[MIPS] Define MIPS_CPU_IRQ_BASE in generic header
[linux-2.6/linux-mips.git] / arch / mips / kernel / smtc.c
blob6a276314377105bd2372fb9b18c4688011fd401e
1 /* Copyright (C) 2004 Mips Technologies, Inc */
3 #include <linux/kernel.h>
4 #include <linux/sched.h>
5 #include <linux/cpumask.h>
6 #include <linux/interrupt.h>
7 #include <linux/module.h>
9 #include <asm/cpu.h>
10 #include <asm/processor.h>
11 #include <asm/atomic.h>
12 #include <asm/system.h>
13 #include <asm/hardirq.h>
14 #include <asm/hazards.h>
15 #include <asm/mmu_context.h>
16 #include <asm/smp.h>
17 #include <asm/mipsregs.h>
18 #include <asm/cacheflush.h>
19 #include <asm/time.h>
20 #include <asm/addrspace.h>
21 #include <asm/smtc.h>
22 #include <asm/smtc_ipi.h>
23 #include <asm/smtc_proc.h>
26 * This file should be built into the kernel only if CONFIG_MIPS_MT_SMTC is set.
29 #define MIPS_CPU_IPI_IRQ 1
31 #define LOCK_MT_PRA() \
32 local_irq_save(flags); \
33 mtflags = dmt()
35 #define UNLOCK_MT_PRA() \
36 emt(mtflags); \
37 local_irq_restore(flags)
39 #define LOCK_CORE_PRA() \
40 local_irq_save(flags); \
41 mtflags = dvpe()
43 #define UNLOCK_CORE_PRA() \
44 evpe(mtflags); \
45 local_irq_restore(flags)
48 * Data structures purely associated with SMTC parallelism
53 * Table for tracking ASIDs whose lifetime is prolonged.
56 asiduse smtc_live_asid[MAX_SMTC_TLBS][MAX_SMTC_ASIDS];
59 * Clock interrupt "latch" buffers, per "CPU"
62 unsigned int ipi_timer_latch[NR_CPUS];
65 * Number of InterProcessor Interupt (IPI) message buffers to allocate
68 #define IPIBUF_PER_CPU 4
70 struct smtc_ipi_q IPIQ[NR_CPUS];
71 struct smtc_ipi_q freeIPIq;
74 /* Forward declarations */
76 void ipi_decode(struct smtc_ipi *);
77 void post_direct_ipi(int cpu, struct smtc_ipi *pipi);
78 void setup_cross_vpe_interrupts(void);
79 void init_smtc_stats(void);
81 /* Global SMTC Status */
83 unsigned int smtc_status = 0;
85 /* Boot command line configuration overrides */
87 static int vpelimit = 0;
88 static int tclimit = 0;
89 static int ipibuffers = 0;
90 static int nostlb = 0;
91 static int asidmask = 0;
92 unsigned long smtc_asid_mask = 0xff;
94 static int __init maxvpes(char *str)
96 get_option(&str, &vpelimit);
97 return 1;
100 static int __init maxtcs(char *str)
102 get_option(&str, &tclimit);
103 return 1;
106 static int __init ipibufs(char *str)
108 get_option(&str, &ipibuffers);
109 return 1;
112 static int __init stlb_disable(char *s)
114 nostlb = 1;
115 return 1;
118 static int __init asidmask_set(char *str)
120 get_option(&str, &asidmask);
121 switch (asidmask) {
122 case 0x1:
123 case 0x3:
124 case 0x7:
125 case 0xf:
126 case 0x1f:
127 case 0x3f:
128 case 0x7f:
129 case 0xff:
130 smtc_asid_mask = (unsigned long)asidmask;
131 break;
132 default:
133 printk("ILLEGAL ASID mask 0x%x from command line\n", asidmask);
135 return 1;
138 __setup("maxvpes=", maxvpes);
139 __setup("maxtcs=", maxtcs);
140 __setup("ipibufs=", ipibufs);
141 __setup("nostlb", stlb_disable);
142 __setup("asidmask=", asidmask_set);
144 /* Enable additional debug checks before going into CPU idle loop */
145 #define SMTC_IDLE_HOOK_DEBUG
147 #ifdef SMTC_IDLE_HOOK_DEBUG
149 static int hang_trig = 0;
151 static int __init hangtrig_enable(char *s)
153 hang_trig = 1;
154 return 1;
158 __setup("hangtrig", hangtrig_enable);
160 #define DEFAULT_BLOCKED_IPI_LIMIT 32
162 static int timerq_limit = DEFAULT_BLOCKED_IPI_LIMIT;
164 static int __init tintq(char *str)
166 get_option(&str, &timerq_limit);
167 return 1;
170 __setup("tintq=", tintq);
172 int imstuckcount[2][8];
173 /* vpemask represents IM/IE bits of per-VPE Status registers, low-to-high */
174 int vpemask[2][8] = {{0,1,1,0,0,0,0,1},{0,1,0,0,0,0,0,1}};
175 int tcnoprog[NR_CPUS];
176 static atomic_t idle_hook_initialized = {0};
177 static int clock_hang_reported[NR_CPUS];
179 #endif /* SMTC_IDLE_HOOK_DEBUG */
181 /* Initialize shared TLB - the should probably migrate to smtc_setup_cpus() */
183 void __init sanitize_tlb_entries(void)
185 printk("Deprecated sanitize_tlb_entries() invoked\n");
190 * Configure shared TLB - VPC configuration bit must be set by caller
193 void smtc_configure_tlb(void)
195 int i,tlbsiz,vpes;
196 unsigned long mvpconf0;
197 unsigned long config1val;
199 /* Set up ASID preservation table */
200 for (vpes=0; vpes<MAX_SMTC_TLBS; vpes++) {
201 for(i = 0; i < MAX_SMTC_ASIDS; i++) {
202 smtc_live_asid[vpes][i] = 0;
205 mvpconf0 = read_c0_mvpconf0();
207 if ((vpes = ((mvpconf0 & MVPCONF0_PVPE)
208 >> MVPCONF0_PVPE_SHIFT) + 1) > 1) {
209 /* If we have multiple VPEs, try to share the TLB */
210 if ((mvpconf0 & MVPCONF0_TLBS) && !nostlb) {
212 * If TLB sizing is programmable, shared TLB
213 * size is the total available complement.
