq(66, mii_link_interrupt
, 0, "fec(MII)", dev
) != 0)
1067 printk("FEC: Could not allocate MII IRQ(66)!\n");
1069 /* Unmask interrupt at ColdFire 5272 SIM */
1070 icrp
= (volatile unsigned long *) (MCF_MBAR
+ MCFSIM_ICR3
);
1072 icrp
= (volatile unsigned long *) (MCF_MBAR
+ MCFSIM_ICR1
);
1073 *icrp
= (*icrp
& 0x70777777) | 0x0d000000;
1076 static void __inline__
fec_set_mii(struct net_device
*dev
, struct fec_enet_private
*fep
)
1078 volatile fec_t
*fecp
;
1081 fecp
->fec_r_cntrl
= 0x04;
1082 fecp
->fec_x_cntrl
= 0x00;
1084 /* Set MII speed to 2.5 MHz
1086 fecp
->fec_mii_speed
= fep
->phy_speed
= 0x0e;
1088 fec_restart(dev
, 0);
1091 static void __inline__
fec_get_mac(struct net_device
*dev
, struct fec_enet_private
*fep
)
1093 volatile fec_t
*fecp
;
1094 unsigned char *eap
, *iap
, tmpaddr
[6];
1098 eap
= (unsigned char *) my_enet_addr
;
1102 * Get MAC address from FLASH.
1103 * If it is all 1's or 0's, use the default.
1106 if ((iap
[0] == 0) && (iap
[1] == 0) && (iap
[2] == 0) &&
1107 (iap
[3] == 0) && (iap
[4] == 0) && (iap
[5] == 0))
1109 if ((iap
[0] == 0xff) && (iap
[1] == 0xff) && (iap
[2] == 0xff) &&
1110 (iap
[3] == 0xff) && (iap
[4] == 0xff) && (iap
[5] == 0xff))
1113 *((unsigned long *) &tmpaddr
[0]) = fecp
->fec_addr_low
;
1114 *((unsigned short *) &tmpaddr
[4]) = (fecp
->fec_addr_high
>> 16);
1119 dev
->dev_addr
[i
] = *eap
++ = *iap
++;
1122 static void __inline__
fec_enable_phy_intr(void)
1126 static void __inline__
fec_disable_phy_intr(void)
1128 volatile unsigned long *icrp
;
1129 icrp
= (volatile unsigned long *) (MCF_MBAR
+ MCFSIM_ICR1
);
1130 *icrp
= (*icrp
& 0x70777777) | 0x08000000;
1133 static void __inline__
fec_phy_ack_intr(void)
1135 volatile unsigned long *icrp
;
1136 /* Acknowledge the interrupt */
1137 icrp
= (volatile unsigned long *) (MCF_MBAR
+ MCFSIM_ICR1
);
1138 *icrp
= (*icrp
& 0x77777777) | 0x08000000;
1141 static void __inline__
fec_localhw_setup(void)
1146 * Do not need to make region uncached on 5272.
1148 static void __inline__
fec_uncache(unsigned long addr
)
1152 /* ------------------------------------------------------------------------- */
1157 * Code sepcific to the MPC860T setup.
1159 static void __inline__
fec_request_intrs(struct net_device
*dev
, volatile fec_t
*fecp
)
1161 volatile immap_t
*immap
;
1163 immap
= (immap_t
*)IMAP_ADDR
; /* pointer to internal registers */
1165 if (request_8xxirq(FEC_INTERRUPT
, fec_enet_interrupt
, 0, "fec", dev
) != 0)
1166 panic("Could not allocate FEC IRQ!");
1168 #ifdef CONFIG_RPXCLASSIC
1169 /* Make Port C, bit 15 an input that causes interrupts.
1171 immap
->im_ioport
.iop_pcpar
&= ~0x0001;
1172 immap
->im_ioport
.iop_pcdir
&= ~0x0001;
1173 immap
->im_ioport
.iop_pcso
&= ~0x0001;
1174 immap
->im_ioport
.iop_pcint
|= 0x0001;
1175 cpm_install_handler(CPMVEC_PIO_PC15
, mii_link_interrupt
, dev
);
1177 /* Make LEDS reflect Link status.
