More meth updates.
[linux-2.6/linux-mips.git] / drivers / net / au1000_eth.c
blob4a940aeb370a8a6df089e2e89575af61d6ce4870
1 /*
2 * Alchemy Semi Au1000 ethernet driver
4 * Copyright 2001 MontaVista Software Inc.
5 * Author: MontaVista Software, Inc.
6 * ppopov@mvista.com or source@mvista.com
8 * This program is free software; you can distribute it and/or modify it
9 * under the terms of the GNU General Public License (Version 2) as
10 * published by the Free Software Foundation.
12 * This program is distributed in the hope it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 * for more details.
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, write to the Free Software Foundation, Inc.,
19 * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
21 #include <linux/config.h>
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/string.h>
26 #include <linux/timer.h>
27 #include <linux/errno.h>
28 #include <linux/in.h>
29 #include <linux/ioport.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/pci.h>
33 #include <linux/init.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/skbuff.h>
37 #include <linux/delay.h>
38 #include <linux/crc32.h>
40 #include <asm/mipsregs.h>
41 #include <asm/irq.h>
42 #include <asm/bitops.h>
43 #include <asm/io.h>
44 #include <asm/au1000.h>
46 #include "au1000_eth.h"
48 #ifdef AU1000_ETH_DEBUG
49 static int au1000_debug = 10;
50 #else
51 static int au1000_debug = 3;
52 #endif
54 // prototypes
55 static void *dma_alloc(size_t, dma_addr_t *);
56 static void dma_free(void *, size_t);
57 static void hard_stop(struct net_device *);
58 static void enable_rx_tx(struct net_device *dev);
59 static int __init au1000_probe1(struct net_device *, long, int, int);
60 static int au1000_init(struct net_device *);
61 static int au1000_open(struct net_device *);
62 static int au1000_close(struct net_device *);
63 static int au1000_tx(struct sk_buff *, struct net_device *);
64 static int au1000_rx(struct net_device *);
65 static irqreturn_t au1000_interrupt(int, void *, struct pt_regs *);
66 static void au1000_tx_timeout(struct net_device *);
67 static int au1000_set_config(struct net_device *dev, struct ifmap *map);
68 static void set_rx_mode(struct net_device *);
69 static struct net_device_stats *au1000_get_stats(struct net_device *);
70 static inline void update_tx_stats(struct net_device *, u32, u32);
71 static inline void update_rx_stats(struct net_device *, u32);
72 static void au1000_timer(unsigned long);
73 static int au1000_ioctl(struct net_device *, struct ifreq *, int);
74 static int mdio_read(struct net_device *, int, int);
75 static void mdio_write(struct net_device *, int, int, u16);
76 static void dump_mii(struct net_device *dev, int phy_id);
78 // externs
79 extern void ack_rise_edge_irq(unsigned int);
80 extern int get_ethernet_addr(char *ethernet_addr);
81 extern inline void str2eaddr(unsigned char *ea, unsigned char *str);
82 extern inline unsigned char str2hexnum(unsigned char c);
83 extern char * __init prom_getcmdline(void);
86 * Theory of operation
88 * The Au1000 MACs use a simple rx and tx descriptor ring scheme.
89 * There are four receive and four transmit descriptors. These
90 * descriptors are not in memory; rather, they are just a set of
91 * hardware registers.
93 * Since the Au1000 has a coherent data cache, the receive and
94 * transmit buffers are allocated from the KSEG0 segment. The
95 * hardware registers, however, are still mapped at KSEG1 to
96 * make sure there's no out-of-order writes, and that all writes
97 * complete immediately.
102 * Base address and interrupt of the Au1xxx ethernet macs
104 static struct {
105 unsigned int port;
106 int irq;
107 } au1000_iflist[NUM_INTERFACES] = {
108 {AU1000_ETH0_BASE, AU1000_ETH0_IRQ},
109 {AU1000_ETH1_BASE, AU1000_ETH1_IRQ}
111 au1500_iflist[NUM_INTERFACES] = {
112 {AU1500_ETH0_BASE, AU1000_ETH0_IRQ},
113 {AU1500_ETH1_BASE, AU1000_ETH1_IRQ}
115 au1100_iflist[NUM_INTERFACES] = {
116 {AU1000_ETH0_BASE, AU1000_ETH0_IRQ},
117 {0, 0}
120 static char version[] __devinitdata =
121 "au1000eth.c:1.0 ppopov@mvista.com\n";
123 /* These addresses are only used if yamon doesn't tell us what
124 * the mac address is, and the mac address is not passed on the
125 * command line.
127 static unsigned char au1000_mac_addr[6] __devinitdata = {
128 0x00, 0x50, 0xc2, 0x0c, 0x30, 0x00
131 #define nibswap(x) ((((x) >> 4) & 0x0f) | (((x) << 4) & 0xf0))
132 #define RUN_AT(x) (jiffies + (x))
134 // For reading/writing 32-bit words from/to DMA memory
135 #define cpu_to_dma32 cpu_to_be32
136 #define dma32_to_cpu be32_to_cpu
139 /* FIXME
140 * All of the PHY code really should be detached from the MAC
141 * code.
