2 * linux/drivers/ide/ide-iops.c Version 0.37 Mar 05, 2003
4 * Copyright (C) 2000-2002 Andre Hedrick <andre@linux-ide.org>
5 * Copyright (C) 2003 Red Hat <alan@redhat.com>
9 #include <linux/config.h>
10 #include <linux/module.h>
11 #include <linux/types.h>
12 #include <linux/string.h>
13 #include <linux/kernel.h>
14 #include <linux/timer.h>
16 #include <linux/interrupt.h>
17 #include <linux/major.h>
18 #include <linux/errno.h>
19 #include <linux/genhd.h>
20 #include <linux/blkpg.h>
21 #include <linux/slab.h>
22 #include <linux/pci.h>
23 #include <linux/delay.h>
24 #include <linux/hdreg.h>
25 #include <linux/ide.h>
27 #include <asm/byteorder.h>
29 #include <asm/uaccess.h>
31 #include <asm/bitops.h>
34 * IDE operator we assign to an unplugged device so that
35 * we don't trash new hardware assigned the same resources
38 static u8
ide_unplugged_inb (unsigned long port
)
43 static u16
ide_unplugged_inw (unsigned long port
)
48 static void ide_unplugged_insw (unsigned long port
, void *addr
, u32 count
)
52 static u32
ide_unplugged_inl (unsigned long port
)
57 static void ide_unplugged_insl (unsigned long port
, void *addr
, u32 count
)
61 static void ide_unplugged_outb (u8 val
, unsigned long port
)
65 static void ide_unplugged_outbsync (ide_drive_t
*drive
, u8 addr
, unsigned long port
)
69 static void ide_unplugged_outw (u16 val
, unsigned long port
)
73 static void ide_unplugged_outsw (unsigned long port
, void *addr
, u32 count
)
77 static void ide_unplugged_outl (u32 val
, unsigned long port
)
81 static void ide_unplugged_outsl (unsigned long port
, void *addr
, u32 count
)
85 void unplugged_hwif_iops (ide_hwif_t
*hwif
)
87 hwif
->OUTB
= ide_unplugged_outb
;
88 hwif
->OUTBSYNC
= ide_unplugged_outbsync
;
89 hwif
->OUTW
= ide_unplugged_outw
;
90 hwif
->OUTL
= ide_unplugged_outl
;
91 hwif
->OUTSW
= ide_unplugged_outsw
;
92 hwif
->OUTSL
= ide_unplugged_outsl
;
93 hwif
->INB
= ide_unplugged_inb
;
94 hwif
->INW
= ide_unplugged_inw
;
95 hwif
->INL
= ide_unplugged_inl
;
96 hwif
->INSW
= ide_unplugged_insw
;
97 hwif
->INSL
= ide_unplugged_insl
;
100 EXPORT_SYMBOL(unplugged_hwif_iops
);
103 * Conventional PIO operations for ATA devices
106 static u8
ide_inb (unsigned long port
)
108 return (u8
) inb(port
);
111 static u16
ide_inw (unsigned long port
)
113 return (u16
) inw(port
);
116 static void ide_insw (unsigned long port
, void *addr
, u32 count
)
118 return insw(port
, addr
, count
);
121 static u32
ide_inl (unsigned long port
)
123 return (u32
) inl(port
);
126 static void ide_insl (unsigned long port
, void *addr
, u32 count
)
128 insl(port
, addr
, count
);
131 static void ide_outb (u8 val
, unsigned long port
)
136 static void ide_outbsync (ide_drive_t
*drive
, u8 addr
, unsigned long port
)
141 static void ide_outw (u16 val
, unsigned long port
)
146 static void ide_outsw (unsigned long port
, void *addr
, u32 count
)
148 outsw(port
, addr
, count
);
151 static void ide_outl (u32 val
, unsigned long port
)
156 static void ide_outsl (unsigned long port
, void *addr
, u32 count
)
158 outsl(port
, addr
, count
);
161 void default_hwif_iops (ide_hwif_t
*hwif
)
163 hwif
->OUTB
= ide_outb
;
164 hwif
->OUTBSYNC
= ide_outbsync
;
165 hwif
->OUTW
= ide_outw
;
166 hwif
->OUTL
= ide_outl
;
167 hwif
->OUTSW
= ide_outsw
;
168 hwif
->OUTSL
= ide_outsl
;
172 hwif
->INSW
= ide_insw
;
173 hwif
->INSL
= ide_insl
;
176 EXPORT_SYMBOL(default_hwif_iops
);
179 * MMIO operations, typically used for SATA controllers
182 static u8
ide_mm_inb (unsigned long port
)
184 return (u8
) readb(port
);
187 static u16
ide_mm_inw (unsigned long port
)
189 return (u16
) readw(port
);
192 static void ide_mm_insw (unsigned long port
, void *addr
, u32 count
)
194 __ide_mm_insw(port
, addr
, count
);
197 static u32
ide_mm_inl (unsigned long port
)
199 return (u32
) readl(port
);
202 static void ide_mm_insl (unsigned long port
, void *addr
, u32 count
)
204 __ide_mm_insl(port
, addr
, count
);
207 static void ide_mm_outb (u8 value
, unsigned long port
)
212 static void ide_mm_outbsync (ide_drive_t
*drive
, u8 value
, unsigned long port
)
217 static void ide_mm_outw (u16 value
, unsigned long port
)
222 static void ide_mm_outsw (unsigned long port
, void *addr
, u32 count
)
224 __ide_mm_outsw(port
, addr
, count
);
227 static void ide_mm_outl (u32 value
, unsigned long port
)
232 static void ide_mm_outsl (unsigned long port
, void *addr
, u32 count
)
234 __ide_mm_outsl(port
, addr
, count
);
237 void default_hwif_mmiops (ide_hwif_t
*hwif
)
239 hwif
->OUTB
= ide_mm_outb
;
240 /* Most systems will need to override OUTBSYNC, alas however
241 this one is controller specific! */
242 hwif
->OUTBSYNC
= ide_mm_outbsync
;
243 hwif