1179 *((uint
*) RPX_CSR_ADDR
) &= ~BCSR2_FETHLEDMODE
;
1182 if (request_8xxirq(SIU_IRQ2
, mii_link_interrupt
, 0, "mii", dev
) != 0)
1183 panic("Could not allocate MII IRQ!");
1187 static void __inline__
fec_get_mac(struct net_device
*dev
, struct fec_enet_private
*fep
)
1189 unsigned char *eap
, *iap
, tmpaddr
[6];
1193 eap
= (unsigned char *)my_enet_addr
;
1194 iap
= bd
->bi_enetaddr
;
1197 #ifdef CONFIG_RPXCLASSIC
1198 /* The Embedded Planet boards have only one MAC address in
1199 * the EEPROM, but can have two Ethernet ports. For the
1200 * FEC port, we create another address by setting one of
1201 * the address bits above something that would have (up to
1202 * now) been allocated.
1205 tmpaddr
[i
] = *iap
++;
1211 dev
->dev_addr
[i
] = *eap
++ = *iap
++;
1214 static void __inline__
fec_set_mii(struct net_device
*dev
, struct fec_enet_private
*fep
)
1216 extern uint
_get_IMMR(void);
1217 volatile immap_t
*immap
;
1218 volatile fec_t
*fecp
;
1221 immap
= (immap_t
*)IMAP_ADDR
; /* pointer to internal registers */
1223 /* Configure all of port D for MII.
1225 immap
->im_ioport
.iop_pdpar
= 0x1fff;
1227 /* Bits moved from Rev. D onward.
1229 if ((_get_IMMR() & 0xffff) < 0x0501)
1230 immap
->im_ioport
.iop_pddir
= 0x1c58; /* Pre rev. D */
1232 immap
->im_ioport
.iop_pddir
= 0x1fff; /* Rev. D and later */
1234 /* Set MII speed to 2.5 MHz
1236 fecp
->fec_mii_speed
= fep
->phy_speed
=
1237 ((bd
->bi_busfreq
* 1000000) / 2500000) & 0x7e;
1240 static void __inline__
fec_enable_phy_intr(void)
1242 volatile fec_t
*fecp
;
1245 /* Enable MII command finished interrupt
1247 fecp
->fec_ivec
= (FEC_INTERRUPT
/2) << 29;
1250 static void __inline__
fec_disable_phy_intr(void)
1254 static void __inline__
fec_phy_ack_intr(void)
1258 static void __inline__
fec_localhw_setup(void)
1260 volatile fec_t
*fecp
;
1263 fecp
->fec_r_hash
= PKT_MAXBUF_SIZE
;
1264 /* Enable big endian and don't care about SDMA FC.