144 int bcm_5201_init(struct net_device *dev, int phy_addr)
146 s16 data;
148 /* Stop auto-negotiation */
149 //printk("bcm_5201_init\n");
150 data = mdio_read(dev, phy_addr, MII_CONTROL);
151 mdio_write(dev, phy_addr, MII_CONTROL, data & ~MII_CNTL_AUTO);
153 /* Set advertisement to 10/100 and Half/Full duplex
154 * (full capabilities) */
155 data = mdio_read(dev, phy_addr, MII_ANADV);
156 data |= MII_NWAY_TX | MII_NWAY_TX_FDX | MII_NWAY_T_FDX | MII_NWAY_T;
157 mdio_write(dev, phy_addr, MII_ANADV, data);
159 /* Restart auto-negotiation */
160 data = mdio_read(dev, phy_addr, MII_CONTROL);
161 data |= MII_CNTL_RST_AUTO | MII_CNTL_AUTO;
162 mdio_write(dev, phy_addr, MII_CONTROL, data);
164 /* Enable TX LED instead of FDX */
165 data = mdio_read(dev, phy_addr, MII_INT);
166 data &= ~MII_FDX_LED;
167 mdio_write(dev, phy_addr, MII_INT, data);
169 /* Enable TX LED instead of FDX */
170 data = mdio_read(dev, phy_addr, MII_INT);
171 data &= ~MII_FDX_LED;
172 mdio_write(dev, phy_addr, MII_INT, data);
174 if (au1000_debug > 4) dump_mii(dev, phy_addr);
175 return 0;
178 int bcm_5201_reset(struct net_device *dev, int phy_addr)
180 s16 mii_control, timeout;
182 //printk("bcm_5201_reset\n");
183 mii_control = mdio_read(dev, phy_addr, MII_CONTROL);
184 mdio_write(dev, phy_addr, MII_CONTROL, mii_control | MII_CNTL_RESET);
185 mdelay(1);
186 for (timeout = 100; timeout > 0; --timeout) {
187 mii_control = mdio_read(dev, phy_addr, MII_CONTROL);
188 if ((mii_control & MII_CNTL_RESET) == 0)
189 break;
190 mdelay(1);
192 if (mii_control & MII_CNTL_RESET) {
193 printk(KERN_ERR "%s PHY reset timeout !\n", dev->name);
194 return -1;
196 return 0;
199 int
200 bcm_5201_status(struct net_device *dev, int phy_addr, u16 *link, u16 *speed)
202 u16 mii_data;
203 struct au1000_private *aup;
205 if (!dev) {
206 printk(KERN_ERR "bcm_5201_status error: NULL dev\n");
207 return -1;
209 aup = (struct au1000_private *) dev->priv;
211 mii_data = mdio_read(dev, aup->phy_addr, MII_STATUS);
212 if (mii_data & MII_STAT_LINK) {
213 *link = 1;
214 mii_data = mdio_read(dev, aup->phy_addr, MII_AUX_CNTRL);
215 if (mii_data & MII_AUX_100) {
216 if (mii_data & MII_AUX_FDX) {
217 *speed = IF_PORT_100BASEFX;
218 dev->if_port = IF_PORT_100BASEFX;
220 else {
221 *speed = IF_PORT_100BASETX;
222 dev->if_port = IF_PORT_100BASETX;
225 else {
226 *speed = IF_PORT_10BASET;
227 dev->if_port = IF_PORT_10BASET;
231 else {
232 *link = 0;
233 *speed = 0;
234 dev->if_port = IF_PORT_UNKNOWN;
236 return 0;
239 int lsi_80227_init(struct net_device *dev, int phy_addr)
241 if (au1000_debug > 4)
242 printk("lsi_80227_init\n");
244 /* restart auto-negotiation */
245 mdio_write(dev, phy_addr, 0, 0x3200);
247 mdelay(1);
249 /* set up LEDs to correct display */
250 mdio_write(dev, phy_addr, 17, 0xffc0);
252 if (au1000_debug > 4)
253 dump_mii(dev, phy_addr);
254 return 0;
257 int lsi_80227_reset(struct net_device *dev, int phy_addr)
259 s16 mii_control, timeout;
261 if (au1000_debug > 4) {
262 printk("lsi_80227_reset\n");
263 dump_mii(dev, phy_addr);
266 mii_control = mdio_read(dev, phy_addr, MII_CONTROL);
267 mdio_write(dev, phy_addr, MII_CONTROL, mii_control | MII_CNTL_RESET);
268 mdelay(1);
269 for (timeout = 100; timeout > 0; --timeout) {
270 mii_control = mdio_read(dev, phy_addr, MII_CONTROL);
271 if ((mii_control & MII_CNTL_RESET) == 0)
272 break;
273 mdelay(1);
275 if (mii_control & MII_CNTL_RESET) {
276 printk(KERN_ERR "%s PHY reset timeout !\n", dev->name);
277 return -1;
279 return 0;
283 lsi_80227_status(struct net_device *dev, int phy_addr, u16 *link, u16 *speed)
285 u16 mii_data;
286 struct au1000_private *aup;
288 if (!dev) {
289 printk(KERN_ERR "lsi_80227_status error: NULL dev\n");
290 return -1;
292 aup = (struct au1000_private *) dev->priv;
294 mii_data = mdio_read(dev, aup->phy_addr, MII_STATUS);
295 if (mii_data & MII_STAT_LINK) {
296 *link = 1;
297 mii_data = mdio_read(dev, aup->phy_addr, MII_LSI_STAT);
298 if (mii_data & MII_LSI_STAT_SPD) {
299 if (mii_data & MII_LSI_STAT_FDX) {
300 *speed = IF_PORT_100BASEFX;
301 dev->if_port = IF_PORT_100BASEFX;
303 else {
304 *speed = IF_PORT_100BASETX;
305 dev->if_port = IF_PORT_100BASETX;
308 else {
309 *speed = IF_PORT_10BASET;
310 dev->if_port = IF_PORT_10BASET;
314 else {
315 *link = 0;
316 *speed = 0;
317 dev->if_port = IF_PORT_UNKNOWN;
319 return 0;
322 int am79c901_init(struct net_device *dev, int phy_addr)
324 printk("am79c901_init\n");
325 return 0;
328 int am79c901_reset(struct net_device *dev, int phy_addr)
330 printk("am79c901_reset\n");
331 return 0;
334 int
335 am79c901_status(struct net_device *dev, int phy_addr, u16 *link, u16 *speed)
337 return 0;
340 struct phy_ops bcm_5201_ops = {
341 bcm_5201_init,
342 bcm_5201_reset,