->OUTW
= ide_mm_outw
;
244 hwif
->OUTL
= ide_mm_outl
;
245 hwif
->OUTSW
= ide_mm_outsw
;
246 hwif
->OUTSL
= ide_mm_outsl
;
247 hwif
->INB
= ide_mm_inb
;
248 hwif
->INW
= ide_mm_inw
;
249 hwif
->INL
= ide_mm_inl
;
250 hwif
->INSW
= ide_mm_insw
;
251 hwif
->INSL
= ide_mm_insl
;
254 EXPORT_SYMBOL(default_hwif_mmiops
);
256 void default_hwif_transport (ide_hwif_t
*hwif
)
258 hwif
->ata_input_data
= ata_input_data
;
259 hwif
->ata_output_data
= ata_output_data
;
260 hwif
->atapi_input_bytes
= atapi_input_bytes
;
261 hwif
->atapi_output_bytes
= atapi_output_bytes
;
264 EXPORT_SYMBOL(default_hwif_transport
);
266 u32
ide_read_24 (ide_drive_t
*drive
)
268 u8 hcyl
= HWIF(drive
)->INB(IDE_HCYL_REG
);
269 u8 lcyl
= HWIF(drive
)->INB(IDE_LCYL_REG
);
270 u8 sect
= HWIF(drive
)->INB(IDE_SECTOR_REG
);
271 return (hcyl
<<16)|(lcyl
<<8)|sect
;
274 EXPORT_SYMBOL(ide_read_24
);
276 void SELECT_DRIVE (ide_drive_t
*drive
)
278 if (HWIF(drive
)->selectproc
)
279 HWIF(drive
)->selectproc(drive
);
280 HWIF(drive
)->OUTB(drive
->select
.all
, IDE_SELECT_REG
);
283 EXPORT_SYMBOL(SELECT_DRIVE
);
285 void SELECT_INTERRUPT (ide_drive_t
*drive
)
287 if (HWIF(drive
)->intrproc
)
288 HWIF(drive
)->intrproc(drive
);
290 HWIF(drive
)->OUTB(drive
->ctl
|2, IDE_CONTROL_REG
);
293 EXPORT_SYMBOL(SELECT_INTERRUPT
);
295 void SELECT_MASK (ide_drive_t
*drive
, int mask
)
297 if (HWIF(drive
)->maskproc
)
298 HWIF(drive
)->maskproc(drive
, mask
);
301 EXPORT_SYMBOL(SELECT_MASK
);
303 void QUIRK_LIST (ide_drive_t
*drive
)
305 if (HWIF(drive
)->quirkproc
)
306 drive
->quirk_list
= HWIF(drive
)->quirkproc(drive
);
309 EXPORT_SYMBOL(QUIRK_LIST
);
312 * Some localbus EIDE interfaces require a special access sequence
313 * when using 32-bit I/O instructions to transfer data. We call this
314 * the "vlb_sync" sequence, which consists of three successive reads
315 * of the sector count register location, with interrupts disabled
316 * to ensure that the reads all happen together.
318 void ata_vlb_sync (ide_drive_t
*drive
, unsigned long port
)
320 (void) HWIF(drive
)->INB(port
);
321 (void) HWIF(drive
)->INB(port
);
322 (void) HWIF(drive
)->INB(port
);
325 EXPORT_SYMBOL(ata_vlb_sync
);
328 * This is used for most PIO data transfers *from* the IDE interface
330 void ata_input_data (ide_drive_t
*drive
, void *buffer
, u32 wcount
)
332 ide_hwif_t
*hwif
= HWIF(drive
);
333 u8 io_32bit
= drive
->io_32bit
;
338 local_irq_save(flags
);
339 ata_vlb_sync(drive
, IDE_NSECTOR_REG
);
340 hwif
->INSL(IDE_DATA_REG
, buffer
, wcount
);
341 local_irq_restore(flags
);
343 hwif
->INSL(IDE_DATA_REG
, buffer
, wcount
);
345 hwif
->INSW(IDE_DATA_REG
, buffer
, wcount
<<1);
349 EXPORT_SYMBOL(ata_input_data
);
352 * This is used for most PIO data transfers *to* the IDE interface
354 void ata_output_data (ide_drive_t
*drive
, void *buffer
, u32 wcount
)
356 ide_hwif_t
*hwif
= HWIF(drive
);
357 u8 io_32bit
= drive
->io_32bit
;
362 local_irq_save(flags
);
363 ata_vlb_sync(drive
, IDE_NSECTOR_REG
);
364 hwif
->OUTSL(IDE_DATA_REG
, buffer
, wcount
);
365 local_irq_restore(flags
);
367 hwif
->OUTSL(IDE_DATA_REG
, buffer
, wcount
);
369 hwif
->OUTSW(IDE_DATA_REG
, buffer
, wcount
<<1);
373 EXPORT_SYMBOL(ata_output_data
);
376 * The following routines are mainly used by the ATAPI drivers.
378 * These routines will round up any request for an odd number of bytes,
379 * so if an odd bytecount is specified, be sure that there's at least one
380 * extra byte allocated for the buffer.
383 void atapi_input_bytes (ide_drive_t
*drive
, void *buffer
, u32 bytecount
)
385 ide_hwif_t
*hwif
= HWIF(drive
);
388 #if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
389 if (MACH_IS_ATARI
|| MACH_IS_Q40
) {
390 /* Atari has a byte-swapped IDE interface */
391 insw_swapw(IDE_DATA_REG
, buffer
, bytecount
/ 2);
394 #endif /* CONFIG_ATARI || CONFIG_Q40 */
395 hwif
->ata_input_data(drive
, buffer
, bytecount
/ 4);
396 if ((bytecount
& 0x03) >= 2)
397 hwif
->INSW(IDE_DATA_REG
, ((u8
*)buffer
)+(bytecount
& ~0x03), 1);
400 EXPORT_SYMBOL(atapi_input_bytes
);
402 void atapi_output_bytes (ide_drive_t
*drive
, void *buffer
, u32 bytecount
)
404 ide_hwif_t
*hwif
= HWIF(drive
);
407 #if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
408 if (MACH_IS_ATARI
|| MACH_IS_Q40
) {
409 /* Atari has a byte-swapped IDE interface */
410 outsw_swapw(IDE_DATA_REG
, buffer
, bytecount
/ 2);
413 #endif /* CONFIG_ATARI || CONFIG_Q40 */
414 hwif
->ata_output_data(drive
, buffer
, bytecount
/ 4);
415 if ((bytecount
& 0x03) >= 2)
416 hwif
->OUTSW(IDE_DATA_REG
, ((u8
*)buffer
)+(bytecount
& ~0x03), 1);
419 EXPORT_SYMBOL(atapi_output_bytes
);
422 * Beginning of Taskfile OPCODE Library and feature sets.
