4 * Copyright (C) 1991, 1992 Linus Torvalds
7 #include <linux/module.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/smp_lock.h>
12 #include <linux/notifier.h>
13 #include <linux/reboot.h>
14 #include <linux/prctl.h>
15 #include <linux/highuid.h>
17 #include <linux/kernel.h>
18 #include <linux/kexec.h>
19 #include <linux/workqueue.h>
20 #include <linux/capability.h>
21 #include <linux/device.h>
22 #include <linux/key.h>
23 #include <linux/times.h>
24 #include <linux/posix-timers.h>
25 #include <linux/security.h>
26 #include <linux/dcookies.h>
27 #include <linux/suspend.h>
28 #include <linux/tty.h>
29 #include <linux/signal.h>
30 #include <linux/cn_proc.h>
31 #include <linux/getcpu.h>
33 #include <linux/compat.h>
34 #include <linux/syscalls.h>
35 #include <linux/kprobes.h>
37 #include <asm/uaccess.h>
39 #include <asm/unistd.h>
41 #ifndef SET_UNALIGN_CTL
42 # define SET_UNALIGN_CTL(a,b) (-EINVAL)
44 #ifndef GET_UNALIGN_CTL
45 # define GET_UNALIGN_CTL(a,b) (-EINVAL)
48 # define SET_FPEMU_CTL(a,b) (-EINVAL)
51 # define GET_FPEMU_CTL(a,b) (-EINVAL)
54 # define SET_FPEXC_CTL(a,b) (-EINVAL)
57 # define GET_FPEXC_CTL(a,b) (-EINVAL)
60 # define GET_ENDIAN(a,b) (-EINVAL)
63 # define SET_ENDIAN(a,b) (-EINVAL)
67 * this is where the system-wide overflow UID and GID are defined, for
68 * architectures that now have 32-bit UID/GID but didn't in the past
71 int overflowuid
= DEFAULT_OVERFLOWUID
;
72 int overflowgid
= DEFAULT_OVERFLOWGID
;
75 EXPORT_SYMBOL(overflowuid
);
76 EXPORT_SYMBOL(overflowgid
);
80 * the same as above, but for filesystems which can only store a 16-bit
81 * UID and GID. as such, this is needed on all architectures
84 int fs_overflowuid
= DEFAULT_FS_OVERFLOWUID
;
85 int fs_overflowgid
= DEFAULT_FS_OVERFLOWUID
;
87 EXPORT_SYMBOL(fs_overflowuid
);
88 EXPORT_SYMBOL(fs_overflowgid
);
91 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
96 EXPORT_SYMBOL(cad_pid
);
99 * Notifier list for kernel code which wants to be called
100 * at shutdown. This is used to stop any idling DMA operations
104 static BLOCKING_NOTIFIER_HEAD(reboot_notifier_list
);
107 * Notifier chain core routines. The exported routines below
108 * are layered on top of these, with appropriate locking added.
111 static int notifier_chain_register(struct notifier_block
**nl
,
112 struct notifier_block
*n
)
114 while ((*nl
) != NULL
) {
115 if (n
->priority
> (*nl
)->priority
)
120 rcu_assign_pointer(*nl
, n
);
124 static int notifier_chain_unregister(struct notifier_block
**nl
,
125 struct notifier_block
*n
)
127 while ((*nl
) != NULL
) {
129 rcu_assign_pointer(*nl
, n
->next
);
137 static int __kprobes
notifier_call_chain(struct notifier_block
**nl
,
138 unsigned long val
, void *v
)
140 int ret
= NOTIFY_DONE
;
141 struct notifier_block
*nb
, *next_nb
;
143 nb
= rcu_dereference(*nl
);
145 next_nb
= rcu_dereference(nb
->next
);
146 ret
= nb
->notifier_call(nb
, val
, v
);
147 if ((ret
& NOTIFY_STOP_MASK
) == NOTIFY_STOP_MASK
)
155 * Atomic notifier chain routines. Registration and unregistration
156 * use a spinlock, and call_chain is synchronized by RCU (no locks).
160 * atomic_notifier_chain_register - Add notifier to an atomic notifier chain
161 * @nh: Pointer to head of the atomic notifier chain
162 * @n: New entry in notifier chain
164 * Adds a notifier to an atomic notifier chain.
166 * Currently always returns zero.
169 int atomic_notifier_chain_register(struct atomic_notifier_head
*nh
,
170 struct notifier_block
*n
)
175 spin_lock_irqsave(&nh
->lock
, flags
);
176 ret
= notifier_chain_register(&nh
->head
, n
);
177 spin_unlock_irqrestore(&nh
->lock
, flags
);
181 EXPORT_SYMBOL_GPL(atomic_notifier_chain_register
);
184 * atomic_notifier_chain_unregister - Remove notifier from an atomic notifier chain
185 * @nh: Pointer to head of the atomic notifier chain
186 * @n: Entry to remove from notifier chain
188 * Removes a notifier from an atomic notifier chain.
190 * Returns zero on success or %-ENOENT on failure.
192 int atomic_notifier_chain_unregister(struct atomic_notifier_head
*nh
,
193 struct notifier_block
*n
)
198 spin_lock_irqsave(&nh
->lock
, flags
);
199 ret
= notifier_chain_unregister(&nh
->head
, n
);
200 spin_unlock_irqrestore(&nh
->lock
, flags
);
205 EXPORT_SYMBOL_GPL(atomic_notifier_chain_unregister
);
208 * atomic_notifier_call_chain - Call functions in an atomic notifier chain
209 * @nh: Pointer to head of the atomic notifier chain
210 * @val: Value passed unmodified to notifier function
211 * @v: Pointer passed unmodified to notifier function
213 * Calls each function in a notifier chain in turn. The functions
214 * run in an atomic context, so they must not block.
215 * This routine uses RCU to synchronize with changes to the chain.
217 * If the return value of the notifier can be and'ed
218 * with %NOTIFY_STOP_MASK then atomic_notifier_call_chain()
219 * will return immediately, with the return value of
220 * the notifier function which halted execution.
221 * Otherwise the return value is the return value
222 * of the last notifier function called.
225 int __kprobes
atomic_notifier_call_chain(struct atomic_notifier_head
*nh
,
226 unsigned long val
, void *v
)
231 ret
= notifier_call_chain(&nh
->head
, val
, v
);
236 EXPORT_SYMBOL_GPL(atomic_notifier_call_chain
);
239 * Blocking notifier chain routines. All access to the chain is
240 * synchronized by an rwsem.
244 * blocking_notifier_chain_register - Add notifier to a blocking notifier chain
245 * @nh: Pointer to head of the blocking notifier chain
246 * @n: New entry in notifier chain
248 * Adds a notifier to a blocking notifier chain.
249 * Must be called in process context.
251 * Currently always returns zero.
254 int blocking_notifier_chain_register(struct blocking_notifier_head
*nh
,
255 struct notifier_block
*n
)
260 * This code gets used during boot-up, when task switching is
261 * not yet working and interrupts must remain disabled. At
262 * such times we must not call down_write().
264 if (unlikely(system_state
== SYSTEM_BOOTING
))
265 return notifier_chain_register(&nh
->head
, n
);
267 down_write(&nh
->rwsem
);
268 ret
= notifier_chain_register(&nh
->head
, n
);
269 up_write(&nh
->rwsem
);
273 EXPORT_SYMBOL_GPL(blocking_notifier_chain_register
);
276 * blocking_notifier_chain_unregister - Remove notifier from a blocking notifier chain
277 * @nh: Pointer to head of the blocking notifier chain
278 * @n: Entry to remove from notifier chain
280 * Removes a notifier from a blocking notifier chain.
