[MIPS] Oprofile: Reset all performance registers for MIPS_MT_SMP configs
[linux-2.6/linux-mips.git] / drivers / net / sk98lin / skge.c
blobe94ab256b5406afc5b4a80559e880c5680b54bc6
1 /******************************************************************************
3 * Name: skge.c
4 * Project: GEnesis, PCI Gigabit Ethernet Adapter
5 * Version: $Revision: 1.45 $
6 * Date: $Date: 2004/02/12 14:41:02 $
7 * Purpose: The main driver source module
9 ******************************************************************************/
11 /******************************************************************************
13 * (C)Copyright 1998-2002 SysKonnect GmbH.
14 * (C)Copyright 2002-2003 Marvell.
16 * Driver for Marvell Yukon chipset and SysKonnect Gigabit Ethernet
17 * Server Adapters.
19 * Created 10-Feb-1999, based on Linux' acenic.c, 3c59x.c and
20 * SysKonnects GEnesis Solaris driver
21 * Author: Christoph Goos (cgoos@syskonnect.de)
22 * Mirko Lindner (mlindner@syskonnect.de)
24 * Address all question to: linux@syskonnect.de
26 * The technical manual for the adapters is available from SysKonnect's
27 * web pages: www.syskonnect.com
28 * Goto "Support" and search Knowledge Base for "manual".
30 * This program is free software; you can redistribute it and/or modify
31 * it under the terms of the GNU General Public License as published by
32 * the Free Software Foundation; either version 2 of the License, or
33 * (at your option) any later version.
35 * The information in this file is provided "AS IS" without warranty.
37 ******************************************************************************/
39 /******************************************************************************
41 * Possible compiler options (#define xxx / -Dxxx):
43 * debugging can be enable by changing SK_DEBUG_CHKMOD and
44 * SK_DEBUG_CHKCAT in makefile (described there).
46 ******************************************************************************/
48 /******************************************************************************
50 * Description:
52 * This is the main module of the Linux GE driver.
54 * All source files except skge.c, skdrv1st.h, skdrv2nd.h and sktypes.h
55 * are part of SysKonnect's COMMON MODULES for the SK-98xx adapters.
56 * Those are used for drivers on multiple OS', so some thing may seem
57 * unnecessary complicated on Linux. Please do not try to 'clean up'
58 * them without VERY good reasons, because this will make it more
59 * difficult to keep the Linux driver in synchronisation with the
60 * other versions.
62 * Include file hierarchy:
64 * <linux/module.h>
66 * "h/skdrv1st.h"
67 * <linux/types.h>
68 * <linux/kernel.h>
69 * <linux/string.h>
70 * <linux/errno.h>
71 * <linux/ioport.h>
72 * <linux/slab.h>
73 * <linux/interrupt.h>
74 * <linux/pci.h>
75 * <linux/bitops.h>
76 * <asm/byteorder.h>
77 * <asm/io.h>
78 * <linux/netdevice.h>
79 * <linux/etherdevice.h>
80 * <linux/skbuff.h>
81 * those three depending on kernel version used:
82 * <linux/bios32.h>
83 * <linux/init.h>
84 * <asm/uaccess.h>
85 * <net/checksum.h>
87 * "h/skerror.h"
88 * "h/skdebug.h"
89 * "h/sktypes.h"
90 * "h/lm80.h"
91 * "h/xmac_ii.h"
93 * "h/skdrv2nd.h"
94 * "h/skqueue.h"
95 * "h/skgehwt.h"
96 * "h/sktimer.h"
97 * "h/ski2c.h"
98 * "h/skgepnmi.h"
99 * "h/skvpd.h"
100 * "h/skgehw.h"
101 * "h/skgeinit.h"
102 * "h/skaddr.h"
103 * "h/skgesirq.h"
104 * "h/skrlmt.h"
106 ******************************************************************************/
108 #include "h/skversion.h"
110 #include <linux/in.h>
111 #include <linux/module.h>
112 #include <linux/moduleparam.h>
113 #include <linux/init.h>
114 #include <linux/dma-mapping.h>
115 #include <linux/ip.h>
116 #include <linux/mii.h>
117 #include <linux/mm.h>
119 #include "h/skdrv1st.h"
120 #include "h/skdrv2nd.h"
122 /*******************************************************************************
124 * Defines
126 ******************************************************************************/
128 /* for debuging on x86 only */
129 /* #define BREAKPOINT() asm(" int $3"); */
131 /* use the transmit hw checksum driver functionality */
132 #define USE_SK_TX_CHECKSUM
134 /* use the receive hw checksum driver functionality */
135 #define USE_SK_RX_CHECKSUM
137 /* use the scatter-gather functionality with sendfile() */
138 #define SK_ZEROCOPY
140 /* use of a transmit complete interrupt */
141 #define USE_TX_COMPLETE
144 * threshold for copying small receive frames
145 * set to 0 to avoid copying, set to 9001 to copy all frames
147 #define SK_COPY_THRESHOLD 50
149 /* number of adapters that can be configured via command line params */
150 #define SK_MAX_CARD_PARAM 16
155 * use those defines for a compile-in version of the driver instead
156 * of command line parameters
158 // #define LINK_SPEED_A {"Auto", }
159 // #define LINK_SPEED_B {"Auto", }
160 // #define AUTO_NEG_A {"Sense", }
161 // #define AUTO_NEG_B {"Sense", }
162 // #define DUP_CAP_A {"Both", }
163 // #define DUP_CAP_B {"Both", }
164 // #define FLOW_CTRL_A {"SymOrRem", }
165 // #define FLOW_CTRL_B {"SymOrRem", }
166 // #define ROLE_A {"Auto", }
167 // #define ROLE_B {"Auto", }
168 // #define PREF_PORT {"A", }
169 // #define CON_TYPE {"Auto", }
170 // #define RLMT_MODE {"CheckLinkState", }
172 #define DEV_KFREE_SKB(skb) dev_kfree_skb(skb)
173 #define DEV_KFREE_SKB_IRQ(skb) dev_kfree_skb_irq(skb)
174 #define DEV_KFREE_SKB_ANY(skb) dev_kfree_skb_any(skb)
177 /* Set blink mode*/
178 #define OEM_CONFIG_VALUE ( SK_ACT_LED_BLINK | \
179 SK_DUP_LED_NORMAL | \
180 SK_LED_LINK100_ON)
183 /* Isr return value */
184 #define SkIsrRetVar irqreturn_t
185 #define SkIsrRetNone IRQ_NONE
186 #define SkIsrRetHandled IRQ_HANDLED
189 /*******************************************************************************
191 * Local Function Prototypes
193 ******************************************************************************/
195 static void FreeResources(struct SK_NET_DEVICE *dev);
196 static int SkGeBoardInit(struct SK_NET_DEVICE *dev, SK_AC *pAC);
197 static SK_BOOL BoardAllocMem(SK_AC *pAC);
198 static void BoardFreeMem(SK_AC *pAC);
199 static void BoardInitMem(SK_AC *pAC);
200 static void SetupRing(SK_AC*, void*, uintptr_t, RXD**, RXD**, RXD**, int*, SK_BOOL);
201 static SkIsrRetVar SkGeIsr(int irq, void *dev_id);
202 static SkIsrRetVar SkGeIsrOnePort(int irq, void *dev_id);
203 static int SkGeOpen(struct SK_NET_DEVICE *dev);
204 static int SkGeClose(struct SK_NET_DEVICE *dev);
205 static int SkGeXmit(struct sk_buff *skb, struct SK_NET_DEVICE *dev);
206 static int SkGeSetMacAddr(struct SK_NET_DEVICE *dev, void *p);
207 static void SkGeSetRxMode(struct SK_NET_DEVICE *dev);
208 static struct net_device_stats *SkGeStats(struct SK_NET_DEVICE *dev);
209 static int SkGeIoctl(struct SK_NET_DEVICE *dev, struct ifreq *rq, int cmd);
210 static void GetConfiguration(SK_AC*);
211 static int XmitFrame(SK_AC*, TX_PORT*, struct sk_buff*);
212 static void FreeTxDescriptors(SK_AC*pAC, TX_PORT*);
213 static void FillRxRing(SK_AC*, RX_PORT*);
214 static SK_BOOL FillRxDescriptor(SK_AC*, RX_PORT*);
215 static void ReceiveIrq(SK_AC*, RX_PORT*, SK_BOOL);
216 static void ClearAndStartRx(SK_AC*, int);
217 static void ClearTxIrq(SK_AC*, int, int);
218 static void ClearRxRing(SK_AC*, RX_PORT*);
219 static void ClearTxRing(SK_AC*, TX_PORT*);
220 static int SkGeChangeMtu(struct SK_NET_DEVICE *dev, int new_mtu);
221 static void PortReInitBmu(SK_AC*, int);
222 static int SkGeIocMib(DEV_NET*, unsigned int, int);
223 static int SkGeInitPCI(SK_AC *pAC);
224 static void StartDrvCleanupTimer(SK_AC *pAC);
225 static void StopDrvCleanupTimer(SK_AC *pAC);
226 static int XmitFrameSG(SK_AC*, TX_PORT*, struct sk_buff*);
228 #ifdef SK_DIAG_SUPPORT
229 static SK_U32 ParseDeviceNbrFromSlotName(const char *SlotName);
230 static int SkDrvInitAdapter(SK_AC *pAC, int devNbr);
231 static int SkDrvDeInitAdapter(SK_AC *pAC, int devNbr);
232 #endif
234 /*******************************************************************************
236 * Extern Function Prototypes
238 ******************************************************************************/
239 extern void SkDimEnableModerationIfNeeded(SK_AC *pAC);
240 extern void SkDimDisplayModerationSettings(SK_AC *pAC);
241 extern void SkDimStartModerationTimer(SK_AC *pAC);
242 extern void SkDimModerate(SK_AC *pAC);
243 extern void SkGeBlinkTimer(unsigned long data);
245 #ifdef DEBUG
246 static void DumpMsg(struct sk_buff*, char*);
247 static void DumpData(char*, int);
248 static void DumpLong(char*, int);
249 #endif
251 /* global variables *********************************************************/
252 static SK_BOOL DoPrintInterfaceChange = SK_TRUE;
253 extern const struct ethtool_ops SkGeEthtoolOps;
255 /* local variables **********************************************************/
256 static uintptr_t TxQueueAddr[SK_MAX_MACS][2] = {{0x680, 0x600},{0x780, 0x700}};
257 static uintptr_t RxQueueAddr[SK_MAX_MACS] = {0x400, 0x480};
259 /*****************************************************************************
261 * SkPciWriteCfgDWord - write a 32 bit value to pci config space
263 * Description:
264 * This routine writes a 32 bit value to the pci configuration
265 * space.
267 * Returns:
268 * 0 - indicate everything worked ok.
269 * != 0 - error indication
271 static inline int SkPciWriteCfgDWord(
272 SK_AC *pAC, /* Adapter Control structure pointer */
273 int PciAddr, /* PCI register address */
274 SK_U32 Val) /* pointer to store the read value */
276 pci_write_config_dword(pAC->PciDev, PciAddr, Val);
277 return(0);
278 } /* SkPciWriteCfgDWord */
280 /*****************************************************************************
282 * SkGeInitPCI - Init the PCI resources
284 * Description:
285 * This function initialize the PCI resources and IO
287 * Returns:
288 * 0 - indicate everything worked ok.
289 * != 0 - error indication
291 static __devinit int SkGeInitPCI(SK_AC *pAC)
293 struct SK_NET_DEVICE *dev = pAC->dev[0];
294 struct pci_dev *pdev = pAC->PciDev;
295 int retval;
297 dev->mem_start = pci_resource_start (pdev, 0);
298 pci_set_master(pdev);
300 retval = pci_request_regions(pdev, "sk98lin");
301 if (retval)
302 goto out;
304 #ifdef SK_BIG_ENDIAN
306 * On big endian machines, we use the adapter's aibility of
307 * reading the descriptors as big endian.
310 SK_U32 our2;
311 SkPciReadCfgDWord(pAC, PCI_OUR_REG_2, &our2);
312 our2 |= PCI_REV_DESC;
313 SkPciWriteCfgDWord(pAC, PCI_OUR_REG_2, our2);
315 #endif
318 * Remap the regs into kernel space.
320 pAC->IoBase = ioremap_nocache(dev->mem_start, 0x4000);
321 if (!pAC->IoBase) {
322 retval = -EIO;
323 goto out_release;
326 return 0;
328 out_release:
329 pci_release_regions(pdev);
330 out:
331 return retval;
335 /*****************************************************************************
337 * FreeResources - release resources allocated for adapter
339 * Description:
340 * This function releases the IRQ, unmaps the IO and
341 * frees the desriptor ring.
343 * Returns: N/A
346 static void FreeResources(struct SK_NET_DEVICE *dev)
348 SK_U32 AllocFlag;
349 DEV_NET *pNet;
350 SK_AC *pAC;
352 pNet = netdev_priv(dev);
353 pAC = pNet->pAC;
354 AllocFlag = pAC->AllocFlag;
355 if (pAC->PciDev) {
356 pci_release_regions(pAC->PciDev);
358 if (AllocFlag & SK_ALLOC_IRQ) {
359 free_irq(dev->irq, dev);
361 if (pAC->IoBase) {
362 iounmap(pAC->IoBase);
364 if (pAC->pDescrMem) {
365 BoardFreeMem(pAC);
368 } /* FreeResources */
370 MODULE_AUTHOR("Mirko Lindner <mlindner@syskonnect.de>");
371 MODULE_DESCRIPTION("SysKonnect SK-NET Gigabit Ethernet SK-98xx driver");
372 MODULE_LICENSE("GPL");
374 #ifdef LINK_SPEED_A
375 static char *Speed_A[SK_MAX_CARD_PARAM] = LINK_SPEED;
376 #else
377 static char *Speed_A[SK_MAX_CARD_PARAM] = {"", };
378 #endif
380 #ifdef LINK_SPEED_B
381 static char *Speed_B[SK_MAX_CARD_PARAM] = LINK_SPEED;
382 #else
383 static char *Speed_B[SK_MAX_CARD_PARAM] = {"", };
384 #endif
386 #ifdef AUTO_NEG_A
387 static char *AutoNeg_A[SK_MAX_CARD_PARAM] = AUTO_NEG_A;
388 #else
389 static char *AutoNeg_A[SK_MAX_CARD_PARAM] = {"", };
390 #endif
392 #ifdef DUP_CAP_A
393 static char *DupCap_A[SK_MAX_CARD_PARAM] = DUP_CAP_A;
394 #else
395 static char *DupCap_A[SK_MAX_CARD_PARAM] = {"", };
396 #endif
398 #ifdef FLOW_CTRL_A
399 static char *FlowCtrl_A[SK_MAX_CARD_PARAM] = FLOW_CTRL_A;
400 #else
401 static char *FlowCtrl_A[SK_MAX_CARD_PARAM] = {"", };
402 #endif
404 #ifdef ROLE_A
405 static char *Role_A[SK_MAX_CARD_PARAM] = ROLE_A;
406 #else
407 static char *Role_A[SK_MAX_CARD_PARAM] = {"", };
408 #endif
410 #ifdef AUTO_NEG_B
411 static char *AutoNeg_B[SK_MAX_CARD_PARAM] = AUTO_NEG_B;
412 #else
413 static char *AutoNeg_B[SK_MAX_CARD_PARAM] = {"", };
414 #endif
416 #ifdef DUP_CAP_B
417 static char *DupCap_B[SK_MAX_CARD_PARAM] = DUP_CAP_B;
418 #else
419 static char *DupCap_B[SK_MAX_CARD_PARAM] = {"", };
420 #endif
422 #ifdef FLOW_CTRL_B
423 static char *FlowCtrl_B[SK_MAX_CARD_PARAM] = FLOW_CTRL_B;
424 #else
425 static char *FlowCtrl_B[SK_MAX_CARD_PARAM] = {"", };
426 #endif
428 #ifdef ROLE_B
429 static char *Role_B[SK_MAX_CARD_PARAM] = ROLE_B;
430 #else
431 static char *Role_B[SK_MAX_CARD_PARAM] = {"", };
432 #endif
434 #ifdef CON_TYPE
435 static char *ConType[SK_MAX_CARD_PARAM] = CON_TYPE;
436 #else
437 static char *ConType[SK_MAX_CARD_PARAM] = {"", };
438 #endif
440 #ifdef PREF_PORT
441 static char *PrefPort[SK_MAX_CARD_PARAM] = PREF_PORT;
442 #else
443 static char *PrefPort[SK_MAX_CARD_PARAM] = {"", };
444 #endif
446 #ifdef RLMT_MODE
447 static char *RlmtMode[SK_MAX_CARD_PARAM] = RLMT_MODE;
448 #else
449 static char *RlmtMode[SK_MAX_CARD_PARAM] = {"", };
450 #endif
452 static int IntsPerSec[SK_MAX_CARD_PARAM];
453 static char *Moderation[SK_MAX_CARD_PARAM];
454 static char *ModerationMask[SK_MAX_CARD_PARAM];
455 static char *AutoSizing[SK_MAX_CARD_PARAM];
456 static char *Stats[SK_MAX_CARD_PARAM];
458 module_param_array(Speed_A, charp, NULL, 0);
459 module_param_array(Speed_B, charp, NULL, 0);
460 module_param_array(AutoNeg_A, charp, NULL, 0);
461 module_param_array(AutoNeg_B, charp, NULL, 0);
462 module_param_array(DupCap_A, charp, NULL, 0);
463 module_param_array(DupCap_B, charp, NULL, 0);
464 module_param_array(FlowCtrl_A, charp, NULL, 0);
465 module_param_array(FlowCtrl_B, charp, NULL, 0);
466 module_param_array(Role_A, charp, NULL, 0);
467 module_param_array(Role_B, charp, NULL, 0);
468 module_param_array(ConType, charp, NULL, 0);
469 module_param_array(PrefPort, charp, NULL, 0);
470 module_param_array(RlmtMode, charp, NULL, 0);
471 /* used for interrupt moderation */
472 module_param_array(IntsPerSec, int, NULL, 0);
473 module_param_array(Moderation, charp, NULL, 0);
474 module_param_array(Stats, charp, NULL, 0);
475 module_param_array(ModerationMask, charp, NULL, 0);
476 module_param_array(AutoSizing, charp, NULL, 0);
478 /*****************************************************************************
480 * SkGeBoardInit - do level 0 and 1 initialization
482 * Description:
483 * This function prepares the board hardware for running. The desriptor
484 * ring is set up, the IRQ is allocated and the configuration settings
485 * are examined.