424 void ide_fix_driveid (struct hd_driveid
*id
)
426 #ifndef __LITTLE_ENDIAN
431 id
->config
= __le16_to_cpu(id
->config
);
432 id
->cyls
= __le16_to_cpu(id
->cyls
);
433 id
->reserved2
= __le16_to_cpu(id
->reserved2
);
434 id
->heads
= __le16_to_cpu(id
->heads
);
435 id
->track_bytes
= __le16_to_cpu(id
->track_bytes
);
436 id
->sector_bytes
= __le16_to_cpu(id
->sector_bytes
);
437 id
->sectors
= __le16_to_cpu(id
->sectors
);
438 id
->vendor0
= __le16_to_cpu(id
->vendor0
);
439 id
->vendor1
= __le16_to_cpu(id
->vendor1
);
440 id
->vendor2
= __le16_to_cpu(id
->vendor2
);
441 stringcast
= (u16
*)&id
->serial_no
[0];
442 for (i
= 0; i
< (20/2); i
++)
443 stringcast
[i
] = __le16_to_cpu(stringcast
[i
]);
444 id
->buf_type
= __le16_to_cpu(id
->buf_type
);
445 id
->buf_size
= __le16_to_cpu(id
->buf_size
);
446 id
->ecc_bytes
= __le16_to_cpu(id
->ecc_bytes
);
447 stringcast
= (u16
*)&id
->fw_rev
[0];
448 for (i
= 0; i
< (8/2); i
++)
449 stringcast
[i
] = __le16_to_cpu(stringcast
[i
]);
450 stringcast
= (u16
*)&id
->model
[0];
451 for (i
= 0; i
< (40/2); i
++)
452 stringcast
[i
] = __le16_to_cpu(stringcast
[i
]);
453 id
->dword_io
= __le16_to_cpu(id
->dword_io
);
454 id
->reserved50
= __le16_to_cpu(id
->reserved50
);
455 id
->field_valid
= __le16_to_cpu(id
->field_valid
);
456 id
->cur_cyls
= __le16_to_cpu(id
->cur_cyls
);
457 id
->cur_heads
= __le16_to_cpu(id
->cur_heads
);
458 id
->cur_sectors
= __le16_to_cpu(id
->cur_sectors
);
459 id
->cur_capacity0
= __le16_to_cpu(id
->cur_capacity0
);
460 id
->cur_capacity1
= __le16_to_cpu(id
->cur_capacity1
);
461 id
->lba_capacity
= __le32_to_cpu(id
->lba_capacity
);
462 id
->dma_1word
= __le16_to_cpu(id
->dma_1word
);
463 id
->dma_mword
= __le16_to_cpu(id
->dma_mword
);
464 id
->eide_pio_modes
= __le16_to_cpu(id
->eide_pio_modes
);
465 id
->eide_dma_min
= __le16_to_cpu(id
->eide_dma_min
);
466 id
->eide_dma_time
= __le16_to_cpu(id
->eide_dma_time
);
467 id
->eide_pio
= __le16_to_cpu(id
->eide_pio
);
468 id
->eide_pio_iordy
= __le16_to_cpu(id
->eide_pio_iordy
);
469 for (i
= 0; i
< 2; ++i
)
470 id
->words69_70
[i
] = __le16_to_cpu(id
->words69_70
[i
]);
471 for (i
= 0; i
< 4; ++i
)
472 id
->words71_74
[i
] = __le16_to_cpu(id
->words71_74
[i
]);
473 id
->queue_depth
= __le16_to_cpu(id
->queue_depth
);
474 for (i
= 0; i
< 4; ++i
)
475 id
->words76_79
[i
] = __le16_to_cpu(id
->words76_79
[i
]);
476 id
->major_rev_num
= __le16_to_cpu(id
->major_rev_num
);
477 id
->minor_rev_num
= __le16_to_cpu(id
->minor_rev_num
);
478 id
->command_set_1
= __le16_to_cpu(id
->command_set_1
);
479 id
->command_set_2
= __le16_to_cpu(id
->command_set_2
);
480 id
->cfsse
= __le16_to_cpu(id
->cfsse
);
481 id
->cfs_enable_1
= __le16_to_cpu(id
->cfs_enable_1
);
482 id
->cfs_enable_2
= __le16_to_cpu(id
->cfs_enable_2
);
483 id
->csf_default
= __le16_to_cpu(id
->csf_default
);
484 id
->dma_ultra
= __le16_to_cpu(id
->dma_ultra
);
485 id
->trseuc
= __le16_to_cpu(id
->trseuc
);
486 id
->trsEuc
= __le16_to_cpu(id
->trsEuc
);
487 id
->CurAPMvalues
= __le16_to_cpu(id
->CurAPMvalues
);
488 id
->mprc
= __le16_to_cpu(id
->mprc
);
489 id
->hw_config
= __le16_to_cpu(id
->hw_config
);
490 id
->acoustic
= __le16_to_cpu(id
->acoustic
);
491 id
->msrqs
= __le16_to_cpu(id
->msrqs
);
492 id
->sxfert
= __le16_to_cpu(id
->sxfert
);
493 id
->sal
= __le16_to_cpu(id
->sal
);
494 id
->spg
= __le32_to_cpu(id
->spg
);
495 id
->lba_capacity_2
= __le64_to_cpu(id
->lba_capacity_2
);
496 for (i
= 0; i
< 22; i
++)
497 id
->words104_125
[i
] = __le16_to_cpu(id
->words104_125
[i
]);
498 id
->last_lun
= __le16_to_cpu(id
->last_lun
);
499 id
->word127
= __le16_to_cpu(id
->word127
);
500 id
->dlf
= __le16_to_cpu(id
->dlf
);
501 id
->csfo
= __le16_to_cpu(id
->csfo
);
502 for (i
= 0; i
< 26; i
++)
503 id
->words130_155
[i
] = __le16_to_cpu(id
->words130_155
[i
]);
504 id
->word156
= __le16_to_cpu(id
->word156
);
505 for (i
= 0; i
< 3; i
++)
506 id
->words157_159
[i
] = __le16_to_cpu(id
->words157_159
[i
]);
507 id
->cfa_power
= __le16_to_cpu(id