281 * Must be called from process context.
283 * Returns zero on success or %-ENOENT on failure.
285 int blocking_notifier_chain_unregister(struct blocking_notifier_head
*nh
,
286 struct notifier_block
*n
)
291 * This code gets used during boot-up, when task switching is
292 * not yet working and interrupts must remain disabled. At
293 * such times we must not call down_write().
295 if (unlikely(system_state
== SYSTEM_BOOTING
))
296 return notifier_chain_unregister(&nh
->head
, n
);
298 down_write(&nh
->rwsem
);
299 ret
= notifier_chain_unregister(&nh
->head
, n
);
300 up_write(&nh
->rwsem
);
304 EXPORT_SYMBOL_GPL(blocking_notifier_chain_unregister
);
307 * blocking_notifier_call_chain - Call functions in a blocking notifier chain
308 * @nh: Pointer to head of the blocking notifier chain
309 * @val: Value passed unmodified to notifier function
310 * @v: Pointer passed unmodified to notifier function
312 * Calls each function in a notifier chain in turn. The functions
313 * run in a process context, so they are allowed to block.
315 * If the return value of the notifier can be and'ed
316 * with %NOTIFY_STOP_MASK then blocking_notifier_call_chain()
317 * will return immediately, with the return value of
318 * the notifier function which halted execution.
319 * Otherwise the return value is the return value
320 * of the last notifier function called.
323 int blocking_notifier_call_chain(struct blocking_notifier_head
*nh
,
324 unsigned long val
, void *v
)
326 int ret
= NOTIFY_DONE
;
329 * We check the head outside the lock, but if this access is
330 * racy then it does not matter what the result of the test
331 * is, we re-check the list after having taken the lock anyway:
333 if (rcu_dereference(nh
->head
)) {
334 down_read(&nh
->rwsem
);
335 ret
= notifier_call_chain(&nh
->head
, val
, v
);
341 EXPORT_SYMBOL_GPL(blocking_notifier_call_chain
);
344 * Raw notifier chain routines. There is no protection;
345 * the caller must provide it. Use at your own risk!
349 * raw_notifier_chain_register - Add notifier to a raw notifier chain
350 * @nh: Pointer to head of the raw notifier chain
351 * @n: New entry in notifier chain
353 * Adds a notifier to a raw notifier chain.
354 * All locking must be provided by the caller.
356 * Currently always returns zero.
359 int raw_notifier_chain_register(struct raw_notifier_head
*nh
,
360 struct notifier_block
*n
)
362 return notifier_chain_register(&nh
->head
, n
);
365 EXPORT_SYMBOL_GPL(raw_notifier_chain_register
);
368 * raw_notifier_chain_unregister - Remove notifier from a raw notifier chain
369 * @nh: Pointer to head of the raw notifier chain
370 * @n: Entry to remove from notifier chain
372 * Removes a notifier from a raw notifier chain.
373 * All locking must be provided by the caller.
375 * Returns zero on success or %-ENOENT on failure.
377 int raw_notifier_chain_unregister(struct raw_notifier_head
*nh
,
378 struct notifier_block
*n
)
380 return notifier_chain_unregister(&nh
->head
, n
);
383 EXPORT_SYMBOL_GPL(raw_notifier_chain_unregister
);
386 * raw_notifier_call_chain - Call functions in a raw notifier chain
387 * @nh: Pointer to head of the raw notifier chain
388 * @val: Value passed unmodified to notifier function
389 * @v: Pointer passed unmodified to notifier function
391 * Calls each function in a notifier chain in turn. The functions
392 * run in an undefined context.
393 * All locking must be provided by the caller.
395 * If the return value of the notifier can be and'ed
396 * with %NOTIFY_STOP_MASK then raw_notifier_call_chain()
397 * will return immediately, with the return value of
398 * the notifier function which halted execution.
399 * Otherwise the return value is the return value
400 * of the last notifier function called.
403 int raw_notifier_call_chain(struct raw_notifier_head
*nh
,
404 unsigned long val
, void *v
)
406 return notifier_call_chain(&nh
->head
, val
, v
);
409 EXPORT_SYMBOL_GPL(raw_notifier_call_chain
);
412 * SRCU notifier chain routines. Registration and unregistration
413 * use a mutex, and call_chain is synchronized by SRCU (no locks).
417 * srcu_notifier_chain_register - Add notifier to an SRCU notifier chain
418 * @nh: Pointer to head of the SRCU notifier chain
419 * @n: New entry in notifier chain
421 * Adds a notifier to an SRCU notifier chain.
422 * Must be called in process context.
424 * Currently always returns zero.
427 int srcu_notifier_chain_register(struct srcu_notifier_head
*nh
,
428 struct notifier_block
*n
)
433 * This code gets used during boot-up, when task switching is
434 * not yet working and interrupts must remain disabled. At
435 * such times we must not call mutex_lock().
437 if (unlikely(system_state
== SYSTEM_BOOTING
))
438 return notifier_chain_register(&nh
->head
, n
);
440 mutex_lock(&nh
->mutex
);
441 ret
= notifier_chain_register(&nh
->head
, n
);
442 mutex_unlock(&nh
->mutex
);
446 EXPORT_SYMBOL_GPL(srcu_notifier_chain_register
);
449 * srcu_notifier_chain_unregister - Remove notifier from an SRCU notifier chain
450 * @nh: Pointer to head of the SRCU notifier chain
451 * @n: Entry to remove from notifier chain
453 * Removes a notifier from an SRCU notifier chain.
454 * Must be called from process context.
456 * Returns zero on success or %-ENOENT on failure.
458 int srcu_notifier_chain_unregister(struct srcu_notifier_head
*nh
,
459 struct notifier_block
*n
)
464 * This code gets used during boot-up, when task switching is
465 * not yet working and interrupts must remain disabled. At
466 * such times we must not call mutex_lock().
468 if (unlikely(system_state
== SYSTEM_BOOTING
))
469 return notifier_chain_unregister(&nh
->head
, n
);
471 mutex_lock(&nh
->mutex
);
472 ret
= notifier_chain_unregister(&nh
->head
, n
);
473 mutex_unlock(&nh
->mutex
);
474 synchronize_srcu(&nh
->srcu
);
478 EXPORT_SYMBOL_GPL(srcu_notifier_chain_unregister
);
481 * srcu_notifier_call_chain - Call functions in an SRCU notifier chain
482 * @nh: Pointer to head of the SRCU notifier chain
483 * @val: Value passed unmodified to notifier function
484 * @v: Pointer passed unmodified to notifier function
486 * Calls each function in a notifier chain in turn. The functions
487 * run in a process context, so they are allowed to block.
489 * If the return value of the notifier can be and'ed
490 * with %NOTIFY_STOP_MASK then srcu_notifier_call_chain()
491 * will return immediately, with the return value of
492 * the notifier function which halted execution.
493 * Otherwise the return value is the return value
494 * of the last notifier function called.
497 int srcu_notifier_call_chain(struct srcu_notifier_head
*nh
,
498 unsigned long val
, void *v
)
503 idx
= srcu_read_lock(&nh
->srcu
);
504 ret
= notifier_call_chain(&nh
->head
, val
, v
);
505 srcu_read_unlock(&nh
->srcu
, idx
);
509 EXPORT_SYMBOL_GPL(srcu_notifier_call_chain
);
512 * srcu_init_notifier_head - Initialize an SRCU notifier head
513 * @nh: Pointer to head of the srcu notifier chain
515 * Unlike other sorts of notifier heads, SRCU notifier heads require
516 * dynamic initialization. Be sure to call this routine before
517 * calling any of the other SRCU notifier routines for this head.