1266 fecp
->fec_fun_code
= 0x78000000;
1269 static void __inline__
fec_uncache(unsigned long addr
)
1272 pte
= va_to_pte(mem_addr
);
1273 pte_val(*pte
) |= _PAGE_NO_CACHE
;
1274 flush_tlb_page(init_mm
.mmap
, mem_addr
);
1279 /* ------------------------------------------------------------------------- */
1281 static void mii_display_status(struct net_device
*dev
)
1283 struct fec_enet_private
*fep
= dev
->priv
;
1284 volatile uint
*s
= &(fep
->phy_status
);
1286 if (!fep
->link
&& !fep
->old_link
) {
1287 /* Link is still down - don't print anything */
1291 printk("%s: status: ", dev
->name
);
1294 printk("link down");
1298 switch(*s
& PHY_STAT_SPMASK
) {
1299 case PHY_STAT_100FDX
: printk(", 100MBit Full Duplex"); break;
1300 case PHY_STAT_100HDX
: printk(", 100MBit Half Duplex"); break;
1301 case PHY_STAT_10FDX
: printk(", 10MBit Full Duplex"); break;
1302 case PHY_STAT_10HDX
: printk(", 10MBit Half Duplex"); break;
1304 printk(", Unknown speed/duplex");
1307 if (*s
& PHY_STAT_ANC
)
1308 printk(", auto-negotiation complete");
1311 if (*s
& PHY_STAT_FAULT
)
1312 printk(", remote fault");
1317 static void mii_display_config(struct net_device
*dev
)
1319 struct fec_enet_private
*fep
= dev
->priv
;
1320 volatile uint
*s
= &(fep
->phy_status
);
1322 printk("%s: config: auto-negotiation ", dev
->name
);
1324 if (*s
& PHY_CONF_ANE
)
1329 if (*s
& PHY_CONF_100FDX
)
1331 if (*s
& PHY_CONF_100HDX
)
1333 if (*s
& PHY_CONF_10FDX
)
1335 if (*s
& PHY_CONF_10HDX
)
1337 if (!(*s
& PHY_CONF_SPMASK
))
1338 printk(", No speed/duplex selected?");
1340 if (*s
& PHY_CONF_LOOP
)
1341 printk(", loopback enabled");
1345 fep
->sequence_done
= 1;
1348 static void mii_relink(struct net_device
*dev
)
1350 struct fec_enet_private
*fep
= dev
->priv
;
1353 fep
->link
= (fep
->phy_status
& PHY_STAT_LINK
) ? 1 : 0;
1354 mii_display_status(dev
);
1355 fep
->old_link
= fep
->link
;
1360 & (PHY_STAT_100FDX
| PHY_STAT_10FDX
))
1362 fec_restart(dev
, duplex
);
1368 enable_irq(fep
->mii_irq
);
1373 static void mii_queue_relink(uint mii_reg
, struct net_device
*dev
)
1375 struct fec_enet_private
*fep
= dev
->priv
;
1377 INIT_WORK(&fep
->phy_task
, (void*)mii_relink
, dev
);
1378 schedule_work(&fep
->phy_task
);
1381 static void mii_queue_config(uint mii_reg
, struct net_device
*dev
)
1383 struct fec_enet_private
*fep
= dev
->priv
;
1385 INIT_WORK(&fep
->phy_task
, (void*)mii_display_config
, dev
);
1386 schedule_work(&fep
->phy_task
);
1391 phy_cmd_t phy_cmd_relink
[] = { { mk_mii_read(MII_REG_CR
), mii_queue_relink
},
1393 phy_cmd_t phy_cmd_config
[] = { { mk_mii_read(MII_REG_CR
), mii_queue_config
},
1398 /* Read remainder of PHY ID.
1401 mii_discover_phy3(uint mii_reg
, struct net_device
*dev
)
1403 struct fec_enet_private
*fep
;
1407 fep
->phy_id
|= (mii_reg
& 0xffff);
1408 printk("fec: PHY @ 0x%x, ID 0x%08x", fep
->phy_addr
, fep
->phy_id
);
1410 for(i
= 0; phy_info
[i
]; i
++) {
1411 if(phy_info
[i
]->id
== (fep
->phy_id
>> 4))
1416 printk(" -- %s\n", phy_info
[i
]->name
);
1418 printk(" -- unknown PHY!\n");
1420 fep
->phy
= phy_info
[i
];
1421 fep
->phy_id_done
= 1;
1424 /* Scan all of the MII PHY addresses looking for someone to respond
1425 * with a valid ID. This usually happens quickly.
1428 mii_discover_phy(uint mii_reg
, struct net_device
*dev
)
1430 struct fec_enet_private
*fep
;
1431 volatile fec_t
*fecp
;
1437 if (fep
->phy_addr
< 32) {
1438 if ((phytype
= (mii_reg
& 0xffff)) != 0xffff && phytype
!= 0) {
1440 /* Got first part of ID, now get remainder.