343 bcm_5201_status,
346 struct phy_ops am79c901_ops = {
347 am79c901_init,
348 am79c901_reset,
349 am79c901_status,
352 struct phy_ops lsi_80227_ops = {
353 lsi_80227_init,
354 lsi_80227_reset,
355 lsi_80227_status,
358 static struct mii_chip_info {
359 const char * name;
360 u16 phy_id0;
361 u16 phy_id1;
362 struct phy_ops *phy_ops;
363 } mii_chip_table[] = {
364 {"Broadcom BCM5201 10/100 BaseT PHY", 0x0040, 0x6212, &bcm_5201_ops },
365 {"AMD 79C901 HomePNA PHY", 0x0000, 0x35c8, &am79c901_ops },
366 {"LSI 80227 10/100 BaseT PHY", 0x0016, 0xf840, &lsi_80227_ops },
367 {"Broadcom BCM5221 10/100 BaseT PHY", 0x0040, 0x61e4, &bcm_5201_ops },
368 {0,},
371 static int mdio_read(struct net_device *dev, int phy_id, int reg)
373 struct au1000_private *aup = (struct au1000_private *) dev->priv;
374 u32 timedout = 20;
375 u32 mii_control;
377 while (aup->mac->mii_control & MAC_MII_BUSY) {
378 mdelay(1);
379 if (--timedout == 0) {
380 printk(KERN_ERR "%s: read_MII busy timeout!!\n",
381 dev->name);
382 return -1;
386 mii_control = MAC_SET_MII_SELECT_REG(reg) |
387 MAC_SET_MII_SELECT_PHY(phy_id) | MAC_MII_READ;
389 aup->mac->mii_control = mii_control;
391 timedout = 20;
392 while (aup->mac->mii_control & MAC_MII_BUSY) {
393 mdelay(1);
394 if (--timedout == 0) {
395 printk(KERN_ERR "%s: mdio_read busy timeout!!\n",
396 dev->name);
397 return -1;
400 return (int)aup->mac->mii_data;
403 static void mdio_write(struct net_device *dev, int phy_id, int reg, u16 value)
405 struct au1000_private *aup = (struct au1000_private *) dev->priv;
406 u32 timedout = 20;
407 u32 mii_control;
409 while (aup->mac->mii_control & MAC_MII_BUSY) {
410 mdelay(1);
411 if (--timedout == 0) {
412 printk(KERN_ERR "%s: mdio_write busy timeout!!\n",
413 dev->name);
414 return;
418 mii_control = MAC_SET_MII_SELECT_REG(reg) |
419 MAC_SET_MII_SELECT_PHY(phy_id) | MAC_MII_WRITE;
421 aup->mac->mii_data = value;
422 aup->mac->mii_control = mii_control;
426 static void dump_mii(struct net_device *dev, int phy_id)
428 int i, val;
430 for (i = 0; i < 7; i++) {
431 if ((val = mdio_read(dev, phy_id, i)) >= 0)
432 printk("%s: MII Reg %d=%x\n", dev->name, i, val);
434 for (i = 16; i < 25; i++) {
435 if ((val = mdio_read(dev, phy_id, i)) >= 0)
436 printk("%s: MII Reg %d=%x\n", dev->name, i, val);
440 static int __init mii_probe (struct net_device * dev)
442 struct au1000_private *aup = (struct au1000_private *) dev->priv;
443 int phy_addr;
445 aup->mii = NULL;
447 /* search for total of 32 possible mii phy addresses */
448 for (phy_addr = 0; phy_addr < 32; phy_addr++) {
449 u16 mii_status;
450 u16 phy_id0, phy_id1;
451 int i;
453 mii_status = mdio_read(dev, phy_addr, MII_STATUS);
454 if (mii_status == 0xffff || mii_status == 0x0000)
455 /* the mii is not accessible, try next one */
456 continue;
458 phy_id0 = mdio_read(dev, phy_addr, MII_PHY_ID0);
459 phy_id1 = mdio_read(dev, phy_addr, MII_PHY_ID1);
461 /* search our mii table for the current mii */
462 for (i = 0; mii_chip_table[i].phy_id1; i++) {
463 if (phy_id0 == mii_chip_table[i].phy_id0 &&
464 phy_id1 == mii_chip_table[i].phy_id1) {
465 struct mii_phy * mii_phy;
467 printk(KERN_INFO "%s: %s at phy address %d\n",
468 dev->name, mii_chip_table[i].name,
469 phy_addr);
470 mii_phy = kmalloc(sizeof(struct mii_phy),
471 GFP_KERNEL);
472 if (mii_phy) {
473 mii_phy->chip_info = mii_chip_table+i;
474 mii_phy->phy_addr = phy_addr;
475 mii_phy->next = aup->mii;
476 aup->phy_ops =
477 mii_chip_table[i].phy_ops;
478 aup->mii = mii_phy;
479 aup->phy_ops->phy_init(dev,phy_addr);
480 } else {
481 printk(KERN_ERR "%s: out of memory\n",
482 dev->name);
483 return -1;
485 /* the current mii is on our mii_info_table,
486 try next address */
487 break;
492 if (aup->mii == NULL) {
493 printk(KERN_ERR "%s: No MII transceivers found!\n", dev->name);
494 return -1;
497 /* use last PHY */
498 aup->phy_addr = aup->mii->phy_addr;
499 printk(KERN_INFO "%s: Using %s as default\n",
500 dev->name, aup->mii->chip_info->name);
502 return 0;
507 * Buffer allocation/deallocation routines. The buffer descriptor returned
508 * has the virtual and dma address of a buffer suitable for
509 * both, receive and transmit operations.
511 static db_dest_t *GetFreeDB(struct au1000_private *aup)
513 db_dest_t *pDB;
514 pDB = aup->pDBfree;
516 if (pDB) {
517 aup->pDBfree = pDB->pnext;
519 //printk("GetFreeDB: %x\n", pDB);
520 return pDB;
523 void ReleaseDB(struct au1000_private *aup, db_dest_t *pDB)
525 db_dest_t *pDBfree = aup->pDBfree;
526 if (pDBfree)
527 pDBfree->pnext = pDB;
528 aup->pDBfree = pDB;
533 DMA memory allocation, derived from pci_alloc_consistent.
534 However, the Au1000 data cache is coherent (when programmed
535 so), therefore we return KSEG0 address, not KSEG1.