519 * If an SRCU notifier head is deallocated, it must first be cleaned
520 * up by calling srcu_cleanup_notifier_head(). Otherwise the head's
521 * per-cpu data (used by the SRCU mechanism) will leak.
524 void srcu_init_notifier_head(struct srcu_notifier_head
*nh
)
526 mutex_init(&nh
->mutex
);
527 if (init_srcu_struct(&nh
->srcu
) < 0)
532 EXPORT_SYMBOL_GPL(srcu_init_notifier_head
);
535 * register_reboot_notifier - Register function to be called at reboot time
536 * @nb: Info about notifier function to be called
538 * Registers a function with the list of functions
539 * to be called at reboot time.
541 * Currently always returns zero, as blocking_notifier_chain_register()
542 * always returns zero.
545 int register_reboot_notifier(struct notifier_block
* nb
)
547 return blocking_notifier_chain_register(&reboot_notifier_list
, nb
);
550 EXPORT_SYMBOL(register_reboot_notifier
);
553 * unregister_reboot_notifier - Unregister previously registered reboot notifier
554 * @nb: Hook to be unregistered
556 * Unregisters a previously registered reboot
559 * Returns zero on success, or %-ENOENT on failure.
562 int unregister_reboot_notifier(struct notifier_block
* nb
)
564 return blocking_notifier_chain_unregister(&reboot_notifier_list
, nb
);
567 EXPORT_SYMBOL(unregister_reboot_notifier
);
569 static int set_one_prio(struct task_struct
*p
, int niceval
, int error
)
573 if (p
->uid
!= current
->euid
&&
574 p
->euid
!= current
->euid
&& !capable(CAP_SYS_NICE
)) {
578 if (niceval
< task_nice(p
) && !can_nice(p
, niceval
)) {
582 no_nice
= security_task_setnice(p
, niceval
);
589 set_user_nice(p
, niceval
);
594 asmlinkage
long sys_setpriority(int which
, int who
, int niceval
)
596 struct task_struct
*g
, *p
;
597 struct user_struct
*user
;
601 if (which
> 2 || which
< 0)
604 /* normalize: avoid signed division (rounding problems) */
611 read_lock(&tasklist_lock
);
615 p
= find_task_by_pid(who
);
619 error
= set_one_prio(p
, niceval
, error
);
623 pgrp
= find_pid(who
);
625 pgrp
= task_pgrp(current
);
626 do_each_pid_task(pgrp
, PIDTYPE_PGID
, p
) {
627 error
= set_one_prio(p
, niceval
, error
);
628 } while_each_pid_task(pgrp
, PIDTYPE_PGID
, p
);
631 user
= current
->user
;
635 if ((who
!= current
->uid
) && !(user
= find_user(who
)))
636 goto out_unlock
; /* No processes for this user */
640 error
= set_one_prio(p
, niceval
, error
);
641 while_each_thread(g
, p
);
642 if (who
!= current
->uid
)
643 free_uid(user
); /* For find_user() */
647 read_unlock(&tasklist_lock
);
653 * Ugh. To avoid negative return values, "getpriority()" will
654 * not return the normal nice-value, but a negated value that
655 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
656 * to stay compatible.
658 asmlinkage
long sys_getpriority(int which
, int who
)
660 struct task_struct
*g
, *p
;
661 struct user_struct
*user
;
662 long niceval
, retval
= -ESRCH
;
665 if (which
> 2 || which
< 0)
668 read_lock(&tasklist_lock
);
672 p
= find_task_by_pid(who
);
676 niceval
= 20 - task_nice(p
);
677 if (niceval
> retval
)
683 pgrp
= find_pid(who
);
685 pgrp
= task_pgrp(current
);
686 do_each_pid_task(pgrp
, PIDTYPE_PGID
, p
) {
687 niceval
= 20 - task_nice(p
);
688 if (niceval
> retval
)
690 } while_each_pid_task(pgrp
, PIDTYPE_PGID
, p
);
693 user
= current
->user
;
697 if ((who
!= current
->uid
) && !(user
= find_user(who
)))
698 goto out_unlock
; /* No processes for this user */
702 niceval
= 20 - task_nice(p
);
703 if (niceval
> retval
)
706 while_each_thread(g
, p
);
707 if (who
!= current
->uid
)
708 free_uid(user
); /* for find_user() */
712 read_unlock(&tasklist_lock
);
718 * emergency_restart - reboot the system
720 * Without shutting down any hardware or taking any locks
721 * reboot the system. This is called when we know we are in
722 * trouble so this is our best effort to reboot. This is
723 * safe to call in interrupt context.
725 void emergency_restart(void)
727 machine_emergency_restart();
729 EXPORT_SYMBOL_GPL(emergency_restart
);
731 static void kernel_restart_prepare(char *cmd
)
733 blocking_notifier_call_chain(&reboot_notifier_list
, SYS_RESTART
, cmd
);
734 system_state
= SYSTEM_RESTART
;
739 * kernel_restart - reboot the system
740 * @cmd: pointer to buffer containing command to execute for restart
743 * Shutdown everything and perform a clean reboot.
744 * This is not safe to call in interrupt context.
746 void kernel_restart(char *cmd
)
748 kernel_restart_prepare(cmd
);
750 printk(KERN_EMERG
"Restarting system.\n");
752 printk(KERN_EMERG
"Restarting system with command '%s'.\n", cmd
);
753 machine_restart(cmd
);
755 EXPORT_SYMBOL_GPL(kernel_restart
);
758 * kernel_kexec - reboot the system
760 * Move into place and start executing a preloaded standalone
761 * executable. If nothing was preloaded return an error.
763 static void kernel_kexec(void)
766 struct kimage
*image
;
767 image
= xchg(&kexec_image
, NULL
);
770 kernel_restart_prepare(NULL
);
771 printk(KERN_EMERG
"Starting new kernel\n");
773 machine_kexec(image
);
777 void kernel_shutdown_prepare(enum system_states state
)
779 blocking_notifier_call_chain(&reboot_notifier_list
,
780 (state
== SYSTEM_HALT
)?SYS_HALT
:SYS_POWER_OFF
, NULL
);
781 system_state
= state
;
785 * kernel_halt - halt the system
787 * Shutdown everything and perform a clean system halt.
789 void kernel_halt(void)
791 kernel_shutdown_prepare(SYSTEM_HALT
);
792 printk(KERN_EMERG
"System halted.\n");
796 EXPORT_SYMBOL_GPL(kernel_halt
);
799 * kernel_power_off - power_off the system
801 * Shutdown everything and perform a clean system power_off.
803 void kernel_power_off(void)
805 kernel_shutdown_prepare(SYSTEM_POWER_OFF
);
806 printk(KERN_EMERG
"Power down.\n");
809 EXPORT_SYMBOL_GPL(kernel_power_off
);
811 * Reboot system call: for obvious reasons only root may call it,
812 * and even root needs to set up some magic numbers in the registers
813 * so that some mistake won't make this reboot the whole machine.
814 * You can also set the meaning of the ctrl-alt-del-key here.
816 * reboot doesn't sync: do that yourself before calling this.
818 asmlinkage
long sys_reboot(int magic1
, int magic2
, unsigned int cmd
, void __user
* arg
)
822 /* We only trust the superuser with rebooting the system. */
823 if (!capable(CAP_SYS_BOOT
))
826 /* For safety, we require "magic" arguments. */
827 if (magic1
!= LINUX_REBOOT_MAGIC1
||
828 (magic2
!= LINUX_REBOOT_MAGIC2
&&
829 magic2
!= LINUX_REBOOT_MAGIC2A
&&
830 magic2
!= LINUX_REBOOT_MAGIC2B
&&
831 magic2
!= LINUX_REBOOT_MAGIC2C
))
834 /* Instead of trying to make the power_off code look like
835 * halt when pm_power_off is not set do it the easy way.