487 * Returns:
488 * 0, if everything is ok
489 * !=0, on error
491 static int __devinit SkGeBoardInit(struct SK_NET_DEVICE *dev, SK_AC *pAC)
493 short i;
494 unsigned long Flags;
495 char *DescrString = "sk98lin: Driver for Linux"; /* this is given to PNMI */
496 char *VerStr = VER_STRING;
497 int Ret; /* return code of request_irq */
498 SK_BOOL DualNet;
500 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
501 ("IoBase: %08lX\n", (unsigned long)pAC->IoBase));
502 for (i=0; i<SK_MAX_MACS; i++) {
503 pAC->TxPort[i][0].HwAddr = pAC->IoBase + TxQueueAddr[i][0];
504 pAC->TxPort[i][0].PortIndex = i;
505 pAC->RxPort[i].HwAddr = pAC->IoBase + RxQueueAddr[i];
506 pAC->RxPort[i].PortIndex = i;
509 /* Initialize the mutexes */
510 for (i=0; i<SK_MAX_MACS; i++) {
511 spin_lock_init(&pAC->TxPort[i][0].TxDesRingLock);
512 spin_lock_init(&pAC->RxPort[i].RxDesRingLock);
514 spin_lock_init(&pAC->SlowPathLock);
516 /* setup phy_id blink timer */
517 pAC->BlinkTimer.function = SkGeBlinkTimer;
518 pAC->BlinkTimer.data = (unsigned long) dev;
519 init_timer(&pAC->BlinkTimer);
521 /* level 0 init common modules here */
523 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
524 /* Does a RESET on board ...*/
525 if (SkGeInit(pAC, pAC->IoBase, SK_INIT_DATA) != 0) {
526 printk("HWInit (0) failed.\n");
527 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
528 return -EIO;
530 SkI2cInit( pAC, pAC->IoBase, SK_INIT_DATA);
531 SkEventInit(pAC, pAC->IoBase, SK_INIT_DATA);
532 SkPnmiInit( pAC, pAC->IoBase, SK_INIT_DATA);
533 SkAddrInit( pAC, pAC->IoBase, SK_INIT_DATA);
534 SkRlmtInit( pAC, pAC->IoBase, SK_INIT_DATA);
535 SkTimerInit(pAC, pAC->IoBase, SK_INIT_DATA);
537 pAC->BoardLevel = SK_INIT_DATA;
538 pAC->RxBufSize = ETH_BUF_SIZE;
540 SK_PNMI_SET_DRIVER_DESCR(pAC, DescrString);
541 SK_PNMI_SET_DRIVER_VER(pAC, VerStr);
543 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
545 /* level 1 init common modules here (HW init) */
546 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
547 if (SkGeInit(pAC, pAC->IoBase, SK_INIT_IO) != 0) {
548 printk("sk98lin: HWInit (1) failed.\n");
549 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
550 return -EIO;
552 SkI2cInit( pAC, pAC->IoBase, SK_INIT_IO);
553 SkEventInit(pAC, pAC->IoBase, SK_INIT_IO);
554 SkPnmiInit( pAC, pAC->IoBase, SK_INIT_IO);
555 SkAddrInit( pAC, pAC->IoBase, SK_INIT_IO);
556 SkRlmtInit( pAC, pAC->IoBase, SK_INIT_IO);
557 SkTimerInit(pAC, pAC->IoBase, SK_INIT_IO);
559 /* Set chipset type support */
560 pAC->ChipsetType = 0;
561 if ((pAC->GIni.GIChipId == CHIP_ID_YUKON) ||
562 (pAC->GIni.GIChipId == CHIP_ID_YUKON_LITE)) {
563 pAC->ChipsetType = 1;
566 GetConfiguration(pAC);
567 if (pAC->RlmtNets == 2) {
568 pAC->GIni.GIPortUsage = SK_MUL_LINK;
571 pAC->BoardLevel = SK_INIT_IO;
572 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
574 if (pAC->GIni.GIMacsFound == 2) {
575 Ret = request_irq(dev->irq, SkGeIsr, IRQF_SHARED, "sk98lin", dev);
576 } else if (pAC->GIni.GIMacsFound == 1) {
577 Ret = request_irq(dev->irq, SkGeIsrOnePort, IRQF_SHARED,
578 "sk98lin", dev);
579 } else {
580 printk(KERN_WARNING "sk98lin: Illegal number of ports: %d\n",
581 pAC->GIni.GIMacsFound);
582 return -EIO;
585 if (Ret) {
586 printk(KERN_WARNING "sk98lin: Requested IRQ %d is busy.\n",
587 dev->irq);
588 return Ret;
590 pAC->AllocFlag |= SK_ALLOC_IRQ;
592 /* Alloc memory for this board (Mem for RxD/TxD) : */
593 if(!BoardAllocMem(pAC)) {
594 printk("No memory for descriptor rings.\n");
595 return -ENOMEM;
598 BoardInitMem(pAC);
599 /* tschilling: New common function with minimum size check. */
600 DualNet = SK_FALSE;
601 if (pAC->RlmtNets == 2) {
602 DualNet = SK_TRUE;
605 if (SkGeInitAssignRamToQueues(
606 pAC,
607 pAC->ActivePort,
608 DualNet)) {
609 BoardFreeMem(pAC);
610 printk("sk98lin: SkGeInitAssignRamToQueues failed.\n");
611 return -EIO;
614 return (0);
615 } /* SkGeBoardInit */
618 /*****************************************************************************
620 * BoardAllocMem - allocate the memory for the descriptor rings
622 * Description:
623 * This function allocates the memory for all descriptor rings.
624 * Each ring is aligned for the desriptor alignment and no ring
625 * has a 4 GByte boundary in it (because the upper 32 bit must
626 * be constant for all descriptiors in one rings).
628 * Returns:
629 * SK_TRUE, if all memory could be allocated
630 * SK_FALSE, if not
632 static __devinit SK_BOOL BoardAllocMem(SK_AC *pAC)
634 caddr_t pDescrMem; /* pointer to descriptor memory area */
635 size_t AllocLength; /* length of complete descriptor area */
636 int i; /* loop counter */
637 unsigned long BusAddr;
640 /* rings plus one for alignment (do not cross 4 GB boundary) */
641 /* RX_RING_SIZE is assumed bigger than TX_RING_SIZE */
642 #if (BITS_PER_LONG == 32)
643 AllocLength = (RX_RING_SIZE + TX_RING_SIZE) * pAC->GIni.GIMacsFound + 8;
644 #else
645 AllocLength = (RX_RING_SIZE + TX_RING_SIZE) * pAC->GIni.GIMacsFound
646 + RX_RING_SIZE + 8;
647 #endif
649 pDescrMem = pci_alloc_consistent(pAC->PciDev, AllocLength,
650 &pAC->pDescrMemDMA);
652 if (pDescrMem == NULL) {
653 return (SK_FALSE);
655 pAC->pDescrMem = pDescrMem;
656 BusAddr = (unsigned long) pAC->pDescrMemDMA;
658 /* Descriptors need 8 byte alignment, and this is ensured
659 * by pci_alloc_consistent.
661 for (i=0; i<pAC->GIni.GIMacsFound; i++) {
662 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_TX_PROGRESS,
663 ("TX%d/A: pDescrMem: %lX, PhysDescrMem: %lX\n",
664 i, (unsigned long) pDescrMem,
665 BusAddr));
666 pAC->TxPort[i][0].pTxDescrRing = pDescrMem;
667 pAC->TxPort[i][0].VTxDescrRing = BusAddr;
668 pDescrMem += TX_RING_SIZE;
669 BusAddr += TX_RING_SIZE;
671 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_TX_PROGRESS,
672 ("RX%d: pDescrMem: %lX, PhysDescrMem: %lX\n",
673 i, (unsigned long) pDescrMem,
674 (unsigned long)BusAddr));
675 pAC->RxPort[i].pRxDescrRing = pDescrMem;
676 pAC->RxPort[i].VRxDescrRing = BusAddr;
677 pDescrMem += RX_RING_SIZE;
678 BusAddr += RX_RING_SIZE;
679 } /* for */
681 return (SK_TRUE);
682 } /* BoardAllocMem */
685 /****************************************************************************
687 * BoardFreeMem - reverse of BoardAllocMem
689 * Description:
690 * Free all memory allocated in BoardAllocMem: adapter context,
691 * descriptor rings, locks.
693 * Returns: N/A
695 static void BoardFreeMem(
696 SK_AC *pAC)
698 size_t AllocLength; /* length of complete descriptor area */
700 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
701 ("BoardFreeMem\n"));
702 #if (BITS_PER_LONG == 32)
703 AllocLength = (RX_RING_SIZE + TX_RING_SIZE) * pAC->GIni.GIMacsFound + 8;
704 #else
705 AllocLength = (RX_RING_SIZE + TX_RING_SIZE) * pAC->GIni.GIMacsFound
706 + RX_RING_SIZE + 8;
707 #endif
709 pci_free_consistent(pAC->PciDev, AllocLength,
710 pAC->pDescrMem, pAC->pDescrMemDMA);
711 pAC->pDescrMem = NULL;
712 } /* BoardFreeMem */
715 /*****************************************************************************
717 * BoardInitMem - initiate the descriptor rings
719 * Description:
720 * This function sets the descriptor rings up in memory.
721 * The adapter is initialized with the descriptor start addresses.
723 * Returns: N/A
725 static __devinit void BoardInitMem(SK_AC *pAC)
727 int i; /* loop counter */
728 int RxDescrSize; /* the size of a rx descriptor rounded up to alignment*/
729 int TxDescrSize; /* the size of a tx descriptor rounded up to alignment*/
731 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
732 ("BoardInitMem\n"));
734 RxDescrSize = (((sizeof(RXD) - 1) / DESCR_ALIGN) + 1) * DESCR_ALIGN;
735 pAC->RxDescrPerRing = RX_RING_SIZE / RxDescrSize;
736 TxDescrSize = (((sizeof(TXD) - 1) / DESCR_ALIGN) + 1) * DESCR_ALIGN;
737 pAC->TxDescrPerRing = TX_RING_SIZE / RxDescrSize;
739 for (i=0; i<pAC->GIni.GIMacsFound; i++) {
740 SetupRing(
741 pAC,
742 pAC->TxPort[i][0].pTxDescrRing,
743 pAC->TxPort[i][0].VTxDescrRing,
744 (RXD**)&pAC->TxPort[i][0].pTxdRingHead,
745 (RXD**)&pAC->TxPort[i][0].pTxdRingTail,
746 (RXD**)&pAC->TxPort[i][0].pTxdRingPrev,
747 &pAC->TxPort[i][0].TxdRingFree,
748 SK_TRUE);
749 SetupRing(
750 pAC,
751 pAC->RxPort[i].pRxDescrRing,
752 pAC->RxPort[i].VRxDescrRing,
753 &pAC->RxPort[i].pRxdRingHead,
754 &pAC->RxPort[i].pRxdRingTail,
755 &pAC->RxPort[i].pRxdRingPrev,
756 &pAC->RxPort[i].RxdRingFree,
757 SK_FALSE);
759 } /* BoardInitMem */
762 /*****************************************************************************
764 * SetupRing - create one descriptor ring
766 * Description:
767 * This function creates one descriptor ring in the given memory area.
768 * The head, tail and number of free descriptors in the ring are set.
770 * Returns:
771 * none
773 static void SetupRing(
774 SK_AC *pAC,
775 void *pMemArea, /* a pointer to the memory area for the ring */
776 uintptr_t VMemArea, /* the virtual bus address of the memory area */
777 RXD **ppRingHead, /* address where the head should be written */
778 RXD **ppRingTail, /* address where the tail should be written */
779 RXD **ppRingPrev, /* address where the tail should be written */
780 int *pRingFree, /* address where the # of free descr. goes */
781 SK_BOOL IsTx) /* flag: is this a tx ring */
783 int i; /* loop counter */
784 int DescrSize; /* the size of a descriptor rounded up to alignment*/
785 int DescrNum; /* number of descriptors per ring */
786 RXD *pDescr; /* pointer to a descriptor (receive or transmit) */
787 RXD *pNextDescr; /* pointer to the next descriptor */
788 RXD *pPrevDescr; /* pointer to the previous descriptor */
789 uintptr_t VNextDescr; /* the virtual bus address of the next descriptor */
791 if (IsTx == SK_TRUE) {
792 DescrSize = (((sizeof(TXD) - 1) / DESCR_ALIGN) + 1) *
793 DESCR_ALIGN;
794 DescrNum = TX_RING_SIZE / DescrSize;
795 } else {
796 DescrSize = (((sizeof(RXD) - 1) / DESCR_ALIGN) + 1) *
797 DESCR_ALIGN;
798 DescrNum = RX_RING_SIZE / DescrSize;
801 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_TX_PROGRESS,
802 ("Descriptor size: %d Descriptor Number: %d\n",
803 DescrSize,DescrNum));
805 pDescr = (RXD*) pMemArea;
806 pPrevDescr = NULL;
807 pNextDescr = (RXD*) (((char*)pDescr) + DescrSize);
808 VNextDescr = VMemArea + DescrSize;
809 for(i=0; i<DescrNum; i++) {
810 /* set the pointers right */
811 pDescr->VNextRxd = VNextDescr & 0xffffffffULL;
812 pDescr->pNextRxd = pNextDescr;
813 if (!IsTx) pDescr->TcpSumStarts = ETH_HLEN << 16 | ETH_HLEN;
815 /* advance one step */
816 pPrevDescr = pDescr;
817 pDescr = pNextDescr;
818 pNextDescr = (RXD*) (((char*)pDescr) + DescrSize);
819 VNextDescr += DescrSize;
821 pPrevDescr->pNextRxd = (RXD*) pMemArea;
822 pPrevDescr->VNextRxd = VMemArea;
823 pDescr = (RXD*) pMemArea;
824 *ppRingHead = (RXD*) pMemArea;
825 *ppRingTail = *ppRingHead;
826 *ppRingPrev = pPrevDescr;
827 *pRingFree = DescrNum;
828 } /* SetupRing */
831 /*****************************************************************************
833 * PortReInitBmu - re-initiate the descriptor rings for one port
835 * Description:
836 * This function reinitializes the descriptor rings of one port
837 * in memory. The port must be stopped before.
838 * The HW is initialized with the descriptor start addresses.
840 * Returns:
841 * none
843 static void PortReInitBmu(
844 SK_AC *pAC, /* pointer to adapter context */
845 int PortIndex) /* index of the port for which to re-init */
847 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
848 ("PortReInitBmu "));
850 /* set address of first descriptor of ring in BMU */
851 SK_OUT32(pAC->IoBase, TxQueueAddr[PortIndex][TX_PRIO_LOW]+ Q_DA_L,
852 (uint32_t)(((caddr_t)
853 (pAC->TxPort[PortIndex][TX_PRIO_LOW].pTxdRingHead) -
854 pAC->TxPort[PortIndex][TX_PRIO_LOW].pTxDescrRing +
855 pAC->TxPort[PortIndex][TX_PRIO_LOW].VTxDescrRing) &
856 0xFFFFFFFF));
857 SK_OUT32(pAC->IoBase, TxQueueAddr[PortIndex][TX_PRIO_LOW]+ Q_DA_H,
858 (uint32_t)(((caddr_t)
859 (pAC->TxPort[PortIndex][TX_PRIO_LOW].pTxdRingHead) -
860 pAC->TxPort[PortIndex][TX_PRIO_LOW].pTxDescrRing +
861 pAC->TxPort[PortIndex][TX_PRIO_LOW].VTxDescrRing) >> 32));
862 SK_OUT32(pAC->IoBase, RxQueueAddr[PortIndex]+Q_DA_L,
863 (uint32_t)(((caddr_t)(pAC->RxPort[PortIndex].pRxdRingHead) -
864 pAC->RxPort[PortIndex].pRxDescrRing +
865 pAC->RxPort[PortIndex].VRxDescrRing) & 0xFFFFFFFF));
866 SK_OUT32(pAC->IoBase, RxQueueAddr[PortIndex]+Q_DA_H,
867 (uint32_t)(((caddr_t)(pAC->RxPort[PortIndex].pRxdRingHead) -
868 pAC->RxPort[PortIndex].pRxDescrRing +
869 pAC->RxPort[PortIndex].VRxDescrRing) >> 32));
870 } /* PortReInitBmu */
873 /****************************************************************************
875 * SkGeIsr - handle adapter interrupts
877 * Description:
878 * The interrupt routine is called when the network adapter
879 * generates an interrupt. It may also be called if another device
880 * shares this interrupt vector with the driver.
882 * Returns: N/A
885 static SkIsrRetVar SkGeIsr(int irq, void *dev_id)
887 struct SK_NET_DEVICE *dev = (struct SK_NET_DEVICE *)dev_id;
888 DEV_NET *pNet;
889 SK_AC *pAC;
890 SK_U32 IntSrc; /* interrupts source register contents */
892 pNet = netdev_priv(dev);
893 pAC = pNet->pAC;
896 * Check and process if its our interrupt
898 SK_IN32(pAC->IoBase, B0_SP_ISRC, &IntSrc);
899 if (IntSrc == 0) {
900 return SkIsrRetNone;
903 while (((IntSrc & IRQ_MASK) & ~SPECIAL_IRQS) != 0) {
904 #if 0 /* software irq currently not used */
905 if (IntSrc & IS_IRQ_SW) {
906 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
907 SK_DBGCAT_DRV_INT_SRC,
908 ("Software IRQ\n"));
910 #endif
911 if (IntSrc & IS_R1_F) {
912 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
913 SK_DBGCAT_DRV_INT_SRC,
914 ("EOF RX1 IRQ\n"));
915 ReceiveIrq(pAC, &pAC->RxPort[0], SK_TRUE);
916 SK_PNMI_CNT_RX_INTR(pAC, 0);
918 if (IntSrc & IS_R2_F) {
919 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
920 SK_DBGCAT_DRV_INT_SRC,
921 ("EOF RX2 IRQ\n"));
922 ReceiveIrq(pAC, &pAC->RxPort[1], SK_TRUE);
923 SK_PNMI_CNT_RX_INTR(pAC, 1);
925 #ifdef USE_TX_COMPLETE /* only if tx complete interrupt used */
926 if (IntSrc & IS_XA1_F) {
927 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
928 SK_DBGCAT_DRV_INT_SRC,
929 ("EOF AS TX1 IRQ\n"));
930 SK_PNMI_CNT_TX_INTR(pAC, 0);
931 spin_lock(&pAC->TxPort[0][TX_PRIO_LOW].TxDesRingLock);
932 FreeTxDescriptors(pAC, &pAC->TxPort[0][TX_PRIO_LOW]);
933 spin_unlock(&pAC->TxPort[0][TX_PRIO_LOW].TxDesRingLock);
935 if (IntSrc & IS_XA2_F) {
936 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
937 SK_DBGCAT_DRV_INT_SRC,
938 ("EOF AS TX2 IRQ\n"));
939 SK_PNMI_CNT_TX_INTR(pAC, 1);
940 spin_lock(&pAC->TxPort[1][TX_PRIO_LOW].TxDesRingLock);
941 FreeTxDescriptors(pAC, &pAC->TxPort[1][TX_PRIO_LOW]);
942 spin_unlock(&pAC->TxPort[1][TX_PRIO_LOW].TxDesRingLock);
944 #if 0 /* only if sync. queues used */
945 if (IntSrc & IS_XS1_F) {
946 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
947 SK_DBGCAT_DRV_INT_SRC,
948 ("EOF SY TX1 IRQ\n"));
949 SK_PNMI_CNT_TX_INTR(pAC, 1);
950 spin_lock(&pAC->TxPort[0][TX_PRIO_HIGH].TxDesRingLock);
951 FreeTxDescriptors(pAC, 0, TX_PRIO_HIGH);
952 spin_unlock(&pAC->TxPort[0][TX_PRIO_HIGH].TxDesRingLock);
953 ClearTxIrq(pAC, 0, TX_PRIO_HIGH);
955 if (IntSrc & IS_XS2_F) {
956 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
957 SK_DBGCAT_DRV_INT_SRC,
958 ("EOF SY TX2 IRQ\n"));
959 SK_PNMI_CNT_TX_INTR(pAC, 1);
960 spin_lock(&pAC->TxPort[1][TX_PRIO_HIGH].TxDesRingLock);
961 FreeTxDescriptors(pAC, 1, TX_PRIO_HIGH);
962 spin_unlock(&pAC->TxPort[1][TX_PRIO_HIGH].TxDesRingLock);
963 ClearTxIrq(pAC, 1, TX_PRIO_HIGH);
965 #endif
966 #endif
968 /* do all IO at once */
969 if (IntSrc & IS_R1_F)
970 ClearAndStartRx(pAC, 0);
971 if (IntSrc & IS_R2_F)
972 ClearAndStartRx(pAC, 1);
973 #ifdef USE_TX_COMPLETE /* only if tx complete interrupt used */
974 if (IntSrc & IS_XA1_F)
975 ClearTxIrq(pAC, 0, TX_PRIO_LOW);
976 if (IntSrc & IS_XA2_F)
977 ClearTxIrq(pAC, 1, TX_PRIO_LOW);
978 #endif
979 SK_IN32(pAC->IoBase, B0_ISRC, &IntSrc);
980 } /* while (IntSrc & IRQ_MASK != 0) */
982 IntSrc &= pAC->GIni.GIValIrqMask;
983 if ((IntSrc & SPECIAL_IRQS) || pAC->CheckQueue) {
984 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_INT_SRC,
985 ("SPECIAL IRQ DP-Cards => %x\n", IntSrc));
986 pAC->CheckQueue = SK_FALSE;
987 spin_lock(&pAC->SlowPathLock);
988 if (IntSrc & SPECIAL_IRQS)
989 SkGeSirqIsr(pAC, pAC->IoBase, IntSrc);
991 SkEventDispatcher(pAC, pAC->IoBase);
992 spin_unlock(&pAC->SlowPathLock);
995 * do it all again is case we cleared an interrupt that
996 * came in after handling the ring (OUTs may be delayed
997 * in hardware buffers, but are through after IN)
999 * rroesler: has been commented out and shifted to
1000 * SkGeDrvEvent(), because it is timer
1001 * guarded now
1003 ReceiveIrq(pAC, &pAC->RxPort[0], SK_TRUE);
1004 ReceiveIrq(pAC, &pAC->RxPort[1], SK_TRUE);
1007 if (pAC->CheckQueue) {
1008 pAC->CheckQueue = SK_FALSE;
1009 spin_lock(&pAC->SlowPathLock);
1010 SkEventDispatcher(pAC, pAC->IoBase);
1011 spin_unlock(&pAC->SlowPathLock);
1014 /* IRQ is processed - Enable IRQs again*/
1015 SK_OUT32(pAC->IoBase, B0_IMSK, pAC->GIni.GIValIrqMask);
1017 return SkIsrRetHandled;
1018 } /* SkGeIsr */
1021 /****************************************************************************
1023 * SkGeIsrOnePort - handle adapter interrupts for single port adapter
1025 * Description:
1026 * The interrupt routine is called when the network adapter
1027 * generates an interrupt. It may also be called if another device
1028 * shares this interrupt vector with the driver.