214 * Otherwise, we have to take the sum of all
215 * static VPE TLB entries.
217 if ((tlbsiz = ((mvpconf0 & MVPCONF0_PTLBE)
218 >> MVPCONF0_PTLBE_SHIFT)) == 0) {
220 * If there's more than one VPE, there had better
221 * be more than one TC, because we need one to bind
222 * to each VPE in turn to be able to read
223 * its configuration state!
225 settc(1);
226 /* Stop the TC from doing anything foolish */
227 write_tc_c0_tchalt(TCHALT_H);
228 mips_ihb();
229 /* No need to un-Halt - that happens later anyway */
230 for (i=0; i < vpes; i++) {
231 write_tc_c0_tcbind(i);
233 * To be 100% sure we're really getting the right
234 * information, we exit the configuration state
235 * and do an IHB after each rebinding.
237 write_c0_mvpcontrol(
238 read_c0_mvpcontrol() & ~ MVPCONTROL_VPC );
239 mips_ihb();
241 * Only count if the MMU Type indicated is TLB
243 if (((read_vpe_c0_config() & MIPS_CONF_MT) >> 7) == 1) {
244 config1val = read_vpe_c0_config1();
245 tlbsiz += ((config1val >> 25) & 0x3f) + 1;
248 /* Put core back in configuration state */
249 write_c0_mvpcontrol(
250 read_c0_mvpcontrol() | MVPCONTROL_VPC );
251 mips_ihb();
254 write_c0_mvpcontrol(read_c0_mvpcontrol() | MVPCONTROL_STLB);
255 ehb();
258 * Setup kernel data structures to use software total,
259 * rather than read the per-VPE Config1 value. The values
260 * for "CPU 0" gets copied to all the other CPUs as part
261 * of their initialization in smtc_cpu_setup().
264 /* MIPS32 limits TLB indices to 64 */
265 if (tlbsiz > 64)
266 tlbsiz = 64;
267 cpu_data[0].tlbsize = current_cpu_data.tlbsize = tlbsiz;
268 smtc_status |= SMTC_TLB_SHARED;
269 local_flush_tlb_all();
271 printk("TLB of %d entry pairs shared by %d VPEs\n",
272 tlbsiz, vpes);
273 } else {
274 printk("WARNING: TLB Not Sharable on SMTC Boot!\n");
281 * Incrementally build the CPU map out of constituent MIPS MT cores,
282 * using the specified available VPEs and TCs. Plaform code needs
283 * to ensure that each MIPS MT core invokes this routine on reset,
284 * one at a time(!).
286 * This version of the build_cpu_map and prepare_cpus routines assumes
287 * that *all* TCs of a MIPS MT core will be used for Linux, and that
288 * they will be spread across *all* available VPEs (to minimise the
289 * loss of efficiency due to exception service serialization).
290 * An improved version would pick up configuration information and
291 * possibly leave some TCs/VPEs as "slave" processors.
293 * Use c0_MVPConf0 to find out how many TCs are available, setting up
294 * phys_cpu_present_map and the logical/physical mappings.
297 int __init mipsmt_build_cpu_map(int start_cpu_slot)
299 int i, ntcs;
302 * The CPU map isn't actually used for anything at this point,
303 * so it's not clear what else we should do apart from set
304 * everything up so that "logical" = "physical".
306 ntcs = ((read_c0_mvpconf0() & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
307 for (i=start_cpu_slot; i<NR_CPUS && i<ntcs; i++) {
308 cpu_set(i, phys_cpu_present_map);
309 __cpu_number_map[i] = i;
310 __cpu_logical_map[i] = i;
312 /* Initialize map of CPUs with FPUs */
313 cpus_clear(mt_fpu_cpumask);
315 /* One of those TC's is the one booting, and not a secondary... */
316 printk("%i available secondary CPU TC(s)\n", i - 1);
318 return i;
322 * Common setup before any secondaries are started
323 * Make sure all CPU's are in a sensible state before we boot any of the
324 * secondaries.
326 * For MIPS MT "SMTC" operation, we set up all TCs, spread as evenly
327 * as possible across the available VPEs.
330 static void smtc_tc_setup(int vpe, int tc, int cpu)
332 settc(tc);
333 write_tc_c0_tchalt(TCHALT_H);
334 mips_ihb();
335 write_tc_c0_tcstatus((read_tc_c0_tcstatus()
336 & ~(TCSTATUS_TKSU | TCSTATUS_DA | TCSTATUS_IXMT))
337 | TCSTATUS_A);
338 write_tc_c0_tccontext(0);
339 /* Bind tc to vpe */
340 write_tc_c0_tcbind(vpe);
341 /* In general, all TCs should have the same cpu_data indications */
342 memcpy(&cpu_data[cpu], &cpu_data[0], sizeof(struct cpuinfo_mips));
343 /* For 34Kf, start with TC/CPU 0 as sole owner of single FPU context */
344 if (cpu_data[0].cputype == CPU_34K)
345 cpu_data[cpu].options &= ~MIPS_CPU_FPU;
346 cpu_data[cpu].vpe_id = vpe;
347 cpu_data[cpu].tc_id = tc;
351 void mipsmt_prepare_cpus(void)
353 int i, vpe, tc, ntc, nvpe, tcpervpe, slop, cpu;
354 unsigned long flags;
355 unsigned long val;
356 int nipi;
357 struct smtc_ipi *pipi;
359 /* disable interrupts so we can disable MT */
360 local_irq_save(flags);
361 /* disable MT so we can configure */
362 dvpe();
363 dmt();
365 spin_lock_init(&freeIPIq.lock);
368 * We probably don't have as many VPEs as we do SMP "CPUs",
369 * but it's possible - and in any case we'll never use more!