537 static void *dma_alloc(size_t size, dma_addr_t * dma_handle)
539 void *ret;
540 int gfp = GFP_ATOMIC | GFP_DMA;
542 ret = (void *) __get_free_pages(gfp, get_order(size));
544 if (ret != NULL) {
545 memset(ret, 0, size);
546 *dma_handle = virt_to_bus(ret);
547 ret = (void *)KSEG0ADDR(ret);
549 return ret;
553 static void dma_free(void *vaddr, size_t size)
555 vaddr = (void *)KSEG0ADDR(vaddr);
556 free_pages((unsigned long) vaddr, get_order(size));
560 static void enable_rx_tx(struct net_device *dev)
562 struct au1000_private *aup = (struct au1000_private *) dev->priv;
564 if (au1000_debug > 4)
565 printk(KERN_INFO "%s: enable_rx_tx\n", dev->name);
567 aup->mac->control |= (MAC_RX_ENABLE | MAC_TX_ENABLE);
568 au_sync_delay(10);
571 static void hard_stop(struct net_device *dev)
573 struct au1000_private *aup = (struct au1000_private *) dev->priv;
575 if (au1000_debug > 4)
576 printk(KERN_INFO "%s: hard stop\n", dev->name);
578 aup->mac->control &= ~(MAC_RX_ENABLE | MAC_TX_ENABLE);
579 au_sync_delay(10);
583 static void reset_mac(struct net_device *dev)
585 u32 flags;
586 struct au1000_private *aup = (struct au1000_private *) dev->priv;
588 if (au1000_debug > 4)
589 printk(KERN_INFO "%s: reset mac, aup %x\n",
590 dev->name, (unsigned)aup);
592 spin_lock_irqsave(&aup->lock, flags);
593 del_timer(&aup->timer);
594 hard_stop(dev);
595 *aup->enable = MAC_EN_CLOCK_ENABLE;
596 au_sync_delay(2);
597 *aup->enable = 0;
598 au_sync_delay(2);
599 aup->tx_full = 0;
600 spin_unlock_irqrestore(&aup->lock, flags);
605 * Setup the receive and transmit "rings". These pointers are the addresses
606 * of the rx and tx MAC DMA registers so they are fixed by the hardware --
607 * these are not descriptors sitting in memory.
609 static void
610 setup_hw_rings(struct au1000_private *aup, u32 rx_base, u32 tx_base)
612 int i;
614 for (i=0; i<NUM_RX_DMA; i++) {
615 aup->rx_dma_ring[i] =
616 (volatile rx_dma_t *) (rx_base + sizeof(rx_dma_t)*i);
618 for (i=0; i<NUM_TX_DMA; i++) {
619 aup->tx_dma_ring[i] =
620 (volatile tx_dma_t *) (tx_base + sizeof(tx_dma_t)*i);
624 static int __init au1000_init_module(void)
626 int i;
627 int prid;
628 int base_addr, irq;
630 prid = read_c0_prid();
631 for (i=0; i<NUM_INTERFACES; i++) {
632 if ( (prid & 0xffff0000) == 0x00030000 ) {
633 base_addr = au1000_iflist[i].port;
634 irq = au1000_iflist[i].irq;
635 } else if ( (prid & 0xffff0000) == 0x01030000 ) {
636 base_addr = au1500_iflist[i].port;
637 irq = au1500_iflist[i].irq;
638 } else if ( (prid & 0xffff0000) == 0x02030000 ) {
639 base_addr = au1100_iflist[i].port;
640 irq = au1100_iflist[i].irq;
641 } else {
642 printk(KERN_ERR "au1000 eth: unknown Processor ID\n");
643 return -ENODEV;
645 // check for valid entries, au1100 only has one entry
646 if (base_addr && irq) {
647 if (au1000_probe1(NULL, base_addr, irq, i) != 0) {
648 return -ENODEV;
652 return 0;
655 static int __init
656 au1000_probe1(struct net_device *dev, long ioaddr, int irq, int port_num)
658 static unsigned version_printed = 0;
659 struct au1000_private *aup = NULL;
660 int i, retval = 0;
661 db_dest_t *pDB, *pDBfree;
662 char *pmac, *argptr;
663 char ethaddr[6];
665 if (!request_region(PHYSADDR(ioaddr), MAC_IOSIZE, "Au1000 ENET"))
666 return -ENODEV;
668 if (version_printed++ == 0)
669 printk(version);
671 if (!dev)
672 dev = init_etherdev(NULL, sizeof(struct au1000_private));
674 if (!dev) {
675 printk (KERN_ERR "au1000 eth: init_etherdev failed\n");
676 release_region(ioaddr, MAC_IOSIZE);
677 return -ENODEV;
680 printk("%s: Au1xxx ethernet found at 0x%lx, irq %d\n",
681 dev->name, ioaddr, irq);
683 aup = dev->priv;
685 /* Allocate the data buffers */
686 aup->vaddr = (u32)dma_alloc(MAX_BUF_SIZE *
687 (NUM_TX_BUFFS+NUM_RX_BUFFS), &aup->dma_addr);
688 if (!aup->vaddr) {
689 retval = -ENOMEM;
690 goto free_region;
693 /* aup->mac is the base address of the MAC's registers */
694 aup->mac = (volatile mac_reg_t *)((unsigned long)ioaddr);
695 /* Setup some variables for quick register address access */
696 switch (ioaddr) {
697 case AU1000_ETH0_BASE:
698 case AU1500_ETH0_BASE:
699 /* check env variables first */
700 if (!get_ethernet_addr(ethaddr)) {
701 memcpy(au1000_mac_addr, ethaddr, sizeof(dev->dev_addr));
702 } else {
703 /* Check command line */
704 argptr = prom_getcmdline();
705 if ((pmac = strstr(argptr, "ethaddr=")) == NULL) {
706 printk(KERN_INFO "%s: No mac address found\n",
707 dev->name);
708 /* use the hard coded mac addresses */
709 } else {
710 str2eaddr(ethaddr, pmac + strlen("ethaddr="));