->cfa_power
);
508 for (i
= 0; i
< 14; i
++)
509 id
->words161_175
[i
] = __le16_to_cpu(id
->words161_175
[i
]);
510 for (i
= 0; i
< 31; i
++)
511 id
->words176_205
[i
] = __le16_to_cpu(id
->words176_205
[i
]);
512 for (i
= 0; i
< 48; i
++)
513 id
->words206_254
[i
] = __le16_to_cpu(id
->words206_254
[i
]);
514 id
->integrity_word
= __le16_to_cpu(id
->integrity_word
);
516 # error "Please fix <asm/byteorder.h>"
521 EXPORT_SYMBOL(ide_fix_driveid
);
523 void ide_fixstring (u8
*s
, const int bytecount
, const int byteswap
)
525 u8
*p
= s
, *end
= &s
[bytecount
& ~1]; /* bytecount must be even */
528 /* convert from big-endian to host byte order */
529 for (p
= end
; p
!= s
;) {
530 unsigned short *pp
= (unsigned short *) (p
-= 2);
534 /* strip leading blanks */
535 while (s
!= end
&& *s
== ' ')
537 /* compress internal blanks and strip trailing blanks */
538 while (s
!= end
&& *s
) {
539 if (*s
++ != ' ' || (s
!= end
&& *s
&& *s
!= ' '))
542 /* wipe out trailing garbage */
547 EXPORT_SYMBOL(ide_fixstring
);
550 * Needed for PCI irq sharing
552 int drive_is_ready (ide_drive_t
*drive
)
554 ide_hwif_t
*hwif
= HWIF(drive
);
557 if (drive
->waiting_for_dma
)
558 return hwif
->ide_dma_test_irq(drive
);
561 /* need to guarantee 400ns since last command was issued */
565 #ifdef CONFIG_IDEPCI_SHARE_IRQ
567 * We do a passive status test under shared PCI interrupts on
568 * cards that truly share the ATA side interrupt, but may also share
569 * an interrupt with another pci card/device. We make no assumptions
570 * about possible isa-pnp and pci-pnp issues yet.
573 stat
= hwif
->INB(IDE_ALTSTATUS_REG
);
575 #endif /* CONFIG_IDEPCI_SHARE_IRQ */
576 /* Note: this may clear a pending IRQ!! */
577 stat
= hwif
->INB(IDE_STATUS_REG
);
579 if (stat
& BUSY_STAT
)
580 /* drive busy: definitely not interrupting */
583 /* drive ready: *might* be interrupting */
587 EXPORT_SYMBOL(drive_is_ready
);
590 * Global for All, and taken from ide-pmac.c. Can be called
591 * with spinlock held & IRQs disabled, so don't schedule !
593 int wait_for_ready (ide_drive_t
*drive
, int timeout
)
595 ide_hwif_t
*hwif
= HWIF(drive
);
599 stat
= hwif
->INB(IDE_STATUS_REG
);
600 if (!(stat
& BUSY_STAT
)) {
601 if (drive
->ready_stat
== 0)
603 else if ((stat
& drive
->ready_stat
)||(stat
& ERR_STAT
))
608 if ((stat
& ERR_STAT
) || timeout
<= 0) {
609 if (stat
& ERR_STAT
) {
610 printk(KERN_ERR
"%s: wait_for_ready, "
611 "error status: %x\n", drive
->name
, stat
);
618 EXPORT_SYMBOL(wait_for_ready
);
621 * This routine busy-waits for the drive status to be not "busy".
622 * It then checks the status for all of the "good" bits and none
623 * of the "bad" bits, and if all is okay it returns 0. All other
624 * cases return 1 after invoking ide_error() -- caller should just return.
626 * This routine should get fixed to not hog the cpu during extra long waits..
627 * That could be done by busy-waiting for the first jiffy or two, and then
628 * setting a timer to wake up at half second intervals thereafter,
629 * until timeout is achieved, before timing out.
631 int ide_wait_stat (ide_startstop_t
*startstop
, ide_drive_t
*drive
, u8 good
, u8 bad
, unsigned long timeout
)
633 ide_hwif_t
*hwif
= HWIF(drive
);
638 /* bail early if we've exceeded max_failures */
639 if (drive
->max_failures
&& (drive
->failures
> drive
->max_failures
)) {
640 *startstop
= ide_stopped
;
644 udelay(1); /* spec allows drive 400ns to assert "BUSY" */
645 if ((stat
= hwif
->INB(IDE_STATUS_REG
)) & BUSY_STAT
) {
646 local_irq_set(flags
);
648 while ((stat
= hwif
->INB(IDE_STATUS_REG
)) & BUSY_STAT
) {
649 if (time_after(jiffies
, timeout
)) {
650 local_irq_restore(flags
);
651 *startstop
= DRIVER(drive
)->error(drive
, "status timeout", stat
);
655 local_irq_restore(flags
);
658 * Allow status to settle, then read it again.
659 * A few rare drives vastly violate the 400ns spec here,
660 * so we'll wait up to 10usec for a "good" status
661 * rather than expensively fail things immediately.