371 for (i=0; i<NR_CPUS; i++) {
372 IPIQ[i].head = IPIQ[i].tail = NULL;
373 spin_lock_init(&IPIQ[i].lock);
374 IPIQ[i].depth = 0;
375 ipi_timer_latch[i] = 0;
378 /* cpu_data index starts at zero */
379 cpu = 0;
380 cpu_data[cpu].vpe_id = 0;
381 cpu_data[cpu].tc_id = 0;
382 cpu++;
384 /* Report on boot-time options */
385 mips_mt_set_cpuoptions ();
386 if (vpelimit > 0)
387 printk("Limit of %d VPEs set\n", vpelimit);
388 if (tclimit > 0)
389 printk("Limit of %d TCs set\n", tclimit);
390 if (nostlb) {
391 printk("Shared TLB Use Inhibited - UNSAFE for Multi-VPE Operation\n");
393 if (asidmask)
394 printk("ASID mask value override to 0x%x\n", asidmask);
396 /* Temporary */
397 #ifdef SMTC_IDLE_HOOK_DEBUG
398 if (hang_trig)
399 printk("Logic Analyser Trigger on suspected TC hang\n");
400 #endif /* SMTC_IDLE_HOOK_DEBUG */
402 /* Put MVPE's into 'configuration state' */
403 write_c0_mvpcontrol( read_c0_mvpcontrol() | MVPCONTROL_VPC );
405 val = read_c0_mvpconf0();
406 nvpe = ((val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT) + 1;
407 if (vpelimit > 0 && nvpe > vpelimit)
408 nvpe = vpelimit;
409 ntc = ((val & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
410 if (ntc > NR_CPUS)
411 ntc = NR_CPUS;
412 if (tclimit > 0 && ntc > tclimit)
413 ntc = tclimit;
414 tcpervpe = ntc / nvpe;
415 slop = ntc % nvpe; /* Residual TCs, < NVPE */
417 /* Set up shared TLB */
418 smtc_configure_tlb();
420 for (tc = 0, vpe = 0 ; (vpe < nvpe) && (tc < ntc) ; vpe++) {
422 * Set the MVP bits.
424 settc(tc);
425 write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_MVP);
426 if (vpe != 0)
427 printk(", ");
428 printk("VPE %d: TC", vpe);
429 for (i = 0; i < tcpervpe; i++) {
431 * TC 0 is bound to VPE 0 at reset,
432 * and is presumably executing this
433 * code. Leave it alone!
435 if (tc != 0) {
436 smtc_tc_setup(vpe,tc, cpu);
437 cpu++;
439 printk(" %d", tc);
440 tc++;
442 if (slop) {
443 if (tc != 0) {
444 smtc_tc_setup(vpe,tc, cpu);
445 cpu++;
447 printk(" %d", tc);
448 tc++;
449 slop--;
451 if (vpe != 0) {
453 * Clear any stale software interrupts from VPE's Cause
455 write_vpe_c0_cause(0);
458 * Clear ERL/EXL of VPEs other than 0
459 * and set restricted interrupt enable/mask.
461 write_vpe_c0_status((read_vpe_c0_status()
462 & ~(ST0_BEV | ST0_ERL | ST0_EXL | ST0_IM))
463 | (STATUSF_IP0 | STATUSF_IP1 | STATUSF_IP7
464 | ST0_IE));
466 * set config to be the same as vpe0,
467 * particularly kseg0 coherency alg
469 write_vpe_c0_config(read_c0_config());
470 /* Clear any pending timer interrupt */
471 write_vpe_c0_compare(0);
472 /* Propagate Config7 */
473 write_vpe_c0_config7(read_c0_config7());
474 write_vpe_c0_count(read_c0_count());
476 /* enable multi-threading within VPE */
477 write_vpe_c0_vpecontrol(read_vpe_c0_vpecontrol() | VPECONTROL_TE);
478 /* enable the VPE */
479 write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_VPA);
483 * Pull any physically present but unused TCs out of circulation.
485 while (tc < (((val & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1)) {
486 cpu_clear(tc, phys_cpu_present_map);
487 cpu_clear(tc, cpu_present_map);
488 tc++;
491 /* release config state */
492 write_c0_mvpcontrol( read_c0_mvpcontrol() & ~ MVPCONTROL_VPC );
494 printk("\n");
496 /* Set up coprocessor affinity CPU mask(s) */
498 for (tc = 0; tc < ntc; tc++) {
499 if (cpu_data[tc].options & MIPS_CPU_FPU)
500 cpu_set(tc, mt_fpu_cpumask);
503 /* set up ipi interrupts... */
505 /* If we have multiple VPEs running, set up the cross-VPE interrupt */
507 if (nvpe > 1)
508 setup_cross_vpe_interrupts();
510 /* Set up queue of free IPI "messages". */
511 nipi = NR_CPUS * IPIBUF_PER_CPU;
512 if (ipibuffers > 0)
513 nipi = ipibuffers;
515 pipi = kmalloc(nipi *sizeof(struct smtc_ipi), GFP_KERNEL);
516 if (pipi == NULL)
517 panic("kmalloc of IPI message buffers failed\n");
518 else
519 printk("IPI buffer pool of %d buffers\n", nipi);
520 for (i = 0; i < nipi; i++) {
521 smtc_ipi_nq(&freeIPIq, pipi);
522 pipi++;
525 /* Arm multithreading and enable other VPEs - but all TCs are Halted */
526 emt(EMT_ENABLE);
527 evpe(EVPE_ENABLE);
528 local_irq_restore(flags);
529 /* Initialize SMTC /proc statistics/diagnostics */
530 init_smtc_stats();
535 * Setup the PC, SP, and GP of a secondary processor and start it
536 * running!