1029 * This is the same as above, but handles only one port.
1031 * Returns: N/A
1034 static SkIsrRetVar SkGeIsrOnePort(int irq, void *dev_id)
1036 struct SK_NET_DEVICE *dev = (struct SK_NET_DEVICE *)dev_id;
1037 DEV_NET *pNet;
1038 SK_AC *pAC;
1039 SK_U32 IntSrc; /* interrupts source register contents */
1041 pNet = netdev_priv(dev);
1042 pAC = pNet->pAC;
1045 * Check and process if its our interrupt
1047 SK_IN32(pAC->IoBase, B0_SP_ISRC, &IntSrc);
1048 if (IntSrc == 0) {
1049 return SkIsrRetNone;
1052 while (((IntSrc & IRQ_MASK) & ~SPECIAL_IRQS) != 0) {
1053 #if 0 /* software irq currently not used */
1054 if (IntSrc & IS_IRQ_SW) {
1055 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
1056 SK_DBGCAT_DRV_INT_SRC,
1057 ("Software IRQ\n"));
1059 #endif
1060 if (IntSrc & IS_R1_F) {
1061 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
1062 SK_DBGCAT_DRV_INT_SRC,
1063 ("EOF RX1 IRQ\n"));
1064 ReceiveIrq(pAC, &pAC->RxPort[0], SK_TRUE);
1065 SK_PNMI_CNT_RX_INTR(pAC, 0);
1067 #ifdef USE_TX_COMPLETE /* only if tx complete interrupt used */
1068 if (IntSrc & IS_XA1_F) {
1069 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
1070 SK_DBGCAT_DRV_INT_SRC,
1071 ("EOF AS TX1 IRQ\n"));
1072 SK_PNMI_CNT_TX_INTR(pAC, 0);
1073 spin_lock(&pAC->TxPort[0][TX_PRIO_LOW].TxDesRingLock);
1074 FreeTxDescriptors(pAC, &pAC->TxPort[0][TX_PRIO_LOW]);
1075 spin_unlock(&pAC->TxPort[0][TX_PRIO_LOW].TxDesRingLock);
1077 #if 0 /* only if sync. queues used */
1078 if (IntSrc & IS_XS1_F) {
1079 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
1080 SK_DBGCAT_DRV_INT_SRC,
1081 ("EOF SY TX1 IRQ\n"));
1082 SK_PNMI_CNT_TX_INTR(pAC, 0);
1083 spin_lock(&pAC->TxPort[0][TX_PRIO_HIGH].TxDesRingLock);
1084 FreeTxDescriptors(pAC, 0, TX_PRIO_HIGH);
1085 spin_unlock(&pAC->TxPort[0][TX_PRIO_HIGH].TxDesRingLock);
1086 ClearTxIrq(pAC, 0, TX_PRIO_HIGH);
1088 #endif
1089 #endif
1091 /* do all IO at once */
1092 if (IntSrc & IS_R1_F)
1093 ClearAndStartRx(pAC, 0);
1094 #ifdef USE_TX_COMPLETE /* only if tx complete interrupt used */
1095 if (IntSrc & IS_XA1_F)
1096 ClearTxIrq(pAC, 0, TX_PRIO_LOW);
1097 #endif
1098 SK_IN32(pAC->IoBase, B0_ISRC, &IntSrc);
1099 } /* while (IntSrc & IRQ_MASK != 0) */
1101 IntSrc &= pAC->GIni.GIValIrqMask;
1102 if ((IntSrc & SPECIAL_IRQS) || pAC->CheckQueue) {
1103 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_INT_SRC,
1104 ("SPECIAL IRQ SP-Cards => %x\n", IntSrc));
1105 pAC->CheckQueue = SK_FALSE;
1106 spin_lock(&pAC->SlowPathLock);
1107 if (IntSrc & SPECIAL_IRQS)
1108 SkGeSirqIsr(pAC, pAC->IoBase, IntSrc);
1110 SkEventDispatcher(pAC, pAC->IoBase);
1111 spin_unlock(&pAC->SlowPathLock);
1114 * do it all again is case we cleared an interrupt that
1115 * came in after handling the ring (OUTs may be delayed
1116 * in hardware buffers, but are through after IN)
1118 * rroesler: has been commented out and shifted to
1119 * SkGeDrvEvent(), because it is timer
1120 * guarded now
1122 ReceiveIrq(pAC, &pAC->RxPort[0], SK_TRUE);
1125 /* IRQ is processed - Enable IRQs again*/
1126 SK_OUT32(pAC->IoBase, B0_IMSK, pAC->GIni.GIValIrqMask);
1128 return SkIsrRetHandled;
1129 } /* SkGeIsrOnePort */
1131 #ifdef CONFIG_NET_POLL_CONTROLLER
1132 /****************************************************************************
1134 * SkGePollController - polling receive, for netconsole
1136 * Description:
1137 * Polling receive - used by netconsole and other diagnostic tools
1138 * to allow network i/o with interrupts disabled.
1140 * Returns: N/A
1142 static void SkGePollController(struct net_device *dev)
1144 disable_irq(dev->irq);
1145 SkGeIsr(dev->irq, dev);
1146 enable_irq(dev->irq);
1148 #endif
1150 /****************************************************************************
1152 * SkGeOpen - handle start of initialized adapter
1154 * Description:
1155 * This function starts the initialized adapter.
1156 * The board level variable is set and the adapter is
1157 * brought to full functionality.
1158 * The device flags are set for operation.
1159 * Do all necessary level 2 initialization, enable interrupts and
1160 * give start command to RLMT.
1162 * Returns:
1163 * 0 on success
1164 * != 0 on error
1166 static int SkGeOpen(
1167 struct SK_NET_DEVICE *dev)
1169 DEV_NET *pNet;
1170 SK_AC *pAC;
1171 unsigned long Flags; /* for spin lock */
1172 int i;
1173 SK_EVPARA EvPara; /* an event parameter union */
1175 pNet = netdev_priv(dev);
1176 pAC = pNet->pAC;
1178 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
1179 ("SkGeOpen: pAC=0x%lX:\n", (unsigned long)pAC));
1181 #ifdef SK_DIAG_SUPPORT
1182 if (pAC->DiagModeActive == DIAG_ACTIVE) {
1183 if (pAC->Pnmi.DiagAttached == SK_DIAG_RUNNING) {
1184 return (-1); /* still in use by diag; deny actions */
1187 #endif
1189 /* Set blink mode */
1190 if ((pAC->PciDev->vendor == 0x1186) || (pAC->PciDev->vendor == 0x11ab ))
1191 pAC->GIni.GILedBlinkCtrl = OEM_CONFIG_VALUE;
1193 if (pAC->BoardLevel == SK_INIT_DATA) {
1194 /* level 1 init common modules here */
1195 if (SkGeInit(pAC, pAC->IoBase, SK_INIT_IO) != 0) {
1196 printk("%s: HWInit (1) failed.\n", pAC->dev[pNet->PortNr]->name);
1197 return (-1);
1199 SkI2cInit (pAC, pAC->IoBase, SK_INIT_IO);
1200 SkEventInit (pAC, pAC->IoBase, SK_INIT_IO);
1201 SkPnmiInit (pAC, pAC->IoBase, SK_INIT_IO);
1202 SkAddrInit (pAC, pAC->IoBase, SK_INIT_IO);
1203 SkRlmtInit (pAC, pAC->IoBase, SK_INIT_IO);
1204 SkTimerInit (pAC, pAC->IoBase, SK_INIT_IO);
1205 pAC->BoardLevel = SK_INIT_IO;
1208 if (pAC->BoardLevel != SK_INIT_RUN) {
1209 /* tschilling: Level 2 init modules here, check return value. */
1210 if (SkGeInit(pAC, pAC->IoBase, SK_INIT_RUN) != 0) {
1211 printk("%s: HWInit (2) failed.\n", pAC->dev[pNet->PortNr]->name);
1212 return (-1);
1214 SkI2cInit (pAC, pAC->IoBase, SK_INIT_RUN);
1215 SkEventInit (pAC, pAC->IoBase, SK_INIT_RUN);
1216 SkPnmiInit (pAC, pAC->IoBase, SK_INIT_RUN);
1217 SkAddrInit (pAC, pAC->IoBase, SK_INIT_RUN);
1218 SkRlmtInit (pAC, pAC->IoBase, SK_INIT_RUN);
1219 SkTimerInit (pAC, pAC->IoBase, SK_INIT_RUN);
1220 pAC->BoardLevel = SK_INIT_RUN;
1223 for (i=0; i<pAC->GIni.GIMacsFound; i++) {
1224 /* Enable transmit descriptor polling. */
1225 SkGePollTxD(pAC, pAC->IoBase, i, SK_TRUE);
1226 FillRxRing(pAC, &pAC->RxPort[i]);
1228 SkGeYellowLED(pAC, pAC->IoBase, 1);
1230 StartDrvCleanupTimer(pAC);
1231 SkDimEnableModerationIfNeeded(pAC);
1232 SkDimDisplayModerationSettings(pAC);
1234 pAC->GIni.GIValIrqMask &= IRQ_MASK;
1236 /* enable Interrupts */
1237 SK_OUT32(pAC->IoBase, B0_IMSK, pAC->GIni.GIValIrqMask);
1238 SK_OUT32(pAC->IoBase, B0_HWE_IMSK, IRQ_HWE_MASK);
1240 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
1242 if ((pAC->RlmtMode != 0) && (pAC->MaxPorts == 0)) {
1243 EvPara.Para32[0] = pAC->RlmtNets;
1244 EvPara.Para32[1] = -1;
1245 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_SET_NETS,
1246 EvPara);
1247 EvPara.Para32[0] = pAC->RlmtMode;
1248 EvPara.Para32[1] = 0;
1249 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_MODE_CHANGE,
1250 EvPara);
1253 EvPara.Para32[0] = pNet->NetNr;
1254 EvPara.Para32[1] = -1;
1255 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_START, EvPara);
1256 SkEventDispatcher(pAC, pAC->IoBase);
1257 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
1259 pAC->MaxPorts++;
1262 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
1263 ("SkGeOpen suceeded\n"));
1265 return (0);
1266 } /* SkGeOpen */
1269 /****************************************************************************
1271 * SkGeClose - Stop initialized adapter
1273 * Description:
1274 * Close initialized adapter.
1276 * Returns:
1277 * 0 - on success
1278 * error code - on error
1280 static int SkGeClose(
1281 struct SK_NET_DEVICE *dev)
1283 DEV_NET *pNet;
1284 DEV_NET *newPtrNet;
1285 SK_AC *pAC;
1287 unsigned long Flags; /* for spin lock */
1288 int i;
1289 int PortIdx;
1290 SK_EVPARA EvPara;
1292 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
1293 ("SkGeClose: pAC=0x%lX ", (unsigned long)pAC));
1295 pNet = netdev_priv(dev);
1296 pAC = pNet->pAC;
1298 #ifdef SK_DIAG_SUPPORT
1299 if (pAC->DiagModeActive == DIAG_ACTIVE) {
1300 if (pAC->DiagFlowCtrl == SK_FALSE) {
1302 ** notify that the interface which has been closed
1303 ** by operator interaction must not be started up
1304 ** again when the DIAG has finished.
1306 newPtrNet = netdev_priv(pAC->dev[0]);
1307 if (newPtrNet == pNet) {
1308 pAC->WasIfUp[0] = SK_FALSE;
1309 } else {
1310 pAC->WasIfUp[1] = SK_FALSE;
1312 return 0; /* return to system everything is fine... */
1313 } else {
1314 pAC->DiagFlowCtrl = SK_FALSE;
1317 #endif
1319 netif_stop_queue(dev);
1321 if (pAC->RlmtNets == 1)
1322 PortIdx = pAC->ActivePort;
1323 else
1324 PortIdx = pNet->NetNr;
1326 StopDrvCleanupTimer(pAC);
1329 * Clear multicast table, promiscuous mode ....
1331 SkAddrMcClear(pAC, pAC->IoBase, PortIdx, 0);
1332 SkAddrPromiscuousChange(pAC, pAC->IoBase, PortIdx,
1333 SK_PROM_MODE_NONE);
1335 if (pAC->MaxPorts == 1) {
1336 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
1337 /* disable interrupts */
1338 SK_OUT32(pAC->IoBase, B0_IMSK, 0);
1339 EvPara.Para32[0] = pNet->NetNr;
1340 EvPara.Para32[1] = -1;
1341 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
1342 SkEventDispatcher(pAC, pAC->IoBase);
1343 SK_OUT32(pAC->IoBase, B0_IMSK, 0);
1344 /* stop the hardware */
1345 SkGeDeInit(pAC, pAC->IoBase);
1346 pAC->BoardLevel = SK_INIT_DATA;
1347 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
1348 } else {
1350 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
1351 EvPara.Para32[0] = pNet->NetNr;
1352 EvPara.Para32[1] = -1;
1353 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
1354 SkPnmiEvent(pAC, pAC->IoBase, SK_PNMI_EVT_XMAC_RESET, EvPara);
1355 SkEventDispatcher(pAC, pAC->IoBase);
1356 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
1358 /* Stop port */
1359 spin_lock_irqsave(&pAC->TxPort[pNet->PortNr]
1360 [TX_PRIO_LOW].TxDesRingLock, Flags);
1361 SkGeStopPort(pAC, pAC->IoBase, pNet->PortNr,
1362 SK_STOP_ALL, SK_HARD_RST);
1363 spin_unlock_irqrestore(&pAC->TxPort[pNet->PortNr]
1364 [TX_PRIO_LOW].TxDesRingLock, Flags);
1367 if (pAC->RlmtNets == 1) {
1368 /* clear all descriptor rings */
1369 for (i=0; i<pAC->GIni.GIMacsFound; i++) {
1370 ReceiveIrq(pAC, &pAC->RxPort[i], SK_TRUE);
1371 ClearRxRing(pAC, &pAC->RxPort[i]);
1372 ClearTxRing(pAC, &pAC->TxPort[i][TX_PRIO_LOW]);
1374 } else {
1375 /* clear port descriptor rings */
1376 ReceiveIrq(pAC, &pAC->RxPort[pNet->PortNr], SK_TRUE);
1377 ClearRxRing(pAC, &pAC->RxPort[pNet->PortNr]);
1378 ClearTxRing(pAC, &pAC->TxPort[pNet->PortNr][TX_PRIO_LOW]);
1381 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
1382 ("SkGeClose: done "));
1384 SK_MEMSET(&(pAC->PnmiBackup), 0, sizeof(SK_PNMI_STRUCT_DATA));
1385 SK_MEMCPY(&(pAC->PnmiBackup), &(pAC->PnmiStruct),
1386 sizeof(SK_PNMI_STRUCT_DATA));
1388 pAC->MaxPorts--;
1390 return (0);
1391 } /* SkGeClose */
1394 /*****************************************************************************
1396 * SkGeXmit - Linux frame transmit function
1398 * Description:
1399 * The system calls this function to send frames onto the wire.
1400 * It puts the frame in the tx descriptor ring. If the ring is
1401 * full then, the 'tbusy' flag is set.
1403 * Returns:
1404 * 0, if everything is ok
1405 * !=0, on error
1406 * WARNING: returning 1 in 'tbusy' case caused system crashes (double
1407 * allocated skb's) !!!
1409 static int SkGeXmit(struct sk_buff *skb, struct SK_NET_DEVICE *dev)
1411 DEV_NET *pNet;
1412 SK_AC *pAC;
1413 int Rc; /* return code of XmitFrame */
1415 pNet = netdev_priv(dev);
1416 pAC = pNet->pAC;
1418 if ((!skb_shinfo(skb)->nr_frags) ||
1419 (pAC->GIni.GIChipId == CHIP_ID_GENESIS)) {
1420 /* Don't activate scatter-gather and hardware checksum */
1422 if (pAC->RlmtNets == 2)
1423 Rc = XmitFrame(
1424 pAC,
1425 &pAC->TxPort[pNet->PortNr][TX_PRIO_LOW],
1426 skb);
1427 else
1428 Rc = XmitFrame(
1429 pAC,
1430 &pAC->TxPort[pAC->ActivePort][TX_PRIO_LOW],
1431 skb);
1432 } else {
1433 /* scatter-gather and hardware TCP checksumming anabled*/
1434 if (pAC->RlmtNets == 2)
1435 Rc = XmitFrameSG(
1436 pAC,
1437 &pAC->TxPort[pNet->PortNr][TX_PRIO_LOW],
1438 skb);
1439 else
1440 Rc = XmitFrameSG(
1441 pAC,
1442 &pAC->TxPort[pAC->ActivePort][TX_PRIO_LOW],
1443 skb);
1446 /* Transmitter out of resources? */
1447 if (Rc <= 0) {
1448 netif_stop_queue(dev);
1451 /* If not taken, give buffer ownership back to the
1452 * queueing layer.
1454 if (Rc < 0)
1455 return (1);
1457 dev->trans_start = jiffies;
1458 return (0);
1459 } /* SkGeXmit */
1462 /*****************************************************************************
1464 * XmitFrame - fill one socket buffer into the transmit ring
1466 * Description:
1467 * This function puts a message into the transmit descriptor ring
1468 * if there is a descriptors left.
1469 * Linux skb's consist of only one continuous buffer.
1470 * The first step locks the ring. It is held locked
1471 * all time to avoid problems with SWITCH_../PORT_RESET.
1472 * Then the descriptoris allocated.
1473 * The second part is linking the buffer to the descriptor.
1474 * At the very last, the Control field of the descriptor
1475 * is made valid for the BMU and a start TX command is given
1476 * if necessary.