662 * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
664 for (i
= 0; i
< 10; i
++) {
666 if (OK_STAT((stat
= hwif
->INB(IDE_STATUS_REG
)), good
, bad
))
669 *startstop
= DRIVER(drive
)->error(drive
, "status error", stat
);
673 EXPORT_SYMBOL(ide_wait_stat
);
676 * All hosts that use the 80c ribbon must use!
677 * The name is derived from upper byte of word 93 and the 80c ribbon.
679 u8
eighty_ninty_three (ide_drive_t
*drive
)
682 if (!HWIF(drive
)->udma_four
)
685 if (drive
->id
->major_rev_num
) {
689 * Determine highest Supported SPEC
691 for (i
=1; i
<=15; i
++)
692 if (drive
->id
->major_rev_num
& (1<<i
))
699 /* ATA-4 and older do not support above Ultra 33 */
706 #ifndef CONFIG_IDEDMA_IVB
707 (drive
->id
->hw_config
& 0x4000) &&
708 #endif /* CONFIG_IDEDMA_IVB */
709 (drive
->id
->hw_config
& 0x6000)) ? 1 : 0);
713 return ((u8
) ((HWIF(drive
)->udma_four
) &&
714 #ifndef CONFIG_IDEDMA_IVB
715 (drive
->id
->hw_config
& 0x4000) &&
716 #endif /* CONFIG_IDEDMA_IVB */
717 (drive
->id
->hw_config
& 0x6000)) ? 1 : 0);
721 EXPORT_SYMBOL(eighty_ninty_three
);
723 int ide_ata66_check (ide_drive_t
*drive
, ide_task_t
*args
)
725 if ((args
->tfRegister
[IDE_COMMAND_OFFSET
] == WIN_SETFEATURES
) &&
726 (args
->tfRegister
[IDE_SECTOR_OFFSET
] > XFER_UDMA_2
) &&
727 (args
->tfRegister
[IDE_FEATURE_OFFSET
] == SETFEATURES_XFER
)) {
728 #ifndef CONFIG_IDEDMA_IVB
729 if ((drive
->id
->hw_config
& 0x6000) == 0) {
730 #else /* !CONFIG_IDEDMA_IVB */
731 if (((drive
->id
->hw_config
& 0x2000) == 0) ||
732 ((drive
->id
->hw_config
& 0x4000) == 0)) {
733 #endif /* CONFIG_IDEDMA_IVB */
734 printk("%s: Speed warnings UDMA 3/4/5 is not "
735 "functional.\n", drive
->name
);
738 if (!HWIF(drive
)->udma_four
) {
739 printk("%s: Speed warnings UDMA 3/4/5 is not "
748 EXPORT_SYMBOL(ide_ata66_check
);
751 * Backside of HDIO_DRIVE_CMD call of SETFEATURES_XFER.
752 * 1 : Safe to update drive->id DMA registers.
753 * 0 : OOPs not allowed.
755 int set_transfer (ide_drive_t
*drive
, ide_task_t
*args
)
757 if ((args
->tfRegister
[IDE_COMMAND_OFFSET
] == WIN_SETFEATURES
) &&
758 (args
->tfRegister
[IDE_SECTOR_OFFSET
] >= XFER_SW_DMA_0
) &&
759 (args
->tfRegister
[IDE_FEATURE_OFFSET
] == SETFEATURES_XFER
) &&
760 (drive
->id
->dma_ultra
||
761 drive
->id
->dma_mword
||
762 drive
->id
->dma_1word
))
768 EXPORT_SYMBOL(set_transfer
);
770 u8
ide_auto_reduce_xfer (ide_drive_t
*drive
)
772 if (!drive
->crc_count
)
773 return drive
->current_speed
;
774 drive
->crc_count
= 0;
776 switch(drive
->current_speed
) {
777 case XFER_UDMA_7
: return XFER_UDMA_6
;
778 case XFER_UDMA_6
: return XFER_UDMA_5
;
779 case XFER_UDMA_5
: return XFER_UDMA_4
;
780 case XFER_UDMA_4
: return XFER_UDMA_3
;
781 case XFER_UDMA_3
: return XFER_UDMA_2
;
782 case XFER_UDMA_2
: return XFER_UDMA_1
;
783 case XFER_UDMA_1
: return XFER_UDMA_0
;
785 * OOPS we do not goto non Ultra DMA modes
786 * without iCRC's available we force
787 * the system to PIO and make the user
788 * invoke the ATA-1 ATA-2 DMA modes.
791 default: return XFER_PIO_4
;
795 EXPORT_SYMBOL(ide_auto_reduce_xfer
);
800 int ide_driveid_update (ide_drive_t
*drive
)
802 ide_hwif_t
*hwif
= HWIF(drive
);
803 struct hd_driveid
*id
;
805 id
= kmalloc(SECTOR_WORDS
*4, GFP_ATOMIC
);
809 taskfile_lib_get_identify(drive
, (char *)&id
);
813 drive
->id
->dma_ultra
= id
->dma_ultra
;
814 drive
->id
->dma_mword
= id
->dma_mword
;
815 drive
->id
->dma_1word
= id
->dma_1word
;
816 /* anything more ? */
822 * Re-read drive->id for possible DMA mode
823 * change (copied from ide-probe.c)
825 unsigned long timeout
, flags
;
827 SELECT_MASK(drive
, 1);
829 hwif
->OUTB(drive
->ctl
,IDE_CONTROL_REG
);
831 hwif
->OUTB(WIN_IDENTIFY
, IDE_COMMAND_REG
);
832 timeout
= jiffies
+ WAIT_WORSTCASE
;
834 if (time_after(jiffies
, timeout
)) {
835 SELECT_MASK(drive
, 0);
836 return 0; /* drive timed-out */
838 ide_delay_50ms(); /* give drive a breather */
839 } while (hwif
->INB(IDE_ALTSTATUS_REG
) & BUSY_STAT
);
840 ide_delay_50ms(); /* wait for IRQ and DRQ_STAT */
841 if (!OK_STAT(hwif
->INB(IDE_STATUS_REG
),DRQ_STAT
,BAD_R_STAT
)) {
842 SELECT_MASK(drive
, 0);
843 printk("%s: CHECK for good STATUS\n", drive
->name
);
846 local_irq_save(flags
);
847 SELECT_MASK(drive
, 0);
848 id
= kmalloc(SECTOR_WORDS
*4, GFP_ATOMIC
);
850 local_irq_restore(flags
);
853 ata_input_data(drive
, id
, SECTOR_WORDS
);
854 (void) hwif
->INB(IDE_STATUS_REG
); /* clear drive IRQ */
856 local_irq_restore(flags
);
859 drive
->id
->dma_ultra
= id
->dma_ultra
;
860 drive
->id
->dma_mword
= id
->dma_mword
;
861 drive
->id
->dma_1word
= id
->dma_1word
;
862 /* anything more ? */
870 EXPORT_SYMBOL(ide_driveid_update
);
873 * Similar to ide_wait_stat(), except it never calls ide_error internally.