537 * smp_bootstrap is the place to resume from
538 * __KSTK_TOS(idle) is apparently the stack pointer
539 * (unsigned long)idle->thread_info the gp
542 void smtc_boot_secondary(int cpu, struct task_struct *idle)
544 extern u32 kernelsp[NR_CPUS];
545 long flags;
546 int mtflags;
548 LOCK_MT_PRA();
549 if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
550 dvpe();
552 settc(cpu_data[cpu].tc_id);
554 /* pc */
555 write_tc_c0_tcrestart((unsigned long)&smp_bootstrap);
557 /* stack pointer */
558 kernelsp[cpu] = __KSTK_TOS(idle);
559 write_tc_gpr_sp(__KSTK_TOS(idle));
561 /* global pointer */
562 write_tc_gpr_gp((unsigned long)idle->thread_info);
564 smtc_status |= SMTC_MTC_ACTIVE;
565 write_tc_c0_tchalt(0);
566 if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
567 evpe(EVPE_ENABLE);
569 UNLOCK_MT_PRA();
572 void smtc_init_secondary(void)
575 * Start timer on secondary VPEs if necessary.
576 * plat_timer_setup has already have been invoked by init/main
577 * on "boot" TC. Like per_cpu_trap_init() hack, this assumes that
578 * SMTC init code assigns TCs consdecutively and in ascending order
579 * to across available VPEs.
581 if (((read_c0_tcbind() & TCBIND_CURTC) != 0) &&
582 ((read_c0_tcbind() & TCBIND_CURVPE)
583 != cpu_data[smp_processor_id() - 1].vpe_id)){
584 write_c0_compare (read_c0_count() + mips_hpt_frequency/HZ);
587 local_irq_enable();
590 void smtc_smp_finish(void)
592 printk("TC %d going on-line as CPU %d\n",
593 cpu_data[smp_processor_id()].tc_id, smp_processor_id());
596 void smtc_cpus_done(void)
601 * Support for SMTC-optimized driver IRQ registration
605 * SMTC Kernel needs to manipulate low-level CPU interrupt mask
606 * in do_IRQ. These are passed in setup_irq_smtc() and stored
607 * in this table.
610 int setup_irq_smtc(unsigned int irq, struct irqaction * new,
611 unsigned long hwmask)
613 irq_hwmask[irq] = hwmask;
615 return setup_irq(irq, new);
619 * IPI model for SMTC is tricky, because interrupts aren't TC-specific.
620 * Within a VPE one TC can interrupt another by different approaches.
621 * The easiest to get right would probably be to make all TCs except
622 * the target IXMT and set a software interrupt, but an IXMT-based
623 * scheme requires that a handler must run before a new IPI could
624 * be sent, which would break the "broadcast" loops in MIPS MT.
625 * A more gonzo approach within a VPE is to halt the TC, extract
626 * its Restart, Status, and a couple of GPRs, and program the Restart
627 * address to emulate an interrupt.
629 * Within a VPE, one can be confident that the target TC isn't in
630 * a critical EXL state when halted, since the write to the Halt
631 * register could not have issued on the writing thread if the
632 * halting thread had EXL set. So k0 and k1 of the target TC
633 * can be used by the injection code. Across VPEs, one can't
634 * be certain that the target TC isn't in a critical exception
635 * state. So we try a two-step process of sending a software
636 * interrupt to the target VPE, which either handles the event
637 * itself (if it was the target) or injects the event within
638 * the VPE.
641 void smtc_ipi_qdump(void)
643 int i;
645 for (i = 0; i < NR_CPUS ;i++) {
646 printk("IPIQ[%d]: head = 0x%x, tail = 0x%x, depth = %d\n",
647 i, (unsigned)IPIQ[i].head, (unsigned)IPIQ[i].tail,
648 IPIQ[i].depth);
653 * The standard atomic.h primitives don't quite do what we want
654 * here: We need an atomic add-and-return-previous-value (which
655 * could be done with atomic_add_return and a decrement) and an
656 * atomic set/zero-and-return-previous-value (which can't really
657 * be done with the atomic.h primitives). And since this is
658 * MIPS MT, we can assume that we have LL/SC.