1478 * Returns:
1479 * > 0 - on succes: the number of bytes in the message
1480 * = 0 - on resource shortage: this frame sent or dropped, now
1481 * the ring is full ( -> set tbusy)
1482 * < 0 - on failure: other problems ( -> return failure to upper layers)
1484 static int XmitFrame(
1485 SK_AC *pAC, /* pointer to adapter context */
1486 TX_PORT *pTxPort, /* pointer to struct of port to send to */
1487 struct sk_buff *pMessage) /* pointer to send-message */
1489 TXD *pTxd; /* the rxd to fill */
1490 TXD *pOldTxd;
1491 unsigned long Flags;
1492 SK_U64 PhysAddr;
1493 int BytesSend = pMessage->len;
1495 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_TX_PROGRESS, ("X"));
1497 spin_lock_irqsave(&pTxPort->TxDesRingLock, Flags);
1498 #ifndef USE_TX_COMPLETE
1499 FreeTxDescriptors(pAC, pTxPort);
1500 #endif
1501 if (pTxPort->TxdRingFree == 0) {
1503 ** no enough free descriptors in ring at the moment.
1504 ** Maybe free'ing some old one help?
1506 FreeTxDescriptors(pAC, pTxPort);
1507 if (pTxPort->TxdRingFree == 0) {
1508 spin_unlock_irqrestore(&pTxPort->TxDesRingLock, Flags);
1509 SK_PNMI_CNT_NO_TX_BUF(pAC, pTxPort->PortIndex);
1510 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
1511 SK_DBGCAT_DRV_TX_PROGRESS,
1512 ("XmitFrame failed\n"));
1514 ** the desired message can not be sent
1515 ** Because tbusy seems to be set, the message
1516 ** should not be freed here. It will be used
1517 ** by the scheduler of the ethernet handler
1519 return (-1);
1524 ** If the passed socket buffer is of smaller MTU-size than 60,
1525 ** copy everything into new buffer and fill all bytes between
1526 ** the original packet end and the new packet end of 60 with 0x00.
1527 ** This is to resolve faulty padding by the HW with 0xaa bytes.
1529 if (BytesSend < C_LEN_ETHERNET_MINSIZE) {
1530 if (skb_padto(pMessage, C_LEN_ETHERNET_MINSIZE)) {
1531 spin_unlock_irqrestore(&pTxPort->TxDesRingLock, Flags);
1532 return 0;
1534 pMessage->len = C_LEN_ETHERNET_MINSIZE;
1538 ** advance head counter behind descriptor needed for this frame,
1539 ** so that needed descriptor is reserved from that on. The next
1540 ** action will be to add the passed buffer to the TX-descriptor
1542 pTxd = pTxPort->pTxdRingHead;
1543 pTxPort->pTxdRingHead = pTxd->pNextTxd;
1544 pTxPort->TxdRingFree--;
1546 #ifdef SK_DUMP_TX
1547 DumpMsg(pMessage, "XmitFrame");
1548 #endif
1551 ** First step is to map the data to be sent via the adapter onto
1552 ** the DMA memory. Kernel 2.2 uses virt_to_bus(), but kernels 2.4
1553 ** and 2.6 need to use pci_map_page() for that mapping.
1555 PhysAddr = (SK_U64) pci_map_page(pAC->PciDev,
1556 virt_to_page(pMessage->data),
1557 ((unsigned long) pMessage->data & ~PAGE_MASK),
1558 pMessage->len,
1559 PCI_DMA_TODEVICE);
1560 pTxd->VDataLow = (SK_U32) (PhysAddr & 0xffffffff);
1561 pTxd->VDataHigh = (SK_U32) (PhysAddr >> 32);
1562 pTxd->pMBuf = pMessage;
1564 if (pMessage->ip_summed == CHECKSUM_PARTIAL) {
1565 u16 hdrlen = pMessage->h.raw - pMessage->data;
1566 u16 offset = hdrlen + pMessage->csum_offset;
1568 if ((pMessage->h.ipiph->protocol == IPPROTO_UDP ) &&
1569 (pAC->GIni.GIChipRev == 0) &&
1570 (pAC->GIni.GIChipId == CHIP_ID_YUKON)) {
1571 pTxd->TBControl = BMU_TCP_CHECK;
1572 } else {
1573 pTxd->TBControl = BMU_UDP_CHECK;
1576 pTxd->TcpSumOfs = 0;
1577 pTxd->TcpSumSt = hdrlen;
1578 pTxd->TcpSumWr = offset;
1580 pTxd->TBControl |= BMU_OWN | BMU_STF |
1581 BMU_SW | BMU_EOF |
1582 #ifdef USE_TX_COMPLETE
1583 BMU_IRQ_EOF |
1584 #endif
1585 pMessage->len;
1586 } else {
1587 pTxd->TBControl = BMU_OWN | BMU_STF | BMU_CHECK |
1588 BMU_SW | BMU_EOF |
1589 #ifdef USE_TX_COMPLETE
1590 BMU_IRQ_EOF |
1591 #endif
1592 pMessage->len;
1596 ** If previous descriptor already done, give TX start cmd
1598 pOldTxd = xchg(&pTxPort->pTxdRingPrev, pTxd);
1599 if ((pOldTxd->TBControl & BMU_OWN) == 0) {
1600 SK_OUT8(pTxPort->HwAddr, Q_CSR, CSR_START);
1604 ** after releasing the lock, the skb may immediately be free'd
1606 spin_unlock_irqrestore(&pTxPort->TxDesRingLock, Flags);
1607 if (pTxPort->TxdRingFree != 0) {
1608 return (BytesSend);
1609 } else {
1610 return (0);
1613 } /* XmitFrame */
1615 /*****************************************************************************
1617 * XmitFrameSG - fill one socket buffer into the transmit ring
1618 * (use SG and TCP/UDP hardware checksumming)
1620 * Description:
1621 * This function puts a message into the transmit descriptor ring
1622 * if there is a descriptors left.
1624 * Returns:
1625 * > 0 - on succes: the number of bytes in the message
1626 * = 0 - on resource shortage: this frame sent or dropped, now
1627 * the ring is full ( -> set tbusy)
1628 * < 0 - on failure: other problems ( -> return failure to upper layers)
1630 static int XmitFrameSG(
1631 SK_AC *pAC, /* pointer to adapter context */
1632 TX_PORT *pTxPort, /* pointer to struct of port to send to */
1633 struct sk_buff *pMessage) /* pointer to send-message */
1636 TXD *pTxd;
1637 TXD *pTxdFst;
1638 TXD *pTxdLst;
1639 int CurrFrag;
1640 int BytesSend;
1641 skb_frag_t *sk_frag;
1642 SK_U64 PhysAddr;
1643 unsigned long Flags;
1644 SK_U32 Control;
1646 spin_lock_irqsave(&pTxPort->TxDesRingLock, Flags);
1647 #ifndef USE_TX_COMPLETE
1648 FreeTxDescriptors(pAC, pTxPort);
1649 #endif
1650 if ((skb_shinfo(pMessage)->nr_frags +1) > pTxPort->TxdRingFree) {
1651 FreeTxDescriptors(pAC, pTxPort);
1652 if ((skb_shinfo(pMessage)->nr_frags + 1) > pTxPort->TxdRingFree) {
1653 spin_unlock_irqrestore(&pTxPort->TxDesRingLock, Flags);
1654 SK_PNMI_CNT_NO_TX_BUF(pAC, pTxPort->PortIndex);
1655 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
1656 SK_DBGCAT_DRV_TX_PROGRESS,
1657 ("XmitFrameSG failed - Ring full\n"));
1658 /* this message can not be sent now */
1659 return(-1);
1663 pTxd = pTxPort->pTxdRingHead;
1664 pTxdFst = pTxd;
1665 pTxdLst = pTxd;
1666 BytesSend = 0;
1669 ** Map the first fragment (header) into the DMA-space
1671 PhysAddr = (SK_U64) pci_map_page(pAC->PciDev,
1672 virt_to_page(pMessage->data),
1673 ((unsigned long) pMessage->data & ~PAGE_MASK),
1674 skb_headlen(pMessage),
1675 PCI_DMA_TODEVICE);
1677 pTxd->VDataLow = (SK_U32) (PhysAddr & 0xffffffff);
1678 pTxd->VDataHigh = (SK_U32) (PhysAddr >> 32);
1681 ** Does the HW need to evaluate checksum for TCP or UDP packets?
1683 if (pMessage->ip_summed == CHECKSUM_PARTIAL) {
1684 u16 hdrlen = pMessage->h.raw - pMessage->data;
1685 u16 offset = hdrlen + pMessage->csum_offset;
1687 Control = BMU_STFWD;
1690 ** We have to use the opcode for tcp here, because the
1691 ** opcode for udp is not working in the hardware yet
1692 ** (Revision 2.0)
1694 if ((pMessage->h.ipiph->protocol == IPPROTO_UDP ) &&
1695 (pAC->GIni.GIChipRev == 0) &&
1696 (pAC->GIni.GIChipId == CHIP_ID_YUKON)) {
1697 Control |= BMU_TCP_CHECK;
1698 } else {
1699 Control |= BMU_UDP_CHECK;
1702 pTxd->TcpSumOfs = 0;
1703 pTxd->TcpSumSt = hdrlen;
1704 pTxd->TcpSumWr = offset;
1705 } else
1706 Control = BMU_CHECK | BMU_SW;
1708 pTxd->TBControl = BMU_STF | Control | skb_headlen(pMessage);
1710 pTxd = pTxd->pNextTxd;
1711 pTxPort->TxdRingFree--;
1712 BytesSend += skb_headlen(pMessage);
1715 ** Browse over all SG fragments and map each of them into the DMA space
1717 for (CurrFrag = 0; CurrFrag < skb_shinfo(pMessage)->nr_frags; CurrFrag++) {
1718 sk_frag = &skb_shinfo(pMessage)->frags[CurrFrag];
1720 ** we already have the proper value in entry
1722 PhysAddr = (SK_U64) pci_map_page(pAC->PciDev,
1723 sk_frag->page,
1724 sk_frag->page_offset,
1725 sk_frag->size,
1726 PCI_DMA_TODEVICE);
1728 pTxd->VDataLow = (SK_U32) (PhysAddr & 0xffffffff);
1729 pTxd->VDataHigh = (SK_U32) (PhysAddr >> 32);
1730 pTxd->pMBuf = pMessage;
1732 pTxd->TBControl = Control | BMU_OWN | sk_frag->size;
1735 ** Do we have the last fragment?
1737 if( (CurrFrag+1) == skb_shinfo(pMessage)->nr_frags ) {
1738 #ifdef USE_TX_COMPLETE
1739 pTxd->TBControl |= BMU_EOF | BMU_IRQ_EOF;
1740 #else
1741 pTxd->TBControl |= BMU_EOF;
1742 #endif
1743 pTxdFst->TBControl |= BMU_OWN | BMU_SW;
1745 pTxdLst = pTxd;
1746 pTxd = pTxd->pNextTxd;
1747 pTxPort->TxdRingFree--;
1748 BytesSend += sk_frag->size;
1752 ** If previous descriptor already done, give TX start cmd
1754 if ((pTxPort->pTxdRingPrev->TBControl & BMU_OWN) == 0) {
1755 SK_OUT8(pTxPort->HwAddr, Q_CSR, CSR_START);
1758 pTxPort->pTxdRingPrev = pTxdLst;
1759 pTxPort->pTxdRingHead = pTxd;
1761 spin_unlock_irqrestore(&pTxPort->TxDesRingLock, Flags);
1763 if (pTxPort->TxdRingFree > 0) {
1764 return (BytesSend);
1765 } else {
1766 return (0);
1770 /*****************************************************************************
1772 * FreeTxDescriptors - release descriptors from the descriptor ring
1774 * Description:
1775 * This function releases descriptors from a transmit ring if they
1776 * have been sent by the BMU.
1777 * If a descriptors is sent, it can be freed and the message can
1778 * be freed, too.
1779 * The SOFTWARE controllable bit is used to prevent running around a
1780 * completely free ring for ever. If this bit is no set in the
1781 * frame (by XmitFrame), this frame has never been sent or is
1782 * already freed.
1783 * The Tx descriptor ring lock must be held while calling this function !!!
1785 * Returns:
1786 * none
1788 static void FreeTxDescriptors(
1789 SK_AC *pAC, /* pointer to the adapter context */
1790 TX_PORT *pTxPort) /* pointer to destination port structure */
1792 TXD *pTxd; /* pointer to the checked descriptor */
1793 TXD *pNewTail; /* pointer to 'end' of the ring */
1794 SK_U32 Control; /* TBControl field of descriptor */
1795 SK_U64 PhysAddr; /* address of DMA mapping */
1797 pNewTail = pTxPort->pTxdRingTail;
1798 pTxd = pNewTail;
1800 ** loop forever; exits if BMU_SW bit not set in start frame
1801 ** or BMU_OWN bit set in any frame
1803 while (1) {
1804 Control = pTxd->TBControl;
1805 if ((Control & BMU_SW) == 0) {
1807 ** software controllable bit is set in first
1808 ** fragment when given to BMU. Not set means that
1809 ** this fragment was never sent or is already
1810 ** freed ( -> ring completely free now).
1812 pTxPort->pTxdRingTail = pTxd;
1813 netif_wake_queue(pAC->dev[pTxPort->PortIndex]);
1814 return;
1816 if (Control & BMU_OWN) {
1817 pTxPort->pTxdRingTail = pTxd;
1818 if (pTxPort->TxdRingFree > 0) {
1819 netif_wake_queue(pAC->dev[pTxPort->PortIndex]);
1821 return;
1825 ** release the DMA mapping, because until not unmapped
1826 ** this buffer is considered being under control of the
1827 ** adapter card!
1829 PhysAddr = ((SK_U64) pTxd->VDataHigh) << (SK_U64) 32;
1830 PhysAddr |= (SK_U64) pTxd->VDataLow;
1831 pci_unmap_page(pAC->PciDev, PhysAddr,
1832 pTxd->pMBuf->len,
1833 PCI_DMA_TODEVICE);
1835 if (Control & BMU_EOF)
1836 DEV_KFREE_SKB_ANY(pTxd->pMBuf); /* free message */
1838 pTxPort->TxdRingFree++;
1839 pTxd->TBControl &= ~BMU_SW;
1840 pTxd = pTxd->pNextTxd; /* point behind fragment with EOF */
1841 } /* while(forever) */
1842 } /* FreeTxDescriptors */
1844 /*****************************************************************************
1846 * FillRxRing - fill the receive ring with valid descriptors
1848 * Description:
1849 * This function fills the receive ring descriptors with data
1850 * segments and makes them valid for the BMU.
1851 * The active ring is filled completely, if possible.
1852 * The non-active ring is filled only partial to save memory.
1854 * Description of rx ring structure:
1855 * head - points to the descriptor which will be used next by the BMU
1856 * tail - points to the next descriptor to give to the BMU
1858 * Returns: N/A
1860 static void FillRxRing(
1861 SK_AC *pAC, /* pointer to the adapter context */
1862 RX_PORT *pRxPort) /* ptr to port struct for which the ring
1863 should be filled */
1865 unsigned long Flags;
1867 spin_lock_irqsave(&pRxPort->RxDesRingLock, Flags);
1868 while (pRxPort->RxdRingFree > pRxPort->RxFillLimit) {
1869 if(!FillRxDescriptor(pAC, pRxPort))
1870 break;
1872 spin_unlock_irqrestore(&pRxPort->RxDesRingLock, Flags);
1873 } /* FillRxRing */
1876 /*****************************************************************************
1878 * FillRxDescriptor - fill one buffer into the receive ring
1880 * Description:
1881 * The function allocates a new receive buffer and
1882 * puts it into the next descriptor.
1884 * Returns:
1885 * SK_TRUE - a buffer was added to the ring
1886 * SK_FALSE - a buffer could not be added
1888 static SK_BOOL FillRxDescriptor(
1889 SK_AC *pAC, /* pointer to the adapter context struct */
1890 RX_PORT *pRxPort) /* ptr to port struct of ring to fill */
1892 struct sk_buff *pMsgBlock; /* pointer to a new message block */
1893 RXD *pRxd; /* the rxd to fill */
1894 SK_U16 Length; /* data fragment length */
1895 SK_U64 PhysAddr; /* physical address of a rx buffer */
1897 pMsgBlock = alloc_skb(pAC->RxBufSize, GFP_ATOMIC);
1898 if (pMsgBlock == NULL) {
1899 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
1900 SK_DBGCAT_DRV_ENTRY,
1901 ("%s: Allocation of rx buffer failed !\n",
1902 pAC->dev[pRxPort->PortIndex]->name));
1903 SK_PNMI_CNT_NO_RX_BUF(pAC, pRxPort->PortIndex);
1904 return(SK_FALSE);
1906 skb_reserve(pMsgBlock, 2); /* to align IP frames */
1907 /* skb allocated ok, so add buffer */
1908 pRxd = pRxPort->pRxdRingTail;
1909 pRxPort->pRxdRingTail = pRxd->pNextRxd;
1910 pRxPort->RxdRingFree--;
1911 Length = pAC->RxBufSize;
1912 PhysAddr = (SK_U64) pci_map_page(pAC->PciDev,
1913 virt_to_page(pMsgBlock->data),
1914 ((unsigned long) pMsgBlock->data &
1915 ~PAGE_MASK),
1916 pAC->RxBufSize - 2,
1917 PCI_DMA_FROMDEVICE);
1919 pRxd->VDataLow = (SK_U32) (PhysAddr & 0xffffffff);
1920 pRxd->VDataHigh = (SK_U32) (PhysAddr >> 32);
1921 pRxd->pMBuf = pMsgBlock;
1922 pRxd->RBControl = BMU_OWN |
1923 BMU_STF |
1924 BMU_IRQ_EOF |
1925 BMU_TCP_CHECK |
1926 Length;
1927 return (SK_TRUE);
1929 } /* FillRxDescriptor */
1932 /*****************************************************************************
1934 * ReQueueRxBuffer - fill one buffer back into the receive ring
1936 * Description:
1937 * Fill a given buffer back into the rx ring. The buffer
1938 * has been previously allocated and aligned, and its phys.
1939 * address calculated, so this is no more necessary.
1941 * Returns: N/A
1943 static void ReQueueRxBuffer(
1944 SK_AC *pAC, /* pointer to the adapter context struct */
1945 RX_PORT *pRxPort, /* ptr to port struct of ring to fill */
1946 struct sk_buff *pMsg, /* pointer to the buffer */
1947 SK_U32 PhysHigh, /* phys address high dword */
1948 SK_U32 PhysLow) /* phys address low dword */
1950 RXD *pRxd; /* the rxd to fill */
1951 SK_U16 Length; /* data fragment length */
1953 pRxd = pRxPort->pRxdRingTail;
1954 pRxPort->pRxdRingTail = pRxd->pNextRxd;
1955 pRxPort->RxdRingFree--;
1956 Length = pAC->RxBufSize;
1958 pRxd->VDataLow = PhysLow;
1959 pRxd->VDataHigh = PhysHigh;
1960 pRxd->pMBuf = pMsg;
1961 pRxd->RBControl = BMU_OWN |
1962 BMU_STF |
1963 BMU_IRQ_EOF |
1964 BMU_TCP_CHECK |
1965 Length;
1966 return;
1967 } /* ReQueueRxBuffer */
1969 /*****************************************************************************
1971 * ReceiveIrq - handle a receive IRQ
1973 * Description:
1974 * This function is called when a receive IRQ is set.
1975 * It walks the receive descriptor ring and sends up all
1976 * frames that are complete.