874 * This is a kludge to handle the new ide_config_drive_speed() function,
875 * and should not otherwise be used anywhere. Eventually, the tuneproc's
876 * should be updated to return ide_startstop_t, in which case we can get
877 * rid of this abomination again. :) -ml
879 * It is gone..........
881 * const char *msg == consider adding for verbose errors.
883 int ide_config_drive_speed (ide_drive_t
*drive
, u8 speed
)
885 ide_hwif_t
*hwif
= HWIF(drive
);
889 // while (HWGROUP(drive)->busy)
892 #if defined(CONFIG_BLK_DEV_IDEDMA) && !defined(CONFIG_DMA_NONPCI)
893 hwif
->ide_dma_host_off(drive
);
894 #endif /* (CONFIG_BLK_DEV_IDEDMA) && !(CONFIG_DMA_NONPCI) */
897 * Don't use ide_wait_cmd here - it will
898 * attempt to set_geometry and recalibrate,
899 * but for some reason these don't work at
900 * this point (lost interrupt).
903 * Select the drive, and issue the SETFEATURES command
905 disable_irq_nosync(hwif
->irq
);
908 * FIXME: we race against the running IRQ here if
909 * this is called from non IRQ context. If we use
910 * disable_irq() we hang on the error path. Work
916 SELECT_MASK(drive
, 0);
919 hwif
->OUTB(drive
->ctl
| 2, IDE_CONTROL_REG
);
920 hwif
->OUTB(speed
, IDE_NSECTOR_REG
);
921 hwif
->OUTB(SETFEATURES_XFER
, IDE_FEATURE_REG
);
922 hwif
->OUTB(WIN_SETFEATURES
, IDE_COMMAND_REG
);
923 if ((IDE_CONTROL_REG
) && (drive
->quirk_list
== 2))
924 hwif
->OUTB(drive
->ctl
, IDE_CONTROL_REG
);
927 * Wait for drive to become non-BUSY
929 if ((stat
= hwif
->INB(IDE_STATUS_REG
)) & BUSY_STAT
) {
930 unsigned long flags
, timeout
;
931 local_irq_set(flags
);
932 timeout
= jiffies
+ WAIT_CMD
;
933 while ((stat
= hwif
->INB(IDE_STATUS_REG
)) & BUSY_STAT
) {
934 if (time_after(jiffies
, timeout
))
937 local_irq_restore(flags
);
941 * Allow status to settle, then read it again.
942 * A few rare drives vastly violate the 400ns spec here,
943 * so we'll wait up to 10usec for a "good" status
944 * rather than expensively fail things immediately.
945 * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
947 for (i
= 0; i
< 10; i
++) {
949 if (OK_STAT((stat
= hwif
->INB(IDE_STATUS_REG
)), DRIVE_READY
, BUSY_STAT
|DRQ_STAT
|ERR_STAT
)) {
955 SELECT_MASK(drive
, 0);
957 enable_irq(hwif
->irq
);
960 (void) ide_dump_status(drive
, "set_drive_speed_status", stat
);
964 drive
->id
->dma_ultra
&= ~0xFF00;
965 drive
->id
->dma_mword
&= ~0x0F00;
966 drive
->id
->dma_1word
&= ~0x0F00;
968 #if defined(CONFIG_BLK_DEV_IDEDMA) && !defined(CONFIG_DMA_NONPCI)
969 if (speed
>= XFER_SW_DMA_0
)
970 hwif
->ide_dma_host_on(drive
);
972 hwif
->ide_dma_off_quietly(drive
);
973 #endif /* (CONFIG_BLK_DEV_IDEDMA) && !(CONFIG_DMA_NONPCI) */
976 case XFER_UDMA_7
: drive
->id
->dma_ultra
|= 0x8080; break;
977 case XFER_UDMA_6
: drive
->id
->dma_ultra
|= 0x4040; break;
978 case XFER_UDMA_5
: drive
->id
->dma_ultra
|= 0x2020; break;
979 case XFER_UDMA_4
: drive
->id
->dma_ultra
|= 0x1010; break;
980 case XFER_UDMA_3
: drive
->id
->dma_ultra
|= 0x0808; break;
981 case XFER_UDMA_2
: drive
->id
->dma_ultra
|= 0x0404; break;
982 case XFER_UDMA_1
: drive
->id
->dma_ultra
|= 0x0202; break;
983 case XFER_UDMA_0
: drive
->id
->dma_ultra
|= 0x0101; break;
984 case XFER_MW_DMA_2
: drive
->id
->dma_mword
|= 0x0404; break;
985 case XFER_MW_DMA_1
: drive
->id
->dma_mword
|= 0x0202; break;
986 case XFER_MW_DMA_0
: drive
->id
->dma_mword
|= 0x0101; break;
987 case XFER_SW_DMA_2
: drive
->id
->dma_1word
|= 0x0404; break;
988 case XFER_SW_DMA_1
: drive
->id
->dma_1word
|= 0x0202; break;
989 case XFER_SW_DMA_0
: drive
->id
->dma_1word
|= 0x0101; break;
992 if (!drive
->init_speed
)
993 drive
->init_speed
= speed
;
994 drive
->current_speed
= speed
;
998 EXPORT_SYMBOL(ide_config_drive_speed
);
1002 * This should get invoked any time we exit the driver to
1003 * wait for an interrupt response from a drive. handler() points
1004 * at the appropriate code to handle the next interrupt, and a
1005 * timer is started to prevent us from waiting forever in case
1006 * something goes wrong (see the ide_timer_expiry() handler later on).