660 static __inline__ int atomic_postincrement(unsigned int *pv)
662 unsigned long result;
664 unsigned long temp;
666 __asm__ __volatile__(
667 "1: ll %0, %2 \n"
668 " addu %1, %0, 1 \n"
669 " sc %1, %2 \n"
670 " beqz %1, 1b \n"
671 " sync \n"
672 : "=&r" (result), "=&r" (temp), "=m" (*pv)
673 : "m" (*pv)
674 : "memory");
676 return result;
679 /* No longer used in IPI dispatch, but retained for future recycling */
681 static __inline__ int atomic_postclear(unsigned int *pv)
683 unsigned long result;
685 unsigned long temp;
687 __asm__ __volatile__(
688 "1: ll %0, %2 \n"
689 " or %1, $0, $0 \n"
690 " sc %1, %2 \n"
691 " beqz %1, 1b \n"
692 " sync \n"
693 : "=&r" (result), "=&r" (temp), "=m" (*pv)
694 : "m" (*pv)
695 : "memory");
697 return result;
701 void smtc_send_ipi(int cpu, int type, unsigned int action)
703 int tcstatus;
704 struct smtc_ipi *pipi;
705 long flags;
706 int mtflags;
708 if (cpu == smp_processor_id()) {
709 printk("Cannot Send IPI to self!\n");
710 return;
712 /* Set up a descriptor, to be delivered either promptly or queued */
713 pipi = smtc_ipi_dq(&freeIPIq);
714 if (pipi == NULL) {
715 bust_spinlocks(1);
716 mips_mt_regdump(dvpe());
717 panic("IPI Msg. Buffers Depleted\n");
719 pipi->type = type;
720 pipi->arg = (void *)action;
721 pipi->dest = cpu;
722 if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
723 /* If not on same VPE, enqueue and send cross-VPE interupt */
724 smtc_ipi_nq(&IPIQ[cpu], pipi);
725 LOCK_CORE_PRA();
726 settc(cpu_data[cpu].tc_id);
727 write_vpe_c0_cause(read_vpe_c0_cause() | C_SW1);
728 UNLOCK_CORE_PRA();
729 } else {
731 * Not sufficient to do a LOCK_MT_PRA (dmt) here,
732 * since ASID shootdown on the other VPE may
733 * collide with this operation.
735 LOCK_CORE_PRA();
736 settc(cpu_data[cpu].tc_id);
737 /* Halt the targeted TC */
738 write_tc_c0_tchalt(TCHALT_H);
739 mips_ihb();
742 * Inspect TCStatus - if IXMT is set, we have to queue
743 * a message. Otherwise, we set up the "interrupt"
744 * of the other TC
746 tcstatus = read_tc_c0_tcstatus();
748 if ((tcstatus & TCSTATUS_IXMT) != 0) {
750 * Spin-waiting here can deadlock,
751 * so we queue the message for the target TC.
753 write_tc_c0_tchalt(0);
754 UNLOCK_CORE_PRA();
755 /* Try to reduce redundant timer interrupt messages */
756 if (type == SMTC_CLOCK_TICK) {
757 if (atomic_postincrement(&ipi_timer_latch[cpu])!=0){
758 smtc_ipi_nq(&freeIPIq, pipi);
759 return;
762 smtc_ipi_nq(&IPIQ[cpu], pipi);
763 } else {
764 post_direct_ipi(cpu, pipi);
765 write_tc_c0_tchalt(0);
766 UNLOCK_CORE_PRA();
772 * Send IPI message to Halted TC, TargTC/TargVPE already having been set
774 void post_direct_ipi(int cpu, struct smtc_ipi *pipi)
776 struct pt_regs *kstack;
777 unsigned long tcstatus;
778 unsigned long tcrestart;
779 extern u32 kernelsp[NR_CPUS];
780 extern void __smtc_ipi_vector(void);
782 /* Extract Status, EPC from halted TC */
783 tcstatus = read_tc_c0_tcstatus();
784 tcrestart = read_tc_c0_tcrestart();
785 /* If TCRestart indicates a WAIT instruction, advance the PC */
786 if ((tcrestart & 0x80000000)
787 && ((*(unsigned int *)tcrestart & 0xfe00003f) == 0x42000020)) {
788 tcrestart += 4;
791 * Save on TC's future kernel stack
793 * CU bit of Status is indicator that TC was
794 * already running on a kernel stack...
796 if (tcstatus & ST0_CU0) {
797 /* Note that this "- 1" is pointer arithmetic */
798 kstack = ((struct pt_regs *)read_tc_gpr_sp()) - 1;
799 } else {
800 kstack = ((struct pt_regs *)kernelsp[cpu]) - 1;
803 kstack->cp0_epc = (long)tcrestart;
804 /* Save TCStatus */
805 kstack->cp0_tcstatus = tcstatus;
806 /* Pass token of operation to be performed kernel stack pad area */
807 kstack->pad0[4] = (unsigned long)pipi;
808 /* Pass address of function to be called likewise */
809 kstack->pad0[5] = (unsigned long)&ipi_decode;
810 /* Set interrupt exempt and kernel mode */
811 tcstatus |= TCSTATUS_IXMT;
812 tcstatus &= ~TCSTATUS_TKSU;
813 write_tc_c0_tcstatus(tcstatus);
814 ehb();
815 /* Set TC Restart address to be SMTC IPI vector */
816 write_tc_c0_tcrestart(__smtc_ipi_vector);
819 static void ipi_resched_interrupt(void)
821 /* Return from interrupt should be enough to cause scheduler check */
825 static void ipi_call_interrupt(void)
827 /* Invoke generic function invocation code in smp.c */
828 smp_call_function_interrupt();
831 void ipi_decode(struct smtc_ipi *pipi)
833 void *arg_copy = pipi->arg;
834 int type_copy = pipi->type;
835 int dest_copy = pipi->dest;
837 smtc_ipi_nq(&freeIPIq, pipi);
838 switch (type_copy) {
839 case SMTC_CLOCK_TICK:
840 /* Invoke Clock "Interrupt" */
841 ipi_timer_latch[dest_copy] = 0;
842 #ifdef SMTC_IDLE_HOOK_DEBUG
843 clock_hang_reported[dest_copy] = 0;
844 #endif /* SMTC_IDLE_HOOK_DEBUG */
845 local_timer_interrupt(0, NULL);
846 break;
847 case LINUX_SMP_IPI:
848 switch ((int)arg_copy) {
849 case SMP_RESCHEDULE_YOURSELF:
850 ipi_resched_interrupt();
851 break;
852 case SMP_CALL_FUNCTION:
853 ipi_call_interrupt();
854 break;
855 default:
856 printk("Impossible SMTC IPI Argument 0x%x\n",
857 (int)arg_copy);
858 break;
860 break;
861 default:
862 printk("Impossible SMTC IPI Type 0x%x\n", type_copy);
863 break;
867 void deferred_smtc_ipi(void)
869 struct smtc_ipi *pipi;
870 unsigned long flags;
871 /* DEBUG */
872 int q = smp_processor_id();
875 * Test is not atomic, but much faster than a dequeue,
876 * and the vast majority of invocations will have a null queue.