1442 fep
->phy_id
= phytype
<< 16;
1443 mii_queue(dev
, mk_mii_read(MII_REG_PHYIR2
),
1448 mii_queue(dev
, mk_mii_read(MII_REG_PHYIR1
),
1452 printk("FEC: No PHY device found.\n");
1453 /* Disable external MII interface */
1454 fecp
->fec_mii_speed
= fep
->phy_speed
= 0;
1455 fec_disable_phy_intr();
1459 /* This interrupt occurs when the PHY detects a link change.
1462 #ifdef CONFIG_RPXCLASSIC
1463 mii_link_interrupt(void *dev_id
)
1465 mii_link_interrupt(int irq
, void * dev_id
, struct pt_regs
* regs
)
1468 struct net_device
*dev
= dev_id
;
1469 struct fec_enet_private
*fep
= dev
->priv
;
1474 disable_irq(fep
->mii_irq
); /* disable now, enable later */
1477 mii_do_cmd(dev
, fep
->phy
->ack_int
);
1478 mii_do_cmd(dev
, phy_cmd_relink
); /* restart and display status */
1483 fec_enet_open(struct net_device
*dev
)
1485 struct fec_enet_private
*fep
= dev
->priv
;
1487 /* I should reset the ring buffers here, but I don't yet know
1488 * a simple way to do that.
1491 fec_set_mac_address(dev
);
1493 fep
->sequence_done
= 0;
1497 mii_do_cmd(dev
, fep
->phy
->ack_int
);
1498 mii_do_cmd(dev
, fep
->phy
->config
);
1499 mii_do_cmd(dev
, phy_cmd_config
); /* display configuration */
1501 /* FIXME: use netif_carrier_{on,off} ; this polls
1502 * until link is up which is wrong... could be
1503 * 30 seconds or more we are trapped in here. -jgarzik
1505 while(!fep
->sequence_done
)
1508 mii_do_cmd(dev
, fep
->phy
->startup
);
1510 fep
->link
= 1; /* lets just try it and see */
1511 /* no phy, go full duplex, it's most likely a hub chip */
1512 fec_restart(dev
, 1);
1515 netif_start_queue(dev
);
1517 return 0; /* Success */
1521 fec_enet_close(struct net_device
*dev
)
1523 /* Don't know what to do yet.
1526 netif_stop_queue(dev
);
1532 static struct net_device_stats
*fec_enet_get_stats(struct net_device
*dev
)
1534 struct fec_enet_private
*fep
= (struct fec_enet_private
*)dev
->priv
;
1539 /* Set or clear the multicast filter for this adaptor.
1540 * Skeleton taken from sunlance driver.
1541 * The CPM Ethernet implementation allows Multicast as well as individual
1542 * MAC address filtering. Some of the drivers check to make sure it is
1543 * a group multicast address, and discard those that are not. I guess I
1544 * will do the same for now, but just remove the test if you want
1545 * individual filtering as well (do the upper net layers want or support
1546 * this kind of feature?).
1549 #define HASH_BITS 6 /* #bits in hash */
1550 #define CRC32_POLY 0xEDB88320
1552 static void set_multicast_list(struct net_device
*dev
)
1554 struct fec_enet_private
*fep
;
1556 struct dev_mc_list
*dmi
;
1557 unsigned int i
, j
, bit
, data
, crc
;
1560 fep
= (struct fec_enet_private
*)dev
->priv
;
1563 if (dev
->flags
&IFF_PROMISC
) {
1564 /* Log any net taps. */
1565 printk("%s: Promiscuous mode enabled.\n", dev
->name
);
1566 ep
->fec_r_cntrl
|= 0x0008;
1569 ep
->fec_r_cntrl
&= ~0x0008;
1571 if (dev
->flags
& IFF_ALLMULTI
) {
1572 /* Catch all multicast addresses, so set the
1573 * filter to all 1's.
1575 ep
->fec_hash_table_high
= 0xffffffff;
1576 ep
->fec_hash_table_low
= 0xffffffff;
1578 /* Clear filter and add the addresses in hash register.
1580 ep
->fec_hash_table_high
= 0;
1581 ep
->fec_hash_table_low
= 0;
1585 for (j
= 0; j
< dev
->mc_count
; j
++, dmi
= dmi
->next
)
1587 /* Only support group multicast for now.