837 if ((cmd
== LINUX_REBOOT_CMD_POWER_OFF
) && !pm_power_off
)
838 cmd
= LINUX_REBOOT_CMD_HALT
;
842 case LINUX_REBOOT_CMD_RESTART
:
843 kernel_restart(NULL
);
846 case LINUX_REBOOT_CMD_CAD_ON
:
850 case LINUX_REBOOT_CMD_CAD_OFF
:
854 case LINUX_REBOOT_CMD_HALT
:
860 case LINUX_REBOOT_CMD_POWER_OFF
:
866 case LINUX_REBOOT_CMD_RESTART2
:
867 if (strncpy_from_user(&buffer
[0], arg
, sizeof(buffer
) - 1) < 0) {
871 buffer
[sizeof(buffer
) - 1] = '\0';
873 kernel_restart(buffer
);
876 case LINUX_REBOOT_CMD_KEXEC
:
881 #ifdef CONFIG_SOFTWARE_SUSPEND
882 case LINUX_REBOOT_CMD_SW_SUSPEND
:
884 int ret
= software_suspend();
898 static void deferred_cad(struct work_struct
*dummy
)
900 kernel_restart(NULL
);
904 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
905 * As it's called within an interrupt, it may NOT sync: the only choice
906 * is whether to reboot at once, or just ignore the ctrl-alt-del.
908 void ctrl_alt_del(void)
910 static DECLARE_WORK(cad_work
, deferred_cad
);
913 schedule_work(&cad_work
);
915 kill_cad_pid(SIGINT
, 1);
919 * Unprivileged users may change the real gid to the effective gid
920 * or vice versa. (BSD-style)
922 * If you set the real gid at all, or set the effective gid to a value not
923 * equal to the real gid, then the saved gid is set to the new effective gid.
925 * This makes it possible for a setgid program to completely drop its
926 * privileges, which is often a useful assertion to make when you are doing
927 * a security audit over a program.
929 * The general idea is that a program which uses just setregid() will be
930 * 100% compatible with BSD. A program which uses just setgid() will be
931 * 100% compatible with POSIX with saved IDs.
933 * SMP: There are not races, the GIDs are checked only by filesystem
934 * operations (as far as semantic preservation is concerned).
936 asmlinkage
long sys_setregid(gid_t rgid
, gid_t egid
)
938 int old_rgid
= current
->gid
;
939 int old_egid
= current
->egid
;
940 int new_rgid
= old_rgid
;
941 int new_egid
= old_egid
;
944 retval
= security_task_setgid(rgid
, egid
, (gid_t
)-1, LSM_SETID_RE
);
948 if (rgid
!= (gid_t
) -1) {
949 if ((old_rgid
== rgid
) ||
950 (current
->egid
==rgid
) ||
956 if (egid
!= (gid_t
) -1) {
957 if ((old_rgid
== egid
) ||
958 (current
->egid
== egid
) ||
959 (current
->sgid
== egid
) ||
965 if (new_egid
!= old_egid
) {
966 current
->mm
->dumpable
= suid_dumpable
;
969 if (rgid
!= (gid_t
) -1 ||
970 (egid
!= (gid_t
) -1 && egid
!= old_rgid
))
971 current
->sgid
= new_egid
;
972 current
->fsgid
= new_egid
;
973 current
->egid
= new_egid
;
974 current
->gid
= new_rgid
;
975 key_fsgid_changed(current
);
976 proc_id_connector(current
, PROC_EVENT_GID
);
981 * setgid() is implemented like SysV w/ SAVED_IDS
983 * SMP: Same implicit races as above.
985 asmlinkage
long sys_setgid(gid_t gid
)
987 int old_egid
= current
->egid
;
990 retval
= security_task_setgid(gid
, (gid_t
)-1, (gid_t
)-1, LSM_SETID_ID
);
994 if (capable(CAP_SETGID
)) {
995 if (old_egid
!= gid
) {
996 current
->mm
->dumpable
= suid_dumpable
;
999 current
->gid
= current
->egid
= current
->sgid
= current
->fsgid
= gid
;
1000 } else if ((gid
== current
->gid
) || (gid
== current
->sgid
)) {
1001 if (old_egid
!= gid
) {
1002 current
->mm
->dumpable
= suid_dumpable
;
1005 current
->egid
= current
->fsgid
= gid
;
1010 key_fsgid_changed(current
);
1011 proc_id_connector(current
, PROC_EVENT_GID
);
1015 static int set_user(uid_t new_ruid
, int dumpclear
)
1017 struct user_struct
*new_user
;
1019 new_user
= alloc_uid(new_ruid
);
1023 if (atomic_read(&new_user
->processes
) >=
1024 current
->signal
->rlim
[RLIMIT_NPROC
].rlim_cur
&&
1025 new_user
!= &root_user
) {
1030 switch_uid(new_user
);
1033 current
->mm
->dumpable
= suid_dumpable
;
1036 current
->uid
= new_ruid
;
1041 * Unprivileged users may change the real uid to the effective uid
1042 * or vice versa. (BSD-style)
1044 * If you set the real uid at all, or set the effective uid to a value not
1045 * equal to the real uid, then the saved uid is set to the new effective uid.
1047 * This makes it possible for a setuid program to completely drop its
1048 * privileges, which is often a useful assertion to make when you are doing
1049 * a security audit over a program.
1051 * The general idea is that a program which uses just setreuid() will be
1052 * 100% compatible with BSD. A program which uses just setuid() will be
1053 * 100% compatible with POSIX with saved IDs.
1055 asmlinkage
long sys_setreuid(uid_t ruid
, uid_t euid
)
1057 int old_ruid
, old_euid
, old_suid
, new_ruid
, new_euid
;
1060 retval
= security_task_setuid(ruid
, euid
, (uid_t
)-1, LSM_SETID_RE
);
1064 new_ruid
= old_ruid
= current
->uid
;
1065 new_euid
= old_euid
= current
->euid
;
1066 old_suid
= current
->suid
;
1068 if (ruid
!= (uid_t
) -1) {
1070 if ((old_ruid
!= ruid
) &&
1071 (current
->euid
!= ruid
) &&
1072 !capable(CAP_SETUID
))
1076 if (euid
!= (uid_t
) -1) {
1078 if ((old_ruid
!= euid
) &&
1079 (current
->euid
!= euid
) &&
1080 (current
->suid
!= euid
) &&
1081 !capable(CAP_SETUID
))
1085 if (new_ruid
!= old_ruid
&& set_user(new_ruid
, new_euid
!= old_euid
) < 0)
1088 if (new_euid
!= old_euid
) {
1089 current
->mm
->dumpable
= suid_dumpable
;
1092 current
->fsuid
= current
->euid
= new_euid
;
1093 if (ruid
!= (uid_t
) -1 ||
1094 (euid
!= (uid_t
) -1 && euid
!= old_ruid
))
1095 current
->suid
= current
->euid
;
1096 current
->fsuid
= current
->euid
;
1098 key_fsuid_changed(current
);
1099 proc_id_connector(current
, PROC_EVENT_UID
);
1101 return security_task_post_setuid(old_ruid
, old_euid
, old_suid
, LSM_SETID_RE
);
1107 * setuid() is implemented like SysV with SAVED_IDS
1109 * Note that SAVED_ID's is deficient in that a setuid root program
1110 * like sendmail, for example, cannot set its uid to be a normal
1111 * user and then switch back, because if you're root, setuid() sets
1112 * the saved uid too. If you don't like this, blame the bright people
1113 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
1114 * will allow a root program to temporarily drop privileges and be able to
1115 * regain them by swapping the real and effective uid.