878 if (IPIQ[q].head != NULL) {
879 while((pipi = smtc_ipi_dq(&IPIQ[q])) != NULL) {
880 /* ipi_decode() should be called with interrupts off */
881 local_irq_save(flags);
882 ipi_decode(pipi);
883 local_irq_restore(flags);
889 * Send clock tick to all TCs except the one executing the funtion
892 void smtc_timer_broadcast(int vpe)
894 int cpu;
895 int myTC = cpu_data[smp_processor_id()].tc_id;
896 int myVPE = cpu_data[smp_processor_id()].vpe_id;
898 smtc_cpu_stats[smp_processor_id()].timerints++;
900 for_each_online_cpu(cpu) {
901 if (cpu_data[cpu].vpe_id == myVPE &&
902 cpu_data[cpu].tc_id != myTC)
903 smtc_send_ipi(cpu, SMTC_CLOCK_TICK, 0);
908 * Cross-VPE interrupts in the SMTC prototype use "software interrupts"
909 * set via cross-VPE MTTR manipulation of the Cause register. It would be
910 * in some regards preferable to have external logic for "doorbell" hardware
911 * interrupts.
914 static int cpu_ipi_irq = MIPS_CPU_IRQ_BASE + MIPS_CPU_IPI_IRQ;
916 static irqreturn_t ipi_interrupt(int irq, void *dev_idm)
918 int my_vpe = cpu_data[smp_processor_id()].vpe_id;
919 int my_tc = cpu_data[smp_processor_id()].tc_id;
920 int cpu;
921 struct smtc_ipi *pipi;
922 unsigned long tcstatus;
923 int sent;
924 long flags;
925 unsigned int mtflags;
926 unsigned int vpflags;
929 * So long as cross-VPE interrupts are done via
930 * MFTR/MTTR read-modify-writes of Cause, we need
931 * to stop other VPEs whenever the local VPE does
932 * anything similar.
934 local_irq_save(flags);
935 vpflags = dvpe();
936 clear_c0_cause(0x100 << MIPS_CPU_IPI_IRQ);
937 set_c0_status(0x100 << MIPS_CPU_IPI_IRQ);
938 irq_enable_hazard();
939 evpe(vpflags);
940 local_irq_restore(flags);
943 * Cross-VPE Interrupt handler: Try to directly deliver IPIs
944 * queued for TCs on this VPE other than the current one.
945 * Return-from-interrupt should cause us to drain the queue
946 * for the current TC, so we ought not to have to do it explicitly here.
949 for_each_online_cpu(cpu) {
950 if (cpu_data[cpu].vpe_id != my_vpe)
951 continue;
953 pipi = smtc_ipi_dq(&IPIQ[cpu]);
954 if (pipi != NULL) {
955 if (cpu_data[cpu].tc_id != my_tc) {
956 sent = 0;
957 LOCK_MT_PRA();
958 settc(cpu_data[cpu].tc_id);
959 write_tc_c0_tchalt(TCHALT_H);
960 mips_ihb();
961 tcstatus = read_tc_c0_tcstatus();
962 if ((tcstatus & TCSTATUS_IXMT) == 0) {
963 post_direct_ipi(cpu, pipi);
964 sent = 1;
966 write_tc_c0_tchalt(0);
967 UNLOCK_MT_PRA();
968 if (!sent) {
969 smtc_ipi_req(&IPIQ[cpu], pipi);
971 } else {
973 * ipi_decode() should be called
974 * with interrupts off
976 local_irq_save(flags);
977 ipi_decode(pipi);
978 local_irq_restore(flags);
983 return IRQ_HANDLED;
986 static void ipi_irq_dispatch(void)
988 do_IRQ(cpu_ipi_irq);
991 static struct irqaction irq_ipi;
993 void setup_cross_vpe_interrupts(void)
995 if (!cpu_has_vint)
996 panic("SMTC Kernel requires Vectored Interupt support");
998 set_vi_handler(MIPS_CPU_IPI_IRQ, ipi_irq_dispatch);
1000 irq_ipi.handler = ipi_interrupt;
1001 irq_ipi.flags = IRQF_DISABLED;
1002 irq_ipi.name = "SMTC_IPI";
1004 setup_irq_smtc(cpu_ipi_irq, &irq_ipi, (0x100 << MIPS_CPU_IPI_IRQ));
1006 irq_desc[cpu_ipi_irq].status |= IRQ_PER_CPU;
1007 set_irq_handler(cpu_ipi_irq, handle_percpu_irq);
1011 * SMTC-specific hacks invoked from elsewhere in the kernel.
1014 void smtc_ipi_replay(void)
1017 * To the extent that we've ever turned interrupts off,
1018 * we may have accumulated deferred IPIs. This is subtle.