1978 * Returns: N/A
1980 static void ReceiveIrq(
1981 SK_AC *pAC, /* pointer to adapter context */
1982 RX_PORT *pRxPort, /* pointer to receive port struct */
1983 SK_BOOL SlowPathLock) /* indicates if SlowPathLock is needed */
1985 RXD *pRxd; /* pointer to receive descriptors */
1986 SK_U32 Control; /* control field of descriptor */
1987 struct sk_buff *pMsg; /* pointer to message holding frame */
1988 struct sk_buff *pNewMsg; /* pointer to a new message for copying frame */
1989 int FrameLength; /* total length of received frame */
1990 SK_MBUF *pRlmtMbuf; /* ptr to a buffer for giving a frame to rlmt */
1991 SK_EVPARA EvPara; /* an event parameter union */
1992 unsigned long Flags; /* for spin lock */
1993 int PortIndex = pRxPort->PortIndex;
1994 unsigned int Offset;
1995 unsigned int NumBytes;
1996 unsigned int ForRlmt;
1997 SK_BOOL IsBc;
1998 SK_BOOL IsMc;
1999 SK_BOOL IsBadFrame; /* Bad frame */
2001 SK_U32 FrameStat;
2002 SK_U64 PhysAddr;
2004 rx_start:
2005 /* do forever; exit if BMU_OWN found */
2006 for ( pRxd = pRxPort->pRxdRingHead ;
2007 pRxPort->RxdRingFree < pAC->RxDescrPerRing ;
2008 pRxd = pRxd->pNextRxd,
2009 pRxPort->pRxdRingHead = pRxd,
2010 pRxPort->RxdRingFree ++) {
2013 * For a better understanding of this loop
2014 * Go through every descriptor beginning at the head
2015 * Please note: the ring might be completely received so the OWN bit
2016 * set is not a good crirteria to leave that loop.
2017 * Therefore the RingFree counter is used.
2018 * On entry of this loop pRxd is a pointer to the Rxd that needs
2019 * to be checked next.
2022 Control = pRxd->RBControl;
2024 /* check if this descriptor is ready */
2025 if ((Control & BMU_OWN) != 0) {
2026 /* this descriptor is not yet ready */
2027 /* This is the usual end of the loop */
2028 /* We don't need to start the ring again */
2029 FillRxRing(pAC, pRxPort);
2030 return;
2032 pAC->DynIrqModInfo.NbrProcessedDescr++;
2034 /* get length of frame and check it */
2035 FrameLength = Control & BMU_BBC;
2036 if (FrameLength > pAC->RxBufSize) {
2037 goto rx_failed;
2040 /* check for STF and EOF */
2041 if ((Control & (BMU_STF | BMU_EOF)) != (BMU_STF | BMU_EOF)) {
2042 goto rx_failed;
2045 /* here we have a complete frame in the ring */
2046 pMsg = pRxd->pMBuf;
2048 FrameStat = pRxd->FrameStat;
2050 /* check for frame length mismatch */
2051 #define XMR_FS_LEN_SHIFT 18
2052 #define GMR_FS_LEN_SHIFT 16
2053 if (pAC->GIni.GIChipId == CHIP_ID_GENESIS) {
2054 if (FrameLength != (SK_U32) (FrameStat >> XMR_FS_LEN_SHIFT)) {
2055 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
2056 SK_DBGCAT_DRV_RX_PROGRESS,
2057 ("skge: Frame length mismatch (%u/%u).\n",
2058 FrameLength,
2059 (SK_U32) (FrameStat >> XMR_FS_LEN_SHIFT)));
2060 goto rx_failed;
2063 else {
2064 if (FrameLength != (SK_U32) (FrameStat >> GMR_FS_LEN_SHIFT)) {
2065 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
2066 SK_DBGCAT_DRV_RX_PROGRESS,
2067 ("skge: Frame length mismatch (%u/%u).\n",
2068 FrameLength,
2069 (SK_U32) (FrameStat >> XMR_FS_LEN_SHIFT)));
2070 goto rx_failed;
2074 /* Set Rx Status */
2075 if (pAC->GIni.GIChipId == CHIP_ID_GENESIS) {
2076 IsBc = (FrameStat & XMR_FS_BC) != 0;
2077 IsMc = (FrameStat & XMR_FS_MC) != 0;
2078 IsBadFrame = (FrameStat &
2079 (XMR_FS_ANY_ERR | XMR_FS_2L_VLAN)) != 0;
2080 } else {
2081 IsBc = (FrameStat & GMR_FS_BC) != 0;
2082 IsMc = (FrameStat & GMR_FS_MC) != 0;
2083 IsBadFrame = (((FrameStat & GMR_FS_ANY_ERR) != 0) ||
2084 ((FrameStat & GMR_FS_RX_OK) == 0));
2087 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, 0,
2088 ("Received frame of length %d on port %d\n",
2089 FrameLength, PortIndex));
2090 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, 0,
2091 ("Number of free rx descriptors: %d\n",
2092 pRxPort->RxdRingFree));
2093 /* DumpMsg(pMsg, "Rx"); */
2095 if ((Control & BMU_STAT_VAL) != BMU_STAT_VAL || (IsBadFrame)) {
2096 #if 0
2097 (FrameStat & (XMR_FS_ANY_ERR | XMR_FS_2L_VLAN)) != 0) {
2098 #endif
2099 /* there is a receive error in this frame */
2100 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
2101 SK_DBGCAT_DRV_RX_PROGRESS,
2102 ("skge: Error in received frame, dropped!\n"
2103 "Control: %x\nRxStat: %x\n",
2104 Control, FrameStat));
2106 ReQueueRxBuffer(pAC, pRxPort, pMsg,
2107 pRxd->VDataHigh, pRxd->VDataLow);
2109 continue;
2113 * if short frame then copy data to reduce memory waste
2115 if ((FrameLength < SK_COPY_THRESHOLD) &&
2116 ((pNewMsg = alloc_skb(FrameLength+2, GFP_ATOMIC)) != NULL)) {
2118 * Short frame detected and allocation successfull
2120 /* use new skb and copy data */
2121 skb_reserve(pNewMsg, 2);
2122 skb_put(pNewMsg, FrameLength);
2123 PhysAddr = ((SK_U64) pRxd->VDataHigh) << (SK_U64)32;
2124 PhysAddr |= (SK_U64) pRxd->VDataLow;
2126 pci_dma_sync_single_for_cpu(pAC->PciDev,
2127 (dma_addr_t) PhysAddr,
2128 FrameLength,
2129 PCI_DMA_FROMDEVICE);
2130 memcpy(pNewMsg->data, pMsg, FrameLength);
2132 pci_dma_sync_single_for_device(pAC->PciDev,
2133 (dma_addr_t) PhysAddr,
2134 FrameLength,
2135 PCI_DMA_FROMDEVICE);
2136 ReQueueRxBuffer(pAC, pRxPort, pMsg,
2137 pRxd->VDataHigh, pRxd->VDataLow);
2139 pMsg = pNewMsg;
2142 else {
2144 * if large frame, or SKB allocation failed, pass
2145 * the SKB directly to the networking
2148 PhysAddr = ((SK_U64) pRxd->VDataHigh) << (SK_U64)32;
2149 PhysAddr |= (SK_U64) pRxd->VDataLow;
2151 /* release the DMA mapping */
2152 pci_unmap_single(pAC->PciDev,
2153 PhysAddr,
2154 pAC->RxBufSize - 2,
2155 PCI_DMA_FROMDEVICE);
2157 /* set length in message */
2158 skb_put(pMsg, FrameLength);
2159 } /* frame > SK_COPY_TRESHOLD */
2161 #ifdef USE_SK_RX_CHECKSUM
2162 pMsg->csum = pRxd->TcpSums & 0xffff;
2163 pMsg->ip_summed = CHECKSUM_COMPLETE;
2164 #else
2165 pMsg->ip_summed = CHECKSUM_NONE;
2166 #endif
2168 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, 1,("V"));
2169 ForRlmt = SK_RLMT_RX_PROTOCOL;
2170 #if 0
2171 IsBc = (FrameStat & XMR_FS_BC)==XMR_FS_BC;
2172 #endif
2173 SK_RLMT_PRE_LOOKAHEAD(pAC, PortIndex, FrameLength,
2174 IsBc, &Offset, &NumBytes);
2175 if (NumBytes != 0) {
2176 #if 0
2177 IsMc = (FrameStat & XMR_FS_MC)==XMR_FS_MC;
2178 #endif
2179 SK_RLMT_LOOKAHEAD(pAC, PortIndex,
2180 &pMsg->data[Offset],
2181 IsBc, IsMc, &ForRlmt);
2183 if (ForRlmt == SK_RLMT_RX_PROTOCOL) {
2184 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, 1,("W"));
2185 /* send up only frames from active port */
2186 if ((PortIndex == pAC->ActivePort) ||
2187 (pAC->RlmtNets == 2)) {
2188 /* frame for upper layer */
2189 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, 1,("U"));
2190 #ifdef xDEBUG
2191 DumpMsg(pMsg, "Rx");
2192 #endif
2193 SK_PNMI_CNT_RX_OCTETS_DELIVERED(pAC,
2194 FrameLength, pRxPort->PortIndex);
2196 pMsg->dev = pAC->dev[pRxPort->PortIndex];
2197 pMsg->protocol = eth_type_trans(pMsg,
2198 pAC->dev[pRxPort->PortIndex]);
2199 netif_rx(pMsg);
2200 pAC->dev[pRxPort->PortIndex]->last_rx = jiffies;
2202 else {
2203 /* drop frame */
2204 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
2205 SK_DBGCAT_DRV_RX_PROGRESS,
2206 ("D"));
2207 DEV_KFREE_SKB(pMsg);
2210 } /* if not for rlmt */
2211 else {
2212 /* packet for rlmt */
2213 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
2214 SK_DBGCAT_DRV_RX_PROGRESS, ("R"));
2215 pRlmtMbuf = SkDrvAllocRlmtMbuf(pAC,
2216 pAC->IoBase, FrameLength);
2217 if (pRlmtMbuf != NULL) {
2218 pRlmtMbuf->pNext = NULL;
2219 pRlmtMbuf->Length = FrameLength;
2220 pRlmtMbuf->PortIdx = PortIndex;
2221 EvPara.pParaPtr = pRlmtMbuf;
2222 memcpy((char*)(pRlmtMbuf->pData),
2223 (char*)(pMsg->data),
2224 FrameLength);
2226 /* SlowPathLock needed? */
2227 if (SlowPathLock == SK_TRUE) {
2228 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
2229 SkEventQueue(pAC, SKGE_RLMT,
2230 SK_RLMT_PACKET_RECEIVED,
2231 EvPara);
2232 pAC->CheckQueue = SK_TRUE;
2233 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
2234 } else {
2235 SkEventQueue(pAC, SKGE_RLMT,
2236 SK_RLMT_PACKET_RECEIVED,
2237 EvPara);
2238 pAC->CheckQueue = SK_TRUE;
2241 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
2242 SK_DBGCAT_DRV_RX_PROGRESS,
2243 ("Q"));
2245 if ((pAC->dev[pRxPort->PortIndex]->flags &
2246 (IFF_PROMISC | IFF_ALLMULTI)) != 0 ||
2247 (ForRlmt & SK_RLMT_RX_PROTOCOL) ==
2248 SK_RLMT_RX_PROTOCOL) {
2249 pMsg->dev = pAC->dev[pRxPort->PortIndex];
2250 pMsg->protocol = eth_type_trans(pMsg,
2251 pAC->dev[pRxPort->PortIndex]);
2252 netif_rx(pMsg);
2253 pAC->dev[pRxPort->PortIndex]->last_rx = jiffies;
2255 else {
2256 DEV_KFREE_SKB(pMsg);
2259 } /* if packet for rlmt */
2260 } /* for ... scanning the RXD ring */
2262 /* RXD ring is empty -> fill and restart */
2263 FillRxRing(pAC, pRxPort);
2264 /* do not start if called from Close */
2265 if (pAC->BoardLevel > SK_INIT_DATA) {
2266 ClearAndStartRx(pAC, PortIndex);
2268 return;
2270 rx_failed:
2271 /* remove error frame */
2272 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ERROR,
2273 ("Schrottdescriptor, length: 0x%x\n", FrameLength));
2275 /* release the DMA mapping */
2277 PhysAddr = ((SK_U64) pRxd->VDataHigh) << (SK_U64)32;
2278 PhysAddr |= (SK_U64) pRxd->VDataLow;
2279 pci_unmap_page(pAC->PciDev,
2280 PhysAddr,
2281 pAC->RxBufSize - 2,
2282 PCI_DMA_FROMDEVICE);
2283 DEV_KFREE_SKB_IRQ(pRxd->pMBuf);
2284 pRxd->pMBuf = NULL;
2285 pRxPort->RxdRingFree++;
2286 pRxPort->pRxdRingHead = pRxd->pNextRxd;
2287 goto rx_start;
2289 } /* ReceiveIrq */
2292 /*****************************************************************************
2294 * ClearAndStartRx - give a start receive command to BMU, clear IRQ
2296 * Description:
2297 * This function sends a start command and a clear interrupt
2298 * command for one receive queue to the BMU.
2300 * Returns: N/A
2301 * none
2303 static void ClearAndStartRx(
2304 SK_AC *pAC, /* pointer to the adapter context */
2305 int PortIndex) /* index of the receive port (XMAC) */
2307 SK_OUT8(pAC->IoBase,
2308 RxQueueAddr[PortIndex]+Q_CSR,
2309 CSR_START | CSR_IRQ_CL_F);
2310 } /* ClearAndStartRx */
2313 /*****************************************************************************
2315 * ClearTxIrq - give a clear transmit IRQ command to BMU
2317 * Description:
2318 * This function sends a clear tx IRQ command for one
2319 * transmit queue to the BMU.
2321 * Returns: N/A
2323 static void ClearTxIrq(
2324 SK_AC *pAC, /* pointer to the adapter context */
2325 int PortIndex, /* index of the transmit port (XMAC) */
2326 int Prio) /* priority or normal queue */
2328 SK_OUT8(pAC->IoBase,
2329 TxQueueAddr[PortIndex][Prio]+Q_CSR,
2330 CSR_IRQ_CL_F);
2331 } /* ClearTxIrq */
2334 /*****************************************************************************
2336 * ClearRxRing - remove all buffers from the receive ring
2338 * Description:
2339 * This function removes all receive buffers from the ring.
2340 * The receive BMU must be stopped before calling this function.
2342 * Returns: N/A
2344 static void ClearRxRing(
2345 SK_AC *pAC, /* pointer to adapter context */
2346 RX_PORT *pRxPort) /* pointer to rx port struct */
2348 RXD *pRxd; /* pointer to the current descriptor */
2349 unsigned long Flags;
2350 SK_U64 PhysAddr;
2352 if (pRxPort->RxdRingFree == pAC->RxDescrPerRing) {
2353 return;
2355 spin_lock_irqsave(&pRxPort->RxDesRingLock, Flags);
2356 pRxd = pRxPort->pRxdRingHead;
2357 do {
2358 if (pRxd->pMBuf != NULL) {
2360 PhysAddr = ((SK_U64) pRxd->VDataHigh) << (SK_U64)32;
2361 PhysAddr |= (SK_U64) pRxd->VDataLow;
2362 pci_unmap_page(pAC->PciDev,
2363 PhysAddr,
2364 pAC->RxBufSize - 2,
2365 PCI_DMA_FROMDEVICE);
2366 DEV_KFREE_SKB(pRxd->pMBuf);
2367 pRxd->pMBuf = NULL;
2369 pRxd->RBControl &= BMU_OWN;
2370 pRxd = pRxd->pNextRxd;
2371 pRxPort->RxdRingFree++;
2372 } while (pRxd != pRxPort->pRxdRingTail);
2373 pRxPort->pRxdRingTail = pRxPort->pRxdRingHead;
2374 spin_unlock_irqrestore(&pRxPort->RxDesRingLock, Flags);
2375 } /* ClearRxRing */
2377 /*****************************************************************************
2379 * ClearTxRing - remove all buffers from the transmit ring
2381 * Description:
2382 * This function removes all transmit buffers from the ring.
2383 * The transmit BMU must be stopped before calling this function
2384 * and transmitting at the upper level must be disabled.
2385 * The BMU own bit of all descriptors is cleared, the rest is
2386 * done by calling FreeTxDescriptors.
2388 * Returns: N/A
2390 static void ClearTxRing(
2391 SK_AC *pAC, /* pointer to adapter context */
2392 TX_PORT *pTxPort) /* pointer to tx prt struct */
2394 TXD *pTxd; /* pointer to the current descriptor */
2395 int i;
2396 unsigned long Flags;
2398 spin_lock_irqsave(&pTxPort->TxDesRingLock, Flags);
2399 pTxd = pTxPort->pTxdRingHead;
2400 for (i=0; i<pAC->TxDescrPerRing; i++) {
2401 pTxd->TBControl &= ~BMU_OWN;
2402 pTxd = pTxd->pNextTxd;
2404 FreeTxDescriptors(pAC, pTxPort);
2405 spin_unlock_irqrestore(&pTxPort->TxDesRingLock, Flags);
2406 } /* ClearTxRing */
2408 /*****************************************************************************
2410 * SkGeSetMacAddr - Set the hardware MAC address
2412 * Description:
2413 * This function sets the MAC address used by the adapter.
2415 * Returns:
2416 * 0, if everything is ok
2417 * !=0, on error
2419 static int SkGeSetMacAddr(struct SK_NET_DEVICE *dev, void *p)
2422 DEV_NET *pNet = netdev_priv(dev);
2423 SK_AC *pAC = pNet->pAC;
2425 struct sockaddr *addr = p;
2426 unsigned long Flags;
2428 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2429 ("SkGeSetMacAddr starts now...\n"));
2430 if(netif_running(dev))
2431 return -EBUSY;
2433 memcpy(dev->dev_addr, addr->sa_data,dev->addr_len);
2435 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
2437 if (pAC->RlmtNets == 2)
2438 SkAddrOverride(pAC, pAC->IoBase, pNet->NetNr,
2439 (SK_MAC_ADDR*)dev->dev_addr, SK_ADDR_VIRTUAL_ADDRESS);
2440 else
2441 SkAddrOverride(pAC, pAC->IoBase, pAC->ActivePort,
2442 (SK_MAC_ADDR*)dev->dev_addr, SK_ADDR_VIRTUAL_ADDRESS);
2446 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
2447 return 0;
2448 } /* SkGeSetMacAddr */
2451 /*****************************************************************************
2453 * SkGeSetRxMode - set receive mode
2455 * Description:
2456 * This function sets the receive mode of an adapter. The adapter
2457 * supports promiscuous mode, allmulticast mode and a number of
2458 * multicast addresses. If more multicast addresses the available
2459 * are selected, a hash function in the hardware is used.
2461 * Returns:
2462 * 0, if everything is ok
2463 * !=0, on error
2465 static void SkGeSetRxMode(struct SK_NET_DEVICE *dev)
2468 DEV_NET *pNet;
2469 SK_AC *pAC;
2471 struct dev_mc_list *pMcList;
2472 int i;
2473 int PortIdx;
2474 unsigned long Flags;
2476 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2477 ("SkGeSetRxMode starts now... "));
2479 pNet = netdev_priv(dev);
2480 pAC = pNet->pAC;
2481 if (pAC->RlmtNets == 1)
2482 PortIdx = pAC->ActivePort;
2483 else
2484 PortIdx = pNet->NetNr;
2486 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
2487 if (dev->flags & IFF_PROMISC) {
2488 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2489 ("PROMISCUOUS mode\n"));
2490 SkAddrPromiscuousChange(pAC, pAC->IoBase, PortIdx,
2491 SK_PROM_MODE_LLC);
2492 } else if (dev->flags & IFF_ALLMULTI) {
2493 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2494 ("ALLMULTI mode\n"));
2495 SkAddrPromiscuousChange(pAC, pAC->IoBase, PortIdx,
2496 SK_PROM_MODE_ALL_MC);
2497 } else {
2498 SkAddrPromiscuousChange(pAC, pAC->IoBase, PortIdx,
2499 SK_PROM_MODE_NONE);
2500 SkAddrMcClear(pAC, pAC->IoBase, PortIdx, 0);
2502 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2503 ("Number of MC entries: %d ", dev->mc_count));
2505 pMcList = dev->mc_list;
2506 for (i=0; i<dev->mc_count; i++, pMcList = pMcList->next) {
2507 SkAddrMcAdd(pAC, pAC->IoBase, PortIdx,
2508 (SK_MAC_ADDR*)pMcList->dmi_addr, 0);
2509 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_MCA,
2510 ("%02x:%02x:%02x:%02x:%02x:%02x\n",
2511 pMcList->dmi_addr[0],
2512 pMcList->dmi_addr[1],
2513 pMcList->dmi_addr[2],
2514 pMcList->dmi_addr[3],
2515 pMcList->dmi_addr[4],
2516 pMcList->dmi_addr[5]));
2518 SkAddrMcUpdate(pAC, pAC->IoBase, PortIdx);
2520 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
2522 return;
2523 } /* SkGeSetRxMode */
2526 /*****************************************************************************
2528 * SkGeChangeMtu - set the MTU to another value
2530 * Description:
2531 * This function sets is called whenever the MTU size is changed
2532 * (ifconfig mtu xxx dev ethX). If the MTU is bigger than standard
2533 * ethernet MTU size, long frame support is activated.