711 memcpy(au1000_mac_addr, ethaddr,
712 sizeof(dev->dev_addr));
715 if (ioaddr == AU1000_ETH0_BASE)
716 aup->enable = (volatile u32 *)
717 ((unsigned long)AU1000_MAC0_ENABLE);
718 else
719 aup->enable = (volatile u32 *)
720 ((unsigned long)AU1500_MAC0_ENABLE);
721 memcpy(dev->dev_addr, au1000_mac_addr, sizeof(dev->dev_addr));
722 setup_hw_rings(aup, MAC0_RX_DMA_ADDR, MAC0_TX_DMA_ADDR);
723 break;
724 case AU1000_ETH1_BASE:
725 case AU1500_ETH1_BASE:
726 if (ioaddr == AU1000_ETH1_BASE)
727 aup->enable = (volatile u32 *)
728 ((unsigned long)AU1000_MAC1_ENABLE);
729 else
730 aup->enable = (volatile u32 *)
731 ((unsigned long)AU1500_MAC1_ENABLE);
732 memcpy(dev->dev_addr, au1000_mac_addr, sizeof(dev->dev_addr));
733 dev->dev_addr[4] += 0x10;
734 setup_hw_rings(aup, MAC1_RX_DMA_ADDR, MAC1_TX_DMA_ADDR);
735 break;
736 default:
737 printk(KERN_ERR "%s: bad ioaddr\n", dev->name);
738 break;
742 aup->phy_addr = PHY_ADDRESS;
744 /* bring the device out of reset, otherwise probing the mii
745 * will hang */
746 *aup->enable = MAC_EN_CLOCK_ENABLE;
747 au_sync_delay(2);
748 *aup->enable = MAC_EN_RESET0 | MAC_EN_RESET1 |
749 MAC_EN_RESET2 | MAC_EN_CLOCK_ENABLE;
750 au_sync_delay(2);
752 if (mii_probe(dev) != 0) {
753 goto free_region;
756 pDBfree = NULL;
757 /* setup the data buffer descriptors and attach a buffer to each one */
758 pDB = aup->db;
759 for (i=0; i<(NUM_TX_BUFFS+NUM_RX_BUFFS); i++) {
760 pDB->pnext = pDBfree;
761 pDBfree = pDB;
762 pDB->vaddr = (u32 *)((unsigned)aup->vaddr + MAX_BUF_SIZE*i);
763 pDB->dma_addr = (dma_addr_t)virt_to_bus(pDB->vaddr);
764 pDB++;
766 aup->pDBfree = pDBfree;
768 for (i=0; i<NUM_RX_DMA; i++) {
769 pDB = GetFreeDB(aup);
770 if (!pDB) goto free_region;
771 aup->rx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr;
772 aup->rx_db_inuse[i] = pDB;
774 for (i=0; i<NUM_TX_DMA; i++) {
775 pDB = GetFreeDB(aup);
776 if (!pDB) goto free_region;
777 aup->tx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr;
778 aup->tx_dma_ring[i]->len = 0;
779 aup->tx_db_inuse[i] = pDB;
782 spin_lock_init(&aup->lock);
783 dev->base_addr = ioaddr;
784 dev->irq = irq;
785 dev->open = au1000_open;
786 dev->hard_start_xmit = au1000_tx;
787 dev->stop = au1000_close;
788 dev->get_stats = au1000_get_stats;
789 dev->set_multicast_list = &set_rx_mode;
790 dev->do_ioctl = &au1000_ioctl;
791 dev->set_config = &au1000_set_config;
792 dev->tx_timeout = au1000_tx_timeout;
793 dev->watchdog_timeo = ETH_TX_TIMEOUT;
796 /* Fill in the fields of the device structure with ethernet values. */
797 ether_setup(dev);
800 * The boot code uses the ethernet controller, so reset it to start
801 * fresh. au1000_init() expects that the device is in reset state.
803 reset_mac(dev);
804 return 0;
806 free_region:
807 release_region(PHYSADDR(ioaddr), MAC_IOSIZE);
808 unregister_netdev(dev);
809 if (aup->vaddr)
810 dma_free((void *)aup->vaddr,
811 MAX_BUF_SIZE * (NUM_TX_BUFFS+NUM_RX_BUFFS));
812 printk(KERN_ERR "%s: au1000_probe1 failed. Returns %d\n",
813 dev->name, retval);
814 kfree(dev);
815 return retval;
820 * Initialize the interface.
822 * When the device powers up, the clocks are disabled and the
823 * mac is in reset state. When the interface is closed, we
824 * do the same -- reset the device and disable the clocks to
825 * conserve power. Thus, whenever au1000_init() is called,
826 * the device should already be in reset state.
828 static int au1000_init(struct net_device *dev)
830 struct au1000_private *aup = (struct au1000_private *) dev->priv;
831 u32 flags;
832 int i;
833 u32 control;
834 u16 link, speed;
836 if (au1000_debug > 4) printk("%s: au1000_init\n", dev->name);
838 spin_lock_irqsave(&aup->lock, flags);
840 /* bring the device out of reset */
841 *aup->enable = MAC_EN_CLOCK_ENABLE;
842 au_sync_delay(2);
843 *aup->enable = MAC_EN_RESET0 | MAC_EN_RESET1 |
844 MAC_EN_RESET2 | MAC_EN_CLOCK_ENABLE;
845 au_sync_delay(20);
847 aup->mac->control = 0;
848 aup->tx_head = (aup->tx_dma_ring[0]->buff_stat & 0xC) >> 2;
849 aup->tx_tail = aup->tx_head;
850 aup->rx_head = (aup->rx_dma_ring[0]->buff_stat & 0xC) >> 2;
852 aup->mac->mac_addr_high = dev->dev_addr[5]<<8 | dev->dev_addr[4];
853 aup->mac->mac_addr_low = dev->dev_addr[3]<<24 | dev->dev_addr[2]<<16 |
854 dev->dev_addr[1]<<8 | dev->dev_addr[0];
856 for (i=0; i<NUM_RX_DMA; i++) {
857 aup->rx_dma_ring[i]->buff_stat |= RX_DMA_ENABLE;
859 au_sync();
861 aup->phy_ops->phy_status(dev, aup->phy_addr, &link, &speed);
862 control = MAC_DISABLE_RX_OWN | MAC_RX_ENABLE | MAC_TX_ENABLE;
863 #ifndef CONFIG_CPU_LITTLE_ENDIAN