1019 * If we use the smtc_ipi_qdepth() macro, we'll get an
1020 * exact number - but we'll also disable interrupts
1021 * and create a window of failure where a new IPI gets
1022 * queued after we test the depth but before we re-enable
1023 * interrupts. So long as IXMT never gets set, however,
1024 * we should be OK: If we pick up something and dispatch
1025 * it here, that's great. If we see nothing, but concurrent
1026 * with this operation, another TC sends us an IPI, IXMT
1027 * is clear, and we'll handle it as a real pseudo-interrupt
1028 * and not a pseudo-pseudo interrupt.
1030 if (IPIQ[smp_processor_id()].depth > 0) {
1031 struct smtc_ipi *pipi;
1032 extern void self_ipi(struct smtc_ipi *);
1034 while ((pipi = smtc_ipi_dq(&IPIQ[smp_processor_id()]))) {
1035 self_ipi(pipi);
1036 smtc_cpu_stats[smp_processor_id()].selfipis++;
1041 EXPORT_SYMBOL(smtc_ipi_replay);
1043 void smtc_idle_loop_hook(void)
1045 #ifdef SMTC_IDLE_HOOK_DEBUG
1046 int im;
1047 int flags;
1048 int mtflags;
1049 int bit;
1050 int vpe;
1051 int tc;
1052 int hook_ntcs;
1054 * printk within DMT-protected regions can deadlock,
1055 * so buffer diagnostic messages for later output.
1057 char *pdb_msg;
1058 char id_ho_db_msg[768]; /* worst-case use should be less than 700 */
1060 if (atomic_read(&idle_hook_initialized) == 0) { /* fast test */
1061 if (atomic_add_return(1, &idle_hook_initialized) == 1) {
1062 int mvpconf0;
1063 /* Tedious stuff to just do once */
1064 mvpconf0 = read_c0_mvpconf0();
1065 hook_ntcs = ((mvpconf0 & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
1066 if (hook_ntcs > NR_CPUS)
1067 hook_ntcs = NR_CPUS;
1068 for (tc = 0; tc < hook_ntcs; tc++) {
1069 tcnoprog[tc] = 0;
1070 clock_hang_reported[tc] = 0;
1072 for (vpe = 0; vpe < 2; vpe++)
1073 for (im = 0; im < 8; im++)
1074 imstuckcount[vpe][im] = 0;
1075 printk("Idle loop test hook initialized for %d TCs\n", hook_ntcs);
1076 atomic_set(&idle_hook_initialized, 1000);
1077 } else {
1078 /* Someone else is initializing in parallel - let 'em finish */
1079 while (atomic_read(&idle_hook_initialized) < 1000)
1084 /* Have we stupidly left IXMT set somewhere? */
1085 if (read_c0_tcstatus() & 0x400) {
1086 write_c0_tcstatus(read_c0_tcstatus() & ~0x400);
1087 ehb();
1088 printk("Dangling IXMT in cpu_idle()\n");
1091 /* Have we stupidly left an IM bit turned off? */
1092 #define IM_LIMIT 2000
1093 local_irq_save(flags);
1094 mtflags = dmt();
1095 pdb_msg = &id_ho_db_msg[0];
1096 im = read_c0_status();
1097 vpe = cpu_data[smp_processor_id()].vpe_id;
1098 for (bit = 0; bit < 8; bit++) {
1100 * In current prototype, I/O interrupts
1101 * are masked for VPE > 0
1103 if (vpemask[vpe][bit]) {
1104 if (!(im & (0x100 << bit)))
1105 imstuckcount[vpe][bit]++;
1106 else
1107 imstuckcount[vpe][bit] = 0;
1108 if (imstuckcount[vpe][bit] > IM_LIMIT) {
1109 set_c0_status(0x100 << bit);
1110 ehb();
1111 imstuckcount[vpe][bit] = 0;
1112 pdb_msg += sprintf(pdb_msg,
1113 "Dangling IM %d fixed for VPE %d\n", bit,
1114 vpe);
1120 * Now that we limit outstanding timer IPIs, check for hung TC
1122 for (tc = 0; tc < NR_CPUS; tc++) {
1123 /* Don't check ourself - we'll dequeue IPIs just below */
1124 if ((tc != smp_processor_id()) &&
1125 ipi_timer_latch[tc] > timerq_limit) {
1126 if (clock_hang_reported[tc] == 0) {
1127 pdb_msg += sprintf(pdb_msg,
1128 "TC %d looks hung with timer latch at %d\n",
1129 tc, ipi_timer_latch[tc]);
1130 clock_hang_reported[tc]++;
1134 emt(mtflags);
1135 local_irq_restore(flags);
1136 if (pdb_msg != &id_ho_db_msg[0])
1137 printk("CPU%d: %s", smp_processor_id(), id_ho_db_msg);
1138 #endif /* SMTC_IDLE_HOOK_DEBUG */
1141 * Replay any accumulated deferred IPIs. If "Instant Replay"
1142 * is in use, there should never be any.