1008 * See also ide_execute_command
1010 void __ide_set_handler (ide_drive_t
*drive
, ide_handler_t
*handler
,
1011 unsigned int timeout
, ide_expiry_t
*expiry
)
1013 ide_hwgroup_t
*hwgroup
= HWGROUP(drive
);
1015 if (hwgroup
->handler
!= NULL
) {
1016 printk(KERN_CRIT
"%s: ide_set_handler: handler not null; "
1018 drive
->name
, hwgroup
->handler
, handler
);
1020 hwgroup
->handler
= handler
;
1021 hwgroup
->expiry
= expiry
;
1022 hwgroup
->timer
.expires
= jiffies
+ timeout
;
1023 add_timer(&hwgroup
->timer
);
1026 EXPORT_SYMBOL(__ide_set_handler
);
1028 void ide_set_handler (ide_drive_t
*drive
, ide_handler_t
*handler
,
1029 unsigned int timeout
, ide_expiry_t
*expiry
)
1031 unsigned long flags
;
1032 spin_lock_irqsave(&ide_lock
, flags
);
1033 __ide_set_handler(drive
, handler
, timeout
, expiry
);
1034 spin_unlock_irqrestore(&ide_lock
, flags
);
1037 EXPORT_SYMBOL(ide_set_handler
);
1040 * ide_execute_command - execute an IDE command
1041 * @drive: IDE drive to issue the command against
1042 * @command: command byte to write
1043 * @handler: handler for next phase
1044 * @timeout: timeout for command
1045 * @expiry: handler to run on timeout
1047 * Helper function to issue an IDE command. This handles the
1048 * atomicity requirements, command timing and ensures that the
1049 * handler and IRQ setup do not race. All IDE command kick off
1050 * should go via this function or do equivalent locking.
1053 void ide_execute_command(ide_drive_t
*drive
, task_ioreg_t cmd
, ide_handler_t
*handler
, unsigned timeout
, ide_expiry_t
*expiry
)
1055 unsigned long flags
;
1056 ide_hwgroup_t
*hwgroup
= HWGROUP(drive
);
1057 ide_hwif_t
*hwif
= HWIF(drive
);
1059 spin_lock_irqsave(&ide_lock
, flags
);
1061 if(hwgroup
->handler
)
1063 hwgroup
->handler
= handler
;
1064 hwgroup
->expiry
= expiry
;
1065 hwgroup
->timer
.expires
= jiffies
+ timeout
;
1066 add_timer(&hwgroup
->timer
);
1067 hwif
->OUTBSYNC(drive
, cmd
, IDE_COMMAND_REG
);
1068 /* Drive takes 400nS to respond, we must avoid the IRQ being
1069 serviced before that.
1071 FIXME: we could skip this delay with care on non shared
1075 spin_unlock_irqrestore(&ide_lock
, flags
);
1078 EXPORT_SYMBOL(ide_execute_command
);
1082 static ide_startstop_t
do_reset1 (ide_drive_t
*, int);
1085 * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
1086 * during an atapi drive reset operation. If the drive has not yet responded,
1087 * and we have not yet hit our maximum waiting time, then the timer is restarted
1090 static ide_startstop_t
atapi_reset_pollfunc (ide_drive_t
*drive
)
1092 ide_hwgroup_t
*hwgroup
= HWGROUP(drive
);
1093 ide_hwif_t
*hwif
= HWIF(drive
);
1096 SELECT_DRIVE(drive
);
1099 if (OK_STAT(stat
= hwif
->INB(IDE_STATUS_REG
), 0, BUSY_STAT
)) {
1100 printk("%s: ATAPI reset complete\n", drive
->name
);
1102 if (time_before(jiffies
, hwgroup
->poll_timeout
)) {
1103 if (HWGROUP(drive
)->handler
!= NULL
)
1105 ide_set_handler(drive
, &atapi_reset_pollfunc
, HZ
/20, NULL
);
1106 /* continue polling */
1109 /* end of polling */
1110 hwgroup
->poll_timeout
= 0;
1111 printk("%s: ATAPI reset timed-out, status=0x%02x\n",
1113 /* do it the old fashioned way */
1114 return do_reset1(drive
, 1);
1117 hwgroup
->poll_timeout
= 0;
1122 * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
1123 * during an ide reset operation. If the drives have not yet responded,
1124 * and we have not yet hit our maximum waiting time, then the timer is restarted
1127 static ide_startstop_t
reset_pollfunc (ide_drive_t
*drive
)
1129 ide_hwgroup_t
*hwgroup
= HWGROUP(drive
);
1130 ide_hwif_t
*hwif
= HWIF(drive
);
1133 if (hwif
->reset_poll
!= NULL
) {
1134 if (hwif
->reset_poll(drive
)) {
1135 printk(KERN_ERR
"%s: host reset_poll failure for %s.\n",
1136 hwif
->name
, drive
->name
);
1141 if (!OK_STAT(tmp
= hwif
->INB(IDE_STATUS_REG
), 0, BUSY_STAT
)) {
1142 if (time_before(jiffies
, hwgroup
->poll_timeout
)) {
1143 if (HWGROUP(drive
)->handler
!= NULL
)
1145 ide_set_handler(drive
, &reset_pollfunc
, HZ
/20, NULL
);
1146 /* continue polling */
1149 printk("%s: reset timed-out, status=0x%02x\n", hwif
->name
, tmp
);
1152 printk("%s: reset: ", hwif
->name
);
1153 if ((tmp
= hwif
->INB(IDE_ERROR_REG
)) == 1) {
1154 printk("success\n");
1155 drive
->failures
= 0;
1158 #if FANCY_STATUS_DUMPS
1160 switch (tmp
& 0x7f) {
1161 case 1: printk("passed");
1163 case 2: printk("formatter device error");
1165 case 3: printk("sector buffer error");
1167 case 4: printk("ECC circuitry error");
1169 case 5: printk("controlling MPU error");
1171 default:printk("error (0x%02x?)", tmp
);
1174 printk("; slave: failed");
1178 #endif /* FANCY_STATUS_DUMPS */
1181 hwgroup
->poll_timeout
= 0; /* done polling */
1185 void check_dma_crc (ide_drive_t
*drive
)
1187 if (drive
->crc_count
) {
1188 (void) HWIF(drive
)->ide_dma_off_quietly(drive
);
1189 ide_set_xfer_rate(drive
, ide_auto_reduce_xfer(drive
));
1190 if (drive
->current_speed
>= XFER_SW_DMA_0
)
1191 (void) HWIF(drive
)->ide_dma_on(drive
);
1193 (void) HWIF(drive
)->ide_dma_off(drive
);
1197 void pre_reset (ide_drive_t
*drive
)
1199 DRIVER(drive
)->pre_reset(drive
);
1201 if (!drive
->keep_settings
) {
1202 if (drive
->using_dma
) {
1203 check_dma_crc(drive
);
1206 drive
->io_32bit
= 0;
1210 if (drive
->using_dma
)
1211 check_dma_crc(drive
);
1213 if (HWIF(drive
)->pre_reset
!= NULL
)
1214 HWIF(drive
)->pre_reset(drive
);
1219 * do_reset1() attempts to recover a confused drive by resetting it.