1117 asmlinkage
long sys_setuid(uid_t uid
)
1119 int old_euid
= current
->euid
;
1120 int old_ruid
, old_suid
, new_suid
;
1123 retval
= security_task_setuid(uid
, (uid_t
)-1, (uid_t
)-1, LSM_SETID_ID
);
1127 old_ruid
= current
->uid
;
1128 old_suid
= current
->suid
;
1129 new_suid
= old_suid
;
1131 if (capable(CAP_SETUID
)) {
1132 if (uid
!= old_ruid
&& set_user(uid
, old_euid
!= uid
) < 0)
1135 } else if ((uid
!= current
->uid
) && (uid
!= new_suid
))
1138 if (old_euid
!= uid
) {
1139 current
->mm
->dumpable
= suid_dumpable
;
1142 current
->fsuid
= current
->euid
= uid
;
1143 current
->suid
= new_suid
;
1145 key_fsuid_changed(current
);
1146 proc_id_connector(current
, PROC_EVENT_UID
);
1148 return security_task_post_setuid(old_ruid
, old_euid
, old_suid
, LSM_SETID_ID
);
1153 * This function implements a generic ability to update ruid, euid,
1154 * and suid. This allows you to implement the 4.4 compatible seteuid().
1156 asmlinkage
long sys_setresuid(uid_t ruid
, uid_t euid
, uid_t suid
)
1158 int old_ruid
= current
->uid
;
1159 int old_euid
= current
->euid
;
1160 int old_suid
= current
->suid
;
1163 retval
= security_task_setuid(ruid
, euid
, suid
, LSM_SETID_RES
);
1167 if (!capable(CAP_SETUID
)) {
1168 if ((ruid
!= (uid_t
) -1) && (ruid
!= current
->uid
) &&
1169 (ruid
!= current
->euid
) && (ruid
!= current
->suid
))
1171 if ((euid
!= (uid_t
) -1) && (euid
!= current
->uid
) &&
1172 (euid
!= current
->euid
) && (euid
!= current
->suid
))
1174 if ((suid
!= (uid_t
) -1) && (suid
!= current
->uid
) &&
1175 (suid
!= current
->euid
) && (suid
!= current
->suid
))
1178 if (ruid
!= (uid_t
) -1) {
1179 if (ruid
!= current
->uid
&& set_user(ruid
, euid
!= current
->euid
) < 0)
1182 if (euid
!= (uid_t
) -1) {
1183 if (euid
!= current
->euid
) {
1184 current
->mm
->dumpable
= suid_dumpable
;
1187 current
->euid
= euid
;
1189 current
->fsuid
= current
->euid
;
1190 if (suid
!= (uid_t
) -1)
1191 current
->suid
= suid
;
1193 key_fsuid_changed(current
);
1194 proc_id_connector(current
, PROC_EVENT_UID
);
1196 return security_task_post_setuid(old_ruid
, old_euid
, old_suid
, LSM_SETID_RES
);
1199 asmlinkage
long sys_getresuid(uid_t __user
*ruid
, uid_t __user
*euid
, uid_t __user
*suid
)
1203 if (!(retval
= put_user(current
->uid
, ruid
)) &&
1204 !(retval
= put_user(current
->euid
, euid
)))
1205 retval
= put_user(current
->suid
, suid
);
1211 * Same as above, but for rgid, egid, sgid.
1213 asmlinkage
long sys_setresgid(gid_t rgid
, gid_t egid
, gid_t sgid
)
1217 retval
= security_task_setgid(rgid
, egid
, sgid
, LSM_SETID_RES
);
1221 if (!capable(CAP_SETGID
)) {
1222 if ((rgid
!= (gid_t
) -1) && (rgid
!= current
->gid
) &&
1223 (rgid
!= current
->egid
) && (rgid
!= current
->sgid
))
1225 if ((egid
!= (gid_t
) -1) && (egid
!= current
->gid
) &&
1226 (egid
!= current
->egid
) && (egid
!= current
->sgid
))
1228 if ((sgid
!= (gid_t
) -1) && (sgid
!= current
->gid
) &&
1229 (sgid
!= current
->egid
) && (sgid
!= current
->sgid
))
1232 if (egid
!= (gid_t
) -1) {
1233 if (egid
!= current
->egid
) {
1234 current
->mm
->dumpable
= suid_dumpable
;
1237 current
->egid
= egid
;
1239 current
->fsgid
= current
->egid
;
1240 if (rgid
!= (gid_t
) -1)
1241 current
->gid
= rgid
;
1242 if (sgid
!= (gid_t
) -1)
1243 current
->sgid
= sgid
;
1245 key_fsgid_changed(current
);
1246 proc_id_connector(current
, PROC_EVENT_GID
);
1250 asmlinkage
long sys_getresgid(gid_t __user
*rgid
, gid_t __user
*egid
, gid_t __user
*sgid
)
1254 if (!(retval
= put_user(current
->gid
, rgid
)) &&
1255 !(retval
= put_user(current
->egid
, egid
)))
1256 retval
= put_user(current
->sgid
, sgid
);
1263 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
1264 * is used for "access()" and for the NFS daemon (letting nfsd stay at
1265 * whatever uid it wants to). It normally shadows "euid", except when
1266 * explicitly set by setfsuid() or for access..
1268 asmlinkage
long sys_setfsuid(uid_t uid
)
1272 old_fsuid
= current
->fsuid
;
1273 if (security_task_setuid(uid
, (uid_t
)-1, (uid_t
)-1, LSM_SETID_FS
))
1276 if (uid
== current
->uid
|| uid
== current
->euid
||
1277 uid
== current
->suid
|| uid
== current
->fsuid
||
1278 capable(CAP_SETUID
)) {
1279 if (uid
!= old_fsuid
) {
1280 current
->mm
->dumpable
= suid_dumpable
;
1283 current
->fsuid
= uid
;
1286 key_fsuid_changed(current
);
1287 proc_id_connector(current
, PROC_EVENT_UID
);
1289 security_task_post_setuid(old_fsuid
, (uid_t
)-1, (uid_t
)-1, LSM_SETID_FS
);
1295 * Samma på svenska..
1297 asmlinkage
long sys_setfsgid(gid_t gid
)
1301 old_fsgid
= current
->fsgid
;
1302 if (security_task_setgid(gid
, (gid_t
)-1, (gid_t
)-1, LSM_SETID_FS
))
1305 if (gid
== current
->gid
|| gid
== current
->egid
||
1306 gid
== current
->sgid
|| gid
== current
->fsgid
||
1307 capable(CAP_SETGID
)) {
1308 if (gid
!= old_fsgid
) {
1309 current
->mm
->dumpable
= suid_dumpable
;
1312 current
->fsgid
= gid
;
1313 key_fsgid_changed(current
);
1314 proc_id_connector(current
, PROC_EVENT_GID
);
1319 asmlinkage
long sys_times(struct tms __user
* tbuf
)
1322 * In the SMP world we might just be unlucky and have one of
1323 * the times increment as we use it. Since the value is an
1324 * atomically safe type this is just fine. Conceptually its
1325 * as if the syscall took an instant longer to occur.