1589 if (!(dmi
->dmi_addr
[0] & 1))
1592 /* calculate crc32 value of mac address
1596 for (i
= 0; i
< dmi
->dmi_addrlen
; i
++)
1598 data
= dmi
->dmi_addr
[i
];
1599 for (bit
= 0; bit
< 8; bit
++, data
>>= 1)
1602 (((crc
^ data
) & 1) ? CRC32_POLY
: 0);
1606 /* only upper 6 bits (HASH_BITS) are used
1607 which point to specific bit in he hash registers
1609 hash
= (crc
>> (32 - HASH_BITS
)) & 0x3f;
1612 ep
->fec_hash_table_high
|= 1 << (hash
- 32);
1614 ep
->fec_hash_table_low
|= 1 << hash
;
1620 /* Set a MAC change in hardware.
1623 fec_set_mac_address(struct net_device
*dev
)
1626 volatile fec_t
*fecp
;
1630 /* Set our copy of the Ethernet address */
1631 for (i
= 0; i
< (ETH_ALEN
/ 2); i
++)
1632 my_enet_addr
[i
] = (dev
->dev_addr
[i
*2] << 8) | dev
->dev_addr
[i
*2 + 1];
1634 /* Set station address. */
1635 fecp
->fec_addr_low
= (my_enet_addr
[0] << 16) | my_enet_addr
[1];
1636 fecp
->fec_addr_high
= my_enet_addr
[2] << 16;
1639 /* Initialize the FEC Ethernet on 860T (or ColdFire 5272).
1641 int __init
fec_enet_init(struct net_device
*dev
)
1643 struct fec_enet_private
*fep
;
1644 unsigned long mem_addr
;
1645 volatile cbd_t
*bdp
;
1647 volatile fec_t
*fecp
;
1650 /* Only allow us to be probed once. */
1654 /* Allocate some private information.
1656 fep
= (struct fec_enet_private
*)kmalloc(sizeof(*fep
), GFP_KERNEL
);
1659 memset(fep
, 0, sizeof(*fep
));
1661 /* Create an Ethernet device instance.
1665 /* Whack a reset. We should wait for this.
1667 fecp
->fec_ecntrl
= 1;
1670 /* Clear and enable interrupts */
1671 fecp
->fec_ievent
= 0xffc0;
1672 fecp
->fec_imask
= (FEC_ENET_TXF
| FEC_ENET_TXB
|
1673 FEC_ENET_RXF
| FEC_ENET_RXB
| FEC_ENET_MII
);
1674 fecp
->fec_hash_table_high
= 0;
1675 fecp
->fec_hash_table_low
= 0;
1676 fecp
->fec_r_buff_size
= PKT_MAXBLR_SIZE
;
1677 fecp
->fec_ecntrl
= 2;
1678 fecp
->fec_r_des_active
= 0x01000000;
1680 /* Set the Ethernet address. If using multiple Enets on the 8xx,
1681 * this needs some work to get unique addresses.
1683 * This is our default MAC address unless the user changes
1684 * it via eth_mac_addr (our dev->set_mac_addr handler).
1686 fec_get_mac(dev
, fep
);
1688 /* Allocate memory for buffer descriptors.
1690 if (((RX_RING_SIZE
+ TX_RING_SIZE
) * sizeof(cbd_t
)) > PAGE_SIZE
) {
1691 printk("FEC init error. Need more space.\n");
1692 printk("FEC initialization failed.\n");
1695 mem_addr
= __get_free_page(GFP_KERNEL
);
1696 cbd_base
= (cbd_t
*)mem_addr
;
1698 fec_uncache(mem_addr
);
1700 /* Set receive and transmit descriptor base.