864 control |= MAC_BIG_ENDIAN;
865 #endif
866 if (link && (dev->if_port == IF_PORT_100BASEFX)) {
867 control |= MAC_FULL_DUPLEX;
869 aup->mac->control = control;
870 au_sync();
872 spin_unlock_irqrestore(&aup->lock, flags);
873 return 0;
876 static void au1000_timer(unsigned long data)
878 struct net_device *dev = (struct net_device *)data;
879 struct au1000_private *aup = (struct au1000_private *) dev->priv;
880 unsigned char if_port;
881 u16 link, speed;
883 if (!dev) {
884 /* fatal error, don't restart the timer */
885 printk(KERN_ERR "au1000_timer error: NULL dev\n");
886 return;
889 if_port = dev->if_port;
890 if (aup->phy_ops->phy_status(dev, aup->phy_addr, &link, &speed) == 0) {
891 if (link) {
892 if (!(dev->flags & IFF_RUNNING)) {
893 netif_carrier_on(dev);
894 dev->flags |= IFF_RUNNING;
895 printk(KERN_INFO "%s: link up\n", dev->name);
898 else {
899 if (dev->flags & IFF_RUNNING) {
900 netif_carrier_off(dev);
901 dev->flags &= ~IFF_RUNNING;
902 dev->if_port = 0;
903 printk(KERN_INFO "%s: link down\n", dev->name);
908 if (link && (dev->if_port != if_port) &&
909 (dev->if_port != IF_PORT_UNKNOWN)) {
910 hard_stop(dev);
911 if (dev->if_port == IF_PORT_100BASEFX) {
912 printk(KERN_INFO "%s: going to full duplex\n",
913 dev->name);
914 aup->mac->control |= MAC_FULL_DUPLEX;
915 au_sync_delay(1);
917 else {
918 aup->mac->control &= ~MAC_FULL_DUPLEX;
919 au_sync_delay(1);
921 enable_rx_tx(dev);
924 aup->timer.expires = RUN_AT((1*HZ));
925 aup->timer.data = (unsigned long)dev;
926 aup->timer.function = &au1000_timer; /* timer handler */
927 add_timer(&aup->timer);
931 static int au1000_open(struct net_device *dev)
933 int retval;
934 struct au1000_private *aup = (struct au1000_private *) dev->priv;
936 MOD_INC_USE_COUNT;
938 if (au1000_debug > 4)
939 printk("%s: open: dev=%p\n", dev->name, dev);
941 if ((retval = au1000_init(dev))) {
942 printk(KERN_ERR "%s: error in au1000_init\n", dev->name);
943 free_irq(dev->irq, dev);
944 MOD_DEC_USE_COUNT;
945 return retval;
947 netif_start_queue(dev);
949 if ((retval = request_irq(dev->irq, &au1000_interrupt, 0,
950 dev->name, dev))) {
951 printk(KERN_ERR "%s: unable to get IRQ %d\n",
952 dev->name, dev->irq);
953 MOD_DEC_USE_COUNT;
954 return retval;
957 aup->timer.expires = RUN_AT((3*HZ));
958 aup->timer.data = (unsigned long)dev;
959 aup->timer.function = &au1000_timer; /* timer handler */
960 add_timer(&aup->timer);
962 if (au1000_debug > 4)
963 printk("%s: open: Initialization done.\n", dev->name);
965 return 0;
968 static int au1000_close(struct net_device *dev)
970 u32 flags;
971 struct au1000_private *aup = (struct au1000_private *) dev->priv;
973 if (au1000_debug > 4)
974 printk("%s: close: dev=%p\n", dev->name, dev);
976 spin_lock_irqsave(&aup->lock, flags);
978 /* stop the device */
979 if (netif_device_present(dev))
980 netif_stop_queue(dev);
982 /* disable the interrupt */
983 free_irq(dev->irq, dev);
984 spin_unlock_irqrestore(&aup->lock, flags);
986 reset_mac(dev);
987 kfree(dev);
988 MOD_DEC_USE_COUNT;
989 return 0;
992 static void __exit au1000_cleanup_module(void)
997 static inline void
998 update_tx_stats(struct net_device *dev, u32 status, u32 pkt_len)
1000 struct au1000_private *aup = (struct au1000_private *) dev->priv;
1001 struct net_device_stats *ps = &aup->stats;
1003 ps->tx_packets++;
1004 ps->tx_bytes += pkt_len;
1006 if (status & TX_FRAME_ABORTED) {
1007 if (dev->if_port == IF_PORT_100BASEFX) {
1008 if (status & (TX_JAB_TIMEOUT | TX_UNDERRUN)) {
1009 /* any other tx errors are only valid
1010 * in half duplex mode */
1011 ps->tx_errors++;
1012 ps->tx_aborted_errors++;
1015 else {
1016 ps->tx_errors++;
1017 ps->tx_aborted_errors++;
1018 if (status & (TX_NO_CARRIER | TX_LOSS_CARRIER))
1019 ps->tx_carrier_errors++;
1026 * Called from the interrupt service routine to acknowledge
1027 * the TX DONE bits. This is a must if the irq is setup as
1028 * edge triggered.
1030 static void au1000_tx_ack(struct net_device *dev)
1032 struct au1000_private *aup = (struct au1000_private *) dev->priv;
1033 volatile tx_dma_t *ptxd;
1035 ptxd = aup->tx_dma_ring[aup->tx_tail];
1037 while (ptxd->buff_stat & TX_T_DONE) {
1038 update_tx_stats(dev, ptxd->status, aup->tx_len[aup->tx_tail] & 0x3ff);
1039 ptxd->buff_stat &= ~TX_T_DONE;
1040 aup->tx_len[aup->tx_tail] = 0;
1041 ptxd->len = 0;
1042 au_sync();
1044 aup->tx_tail = (aup->tx_tail + 1) & (NUM_TX_DMA - 1);
1045 ptxd = aup->tx_dma_ring[aup->tx_tail];
1047 if (aup->tx_full) {
1048 aup->tx_full = 0;
1049 netif_wake_queue(dev);
1056 * Au1000 transmit routine.