1329 struct task_struct
*tsk
= current
;
1330 struct task_struct
*t
;
1331 cputime_t utime
, stime
, cutime
, cstime
;
1333 spin_lock_irq(&tsk
->sighand
->siglock
);
1334 utime
= tsk
->signal
->utime
;
1335 stime
= tsk
->signal
->stime
;
1338 utime
= cputime_add(utime
, t
->utime
);
1339 stime
= cputime_add(stime
, t
->stime
);
1343 cutime
= tsk
->signal
->cutime
;
1344 cstime
= tsk
->signal
->cstime
;
1345 spin_unlock_irq(&tsk
->sighand
->siglock
);
1347 tmp
.tms_utime
= cputime_to_clock_t(utime
);
1348 tmp
.tms_stime
= cputime_to_clock_t(stime
);
1349 tmp
.tms_cutime
= cputime_to_clock_t(cutime
);
1350 tmp
.tms_cstime
= cputime_to_clock_t(cstime
);
1351 if (copy_to_user(tbuf
, &tmp
, sizeof(struct tms
)))
1354 return (long) jiffies_64_to_clock_t(get_jiffies_64());
1358 * This needs some heavy checking ...
1359 * I just haven't the stomach for it. I also don't fully
1360 * understand sessions/pgrp etc. Let somebody who does explain it.
1362 * OK, I think I have the protection semantics right.... this is really
1363 * only important on a multi-user system anyway, to make sure one user
1364 * can't send a signal to a process owned by another. -TYT, 12/12/91
1366 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
1370 asmlinkage
long sys_setpgid(pid_t pid
, pid_t pgid
)
1372 struct task_struct
*p
;
1373 struct task_struct
*group_leader
= current
->group_leader
;
1377 pid
= group_leader
->pid
;
1383 /* From this point forward we keep holding onto the tasklist lock
1384 * so that our parent does not change from under us. -DaveM
1386 write_lock_irq(&tasklist_lock
);
1389 p
= find_task_by_pid(pid
);
1394 if (!thread_group_leader(p
))
1397 if (p
->real_parent
== group_leader
) {
1399 if (task_session(p
) != task_session(group_leader
))
1406 if (p
!= group_leader
)
1411 if (p
->signal
->leader
)
1415 struct task_struct
*g
=
1416 find_task_by_pid_type(PIDTYPE_PGID
, pgid
);
1418 if (!g
|| task_session(g
) != task_session(group_leader
))
1422 err
= security_task_setpgid(p
, pgid
);
1426 if (process_group(p
) != pgid
) {
1427 detach_pid(p
, PIDTYPE_PGID
);
1428 p
->signal
->pgrp
= pgid
;
1429 attach_pid(p
, PIDTYPE_PGID
, pgid
);
1434 /* All paths lead to here, thus we are safe. -DaveM */
1435 write_unlock_irq(&tasklist_lock
);
1439 asmlinkage
long sys_getpgid(pid_t pid
)
1442 return process_group(current
);
1445 struct task_struct
*p
;
1447 read_lock(&tasklist_lock
);
1448 p
= find_task_by_pid(pid
);
1452 retval
= security_task_getpgid(p
);
1454 retval
= process_group(p
);
1456 read_unlock(&tasklist_lock
);
1461 #ifdef __ARCH_WANT_SYS_GETPGRP
1463 asmlinkage
long sys_getpgrp(void)
1465 /* SMP - assuming writes are word atomic this is fine */
1466 return process_group(current
);
1471 asmlinkage
long sys_getsid(pid_t pid
)
1474 return process_session(current
);
1477 struct task_struct
*p
;
1479 read_lock(&tasklist_lock
);
1480 p
= find_task_by_pid(pid
);
1484 retval
= security_task_getsid(p
);
1486 retval
= process_session(p
);
1488 read_unlock(&tasklist_lock
);
1493 asmlinkage
long sys_setsid(void)
1495 struct task_struct
*group_leader
= current
->group_leader
;
1499 write_lock_irq(&tasklist_lock
);
1501 /* Fail if I am already a session leader */
1502 if (group_leader
->signal
->leader
)
1505 session
= group_leader
->pid
;
1506 /* Fail if a process group id already exists that equals the
1507 * proposed session id.
1509 * Don't check if session id == 1 because kernel threads use this
1510 * session id and so the check will always fail and make it so
1511 * init cannot successfully call setsid.
1513 if (session
> 1 && find_task_by_pid_type(PIDTYPE_PGID
, session
))
1516 group_leader
->signal
->leader
= 1;
1517 __set_special_pids(session
, session
);
1519 spin_lock(&group_leader
->sighand
->siglock
);
1520 group_leader
->signal
->tty
= NULL
;
1521 spin_unlock(&group_leader
->sighand
->siglock
);
1523 err
= process_group(group_leader
);
1525 write_unlock_irq(&tasklist_lock
);
1530 * Supplementary group IDs
1533 /* init to 2 - one for init_task, one to ensure it is never freed */
1534 struct group_info init_groups
= { .usage
= ATOMIC_INIT(2) };
1536 struct group_info
*groups_alloc(int gidsetsize
)
1538 struct group_info
*group_info
;
1542 nblocks
= (gidsetsize
+ NGROUPS_PER_BLOCK
- 1) / NGROUPS_PER_BLOCK
;
1543 /* Make sure we always allocate at least one indirect block pointer */
1544 nblocks
= nblocks
? : 1;
1545 group_info
= kmalloc(sizeof(*group_info
) + nblocks
*sizeof(gid_t
*), GFP_USER
);
1548 group_info
->ngroups
= gidsetsize
;
1549 group_info
->nblocks
= nblocks
;
1550 atomic_set(&group_info
->usage
, 1);
1552 if (gidsetsize
<= NGROUPS_SMALL
)
1553 group_info
->blocks
[0] = group_info
->small_block
;
1555 for (i
= 0; i
< nblocks
; i
++) {
1557 b
= (void *)__get_free_page(GFP_USER
);
1559 goto out_undo_partial_alloc
;
1560 group_info
->blocks
[i
] = b
;
1565 out_undo_partial_alloc
:
1567 free_page((unsigned long)group_info
->blocks
[i
]);
1573 EXPORT_SYMBOL(groups_alloc
);
1575 void groups_free(struct group_info
*group_info
)
1577 if (group_info
->blocks
[0] != group_info
->small_block
) {
1579 for (i
= 0; i
< group_info
->nblocks
; i
++)
1580 free_page((unsigned long)group_info
->blocks
[i
]);
1585 EXPORT_SYMBOL(groups_free
);
1587 /* export the group_info to a user-space array */
1588 static int groups_to_user(gid_t __user
*grouplist
,
1589 struct group_info
*group_info
)
1592 int count
= group_info
->ngroups
;
1594 for (i
= 0; i
< group_info
->nblocks
; i
++) {
1595 int cp_count
= min(NGROUPS_PER_BLOCK
, count
);
1596 int off
= i
* NGROUPS_PER_BLOCK
;
1597 int len
= cp_count
* sizeof(*grouplist
);
1599 if (copy_to_user(grouplist
+off
, group_info
->blocks
[i
], len
))
1607 /* fill a group_info from a user-space array - it must be allocated already */
1608 static int groups_from_user(struct group_info
*group_info
,
1609 gid_t __user
*grouplist
)
1612 int count
= group_info
->ngroups
;
1614 for (i
= 0; i
< group_info
->nblocks
; i
++) {
1615 int cp_count
= min(NGROUPS_PER_BLOCK
, count
);
1616 int off
= i
* NGROUPS_PER_BLOCK
;
1617 int len
= cp_count
* sizeof(*grouplist
);
1619 if (copy_from_user(group_info
->blocks
[i
], grouplist
+off
, len
))
1627 /* a simple Shell sort */
1628 static void groups_sort(struct group_info
*group_info
)
1630 int base
, max
, stride
;
1631 int gidsetsize
= group_info
->ngroups
;
1633 for (stride
= 1; stride
< gidsetsize
; stride
= 3 * stride
+ 1)
1638 max
= gidsetsize
- stride
;
1639 for (base
= 0; base
< max
; base
++) {
1641 int right
= left
+ stride
;
1642 gid_t tmp
= GROUP_AT(group_info
, right
);
1644 while (left
>= 0 && GROUP_AT(group_info
, left
) > tmp
) {
1645 GROUP_AT(group_info
, right
) =
1646 GROUP_AT(group_info
, left
);
1650 GROUP_AT(group_info
, right
) = tmp
;
1656 /* a simple bsearch */
1657 int groups_search(struct group_info
*group_info
, gid_t grp
)
1659 unsigned int left
, right
;
1665 right
= group_info
->ngroups
;
1666 while (left
< right
) {
1667 unsigned int mid
= (left
+right
)/2;
1668 int cmp
= grp
- GROUP_AT(group_info
, mid
);
1679 /* validate and set current->group_info */
1680 int set_current_groups(struct group_info
*group_info
)
1683 struct group_info
*old_info
;
1685 retval
= security_task_setgroups(group_info
);
1689 groups_sort(group_info
);
1690 get_group_info(group_info
);
1693 old_info
= current
->group_info
;
1694 current
->group_info
= group_info
;
1695 task_unlock(current
);
1697 put_group_info(old_info
);
1702 EXPORT_SYMBOL(set_current_groups
);
1704 asmlinkage
long sys_getgroups(int gidsetsize
, gid_t __user
*grouplist
)
1709 * SMP: Nobody else can change our grouplist. Thus we are
1716 /* no need to grab task_lock here; it cannot change */
1717 i
= current
->group_info
->ngroups
;
1719 if (i
> gidsetsize
) {
1723 if (groups_to_user(grouplist
, current
->group_info
)) {
1733 * SMP: Our groups are copy-on-write. We can set them safely
1734 * without another task interfering.