1702 fep
->rx_bd_base
= cbd_base
;
1703 fep
->tx_bd_base
= cbd_base
+ RX_RING_SIZE
;
1705 fep
->dirty_tx
= fep
->cur_tx
= fep
->tx_bd_base
;
1706 fep
->cur_rx
= fep
->rx_bd_base
;
1708 fep
->skb_cur
= fep
->skb_dirty
= 0;
1710 /* Initialize the receive buffer descriptors.
1712 bdp
= fep
->rx_bd_base
;
1713 for (i
=0; i
<FEC_ENET_RX_PAGES
; i
++) {
1717 mem_addr
= __get_free_page(GFP_KERNEL
);
1719 fec_uncache(mem_addr
);
1721 /* Initialize the BD for every fragment in the page.
1723 for (j
=0; j
<FEC_ENET_RX_FRPPG
; j
++) {
1724 bdp
->cbd_sc
= BD_ENET_RX_EMPTY
;
1725 bdp
->cbd_bufaddr
= __pa(mem_addr
);
1726 mem_addr
+= FEC_ENET_RX_FRSIZE
;
1731 /* Set the last buffer to wrap.
1734 bdp
->cbd_sc
|= BD_SC_WRAP
;
1736 /* ...and the same for transmmit.
1738 bdp
= fep
->tx_bd_base
;
1739 for (i
=0; i
<TX_RING_SIZE
; i
++) {
1741 /* Initialize the BD for every fragment in the page.
1744 bdp
->cbd_bufaddr
= 0;
1748 /* Set the last buffer to wrap.
1751 bdp
->cbd_sc
|= BD_SC_WRAP
;
1753 /* Set receive and transmit descriptor base.
1755 fecp
->fec_r_des_start
= __pa((uint
)(fep
->rx_bd_base
));
1756 fecp
->fec_x_des_start
= __pa((uint
)(fep
->tx_bd_base
));
1758 /* Install our interrupt handlers. This varies depending on
1761 fec_request_intrs(dev
, fecp
);
1763 dev
->base_addr
= (unsigned long)fecp
;
1768 /* The FEC Ethernet specific entries in the device structure. */
1769 dev
->open
= fec_enet_open
;
1770 dev
->hard_start_xmit
= fec_enet_start_xmit
;
1771 dev
->tx_timeout
= fec_timeout
;
1772 dev
->watchdog_timeo
= TX_TIMEOUT
;
1773 dev
->stop
= fec_enet_close
;
1774 dev
->get_stats
= fec_enet_get_stats
;
1775 dev
->set_multicast_list
= set_multicast_list
;
1777 for (i
=0; i
<NMII
-1; i
++)
1778 mii_cmds
[i
].mii_next
= &mii_cmds
[i
+1];
1779 mii_free
= mii_cmds
;
1781 /* setup MII interface */
1782 fec_set_mii(dev
, fep
);
1784 printk("%s: FEC ENET Version 0.2, ", dev
->name
);
1786 printk("%02x:", dev
->dev_addr
[i
]);
1787 printk("%02x\n", dev
->dev_addr
[5]);
1789 /* Queue up command to detect the PHY and initialize the
1790 * remainder of the interface.
1792 fep
->phy_id_done
= 0;
1794 mii_queue(dev
, mk_mii_read(MII_REG_PHYIR1
), mii_discover_phy
);
1800 /* This function is called to start or restart the FEC during a link
1801 * change. This only happens when switching between half and full
1805 fec_restart(struct net_device
*dev
, int duplex
)
1807 struct fec_enet_private
*fep
;
1810 volatile cbd_t
*bdp
;
1811 volatile fec_t
*fecp
;
1817 /* Whack a reset. We should wait for this.
1819 fecp
->fec_ecntrl
= 1;
1822 /* Enable interrupts we wish to service.
1824 fecp
->fec_imask
= (FEC_ENET_TXF
| FEC_ENET_TXB
|
1825 FEC_ENET_RXF
| FEC_ENET_RXB
| FEC_ENET_MII
);
1827 /* Clear any outstanding interrupt.
1829 fecp
->fec_ievent
= 0xffc0;
1830 fec_enable_phy_intr();
1832 /* Set station address.