1144 #ifndef CONFIG_MIPS_MT_SMTC_INSTANT_REPLAY
1145 smtc_ipi_replay();
1146 #endif /* CONFIG_MIPS_MT_SMTC_INSTANT_REPLAY */
1149 void smtc_soft_dump(void)
1151 int i;
1153 printk("Counter Interrupts taken per CPU (TC)\n");
1154 for (i=0; i < NR_CPUS; i++) {
1155 printk("%d: %ld\n", i, smtc_cpu_stats[i].timerints);
1157 printk("Self-IPI invocations:\n");
1158 for (i=0; i < NR_CPUS; i++) {
1159 printk("%d: %ld\n", i, smtc_cpu_stats[i].selfipis);
1161 smtc_ipi_qdump();
1162 printk("Timer IPI Backlogs:\n");
1163 for (i=0; i < NR_CPUS; i++) {
1164 printk("%d: %d\n", i, ipi_timer_latch[i]);
1166 printk("%d Recoveries of \"stolen\" FPU\n",
1167 atomic_read(&smtc_fpu_recoveries));
1172 * TLB management routines special to SMTC
1175 void smtc_get_new_mmu_context(struct mm_struct *mm, unsigned long cpu)
1177 unsigned long flags, mtflags, tcstat, prevhalt, asid;
1178 int tlb, i;
1181 * It would be nice to be able to use a spinlock here,
1182 * but this is invoked from within TLB flush routines
1183 * that protect themselves with DVPE, so if a lock is
1184 * held by another TC, it'll never be freed.
1186 * DVPE/DMT must not be done with interrupts enabled,
1187 * so even so most callers will already have disabled
1188 * them, let's be really careful...
1191 local_irq_save(flags);
1192 if (smtc_status & SMTC_TLB_SHARED) {
1193 mtflags = dvpe();
1194 tlb = 0;
1195 } else {
1196 mtflags = dmt();
1197 tlb = cpu_data[cpu].vpe_id;
1199 asid = asid_cache(cpu);
1201 do {
1202 if (!((asid += ASID_INC) & ASID_MASK) ) {
1203 if (cpu_has_vtag_icache)
1204 flush_icache_all();
1205 /* Traverse all online CPUs (hack requires contigous range) */
1206 for (i = 0; i < num_online_cpus(); i++) {
1208 * We don't need to worry about our own CPU, nor those of
1209 * CPUs who don't share our TLB.
1211 if ((i != smp_processor_id()) &&
1212 ((smtc_status & SMTC_TLB_SHARED) ||
1213 (cpu_data[i].vpe_id == cpu_data[cpu].vpe_id))) {
1214 settc(cpu_data[i].tc_id);
1215 prevhalt = read_tc_c0_tchalt() & TCHALT_H;
1216 if (!prevhalt) {
1217 write_tc_c0_tchalt(TCHALT_H);
1218 mips_ihb();
1220 tcstat = read_tc_c0_tcstatus();
1221 smtc_live_asid[tlb][(tcstat & ASID_MASK)] |= (asiduse)(0x1 << i);
1222 if (!prevhalt)
1223 write_tc_c0_tchalt(0);
1226 if (!asid) /* fix version if needed */
1227 asid = ASID_FIRST_VERSION;
1228 local_flush_tlb_all(); /* start new asid cycle */
1230 } while (smtc_live_asid[tlb][(asid & ASID_MASK)]);
1233 * SMTC shares the TLB within VPEs and possibly across all VPEs.
1235 for (i = 0; i < num_online_cpus(); i++) {
1236 if ((smtc_status & SMTC_TLB_SHARED) ||
1237 (cpu_data[i].vpe_id == cpu_data[cpu].vpe_id))
1238 cpu_context(i, mm) = asid_cache(i) = asid;
1241 if (smtc_status & SMTC_TLB_SHARED)
1242 evpe(mtflags);
1243 else
1244 emt(mtflags);
1245 local_irq_restore(flags);
1249 * Invoked from macros defined in mmu_context.h
1250 * which must already have disabled interrupts
1251 * and done a DVPE or DMT as appropriate.
1254 void smtc_flush_tlb_asid(unsigned long asid)
1256 int entry;
1257 unsigned long ehi;
1259 entry = read_c0_wired();
1261 /* Traverse all non-wired entries */
1262 while (entry < current_cpu_data.tlbsize) {
1263 write_c0_index(entry);
1264 ehb();
1265 tlb_read();
1266 ehb();
1267 ehi = read_c0_entryhi();
1268 if ((ehi & ASID_MASK) == asid) {
1270 * Invalidate only entries with specified ASID,
1271 * makiing sure all entries differ.
1273 write_c0_entryhi(CKSEG0 + (entry << (PAGE_SHIFT + 1)));
1274 write_c0_entrylo0(0);
1275 write_c0_entrylo1(0);
1276 mtc0_tlbw_hazard();
1277 tlb_write_indexed();
1279 entry++;
1281 write_c0_index(PARKED_INDEX);
1282 tlbw_use_hazard();
1286 * Support for single-threading cache flush operations.
1289 int halt_state_save[NR_CPUS];
1292 * To really, really be sure that nothing is being done
1293 * by other TCs, halt them all. This code assumes that
1294 * a DVPE has already been done, so while their Halted
1295 * state is theoretically architecturally unstable, in
1296 * practice, it's not going to change while we're looking
1297 * at it.
1300 void smtc_cflush_lockdown(void)
1302 int cpu;
1304 for_each_online_cpu(cpu) {
1305 if (cpu != smp_processor_id()) {
1306 settc(cpu_data[cpu].tc_id);
1307 halt_state_save[cpu] = read_tc_c0_tchalt();
1308 write_tc_c0_tchalt(TCHALT_H);
1311 mips_ihb();
1314 /* It would be cheating to change the cpu_online states during a flush! */
1316 void smtc_cflush_release(void)
1318 int cpu;
1321 * Start with a hazard barrier to ensure
1322 * that all CACHE ops have played through.
1324 mips_ihb();
1326 for_each_online_cpu(cpu) {
1327 if (cpu != smp_processor_id()) {
1328 settc(cpu_data[cpu].tc_id);
1329 write_tc_c0_tchalt(halt_state_save[cpu]);
1332 mips_ihb();