1737 asmlinkage
long sys_setgroups(int gidsetsize
, gid_t __user
*grouplist
)
1739 struct group_info
*group_info
;
1742 if (!capable(CAP_SETGID
))
1744 if ((unsigned)gidsetsize
> NGROUPS_MAX
)
1747 group_info
= groups_alloc(gidsetsize
);
1750 retval
= groups_from_user(group_info
, grouplist
);
1752 put_group_info(group_info
);
1756 retval
= set_current_groups(group_info
);
1757 put_group_info(group_info
);
1763 * Check whether we're fsgid/egid or in the supplemental group..
1765 int in_group_p(gid_t grp
)
1768 if (grp
!= current
->fsgid
)
1769 retval
= groups_search(current
->group_info
, grp
);
1773 EXPORT_SYMBOL(in_group_p
);
1775 int in_egroup_p(gid_t grp
)
1778 if (grp
!= current
->egid
)
1779 retval
= groups_search(current
->group_info
, grp
);
1783 EXPORT_SYMBOL(in_egroup_p
);
1785 DECLARE_RWSEM(uts_sem
);
1787 EXPORT_SYMBOL(uts_sem
);
1789 asmlinkage
long sys_newuname(struct new_utsname __user
* name
)
1793 down_read(&uts_sem
);
1794 if (copy_to_user(name
, utsname(), sizeof *name
))
1800 asmlinkage
long sys_sethostname(char __user
*name
, int len
)
1803 char tmp
[__NEW_UTS_LEN
];
1805 if (!capable(CAP_SYS_ADMIN
))
1807 if (len
< 0 || len
> __NEW_UTS_LEN
)
1809 down_write(&uts_sem
);
1811 if (!copy_from_user(tmp
, name
, len
)) {
1812 memcpy(utsname()->nodename
, tmp
, len
);
1813 utsname()->nodename
[len
] = 0;
1820 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1822 asmlinkage
long sys_gethostname(char __user
*name
, int len
)
1828 down_read(&uts_sem
);
1829 i
= 1 + strlen(utsname()->nodename
);
1833 if (copy_to_user(name
, utsname()->nodename
, i
))
1842 * Only setdomainname; getdomainname can be implemented by calling
1845 asmlinkage
long sys_setdomainname(char __user
*name
, int len
)
1848 char tmp
[__NEW_UTS_LEN
];
1850 if (!capable(CAP_SYS_ADMIN
))
1852 if (len
< 0 || len
> __NEW_UTS_LEN
)
1855 down_write(&uts_sem
);
1857 if (!copy_from_user(tmp
, name
, len
)) {
1858 memcpy(utsname()->domainname
, tmp
, len
);
1859 utsname()->domainname
[len
] = 0;
1866 asmlinkage
long sys_getrlimit(unsigned int resource
, struct rlimit __user
*rlim
)
1868 if (resource
>= RLIM_NLIMITS
)
1871 struct rlimit value
;
1872 task_lock(current
->group_leader
);
1873 value
= current
->signal
->rlim
[resource
];
1874 task_unlock(current
->group_leader
);
1875 return copy_to_user(rlim
, &value
, sizeof(*rlim
)) ? -EFAULT
: 0;
1879 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1882 * Back compatibility for getrlimit. Needed for some apps.
1885 asmlinkage
long sys_old_getrlimit(unsigned int resource
, struct rlimit __user
*rlim
)
1888 if (resource
>= RLIM_NLIMITS
)
1891 task_lock(current
->group_leader
);
1892 x
= current
->signal
->rlim
[resource
];
1893 task_unlock(current
->group_leader
);
1894 if (x
.rlim_cur
> 0x7FFFFFFF)
1895 x
.rlim_cur
= 0x7FFFFFFF;
1896 if (x
.rlim_max
> 0x7FFFFFFF)
1897 x
.rlim_max
= 0x7FFFFFFF;
1898 return copy_to_user(rlim
, &x
, sizeof(x
))?-EFAULT
:0;
1903 asmlinkage
long sys_setrlimit(unsigned int resource
, struct rlimit __user
*rlim
)
1905 struct rlimit new_rlim
, *old_rlim
;
1906 unsigned long it_prof_secs
;
1909 if (resource
>= RLIM_NLIMITS
)
1911 if (copy_from_user(&new_rlim
, rlim
, sizeof(*rlim
)))
1913 if (new_rlim
.rlim_cur
> new_rlim
.rlim_max
)
1915 old_rlim
= current
->signal
->rlim
+ resource
;
1916 if ((new_rlim
.rlim_max
> old_rlim
->rlim_max
) &&
1917 !capable(CAP_SYS_RESOURCE
))
1919 if (resource
== RLIMIT_NOFILE
&& new_rlim
.rlim_max
> NR_OPEN
)
1922 retval
= security_task_setrlimit(resource
, &new_rlim
);
1926 task_lock(current
->group_leader
);
1927 *old_rlim
= new_rlim
;
1928 task_unlock(current
->group_leader
);
1930 if (resource
!= RLIMIT_CPU
)
1934 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1935 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1936 * very long-standing error, and fixing it now risks breakage of
1937 * applications, so we live with it
1939 if (new_rlim
.rlim_cur
== RLIM_INFINITY
)
1942 it_prof_secs
= cputime_to_secs(current
->signal
->it_prof_expires
);
1943 if (it_prof_secs
== 0 || new_rlim
.rlim_cur
<= it_prof_secs
) {
1944 unsigned long rlim_cur
= new_rlim
.rlim_cur
;
1947 if (rlim_cur
== 0) {
1949 * The caller is asking for an immediate RLIMIT_CPU
1950 * expiry. But we use the zero value to mean "it was
1951 * never set". So let's cheat and make it one second
1956 cputime
= secs_to_cputime(rlim_cur
);
1957 read_lock(&tasklist_lock
);
1958 spin_lock_irq(¤t
->sighand
->siglock
);
1959 set_process_cpu_timer(current
, CPUCLOCK_PROF
, &cputime
, NULL
);
1960 spin_unlock_irq(¤t
->sighand
->siglock
);
1961 read_unlock(&tasklist_lock
);
1968 * It would make sense to put struct rusage in the task_struct,
1969 * except that would make the task_struct be *really big*. After
1970 * task_struct gets moved into malloc'ed memory, it would
1971 * make sense to do this. It will make moving the rest of the information
1972 * a lot simpler! (Which we're not doing right now because we're not
1973 * measuring them yet).