2535 * Returns:
2536 * 0, if everything is ok
2537 * !=0, on error
2539 static int SkGeChangeMtu(struct SK_NET_DEVICE *dev, int NewMtu)
2541 DEV_NET *pNet;
2542 struct net_device *pOtherDev;
2543 SK_AC *pAC;
2544 unsigned long Flags;
2545 int i;
2546 SK_EVPARA EvPara;
2548 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2549 ("SkGeChangeMtu starts now...\n"));
2551 pNet = netdev_priv(dev);
2552 pAC = pNet->pAC;
2554 if ((NewMtu < 68) || (NewMtu > SK_JUMBO_MTU)) {
2555 return -EINVAL;
2558 if(pAC->BoardLevel != SK_INIT_RUN) {
2559 return -EINVAL;
2562 #ifdef SK_DIAG_SUPPORT
2563 if (pAC->DiagModeActive == DIAG_ACTIVE) {
2564 if (pAC->DiagFlowCtrl == SK_FALSE) {
2565 return -1; /* still in use, deny any actions of MTU */
2566 } else {
2567 pAC->DiagFlowCtrl = SK_FALSE;
2570 #endif
2572 pOtherDev = pAC->dev[1 - pNet->NetNr];
2574 if ( netif_running(pOtherDev) && (pOtherDev->mtu > 1500)
2575 && (NewMtu <= 1500))
2576 return 0;
2578 pAC->RxBufSize = NewMtu + 32;
2579 dev->mtu = NewMtu;
2581 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2582 ("New MTU: %d\n", NewMtu));
2585 ** Prevent any reconfiguration while changing the MTU
2586 ** by disabling any interrupts
2588 SK_OUT32(pAC->IoBase, B0_IMSK, 0);
2589 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
2592 ** Notify RLMT that any ports are to be stopped
2594 EvPara.Para32[0] = 0;
2595 EvPara.Para32[1] = -1;
2596 if ((pAC->GIni.GIMacsFound == 2 ) && (pAC->RlmtNets == 2)) {
2597 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
2598 EvPara.Para32[0] = 1;
2599 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
2600 } else {
2601 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
2605 ** After calling the SkEventDispatcher(), RLMT is aware about
2606 ** the stopped ports -> configuration can take place!
2608 SkEventDispatcher(pAC, pAC->IoBase);
2610 for (i=0; i<pAC->GIni.GIMacsFound; i++) {
2611 spin_lock(&pAC->TxPort[i][TX_PRIO_LOW].TxDesRingLock);
2612 netif_stop_queue(pAC->dev[i]);
2617 ** Depending on the desired MTU size change, a different number of
2618 ** RX buffers need to be allocated
2620 if (NewMtu > 1500) {
2622 ** Use less rx buffers
2624 for (i=0; i<pAC->GIni.GIMacsFound; i++) {
2625 if ((pAC->GIni.GIMacsFound == 2 ) && (pAC->RlmtNets == 2)) {
2626 pAC->RxPort[i].RxFillLimit = pAC->RxDescrPerRing -
2627 (pAC->RxDescrPerRing / 4);
2628 } else {
2629 if (i == pAC->ActivePort) {
2630 pAC->RxPort[i].RxFillLimit = pAC->RxDescrPerRing -
2631 (pAC->RxDescrPerRing / 4);
2632 } else {
2633 pAC->RxPort[i].RxFillLimit = pAC->RxDescrPerRing -
2634 (pAC->RxDescrPerRing / 10);
2638 } else {
2640 ** Use the normal amount of rx buffers
2642 for (i=0; i<pAC->GIni.GIMacsFound; i++) {
2643 if ((pAC->GIni.GIMacsFound == 2 ) && (pAC->RlmtNets == 2)) {
2644 pAC->RxPort[i].RxFillLimit = 1;
2645 } else {
2646 if (i == pAC->ActivePort) {
2647 pAC->RxPort[i].RxFillLimit = 1;
2648 } else {
2649 pAC->RxPort[i].RxFillLimit = pAC->RxDescrPerRing -
2650 (pAC->RxDescrPerRing / 4);
2656 SkGeDeInit(pAC, pAC->IoBase);
2659 ** enable/disable hardware support for long frames
2661 if (NewMtu > 1500) {
2662 // pAC->JumboActivated = SK_TRUE; /* is never set back !!! */
2663 pAC->GIni.GIPortUsage = SK_JUMBO_LINK;
2664 } else {
2665 if ((pAC->GIni.GIMacsFound == 2 ) && (pAC->RlmtNets == 2)) {
2666 pAC->GIni.GIPortUsage = SK_MUL_LINK;
2667 } else {
2668 pAC->GIni.GIPortUsage = SK_RED_LINK;
2672 SkGeInit( pAC, pAC->IoBase, SK_INIT_IO);
2673 SkI2cInit( pAC, pAC->IoBase, SK_INIT_IO);
2674 SkEventInit(pAC, pAC->IoBase, SK_INIT_IO);
2675 SkPnmiInit( pAC, pAC->IoBase, SK_INIT_IO);
2676 SkAddrInit( pAC, pAC->IoBase, SK_INIT_IO);
2677 SkRlmtInit( pAC, pAC->IoBase, SK_INIT_IO);
2678 SkTimerInit(pAC, pAC->IoBase, SK_INIT_IO);
2681 ** tschilling:
2682 ** Speed and others are set back to default in level 1 init!
2684 GetConfiguration(pAC);
2686 SkGeInit( pAC, pAC->IoBase, SK_INIT_RUN);
2687 SkI2cInit( pAC, pAC->IoBase, SK_INIT_RUN);
2688 SkEventInit(pAC, pAC->IoBase, SK_INIT_RUN);
2689 SkPnmiInit( pAC, pAC->IoBase, SK_INIT_RUN);
2690 SkAddrInit( pAC, pAC->IoBase, SK_INIT_RUN);
2691 SkRlmtInit( pAC, pAC->IoBase, SK_INIT_RUN);
2692 SkTimerInit(pAC, pAC->IoBase, SK_INIT_RUN);
2695 ** clear and reinit the rx rings here
2697 for (i=0; i<pAC->GIni.GIMacsFound; i++) {
2698 ReceiveIrq(pAC, &pAC->RxPort[i], SK_TRUE);
2699 ClearRxRing(pAC, &pAC->RxPort[i]);
2700 FillRxRing(pAC, &pAC->RxPort[i]);
2703 ** Enable transmit descriptor polling
2705 SkGePollTxD(pAC, pAC->IoBase, i, SK_TRUE);
2706 FillRxRing(pAC, &pAC->RxPort[i]);
2709 SkGeYellowLED(pAC, pAC->IoBase, 1);
2710 SkDimEnableModerationIfNeeded(pAC);
2711 SkDimDisplayModerationSettings(pAC);
2713 netif_start_queue(pAC->dev[pNet->PortNr]);
2714 for (i=pAC->GIni.GIMacsFound-1; i>=0; i--) {
2715 spin_unlock(&pAC->TxPort[i][TX_PRIO_LOW].TxDesRingLock);
2719 ** Enable Interrupts again
2721 SK_OUT32(pAC->IoBase, B0_IMSK, pAC->GIni.GIValIrqMask);
2722 SK_OUT32(pAC->IoBase, B0_HWE_IMSK, IRQ_HWE_MASK);
2724 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_START, EvPara);
2725 SkEventDispatcher(pAC, pAC->IoBase);
2728 ** Notify RLMT about the changing and restarting one (or more) ports
2730 if ((pAC->GIni.GIMacsFound == 2 ) && (pAC->RlmtNets == 2)) {
2731 EvPara.Para32[0] = pAC->RlmtNets;
2732 EvPara.Para32[1] = -1;
2733 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_SET_NETS, EvPara);
2734 EvPara.Para32[0] = pNet->PortNr;
2735 EvPara.Para32[1] = -1;
2736 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_START, EvPara);
2738 if (netif_running(pOtherDev)) {
2739 DEV_NET *pOtherNet = netdev_priv(pOtherDev);
2740 EvPara.Para32[0] = pOtherNet->PortNr;
2741 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_START, EvPara);
2743 } else {
2744 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_START, EvPara);
2747 SkEventDispatcher(pAC, pAC->IoBase);
2748 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
2751 ** While testing this driver with latest kernel 2.5 (2.5.70), it
2752 ** seems as if upper layers have a problem to handle a successful
2753 ** return value of '0'. If such a zero is returned, the complete
2754 ** system hangs for several minutes (!), which is in acceptable.
2756 ** Currently it is not clear, what the exact reason for this problem
2757 ** is. The implemented workaround for 2.5 is to return the desired
2758 ** new MTU size if all needed changes for the new MTU size where
2759 ** performed. In kernels 2.2 and 2.4, a zero value is returned,
2760 ** which indicates the successful change of the mtu-size.
2762 return NewMtu;
2764 } /* SkGeChangeMtu */
2767 /*****************************************************************************
2769 * SkGeStats - return ethernet device statistics
2771 * Description:
2772 * This function return statistic data about the ethernet device
2773 * to the operating system.
2775 * Returns:
2776 * pointer to the statistic structure.
2778 static struct net_device_stats *SkGeStats(struct SK_NET_DEVICE *dev)
2780 DEV_NET *pNet = netdev_priv(dev);
2781 SK_AC *pAC = pNet->pAC;
2782 SK_PNMI_STRUCT_DATA *pPnmiStruct; /* structure for all Pnmi-Data */
2783 SK_PNMI_STAT *pPnmiStat; /* pointer to virtual XMAC stat. data */
2784 SK_PNMI_CONF *pPnmiConf; /* pointer to virtual link config. */
2785 unsigned int Size; /* size of pnmi struct */
2786 unsigned long Flags; /* for spin lock */
2788 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2789 ("SkGeStats starts now...\n"));
2790 pPnmiStruct = &pAC->PnmiStruct;
2792 #ifdef SK_DIAG_SUPPORT
2793 if ((pAC->DiagModeActive == DIAG_NOTACTIVE) &&
2794 (pAC->BoardLevel == SK_INIT_RUN)) {
2795 #endif
2796 SK_MEMSET(pPnmiStruct, 0, sizeof(SK_PNMI_STRUCT_DATA));
2797 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
2798 Size = SK_PNMI_STRUCT_SIZE;
2799 SkPnmiGetStruct(pAC, pAC->IoBase, pPnmiStruct, &Size, pNet->NetNr);
2800 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
2801 #ifdef SK_DIAG_SUPPORT
2803 #endif
2805 pPnmiStat = &pPnmiStruct->Stat[0];
2806 pPnmiConf = &pPnmiStruct->Conf[0];
2808 pAC->stats.rx_packets = (SK_U32) pPnmiStruct->RxDeliveredCts & 0xFFFFFFFF;
2809 pAC->stats.tx_packets = (SK_U32) pPnmiStat->StatTxOkCts & 0xFFFFFFFF;
2810 pAC->stats.rx_bytes = (SK_U32) pPnmiStruct->RxOctetsDeliveredCts;
2811 pAC->stats.tx_bytes = (SK_U32) pPnmiStat->StatTxOctetsOkCts;
2813 if (dev->mtu <= 1500) {
2814 pAC->stats.rx_errors = (SK_U32) pPnmiStruct->InErrorsCts & 0xFFFFFFFF;
2815 } else {
2816 pAC->stats.rx_errors = (SK_U32) ((pPnmiStruct->InErrorsCts -
2817 pPnmiStat->StatRxTooLongCts) & 0xFFFFFFFF);
2821 if (pAC->GIni.GP[0].PhyType == SK_PHY_XMAC && pAC->HWRevision < 12)
2822 pAC->stats.rx_errors = pAC->stats.rx_errors - pPnmiStat->StatRxShortsCts;
2824 pAC->stats.tx_errors = (SK_U32) pPnmiStat->StatTxSingleCollisionCts & 0xFFFFFFFF;
2825 pAC->stats.rx_dropped = (SK_U32) pPnmiStruct->RxNoBufCts & 0xFFFFFFFF;
2826 pAC->stats.tx_dropped = (SK_U32) pPnmiStruct->TxNoBufCts & 0xFFFFFFFF;
2827 pAC->stats.multicast = (SK_U32) pPnmiStat->StatRxMulticastOkCts & 0xFFFFFFFF;
2828 pAC->stats.collisions = (SK_U32) pPnmiStat->StatTxSingleCollisionCts & 0xFFFFFFFF;
2830 /* detailed rx_errors: */
2831 pAC->stats.rx_length_errors = (SK_U32) pPnmiStat->StatRxRuntCts & 0xFFFFFFFF;
2832 pAC->stats.rx_over_errors = (SK_U32) pPnmiStat->StatRxFifoOverflowCts & 0xFFFFFFFF;
2833 pAC->stats.rx_crc_errors = (SK_U32) pPnmiStat->StatRxFcsCts & 0xFFFFFFFF;
2834 pAC->stats.rx_frame_errors = (SK_U32) pPnmiStat->StatRxFramingCts & 0xFFFFFFFF;
2835 pAC->stats.rx_fifo_errors = (SK_U32) pPnmiStat->StatRxFifoOverflowCts & 0xFFFFFFFF;
2836 pAC->stats.rx_missed_errors = (SK_U32) pPnmiStat->StatRxMissedCts & 0xFFFFFFFF;
2838 /* detailed tx_errors */
2839 pAC->stats.tx_aborted_errors = (SK_U32) 0;
2840 pAC->stats.tx_carrier_errors = (SK_U32) pPnmiStat->StatTxCarrierCts & 0xFFFFFFFF;
2841 pAC->stats.tx_fifo_errors = (SK_U32) pPnmiStat->StatTxFifoUnderrunCts & 0xFFFFFFFF;
2842 pAC->stats.tx_heartbeat_errors = (SK_U32) pPnmiStat->StatTxCarrierCts & 0xFFFFFFFF;
2843 pAC->stats.tx_window_errors = (SK_U32) 0;
2845 return(&pAC->stats);
2846 } /* SkGeStats */
2849 * Basic MII register access
2851 static int SkGeMiiIoctl(struct net_device *dev,
2852 struct mii_ioctl_data *data, int cmd)
2854 DEV_NET *pNet = netdev_priv(dev);
2855 SK_AC *pAC = pNet->pAC;
2856 SK_IOC IoC = pAC->IoBase;
2857 int Port = pNet->PortNr;
2858 SK_GEPORT *pPrt = &pAC->GIni.GP[Port];
2859 unsigned long Flags;
2860 int err = 0;
2861 int reg = data->reg_num & 0x1f;
2862 SK_U16 val = data->val_in;
2864 if (!netif_running(dev))
2865 return -ENODEV; /* Phy still in reset */
2867 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
2868 switch(cmd) {
2869 case SIOCGMIIPHY:
2870 data->phy_id = pPrt->PhyAddr;
2872 /* fallthru */
2873 case SIOCGMIIREG:
2874 if (pAC->GIni.GIGenesis)
2875 SkXmPhyRead(pAC, IoC, Port, reg, &val);
2876 else
2877 SkGmPhyRead(pAC, IoC, Port, reg, &val);
2879 data->val_out = val;
2880 break;
2882 case SIOCSMIIREG:
2883 if (!capable(CAP_NET_ADMIN))
2884 err = -EPERM;
2886 else if (pAC->GIni.GIGenesis)
2887 SkXmPhyWrite(pAC, IoC, Port, reg, val);
2888 else
2889 SkGmPhyWrite(pAC, IoC, Port, reg, val);
2890 break;
2891 default:
2892 err = -EOPNOTSUPP;
2894 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
2895 return err;
2899 /*****************************************************************************
2901 * SkGeIoctl - IO-control function
2903 * Description:
2904 * This function is called if an ioctl is issued on the device.
2905 * There are three subfunction for reading, writing and test-writing
2906 * the private MIB data structure (useful for SysKonnect-internal tools).
2908 * Returns:
2909 * 0, if everything is ok
2910 * !=0, on error
2912 static int SkGeIoctl(struct SK_NET_DEVICE *dev, struct ifreq *rq, int cmd)
2914 DEV_NET *pNet;
2915 SK_AC *pAC;
2916 void *pMemBuf;
2917 struct pci_dev *pdev = NULL;
2918 SK_GE_IOCTL Ioctl;
2919 unsigned int Err = 0;
2920 int Size = 0;
2921 int Ret = 0;
2922 unsigned int Length = 0;
2923 int HeaderLength = sizeof(SK_U32) + sizeof(SK_U32);
2925 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2926 ("SkGeIoctl starts now...\n"));
2928 pNet = netdev_priv(dev);
2929 pAC = pNet->pAC;
2931 if (cmd == SIOCGMIIPHY || cmd == SIOCSMIIREG || cmd == SIOCGMIIREG)
2932 return SkGeMiiIoctl(dev, if_mii(rq), cmd);
2934 if(copy_from_user(&Ioctl, rq->ifr_data, sizeof(SK_GE_IOCTL))) {
2935 return -EFAULT;
2938 switch(cmd) {
2939 case SK_IOCTL_SETMIB:
2940 case SK_IOCTL_PRESETMIB:
2941 if (!capable(CAP_NET_ADMIN)) return -EPERM;
2942 case SK_IOCTL_GETMIB:
2943 if(copy_from_user(&pAC->PnmiStruct, Ioctl.pData,
2944 Ioctl.Len<sizeof(pAC->PnmiStruct)?
2945 Ioctl.Len : sizeof(pAC->PnmiStruct))) {
2946 return -EFAULT;
2948 Size = SkGeIocMib(pNet, Ioctl.Len, cmd);
2949 if(copy_to_user(Ioctl.pData, &pAC->PnmiStruct,
2950 Ioctl.Len<Size? Ioctl.Len : Size)) {
2951 return -EFAULT;
2953 Ioctl.Len = Size;
2954 if(copy_to_user(rq->ifr_data, &Ioctl, sizeof(SK_GE_IOCTL))) {
2955 return -EFAULT;
2957 break;
2958 case SK_IOCTL_GEN:
2959 if (Ioctl.Len < (sizeof(pAC->PnmiStruct) + HeaderLength)) {
2960 Length = Ioctl.Len;
2961 } else {
2962 Length = sizeof(pAC->PnmiStruct) + HeaderLength;
2964 if (NULL == (pMemBuf = kmalloc(Length, GFP_KERNEL))) {
2965 return -ENOMEM;
2967 if(copy_from_user(pMemBuf, Ioctl.pData, Length)) {
2968 Err = -EFAULT;
2969 goto fault_gen;
2971 if ((Ret = SkPnmiGenIoctl(pAC, pAC->IoBase, pMemBuf, &Length, 0)) < 0) {
2972 Err = -EFAULT;
2973 goto fault_gen;
2975 if(copy_to_user(Ioctl.pData, pMemBuf, Length) ) {
2976 Err = -EFAULT;
2977 goto fault_gen;
2979 Ioctl.Len = Length;
2980 if(copy_to_user(rq->ifr_data, &Ioctl, sizeof(SK_GE_IOCTL))) {
2981 Err = -EFAULT;
2982 goto fault_gen;
2984 fault_gen:
2985 kfree(pMemBuf); /* cleanup everything */
2986 break;
2987 #ifdef SK_DIAG_SUPPORT
2988 case SK_IOCTL_DIAG:
2989 if (!capable(CAP_NET_ADMIN)) return -EPERM;
2990 if (Ioctl.Len < (sizeof(pAC->PnmiStruct) + HeaderLength)) {
2991 Length = Ioctl.Len;
2992 } else {
2993 Length = sizeof(pAC->PnmiStruct) + HeaderLength;
2995 if (NULL == (pMemBuf = kmalloc(Length, GFP_KERNEL))) {
2996 return -ENOMEM;
2998 if(copy_from_user(pMemBuf, Ioctl.pData, Length)) {
2999 Err = -EFAULT;
3000 goto fault_diag;
3002 pdev = pAC->PciDev;
3003 Length = 3 * sizeof(SK_U32); /* Error, Bus and Device */
3005 ** While coding this new IOCTL interface, only a few lines of code
3006 ** are to to be added. Therefore no dedicated function has been
3007 ** added. If more functionality is added, a separate function
3008 ** should be used...