1834 fecp
->fec_addr_low
= (my_enet_addr
[0] << 16) | my_enet_addr
[1];
1835 fecp
->fec_addr_high
= (my_enet_addr
[2] << 16);
1837 eap
= (unsigned char *)&my_enet_addr
[0];
1839 dev
->dev_addr
[i
] = *eap
++;
1841 /* Reset all multicast.
1843 fecp
->fec_hash_table_high
= 0;
1844 fecp
->fec_hash_table_low
= 0;
1846 /* Set maximum receive buffer size.
1848 fecp
->fec_r_buff_size
= PKT_MAXBLR_SIZE
;
1850 fec_localhw_setup();
1852 /* Set receive and transmit descriptor base.
1854 fecp
->fec_r_des_start
= __pa((uint
)(fep
->rx_bd_base
));
1855 fecp
->fec_x_des_start
= __pa((uint
)(fep
->tx_bd_base
));
1857 fep
->dirty_tx
= fep
->cur_tx
= fep
->tx_bd_base
;
1858 fep
->cur_rx
= fep
->rx_bd_base
;
1860 /* Reset SKB transmit buffers.
1862 fep
->skb_cur
= fep
->skb_dirty
= 0;
1863 for (i
=0; i
<=TX_RING_MOD_MASK
; i
++) {
1864 if (fep
->tx_skbuff
[i
] != NULL
) {
1865 dev_kfree_skb_any(fep
->tx_skbuff
[i
]);
1866 fep
->tx_skbuff
[i
] = NULL
;
1870 /* Initialize the receive buffer descriptors.
1872 bdp
= fep
->rx_bd_base
;
1873 for (i
=0; i
<RX_RING_SIZE
; i
++) {
1875 /* Initialize the BD for every fragment in the page.
1877 bdp
->cbd_sc
= BD_ENET_RX_EMPTY
;
1881 /* Set the last buffer to wrap.
1884 bdp
->cbd_sc
|= BD_SC_WRAP
;
1886 /* ...and the same for transmmit.
1888 bdp
= fep
->tx_bd_base
;
1889 for (i
=0; i
<TX_RING_SIZE
; i
++) {
1891 /* Initialize the BD for every fragment in the page.
1894 bdp
->cbd_bufaddr
= 0;
1898 /* Set the last buffer to wrap.
1901 bdp
->cbd_sc
|= BD_SC_WRAP
;
1906 fecp
->fec_r_cntrl
= 0x04; /* MII enable */
1907 fecp
->fec_x_cntrl
= 0x04; /* FD enable */
1910 fecp
->fec_r_cntrl
= 0x06; /* MII enable|No Rcv on Xmit */
1911 fecp
->fec_x_cntrl
= 0x00;
1913 fep
->full_duplex
= duplex
;
1917 fecp
->fec_mii_speed
= fep
->phy_speed
;
1919 /* And last, enable the transmit and receive processing.
1921 fecp
->fec_ecntrl
= 2;
1922 fecp
->fec_r_des_active
= 0x01000000;
1926 fec_stop(struct net_device
*dev
)
1928 volatile fec_t
*fecp
;
1929 struct fec_enet_private
*fep
;
1934 fecp
->fec_x_cntrl
= 0x01; /* Graceful transmit stop */
1936 while(!(fecp
->fec_ievent
& 0x10000000));
1938 /* Whack a reset. We should wait for this.
1940 fecp
->fec_ecntrl
= 1;
1943 /* Clear outstanding MII command interrupts.
1945 fecp
->fec_ievent
= FEC_ENET_MII
;
1946 fec_enable_phy_intr();
1948 fecp
->fec_imask
= FEC_ENET_MII
;
1949 fecp
->fec_mii_speed
= fep
->phy_speed
;
1952 static struct net_device fec_dev
= {
1953 .init
= fec_enet_init
,
1956 static int __init
fec_enet_module_init(void)
1958 if (register_netdev(&fec_dev
) != 0)
1963 module_init(fec_enet_module_init
);
1965 MODULE_LICENSE("GPL");