1220 * Unfortunately, resetting a disk drive actually resets all devices on
1221 * the same interface, so it can really be thought of as resetting the
1222 * interface rather than resetting the drive.
1224 * ATAPI devices have their own reset mechanism which allows them to be
1225 * individually reset without clobbering other devices on the same interface.
1227 * Unfortunately, the IDE interface does not generate an interrupt to let
1228 * us know when the reset operation has finished, so we must poll for this.
1229 * Equally poor, though, is the fact that this may a very long time to complete,
1230 * (up to 30 seconds worstcase). So, instead of busy-waiting here for it,
1231 * we set a timer to poll at 50ms intervals.
1233 static ide_startstop_t
do_reset1 (ide_drive_t
*drive
, int do_not_try_atapi
)
1236 unsigned long flags
;
1238 ide_hwgroup_t
*hwgroup
;
1240 spin_lock_irqsave(&ide_lock
, flags
);
1242 hwgroup
= HWGROUP(drive
);
1244 /* We must not reset with running handlers */
1245 if(hwgroup
->handler
!= NULL
)
1248 /* For an ATAPI device, first try an ATAPI SRST. */
1249 if (drive
->media
!= ide_disk
&& !do_not_try_atapi
) {
1251 SELECT_DRIVE(drive
);
1253 hwif
->OUTB(WIN_SRST
, IDE_COMMAND_REG
);
1254 hwgroup
->poll_timeout
= jiffies
+ WAIT_WORSTCASE
;
1255 __ide_set_handler(drive
, &atapi_reset_pollfunc
, HZ
/20, NULL
);
1256 spin_unlock_irqrestore(&ide_lock
, flags
);
1261 * First, reset any device state data we were maintaining
1262 * for any of the drives on this interface.
1264 for (unit
= 0; unit
< MAX_DRIVES
; ++unit
)
1265 pre_reset(&hwif
->drives
[unit
]);
1267 #if OK_TO_RESET_CONTROLLER
1268 if (!IDE_CONTROL_REG
) {
1269 spin_unlock_irqrestore(&ide_lock
, flags
);
1274 * Note that we also set nIEN while resetting the device,
1275 * to mask unwanted interrupts from the interface during the reset.
1276 * However, due to the design of PC hardware, this will cause an
1277 * immediate interrupt due to the edge transition it produces.
1278 * This single interrupt gives us a "fast poll" for drives that
1279 * recover from reset very quickly, saving us the first 50ms wait time.
1281 /* set SRST and nIEN */
1282 hwif
->OUTBSYNC(drive
, drive
->ctl
|6,IDE_CONTROL_REG
);
1283 /* more than enough time */
1285 if (drive
->quirk_list
== 2) {
1286 /* clear SRST and nIEN */
1287 hwif
->OUTBSYNC(drive
, drive
->ctl
, IDE_CONTROL_REG
);
1289 /* clear SRST, leave nIEN */
1290 hwif
->OUTBSYNC(drive
, drive
->ctl
|2, IDE_CONTROL_REG
);
1292 /* more than enough time */
1294 hwgroup
->poll_timeout
= jiffies
+ WAIT_WORSTCASE
;
1295 __ide_set_handler(drive
, &reset_pollfunc
, HZ
/20, NULL
);
1298 * Some weird controller like resetting themselves to a strange
1299 * state when the disks are reset this way. At least, the Winbond
1300 * 553 documentation says that
1302 if (hwif
->resetproc
!= NULL
) {
1303 hwif
->resetproc(drive
);
1306 #endif /* OK_TO_RESET_CONTROLLER */
1308 spin_unlock_irqrestore(&ide_lock
, flags
);
1313 * ide_do_reset() is the entry point to the drive/interface reset code.
1316 ide_startstop_t
ide_do_reset (ide_drive_t
*drive
)
1318 return do_reset1(drive
, 0);
1321 EXPORT_SYMBOL(ide_do_reset
);
1324 * ide_wait_not_busy() waits for the currently selected device on the hwif
1325 * to report a non-busy status, see comments in probe_hwif().
1327 int ide_wait_not_busy(ide_hwif_t
*hwif
, unsigned long timeout
)
1333 * Turn this into a schedule() sleep once I'm sure
1334 * about locking issues (2.5 work ?).
1337 stat
= hwif
->INB(hwif
->io_ports
[IDE_STATUS_OFFSET
]);
1338 if ((stat
& BUSY_STAT
) == 0)
1341 * Assume a value of 0xff means nothing is connected to
1342 * the interface and it doesn't implement the pull-down
1351 EXPORT_SYMBOL_GPL(ide_wait_not_busy
);