3010 * ((SK_U32 *)pMemBuf) = 0;
3011 * ((SK_U32 *)pMemBuf + 1) = pdev->bus->number;
3012 * ((SK_U32 *)pMemBuf + 2) = ParseDeviceNbrFromSlotName(pci_name(pdev));
3013 if(copy_to_user(Ioctl.pData, pMemBuf, Length) ) {
3014 Err = -EFAULT;
3015 goto fault_diag;
3017 Ioctl.Len = Length;
3018 if(copy_to_user(rq->ifr_data, &Ioctl, sizeof(SK_GE_IOCTL))) {
3019 Err = -EFAULT;
3020 goto fault_diag;
3022 fault_diag:
3023 kfree(pMemBuf); /* cleanup everything */
3024 break;
3025 #endif
3026 default:
3027 Err = -EOPNOTSUPP;
3030 return(Err);
3032 } /* SkGeIoctl */
3035 /*****************************************************************************
3037 * SkGeIocMib - handle a GetMib, SetMib- or PresetMib-ioctl message
3039 * Description:
3040 * This function reads/writes the MIB data using PNMI (Private Network
3041 * Management Interface).
3042 * The destination for the data must be provided with the
3043 * ioctl call and is given to the driver in the form of
3044 * a user space address.
3045 * Copying from the user-provided data area into kernel messages
3046 * and back is done by copy_from_user and copy_to_user calls in
3047 * SkGeIoctl.
3049 * Returns:
3050 * returned size from PNMI call
3052 static int SkGeIocMib(
3053 DEV_NET *pNet, /* pointer to the adapter context */
3054 unsigned int Size, /* length of ioctl data */
3055 int mode) /* flag for set/preset */
3057 unsigned long Flags; /* for spin lock */
3058 SK_AC *pAC;
3060 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
3061 ("SkGeIocMib starts now...\n"));
3062 pAC = pNet->pAC;
3063 /* access MIB */
3064 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
3065 switch(mode) {
3066 case SK_IOCTL_GETMIB:
3067 SkPnmiGetStruct(pAC, pAC->IoBase, &pAC->PnmiStruct, &Size,
3068 pNet->NetNr);
3069 break;
3070 case SK_IOCTL_PRESETMIB:
3071 SkPnmiPreSetStruct(pAC, pAC->IoBase, &pAC->PnmiStruct, &Size,
3072 pNet->NetNr);
3073 break;
3074 case SK_IOCTL_SETMIB:
3075 SkPnmiSetStruct(pAC, pAC->IoBase, &pAC->PnmiStruct, &Size,
3076 pNet->NetNr);
3077 break;
3078 default:
3079 break;
3081 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
3082 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
3083 ("MIB data access succeeded\n"));
3084 return (Size);
3085 } /* SkGeIocMib */
3088 /*****************************************************************************
3090 * GetConfiguration - read configuration information
3092 * Description:
3093 * This function reads per-adapter configuration information from
3094 * the options provided on the command line.
3096 * Returns:
3097 * none
3099 static void GetConfiguration(
3100 SK_AC *pAC) /* pointer to the adapter context structure */
3102 SK_I32 Port; /* preferred port */
3103 SK_BOOL AutoSet;
3104 SK_BOOL DupSet;
3105 int LinkSpeed = SK_LSPEED_AUTO; /* Link speed */
3106 int AutoNeg = 1; /* autoneg off (0) or on (1) */
3107 int DuplexCap = 0; /* 0=both,1=full,2=half */
3108 int FlowCtrl = SK_FLOW_MODE_SYM_OR_REM; /* FlowControl */
3109 int MSMode = SK_MS_MODE_AUTO; /* master/slave mode */
3111 SK_BOOL IsConTypeDefined = SK_TRUE;
3112 SK_BOOL IsLinkSpeedDefined = SK_TRUE;
3113 SK_BOOL IsFlowCtrlDefined = SK_TRUE;
3114 SK_BOOL IsRoleDefined = SK_TRUE;
3115 SK_BOOL IsModeDefined = SK_TRUE;
3117 * The two parameters AutoNeg. and DuplexCap. map to one configuration
3118 * parameter. The mapping is described by this table:
3119 * DuplexCap -> | both | full | half |
3120 * AutoNeg | | | |
3121 * -----------------------------------------------------------------
3122 * Off | illegal | Full | Half |
3123 * -----------------------------------------------------------------
3124 * On | AutoBoth | AutoFull | AutoHalf |
3125 * -----------------------------------------------------------------
3126 * Sense | AutoSense | AutoSense | AutoSense |
3128 int Capabilities[3][3] =
3129 { { -1, SK_LMODE_FULL , SK_LMODE_HALF },
3130 {SK_LMODE_AUTOBOTH , SK_LMODE_AUTOFULL , SK_LMODE_AUTOHALF },
3131 {SK_LMODE_AUTOSENSE, SK_LMODE_AUTOSENSE, SK_LMODE_AUTOSENSE} };
3133 #define DC_BOTH 0
3134 #define DC_FULL 1
3135 #define DC_HALF 2
3136 #define AN_OFF 0
3137 #define AN_ON 1
3138 #define AN_SENS 2
3139 #define M_CurrPort pAC->GIni.GP[Port]
3143 ** Set the default values first for both ports!
3145 for (Port = 0; Port < SK_MAX_MACS; Port++) {
3146 M_CurrPort.PLinkModeConf = Capabilities[AN_ON][DC_BOTH];
3147 M_CurrPort.PFlowCtrlMode = SK_FLOW_MODE_SYM_OR_REM;
3148 M_CurrPort.PMSMode = SK_MS_MODE_AUTO;
3149 M_CurrPort.PLinkSpeed = SK_LSPEED_AUTO;
3153 ** Check merged parameter ConType. If it has not been used,
3154 ** verify any other parameter (e.g. AutoNeg) and use default values.
3156 ** Stating both ConType and other lowlevel link parameters is also
3157 ** possible. If this is the case, the passed ConType-parameter is
3158 ** overwritten by the lowlevel link parameter.
3160 ** The following settings are used for a merged ConType-parameter:
3162 ** ConType DupCap AutoNeg FlowCtrl Role Speed
3163 ** ------- ------ ------- -------- ---------- -----
3164 ** Auto Both On SymOrRem Auto Auto
3165 ** 100FD Full Off None <ignored> 100
3166 ** 100HD Half Off None <ignored> 100
3167 ** 10FD Full Off None <ignored> 10
3168 ** 10HD Half Off None <ignored> 10
3170 ** This ConType parameter is used for all ports of the adapter!
3172 if ( (ConType != NULL) &&
3173 (pAC->Index < SK_MAX_CARD_PARAM) &&
3174 (ConType[pAC->Index] != NULL) ) {
3176 /* Check chipset family */
3177 if ((!pAC->ChipsetType) &&
3178 (strcmp(ConType[pAC->Index],"Auto")!=0) &&
3179 (strcmp(ConType[pAC->Index],"")!=0)) {
3180 /* Set the speed parameter back */
3181 printk("sk98lin: Illegal value \"%s\" "
3182 "for ConType."
3183 " Using Auto.\n",
3184 ConType[pAC->Index]);
3186 sprintf(ConType[pAC->Index], "Auto");
3189 if (strcmp(ConType[pAC->Index],"")==0) {
3190 IsConTypeDefined = SK_FALSE; /* No ConType defined */
3191 } else if (strcmp(ConType[pAC->Index],"Auto")==0) {
3192 for (Port = 0; Port < SK_MAX_MACS; Port++) {
3193 M_CurrPort.PLinkModeConf = Capabilities[AN_ON][DC_BOTH];
3194 M_CurrPort.PFlowCtrlMode = SK_FLOW_MODE_SYM_OR_REM;
3195 M_CurrPort.PMSMode = SK_MS_MODE_AUTO;
3196 M_CurrPort.PLinkSpeed = SK_LSPEED_AUTO;
3198 } else if (strcmp(ConType[pAC->Index],"100FD")==0) {
3199 for (Port = 0; Port < SK_MAX_MACS; Port++) {
3200 M_CurrPort.PLinkModeConf = Capabilities[AN_OFF][DC_FULL];
3201 M_CurrPort.PFlowCtrlMode = SK_FLOW_MODE_NONE;
3202 M_CurrPort.PMSMode = SK_MS_MODE_AUTO;
3203 M_CurrPort.PLinkSpeed = SK_LSPEED_100MBPS;
3205 } else if (strcmp(ConType[pAC->Index],"100HD")==0) {
3206 for (Port = 0; Port < SK_MAX_MACS; Port++) {
3207 M_CurrPort.PLinkModeConf = Capabilities[AN_OFF][DC_HALF];
3208 M_CurrPort.PFlowCtrlMode = SK_FLOW_MODE_NONE;
3209 M_CurrPort.PMSMode = SK_MS_MODE_AUTO;
3210 M_CurrPort.PLinkSpeed = SK_LSPEED_100MBPS;
3212 } else if (strcmp(ConType[pAC->Index],"10FD")==0) {
3213 for (Port = 0; Port < SK_MAX_MACS; Port++) {
3214 M_CurrPort.PLinkModeConf = Capabilities[AN_OFF][DC_FULL];
3215 M_CurrPort.PFlowCtrlMode = SK_FLOW_MODE_NONE;
3216 M_CurrPort.PMSMode = SK_MS_MODE_AUTO;
3217 M_CurrPort.PLinkSpeed = SK_LSPEED_10MBPS;
3219 } else if (strcmp(ConType[pAC->Index],"10HD")==0) {
3220 for (Port = 0; Port < SK_MAX_MACS; Port++) {
3221 M_CurrPort.PLinkModeConf = Capabilities[AN_OFF][DC_HALF];
3222 M_CurrPort.PFlowCtrlMode = SK_FLOW_MODE_NONE;
3223 M_CurrPort.PMSMode = SK_MS_MODE_AUTO;
3224 M_CurrPort.PLinkSpeed = SK_LSPEED_10MBPS;
3226 } else {
3227 printk("sk98lin: Illegal value \"%s\" for ConType\n",
3228 ConType[pAC->Index]);
3229 IsConTypeDefined = SK_FALSE; /* Wrong ConType defined */
3231 } else {
3232 IsConTypeDefined = SK_FALSE; /* No ConType defined */
3236 ** Parse any parameter settings for port A:
3237 ** a) any LinkSpeed stated?
3239 if (Speed_A != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3240 Speed_A[pAC->Index] != NULL) {
3241 if (strcmp(Speed_A[pAC->Index],"")==0) {
3242 IsLinkSpeedDefined = SK_FALSE;
3243 } else if (strcmp(Speed_A[pAC->Index],"Auto")==0) {
3244 LinkSpeed = SK_LSPEED_AUTO;
3245 } else if (strcmp(Speed_A[pAC->Index],"10")==0) {
3246 LinkSpeed = SK_LSPEED_10MBPS;
3247 } else if (strcmp(Speed_A[pAC->Index],"100")==0) {
3248 LinkSpeed = SK_LSPEED_100MBPS;
3249 } else if (strcmp(Speed_A[pAC->Index],"1000")==0) {
3250 LinkSpeed = SK_LSPEED_1000MBPS;
3251 } else {
3252 printk("sk98lin: Illegal value \"%s\" for Speed_A\n",
3253 Speed_A[pAC->Index]);
3254 IsLinkSpeedDefined = SK_FALSE;
3256 } else {
3257 IsLinkSpeedDefined = SK_FALSE;
3261 ** Check speed parameter:
3262 ** Only copper type adapter and GE V2 cards
3264 if (((!pAC->ChipsetType) || (pAC->GIni.GICopperType != SK_TRUE)) &&
3265 ((LinkSpeed != SK_LSPEED_AUTO) &&
3266 (LinkSpeed != SK_LSPEED_1000MBPS))) {
3267 printk("sk98lin: Illegal value for Speed_A. "
3268 "Not a copper card or GE V2 card\n Using "
3269 "speed 1000\n");
3270 LinkSpeed = SK_LSPEED_1000MBPS;
3274 ** Decide whether to set new config value if somethig valid has
3275 ** been received.
3277 if (IsLinkSpeedDefined) {
3278 pAC->GIni.GP[0].PLinkSpeed = LinkSpeed;
3282 ** b) Any Autonegotiation and DuplexCapabilities set?
3283 ** Please note that both belong together...
3285 AutoNeg = AN_ON; /* tschilling: Default: Autonegotiation on! */
3286 AutoSet = SK_FALSE;
3287 if (AutoNeg_A != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3288 AutoNeg_A[pAC->Index] != NULL) {
3289 AutoSet = SK_TRUE;
3290 if (strcmp(AutoNeg_A[pAC->Index],"")==0) {
3291 AutoSet = SK_FALSE;
3292 } else if (strcmp(AutoNeg_A[pAC->Index],"On")==0) {
3293 AutoNeg = AN_ON;
3294 } else if (strcmp(AutoNeg_A[pAC->Index],"Off")==0) {
3295 AutoNeg = AN_OFF;
3296 } else if (strcmp(AutoNeg_A[pAC->Index],"Sense")==0) {
3297 AutoNeg = AN_SENS;
3298 } else {
3299 printk("sk98lin: Illegal value \"%s\" for AutoNeg_A\n",
3300 AutoNeg_A[pAC->Index]);
3304 DuplexCap = DC_BOTH;
3305 DupSet = SK_FALSE;
3306 if (DupCap_A != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3307 DupCap_A[pAC->Index] != NULL) {
3308 DupSet = SK_TRUE;
3309 if (strcmp(DupCap_A[pAC->Index],"")==0) {
3310 DupSet = SK_FALSE;
3311 } else if (strcmp(DupCap_A[pAC->Index],"Both")==0) {
3312 DuplexCap = DC_BOTH;
3313 } else if (strcmp(DupCap_A[pAC->Index],"Full")==0) {
3314 DuplexCap = DC_FULL;
3315 } else if (strcmp(DupCap_A[pAC->Index],"Half")==0) {
3316 DuplexCap = DC_HALF;
3317 } else {
3318 printk("sk98lin: Illegal value \"%s\" for DupCap_A\n",
3319 DupCap_A[pAC->Index]);
3324 ** Check for illegal combinations
3326 if ((LinkSpeed == SK_LSPEED_1000MBPS) &&
3327 ((DuplexCap == SK_LMODE_STAT_AUTOHALF) ||
3328 (DuplexCap == SK_LMODE_STAT_HALF)) &&
3329 (pAC->ChipsetType)) {
3330 printk("sk98lin: Half Duplex not possible with Gigabit speed!\n"
3331 " Using Full Duplex.\n");
3332 DuplexCap = DC_FULL;
3335 if ( AutoSet && AutoNeg==AN_SENS && DupSet) {
3336 printk("sk98lin, Port A: DuplexCapabilities"
3337 " ignored using Sense mode\n");
3340 if (AutoSet && AutoNeg==AN_OFF && DupSet && DuplexCap==DC_BOTH){
3341 printk("sk98lin: Port A: Illegal combination"
3342 " of values AutoNeg. and DuplexCap.\n Using "
3343 "Full Duplex\n");
3344 DuplexCap = DC_FULL;
3347 if (AutoSet && AutoNeg==AN_OFF && !DupSet) {
3348 DuplexCap = DC_FULL;
3351 if (!AutoSet && DupSet) {
3352 printk("sk98lin: Port A: Duplex setting not"
3353 " possible in\n default AutoNegotiation mode"
3354 " (Sense).\n Using AutoNegotiation On\n");
3355 AutoNeg = AN_ON;
3359 ** set the desired mode
3361 if (AutoSet || DupSet) {
3362 pAC->GIni.GP[0].PLinkModeConf = Capabilities[AutoNeg][DuplexCap];
3366 ** c) Any Flowcontrol-parameter set?
3368 if (FlowCtrl_A != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3369 FlowCtrl_A[pAC->Index] != NULL) {
3370 if (strcmp(FlowCtrl_A[pAC->Index],"") == 0) {
3371 IsFlowCtrlDefined = SK_FALSE;
3372 } else if (strcmp(FlowCtrl_A[pAC->Index],"SymOrRem") == 0) {
3373 FlowCtrl = SK_FLOW_MODE_SYM_OR_REM;
3374 } else if (strcmp(FlowCtrl_A[pAC->Index],"Sym")==0) {
3375 FlowCtrl = SK_FLOW_MODE_SYMMETRIC;
3376 } else if (strcmp(FlowCtrl_A[pAC->Index],"LocSend")==0) {
3377 FlowCtrl = SK_FLOW_MODE_LOC_SEND;
3378 } else if (strcmp(FlowCtrl_A[pAC->Index],"None")==0) {
3379 FlowCtrl = SK_FLOW_MODE_NONE;
3380 } else {
3381 printk("sk98lin: Illegal value \"%s\" for FlowCtrl_A\n",
3382 FlowCtrl_A[pAC->Index]);
3383 IsFlowCtrlDefined = SK_FALSE;
3385 } else {
3386 IsFlowCtrlDefined = SK_FALSE;
3389 if (IsFlowCtrlDefined) {
3390 if ((AutoNeg == AN_OFF) && (FlowCtrl != SK_FLOW_MODE_NONE)) {
3391 printk("sk98lin: Port A: FlowControl"
3392 " impossible without AutoNegotiation,"
3393 " disabled\n");
3394 FlowCtrl = SK_FLOW_MODE_NONE;
3396 pAC->GIni.GP[0].PFlowCtrlMode = FlowCtrl;
3400 ** d) What is with the RoleParameter?
3402 if (Role_A != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3403 Role_A[pAC->Index] != NULL) {
3404 if (strcmp(Role_A[pAC->Index],"")==0) {
3405 IsRoleDefined = SK_FALSE;
3406 } else if (strcmp(Role_A[pAC->Index],"Auto")==0) {
3407 MSMode = SK_MS_MODE_AUTO;
3408 } else if (strcmp(Role_A[pAC->Index],"Master")==0) {
3409 MSMode = SK_MS_MODE_MASTER;
3410 } else if (strcmp(Role_A[pAC->Index],"Slave")==0) {
3411 MSMode = SK_MS_MODE_SLAVE;
3412 } else {
3413 printk("sk98lin: Illegal value \"%s\" for Role_A\n",
3414 Role_A[pAC->Index]);
3415 IsRoleDefined = SK_FALSE;
3417 } else {
3418 IsRoleDefined = SK_FALSE;
3421 if (IsRoleDefined == SK_TRUE) {
3422 pAC->GIni.GP[0].PMSMode = MSMode;
3428 ** Parse any parameter settings for port B:
3429 ** a) any LinkSpeed stated?