1058 static int au1000_tx(struct sk_buff *skb, struct net_device *dev)
1060 struct au1000_private *aup = (struct au1000_private *) dev->priv;
1061 volatile tx_dma_t *ptxd;
1062 u32 buff_stat;
1063 db_dest_t *pDB;
1064 int i;
1066 if (au1000_debug > 4)
1067 printk("%s: tx: aup %x len=%d, data=%p, head %d\n",
1068 dev->name, (unsigned)aup, skb->len,
1069 skb->data, aup->tx_head);
1071 ptxd = aup->tx_dma_ring[aup->tx_head];
1072 buff_stat = ptxd->buff_stat;
1073 if (buff_stat & TX_DMA_ENABLE) {
1074 /* We've wrapped around and the transmitter is still busy */
1075 netif_stop_queue(dev);
1076 aup->tx_full = 1;
1077 return 1;
1079 else if (buff_stat & TX_T_DONE) {
1080 update_tx_stats(dev, ptxd->status, aup->tx_len[aup->tx_head] & 0x3ff);
1081 aup->tx_len[aup->tx_head] = 0;
1082 ptxd->len = 0;
1085 if (aup->tx_full) {
1086 aup->tx_full = 0;
1087 netif_wake_queue(dev);
1090 pDB = aup->tx_db_inuse[aup->tx_head];
1091 memcpy((void *)pDB->vaddr, skb->data, skb->len);
1092 if (skb->len < MAC_MIN_PKT_SIZE) {
1093 for (i=skb->len; i<MAC_MIN_PKT_SIZE; i++) {
1094 ((char *)pDB->vaddr)[i] = 0;
1096 aup->tx_len[aup->tx_head] = MAC_MIN_PKT_SIZE;
1097 ptxd->len = MAC_MIN_PKT_SIZE;
1099 else {
1100 aup->tx_len[aup->tx_head] = skb->len;
1101 ptxd->len = skb->len;
1103 ptxd->buff_stat = pDB->dma_addr | TX_DMA_ENABLE;
1104 au_sync();
1105 dev_kfree_skb(skb);
1106 aup->tx_head = (aup->tx_head + 1) & (NUM_TX_DMA - 1);
1107 dev->trans_start = jiffies;
1108 return 0;
1112 static inline void update_rx_stats(struct net_device *dev, u32 status)
1114 struct au1000_private *aup = (struct au1000_private *) dev->priv;
1115 struct net_device_stats *ps = &aup->stats;
1117 ps->rx_packets++;
1118 if (status & RX_MCAST_FRAME)
1119 ps->multicast++;
1121 if (status & RX_ERROR) {
1122 ps->rx_errors++;
1123 if (status & RX_MISSED_FRAME)
1124 ps->rx_missed_errors++;
1125 if (status & (RX_OVERLEN | RX_OVERLEN | RX_LEN_ERROR))
1126 ps->rx_length_errors++;
1127 if (status & RX_CRC_ERROR)
1128 ps->rx_crc_errors++;
1129 if (status & RX_COLL)
1130 ps->collisions++;
1132 else
1133 ps->rx_bytes += status & RX_FRAME_LEN_MASK;
1138 * Au1000 receive routine.
1140 static int au1000_rx(struct net_device *dev)
1142 struct au1000_private *aup = (struct au1000_private *) dev->priv;
1143 struct sk_buff *skb;
1144 volatile rx_dma_t *prxd;
1145 u32 buff_stat, status;
1146 db_dest_t *pDB;
1148 if (au1000_debug > 4)
1149 printk("%s: au1000_rx head %d\n", dev->name, aup->rx_head);
1151 prxd = aup->rx_dma_ring[aup->rx_head];
1152 buff_stat = prxd->buff_stat;
1153 while (buff_stat & RX_T_DONE) {
1154 status = prxd->status;
1155 pDB = aup->rx_db_inuse[aup->rx_head];
1156 update_rx_stats(dev, status);
1157 if (!(status & RX_ERROR)) {
1159 /* good frame */
1160 skb = dev_alloc_skb((status & RX_FRAME_LEN_MASK) + 2);
1161 if (skb == NULL) {
1162 printk(KERN_ERR
1163 "%s: Memory squeeze, dropping packet.\n",
1164 dev->name);
1165 aup->stats.rx_dropped++;
1166 continue;
1168 skb->dev = dev;
1169 skb_reserve(skb, 2); /* 16 byte IP header align */
1170 eth_copy_and_sum(skb, (unsigned char *)pDB->vaddr,
1171 status & RX_FRAME_LEN_MASK, 0);
1172 skb_put(skb, status & RX_FRAME_LEN_MASK);
1173 skb->protocol = eth_type_trans(skb, dev);
1174 netif_rx(skb); /* pass the packet to upper layers */
1176 else {
1177 if (au1000_debug > 4) {
1178 if (status & RX_MISSED_FRAME)
1179 printk("rx miss\n");
1180 if (status & RX_WDOG_TIMER)
1181 printk("rx wdog\n");
1182 if (status & RX_RUNT)
1183 printk("rx runt\n");
1184 if (status & RX_OVERLEN)
1185 printk("rx overlen\n");
1186 if (status & RX_COLL)
1187 printk("rx coll\n");
1188 if (status & RX_MII_ERROR)
1189 printk("rx mii error\n");
1190 if (status & RX_CRC_ERROR)
1191 printk("rx crc error\n");
1192 if (status & RX_LEN_ERROR)
1193 printk("rx len error\n");
1194 if (status & RX_U_CNTRL_FRAME)
1195 printk("rx u control frame\n");
1196 if (status & RX_MISSED_FRAME)
1197 printk("rx miss\n");
1200 prxd->buff_stat = (u32)(pDB->dma_addr | RX_DMA_ENABLE);
1201 aup->rx_head = (aup->rx_head + 1) & (NUM_RX_DMA - 1);
1202 au_sync();
1204 /* next descriptor */
1205 prxd = aup->rx_dma_ring[aup->rx_head];
1206 buff_stat = prxd->buff_stat;
1207 dev->last_rx = jiffies;
1209 return 0;
1214 * Au1000 interrupt service routine.
1216 irqreturn_t au1000_interrupt(int irq, void *dev_id, struct pt_regs *regs)
1218 struct net_device *dev = (struct net_device *) dev_id;
1220 if (dev == NULL) {
1221 printk(KERN_ERR "%s: isr: null dev ptr\n", dev->name);
1222 return IRQ_NONE;
1224 au1000_tx_ack(dev);
1225 au1000_rx(dev);
1226 return IRQ_HANDLED;
1231 * The Tx ring has been full longer than the watchdog timeout
1232 * value. The transmitter must be hung?