1975 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1976 * races with threads incrementing their own counters. But since word
1977 * reads are atomic, we either get new values or old values and we don't
1978 * care which for the sums. We always take the siglock to protect reading
1979 * the c* fields from p->signal from races with exit.c updating those
1980 * fields when reaping, so a sample either gets all the additions of a
1981 * given child after it's reaped, or none so this sample is before reaping.
1984 * We need to take the siglock for CHILDEREN, SELF and BOTH
1985 * for the cases current multithreaded, non-current single threaded
1986 * non-current multithreaded. Thread traversal is now safe with
1988 * Strictly speaking, we donot need to take the siglock if we are current and
1989 * single threaded, as no one else can take our signal_struct away, no one
1990 * else can reap the children to update signal->c* counters, and no one else
1991 * can race with the signal-> fields. If we do not take any lock, the
1992 * signal-> fields could be read out of order while another thread was just
1993 * exiting. So we should place a read memory barrier when we avoid the lock.
1994 * On the writer side, write memory barrier is implied in __exit_signal
1995 * as __exit_signal releases the siglock spinlock after updating the signal->
1996 * fields. But we don't do this yet to keep things simple.
2000 static void k_getrusage(struct task_struct
*p
, int who
, struct rusage
*r
)
2002 struct task_struct
*t
;
2003 unsigned long flags
;
2004 cputime_t utime
, stime
;
2006 memset((char *) r
, 0, sizeof *r
);
2007 utime
= stime
= cputime_zero
;
2010 if (!lock_task_sighand(p
, &flags
)) {
2017 case RUSAGE_CHILDREN
:
2018 utime
= p
->signal
->cutime
;
2019 stime
= p
->signal
->cstime
;
2020 r
->ru_nvcsw
= p
->signal
->cnvcsw
;
2021 r
->ru_nivcsw
= p
->signal
->cnivcsw
;
2022 r
->ru_minflt
= p
->signal
->cmin_flt
;
2023 r
->ru_majflt
= p
->signal
->cmaj_flt
;
2025 if (who
== RUSAGE_CHILDREN
)
2029 utime
= cputime_add(utime
, p
->signal
->utime
);
2030 stime
= cputime_add(stime
, p
->signal
->stime
);
2031 r
->ru_nvcsw
+= p
->signal
->nvcsw
;
2032 r
->ru_nivcsw
+= p
->signal
->nivcsw
;
2033 r
->ru_minflt
+= p
->signal
->min_flt
;
2034 r
->ru_majflt
+= p
->signal
->maj_flt
;
2037 utime
= cputime_add(utime
, t
->utime
);
2038 stime
= cputime_add(stime
, t
->stime
);
2039 r
->ru_nvcsw
+= t
->nvcsw
;
2040 r
->ru_nivcsw
+= t
->nivcsw
;
2041 r
->ru_minflt
+= t
->min_flt
;
2042 r
->ru_majflt
+= t
->maj_flt
;
2051 unlock_task_sighand(p
, &flags
);
2054 cputime_to_timeval(utime
, &r
->ru_utime
);
2055 cputime_to_timeval(stime
, &r
->ru_stime
);
2058 int getrusage(struct task_struct
*p
, int who
, struct rusage __user
*ru
)
2061 k_getrusage(p
, who
, &r
);
2062 return copy_to_user(ru
, &r
, sizeof(r
)) ? -EFAULT
: 0;
2065 asmlinkage
long sys_getrusage(int who
, struct rusage __user
*ru
)
2067 if (who
!= RUSAGE_SELF
&& who
!= RUSAGE_CHILDREN
)
2069 return getrusage(current
, who
, ru
);
2072 asmlinkage
long sys_umask(int mask
)
2074 mask
= xchg(¤t
->fs
->umask
, mask
& S_IRWXUGO
);
2078 asmlinkage
long sys_prctl(int option
, unsigned long arg2
, unsigned long arg3
,
2079 unsigned long arg4
, unsigned long arg5
)
2083 error
= security_task_prctl(option
, arg2
, arg3
, arg4
, arg5
);
2088 case PR_SET_PDEATHSIG
:
2089 if (!valid_signal(arg2
)) {
2093 current
->pdeath_signal
= arg2
;
2095 case PR_GET_PDEATHSIG
:
2096 error
= put_user(current
->pdeath_signal
, (int __user
*)arg2
);
2098 case PR_GET_DUMPABLE
:
2099 error
= current
->mm
->dumpable
;
2101 case PR_SET_DUMPABLE
:
2102 if (arg2
< 0 || arg2
> 1) {
2106 current
->mm
->dumpable
= arg2
;
2109 case PR_SET_UNALIGN
:
2110 error
= SET_UNALIGN_CTL(current
, arg2
);
2112 case PR_GET_UNALIGN
:
2113 error
= GET_UNALIGN_CTL(current
, arg2
);
2116 error
= SET_FPEMU_CTL(current
, arg2
);
2119 error
= GET_FPEMU_CTL(current
, arg2
);
2122 error
= SET_FPEXC_CTL(current
, arg2
);
2125 error
= GET_FPEXC_CTL(current
, arg2
);
2128 error
= PR_TIMING_STATISTICAL
;
2131 if (arg2
== PR_TIMING_STATISTICAL
)
2137 case PR_GET_KEEPCAPS
:
2138 if (current
->keep_capabilities
)
2141 case PR_SET_KEEPCAPS
:
2142 if (arg2
!= 0 && arg2
!= 1) {
2146 current
->keep_capabilities
= arg2
;
2149 struct task_struct
*me
= current
;
2150 unsigned char ncomm
[sizeof(me
->comm
)];
2152 ncomm
[sizeof(me
->comm
)-1] = 0;
2153 if (strncpy_from_user(ncomm
, (char __user
*)arg2
,
2154 sizeof(me
->comm
)-1) < 0)
2156 set_task_comm(me
, ncomm
);
2160 struct task_struct
*me
= current
;
2161 unsigned char tcomm
[sizeof(me
->comm
)];
2163 get_task_comm(tcomm
, me
);
2164 if (copy_to_user((char __user
*)arg2
, tcomm
, sizeof(tcomm
)))
2169 error
= GET_ENDIAN(current
, arg2
);
2172 error
= SET_ENDIAN(current
, arg2
);
2182 asmlinkage
long sys_getcpu(unsigned __user
*cpup
, unsigned __user
*nodep
,
2183 struct getcpu_cache __user
*cache
)
2186 int cpu
= raw_smp_processor_id();
2188 err
|= put_user(cpu
, cpup
);
2190 err
|= put_user(cpu_to_node(cpu
), nodep
);
2193 * The cache is not needed for this implementation,
2194 * but make sure user programs pass something
2195 * valid. vsyscall implementations can instead make
2196 * good use of the cache. Only use t0 and t1 because
2197 * these are available in both 32bit and 64bit ABI (no
2198 * need for a compat_getcpu). 32bit has enough
2201 unsigned long t0
, t1
;
2202 get_user(t0
, &cache
->blob
[0]);
2203 get_user(t1
, &cache
->blob
[1]);
2206 put_user(t0
, &cache
->blob
[0]);
2207 put_user(t1
, &cache
->blob
[1]);
2209 return err
? -EFAULT
: 0;