1234 static void au1000_tx_timeout(struct net_device *dev)
1236 printk(KERN_ERR "%s: au1000_tx_timeout: dev=%p\n", dev->name, dev);
1237 reset_mac(dev);
1238 au1000_init(dev);
1239 dev->trans_start = jiffies;
1240 netif_wake_queue(dev);
1243 static void set_rx_mode(struct net_device *dev)
1245 struct au1000_private *aup = (struct au1000_private *) dev->priv;
1247 if (au1000_debug > 4)
1248 printk("%s: set_rx_mode: flags=%x\n", dev->name, dev->flags);
1250 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1251 aup->mac->control |= MAC_PROMISCUOUS;
1252 printk(KERN_INFO "%s: Promiscuous mode enabled.\n", dev->name);
1253 } else if ((dev->flags & IFF_ALLMULTI) ||
1254 dev->mc_count > MULTICAST_FILTER_LIMIT) {
1255 aup->mac->control |= MAC_PASS_ALL_MULTI;
1256 aup->mac->control &= ~MAC_PROMISCUOUS;
1257 printk(KERN_INFO "%s: Pass all multicast\n", dev->name);
1258 } else {
1259 int i;
1260 struct dev_mc_list *mclist;
1261 u32 mc_filter[2]; /* Multicast hash filter */
1263 mc_filter[1] = mc_filter[0] = 0;
1264 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1265 i++, mclist = mclist->next) {
1266 set_bit(ether_crc_le(ETH_ALEN, mclist->dmi_addr)>>26,
1267 mc_filter);
1269 aup->mac->multi_hash_high = mc_filter[1];
1270 aup->mac->multi_hash_low = mc_filter[0];
1271 aup->mac->control &= ~MAC_PROMISCUOUS;
1272 aup->mac->control |= MAC_HASH_MODE;
1277 static int au1000_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1279 u16 *data = (u16 *)&rq->ifr_data;
1281 /* fixme */
1282 switch(cmd) {
1283 case SIOCGMIIPHY: /* Get the address of the PHY in use. */
1284 data[0] = PHY_ADDRESS;
1285 return 0;
1287 case SIOCGMIIREG: /* Read the specified MII register. */
1288 //data[3] = mdio_read(ioaddr, data[0], data[1]);
1289 return 0;
1291 case SIOCSMIIREG: /* Write the specified MII register */
1292 if (!capable(CAP_NET_ADMIN))
1293 return -EPERM;
1295 //mdio_write(ioaddr, data[0], data[1], data[2]);
1296 return 0;
1298 default:
1299 return -EOPNOTSUPP;
1304 static int au1000_set_config(struct net_device *dev, struct ifmap *map)
1306 struct au1000_private *aup = (struct au1000_private *) dev->priv;
1307 u16 control;
1309 if (au1000_debug > 4) {
1310 printk("%s: set_config called: dev->if_port %d map->port %x\n",
1311 dev->name, dev->if_port, map->port);
1314 switch(map->port){
1315 case IF_PORT_UNKNOWN: /* use auto here */
1316 printk(KERN_INFO "%s: config phy for aneg\n",
1317 dev->name);
1318 dev->if_port = map->port;
1319 /* Link Down: the timer will bring it up */
1320 netif_carrier_off(dev);
1322 /* read current control */
1323 control = mdio_read(dev, aup->phy_addr, MII_CONTROL);
1324 control &= ~(MII_CNTL_FDX | MII_CNTL_F100);
1326 /* enable auto negotiation and reset the negotiation */
1327 mdio_write(dev, aup->phy_addr, MII_CONTROL,
1328 control | MII_CNTL_AUTO |
1329 MII_CNTL_RST_AUTO);
1331 break;
1333 case IF_PORT_10BASET: /* 10BaseT */
1334 printk(KERN_INFO "%s: config phy for 10BaseT\n",
1335 dev->name);
1336 dev->if_port = map->port;
1338 /* Link Down: the timer will bring it up */
1339 netif_carrier_off(dev);
1341 /* set Speed to 10Mbps, Half Duplex */
1342 control = mdio_read(dev, aup->phy_addr, MII_CONTROL);
1343 control &= ~(MII_CNTL_F100 | MII_CNTL_AUTO |
1344 MII_CNTL_FDX);
1346 /* disable auto negotiation and force 10M/HD mode*/
1347 mdio_write(dev, aup->phy_addr, MII_CONTROL, control);
1348 break;
1350 case IF_PORT_100BASET: /* 100BaseT */
1351 case IF_PORT_100BASETX: /* 100BaseTx */
1352 printk(KERN_INFO "%s: config phy for 100BaseTX\n",
1353 dev->name);
1354 dev->if_port = map->port;
1356 /* Link Down: the timer will bring it up */
1357 netif_carrier_off(dev);
1359 /* set Speed to 100Mbps, Half Duplex */
1360 /* disable auto negotiation and enable 100MBit Mode */
1361 control = mdio_read(dev, aup->phy_addr, MII_CONTROL);
1362 printk("read control %x\n", control);
1363 control &= ~(MII_CNTL_AUTO | MII_CNTL_FDX);
1364 control |= MII_CNTL_F100;
1365 mdio_write(dev, aup->phy_addr, MII_CONTROL, control);
1366 break;
1368 case IF_PORT_100BASEFX: /* 100BaseFx */
1369 printk(KERN_INFO "%s: config phy for 100BaseFX\n",
1370 dev->name);
1371 dev->if_port = map->port;
1373 /* Link Down: the timer will bring it up */
1374 netif_carrier_off(dev);
1376 /* set Speed to 100Mbps, Full Duplex */
1377 /* disable auto negotiation and enable 100MBit Mode */
1378 control = mdio_read(dev, aup->phy_addr, MII_CONTROL);
1379 control &= ~MII_CNTL_AUTO;
1380 control |= MII_CNTL_F100 | MII_CNTL_FDX;
1381 mdio_write(dev, aup->phy_addr, MII_CONTROL, control);
1382 break;
1383 case IF_PORT_10BASE2: /* 10Base2 */
1384 case IF_PORT_AUI: /* AUI */
1385 /* These Modes are not supported (are they?)*/
1386 printk(KERN_ERR "%s: 10Base2/AUI not supported",
1387 dev->name);
1388 return -EOPNOTSUPP;
1389 break;
1391 default:
1392 printk(KERN_ERR "%s: Invalid media selected",
1393 dev->name);
1394 return -EINVAL;
1396 return 0;
1399 static struct net_device_stats *au1000_get_stats(struct net_device *dev)
1401 struct au1000_private *aup = (struct au1000_private *) dev->priv;
1403 if (au1000_debug > 4)
1404 printk("%s: au1000_get_stats: dev=%p\n", dev->name, dev);
1406 if (netif_device_present(dev)) {
1407 return &aup->stats;
1409 return 0;
1412 module_init(au1000_init_module);
1413 module_exit(au1000_cleanup_module);