3431 IsConTypeDefined = SK_TRUE;
3432 IsLinkSpeedDefined = SK_TRUE;
3433 IsFlowCtrlDefined = SK_TRUE;
3434 IsModeDefined = SK_TRUE;
3436 if (Speed_B != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3437 Speed_B[pAC->Index] != NULL) {
3438 if (strcmp(Speed_B[pAC->Index],"")==0) {
3439 IsLinkSpeedDefined = SK_FALSE;
3440 } else if (strcmp(Speed_B[pAC->Index],"Auto")==0) {
3441 LinkSpeed = SK_LSPEED_AUTO;
3442 } else if (strcmp(Speed_B[pAC->Index],"10")==0) {
3443 LinkSpeed = SK_LSPEED_10MBPS;
3444 } else if (strcmp(Speed_B[pAC->Index],"100")==0) {
3445 LinkSpeed = SK_LSPEED_100MBPS;
3446 } else if (strcmp(Speed_B[pAC->Index],"1000")==0) {
3447 LinkSpeed = SK_LSPEED_1000MBPS;
3448 } else {
3449 printk("sk98lin: Illegal value \"%s\" for Speed_B\n",
3450 Speed_B[pAC->Index]);
3451 IsLinkSpeedDefined = SK_FALSE;
3453 } else {
3454 IsLinkSpeedDefined = SK_FALSE;
3458 ** Check speed parameter:
3459 ** Only copper type adapter and GE V2 cards
3461 if (((!pAC->ChipsetType) || (pAC->GIni.GICopperType != SK_TRUE)) &&
3462 ((LinkSpeed != SK_LSPEED_AUTO) &&
3463 (LinkSpeed != SK_LSPEED_1000MBPS))) {
3464 printk("sk98lin: Illegal value for Speed_B. "
3465 "Not a copper card or GE V2 card\n Using "
3466 "speed 1000\n");
3467 LinkSpeed = SK_LSPEED_1000MBPS;
3471 ** Decide whether to set new config value if somethig valid has
3472 ** been received.
3474 if (IsLinkSpeedDefined) {
3475 pAC->GIni.GP[1].PLinkSpeed = LinkSpeed;
3479 ** b) Any Autonegotiation and DuplexCapabilities set?
3480 ** Please note that both belong together...
3482 AutoNeg = AN_SENS; /* default: do auto Sense */
3483 AutoSet = SK_FALSE;
3484 if (AutoNeg_B != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3485 AutoNeg_B[pAC->Index] != NULL) {
3486 AutoSet = SK_TRUE;
3487 if (strcmp(AutoNeg_B[pAC->Index],"")==0) {
3488 AutoSet = SK_FALSE;
3489 } else if (strcmp(AutoNeg_B[pAC->Index],"On")==0) {
3490 AutoNeg = AN_ON;
3491 } else if (strcmp(AutoNeg_B[pAC->Index],"Off")==0) {
3492 AutoNeg = AN_OFF;
3493 } else if (strcmp(AutoNeg_B[pAC->Index],"Sense")==0) {
3494 AutoNeg = AN_SENS;
3495 } else {
3496 printk("sk98lin: Illegal value \"%s\" for AutoNeg_B\n",
3497 AutoNeg_B[pAC->Index]);
3501 DuplexCap = DC_BOTH;
3502 DupSet = SK_FALSE;
3503 if (DupCap_B != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3504 DupCap_B[pAC->Index] != NULL) {
3505 DupSet = SK_TRUE;
3506 if (strcmp(DupCap_B[pAC->Index],"")==0) {
3507 DupSet = SK_FALSE;
3508 } else if (strcmp(DupCap_B[pAC->Index],"Both")==0) {
3509 DuplexCap = DC_BOTH;
3510 } else if (strcmp(DupCap_B[pAC->Index],"Full")==0) {
3511 DuplexCap = DC_FULL;
3512 } else if (strcmp(DupCap_B[pAC->Index],"Half")==0) {
3513 DuplexCap = DC_HALF;
3514 } else {
3515 printk("sk98lin: Illegal value \"%s\" for DupCap_B\n",
3516 DupCap_B[pAC->Index]);
3522 ** Check for illegal combinations
3524 if ((LinkSpeed == SK_LSPEED_1000MBPS) &&
3525 ((DuplexCap == SK_LMODE_STAT_AUTOHALF) ||
3526 (DuplexCap == SK_LMODE_STAT_HALF)) &&
3527 (pAC->ChipsetType)) {
3528 printk("sk98lin: Half Duplex not possible with Gigabit speed!\n"
3529 " Using Full Duplex.\n");
3530 DuplexCap = DC_FULL;
3533 if (AutoSet && AutoNeg==AN_SENS && DupSet) {
3534 printk("sk98lin, Port B: DuplexCapabilities"
3535 " ignored using Sense mode\n");
3538 if (AutoSet && AutoNeg==AN_OFF && DupSet && DuplexCap==DC_BOTH){
3539 printk("sk98lin: Port B: Illegal combination"
3540 " of values AutoNeg. and DuplexCap.\n Using "
3541 "Full Duplex\n");
3542 DuplexCap = DC_FULL;
3545 if (AutoSet && AutoNeg==AN_OFF && !DupSet) {
3546 DuplexCap = DC_FULL;
3549 if (!AutoSet && DupSet) {
3550 printk("sk98lin: Port B: Duplex setting not"
3551 " possible in\n default AutoNegotiation mode"
3552 " (Sense).\n Using AutoNegotiation On\n");
3553 AutoNeg = AN_ON;
3557 ** set the desired mode
3559 if (AutoSet || DupSet) {
3560 pAC->GIni.GP[1].PLinkModeConf = Capabilities[AutoNeg][DuplexCap];
3564 ** c) Any FlowCtrl parameter set?
3566 if (FlowCtrl_B != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3567 FlowCtrl_B[pAC->Index] != NULL) {
3568 if (strcmp(FlowCtrl_B[pAC->Index],"") == 0) {
3569 IsFlowCtrlDefined = SK_FALSE;
3570 } else if (strcmp(FlowCtrl_B[pAC->Index],"SymOrRem") == 0) {
3571 FlowCtrl = SK_FLOW_MODE_SYM_OR_REM;
3572 } else if (strcmp(FlowCtrl_B[pAC->Index],"Sym")==0) {
3573 FlowCtrl = SK_FLOW_MODE_SYMMETRIC;
3574 } else if (strcmp(FlowCtrl_B[pAC->Index],"LocSend")==0) {
3575 FlowCtrl = SK_FLOW_MODE_LOC_SEND;
3576 } else if (strcmp(FlowCtrl_B[pAC->Index],"None")==0) {
3577 FlowCtrl = SK_FLOW_MODE_NONE;
3578 } else {
3579 printk("sk98lin: Illegal value \"%s\" for FlowCtrl_B\n",
3580 FlowCtrl_B[pAC->Index]);
3581 IsFlowCtrlDefined = SK_FALSE;
3583 } else {
3584 IsFlowCtrlDefined = SK_FALSE;
3587 if (IsFlowCtrlDefined) {
3588 if ((AutoNeg == AN_OFF) && (FlowCtrl != SK_FLOW_MODE_NONE)) {
3589 printk("sk98lin: Port B: FlowControl"
3590 " impossible without AutoNegotiation,"
3591 " disabled\n");
3592 FlowCtrl = SK_FLOW_MODE_NONE;
3594 pAC->GIni.GP[1].PFlowCtrlMode = FlowCtrl;
3598 ** d) What is the RoleParameter?
3600 if (Role_B != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3601 Role_B[pAC->Index] != NULL) {
3602 if (strcmp(Role_B[pAC->Index],"")==0) {
3603 IsRoleDefined = SK_FALSE;
3604 } else if (strcmp(Role_B[pAC->Index],"Auto")==0) {
3605 MSMode = SK_MS_MODE_AUTO;
3606 } else if (strcmp(Role_B[pAC->Index],"Master")==0) {
3607 MSMode = SK_MS_MODE_MASTER;
3608 } else if (strcmp(Role_B[pAC->Index],"Slave")==0) {
3609 MSMode = SK_MS_MODE_SLAVE;
3610 } else {
3611 printk("sk98lin: Illegal value \"%s\" for Role_B\n",
3612 Role_B[pAC->Index]);
3613 IsRoleDefined = SK_FALSE;
3615 } else {
3616 IsRoleDefined = SK_FALSE;
3619 if (IsRoleDefined) {
3620 pAC->GIni.GP[1].PMSMode = MSMode;
3624 ** Evaluate settings for both ports
3626 pAC->ActivePort = 0;
3627 if (PrefPort != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3628 PrefPort[pAC->Index] != NULL) {
3629 if (strcmp(PrefPort[pAC->Index],"") == 0) { /* Auto */
3630 pAC->ActivePort = 0;
3631 pAC->Rlmt.Net[0].Preference = -1; /* auto */
3632 pAC->Rlmt.Net[0].PrefPort = 0;
3633 } else if (strcmp(PrefPort[pAC->Index],"A") == 0) {
3635 ** do not set ActivePort here, thus a port
3636 ** switch is issued after net up.
3638 Port = 0;
3639 pAC->Rlmt.Net[0].Preference = Port;
3640 pAC->Rlmt.Net[0].PrefPort = Port;
3641 } else if (strcmp(PrefPort[pAC->Index],"B") == 0) {
3643 ** do not set ActivePort here, thus a port
3644 ** switch is issued after net up.
3646 if (pAC->GIni.GIMacsFound == 1) {
3647 printk("sk98lin: Illegal value \"B\" for PrefPort.\n"
3648 " Port B not available on single port adapters.\n");
3650 pAC->ActivePort = 0;
3651 pAC->Rlmt.Net[0].Preference = -1; /* auto */
3652 pAC->Rlmt.Net[0].PrefPort = 0;
3653 } else {
3654 Port = 1;
3655 pAC->Rlmt.Net[0].Preference = Port;
3656 pAC->Rlmt.Net[0].PrefPort = Port;
3658 } else {
3659 printk("sk98lin: Illegal value \"%s\" for PrefPort\n",
3660 PrefPort[pAC->Index]);
3664 pAC->RlmtNets = 1;
3666 if (RlmtMode != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3667 RlmtMode[pAC->Index] != NULL) {
3668 if (strcmp(RlmtMode[pAC->Index], "") == 0) {
3669 pAC->RlmtMode = 0;
3670 } else if (strcmp(RlmtMode[pAC->Index], "CheckLinkState") == 0) {
3671 pAC->RlmtMode = SK_RLMT_CHECK_LINK;
3672 } else if (strcmp(RlmtMode[pAC->Index], "CheckLocalPort") == 0) {
3673 pAC->RlmtMode = SK_RLMT_CHECK_LINK |
3674 SK_RLMT_CHECK_LOC_LINK;
3675 } else if (strcmp(RlmtMode[pAC->Index], "CheckSeg") == 0) {
3676 pAC->RlmtMode = SK_RLMT_CHECK_LINK |
3677 SK_RLMT_CHECK_LOC_LINK |
3678 SK_RLMT_CHECK_SEG;
3679 } else if ((strcmp(RlmtMode[pAC->Index], "DualNet") == 0) &&
3680 (pAC->GIni.GIMacsFound == 2)) {
3681 pAC->RlmtMode = SK_RLMT_CHECK_LINK;
3682 pAC->RlmtNets = 2;
3683 } else {
3684 printk("sk98lin: Illegal value \"%s\" for"
3685 " RlmtMode, using default\n",
3686 RlmtMode[pAC->Index]);
3687 pAC->RlmtMode = 0;
3689 } else {
3690 pAC->RlmtMode = 0;
3694 ** Check the interrupt moderation parameters
3696 if (Moderation[pAC->Index] != NULL) {
3697 if (strcmp(Moderation[pAC->Index], "") == 0) {
3698 pAC->DynIrqModInfo.IntModTypeSelect = C_INT_MOD_NONE;
3699 } else if (strcmp(Moderation[pAC->Index], "Static") == 0) {
3700 pAC->DynIrqModInfo.IntModTypeSelect = C_INT_MOD_STATIC;
3701 } else if (strcmp(Moderation[pAC->Index], "Dynamic") == 0) {
3702 pAC->DynIrqModInfo.IntModTypeSelect = C_INT_MOD_DYNAMIC;
3703 } else if (strcmp(Moderation[pAC->Index], "None") == 0) {
3704 pAC->DynIrqModInfo.IntModTypeSelect = C_INT_MOD_NONE;
3705 } else {
3706 printk("sk98lin: Illegal value \"%s\" for Moderation.\n"
3707 " Disable interrupt moderation.\n",
3708 Moderation[pAC->Index]);
3709 pAC->DynIrqModInfo.IntModTypeSelect = C_INT_MOD_NONE;
3711 } else {
3712 pAC->DynIrqModInfo.IntModTypeSelect = C_INT_MOD_NONE;
3715 if (Stats[pAC->Index] != NULL) {
3716 if (strcmp(Stats[pAC->Index], "Yes") == 0) {
3717 pAC->DynIrqModInfo.DisplayStats = SK_TRUE;
3718 } else {
3719 pAC->DynIrqModInfo.DisplayStats = SK_FALSE;
3721 } else {
3722 pAC->DynIrqModInfo.DisplayStats = SK_FALSE;
3725 if (ModerationMask[pAC->Index] != NULL) {
3726 if (strcmp(ModerationMask[pAC->Index], "Rx") == 0) {
3727 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_ONLY;
3728 } else if (strcmp(ModerationMask[pAC->Index], "Tx") == 0) {
3729 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_TX_ONLY;
3730 } else if (strcmp(ModerationMask[pAC->Index], "Sp") == 0) {
3731 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_SP_ONLY;
3732 } else if (strcmp(ModerationMask[pAC->Index], "RxSp") == 0) {
3733 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_SP_RX;
3734 } else if (strcmp(ModerationMask[pAC->Index], "SpRx") == 0) {
3735 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_SP_RX;
3736 } else if (strcmp(ModerationMask[pAC->Index], "RxTx") == 0) {
3737 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_TX_RX;
3738 } else if (strcmp(ModerationMask[pAC->Index], "TxRx") == 0) {
3739 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_TX_RX;
3740 } else if (strcmp(ModerationMask[pAC->Index], "TxSp") == 0) {
3741 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_SP_TX;
3742 } else if (strcmp(ModerationMask[pAC->Index], "SpTx") == 0) {
3743 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_SP_TX;
3744 } else if (strcmp(ModerationMask[pAC->Index], "RxTxSp") == 0) {
3745 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_TX_SP;
3746 } else if (strcmp(ModerationMask[pAC->Index], "RxSpTx") == 0) {
3747 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_TX_SP;
3748 } else if (strcmp(ModerationMask[pAC->Index], "TxRxSp") == 0) {
3749 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_TX_SP;
3750 } else if (strcmp(ModerationMask[pAC->Index], "TxSpRx") == 0) {
3751 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_TX_SP;
3752 } else if (strcmp(ModerationMask[pAC->Index], "SpTxRx") == 0) {
3753 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_TX_SP;
3754 } else if (strcmp(ModerationMask[pAC->Index], "SpRxTx") == 0) {
3755 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_TX_SP;
3756 } else { /* some rubbish */
3757 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_ONLY;
3759 } else { /* operator has stated nothing */
3760 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_TX_RX;
3763 if (AutoSizing[pAC->Index] != NULL) {
3764 if (strcmp(AutoSizing[pAC->Index], "On") == 0) {
3765 pAC->DynIrqModInfo.AutoSizing = SK_FALSE;
3766 } else {
3767 pAC->DynIrqModInfo.AutoSizing = SK_FALSE;
3769 } else { /* operator has stated nothing */
3770 pAC->DynIrqModInfo.AutoSizing = SK_FALSE;
3773 if (IntsPerSec[pAC->Index] != 0) {
3774 if ((IntsPerSec[pAC->Index]< C_INT_MOD_IPS_LOWER_RANGE) ||
3775 (IntsPerSec[pAC->Index] > C_INT_MOD_IPS_UPPER_RANGE)) {
3776 printk("sk98lin: Illegal value \"%d\" for IntsPerSec. (Range: %d - %d)\n"
3777 " Using default value of %i.\n",
3778 IntsPerSec[pAC->Index],
3779 C_INT_MOD_IPS_LOWER_RANGE,
3780 C_INT_MOD_IPS_UPPER_RANGE,
3781 C_INTS_PER_SEC_DEFAULT);
3782 pAC->DynIrqModInfo.MaxModIntsPerSec = C_INTS_PER_SEC_DEFAULT;
3783 } else {
3784 pAC->DynIrqModInfo.MaxModIntsPerSec = IntsPerSec[pAC->Index];
3786 } else {
3787 pAC->DynIrqModInfo.MaxModIntsPerSec = C_INTS_PER_SEC_DEFAULT;
3791 ** Evaluate upper and lower moderation threshold
3793 pAC->DynIrqModInfo.MaxModIntsPerSecUpperLimit =
3794 pAC->DynIrqModInfo.MaxModIntsPerSec +
3795 (pAC->DynIrqModInfo.MaxModIntsPerSec / 2);
3797 pAC->DynIrqModInfo.MaxModIntsPerSecLowerLimit =
3798 pAC->DynIrqModInfo.MaxModIntsPerSec -
3799 (pAC->DynIrqModInfo.MaxModIntsPerSec / 2);
3801 pAC->DynIrqModInfo.PrevTimeVal = jiffies; /* initial value */
3804 } /* GetConfiguration */
3807 /*****************************************************************************
3809 * ProductStr - return a adapter identification string from vpd
3811 * Description:
3812 * This function reads the product name string from the vpd area
3813 * and puts it the field pAC->DeviceString.
3815 * Returns: N/A
3817 static inline int ProductStr(
3818 SK_AC *pAC, /* pointer to adapter context */
3819 char *DeviceStr, /* result string */
3820 int StrLen /* length of the string */
3823 char Keyword[] = VPD_NAME; /* vpd productname identifier */
3824 int ReturnCode; /* return code from vpd_read */
3825 unsigned long Flags;
3827 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
3828 ReturnCode = VpdRead(pAC, pAC->IoBase, Keyword, DeviceStr, &StrLen);
3829 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
3831 return ReturnCode;
3832 } /* ProductStr */
3834 /*****************************************************************************
3836 * StartDrvCleanupTimer - Start timer to check for descriptors which
3837 * might be placed in descriptor ring, but
3838 * havent been handled up to now
3840 * Description:
3841 * This function requests a HW-timer fo the Yukon card. The actions to
3842 * perform when this timer expires, are located in the SkDrvEvent().
3844 * Returns: N/A
3846 static void
3847 StartDrvCleanupTimer(SK_AC *pAC) {
3848 SK_EVPARA EventParam; /* Event struct for timer event */
3850 SK_MEMSET((char *) &EventParam, 0, sizeof(EventParam));
3851 EventParam.Para32[0] = SK_DRV_RX_CLEANUP_TIMER;
3852 SkTimerStart(pAC, pAC->IoBase, &pAC->DrvCleanupTimer,
3853 SK_DRV_RX_CLEANUP_TIMER_LENGTH,
3854 SKGE_DRV, SK_DRV_TIMER, EventParam);
3857 /*****************************************************************************
3859 * StopDrvCleanupTimer - Stop timer to check for descriptors
3861 * Description:
3862 * This function requests a HW-timer fo the Yukon card. The actions to
3863 * perform when this timer expires, are located in the SkDrvEvent().
3865 * Returns: N/A
3867 static void
3868 StopDrvCleanupTimer(SK_AC *pAC) {
3869 SkTimerStop(pAC, pAC->IoBase, &pAC->DrvCleanupTimer);
3870 SK_MEMSET((char *) &pAC->DrvCleanupTimer, 0, sizeof(SK_TIMER));
3873 /****************************************************************************/
3874 /* functions for common modules *********************************************/
3875 /****************************************************************************/
3878 /*****************************************************************************
3880 * SkDrvAllocRlmtMbuf - allocate an RLMT mbuf
3882 * Description:
3883 * This routine returns an RLMT mbuf or NULL. The RLMT Mbuf structure
3884 * is embedded into a socket buff data area.
3886 * Context:
3887 * runtime
3889 * Returns:
3890 * NULL or pointer to Mbuf.
3892 SK_MBUF *SkDrvAllocRlmtMbuf(
3893 SK_AC *pAC, /* pointer to adapter context */
3894 SK_IOC IoC, /* the IO-context */
3895 unsigned BufferSize) /* size of the requested buffer */
3897 SK_MBUF *pRlmtMbuf; /* pointer to a new rlmt-mbuf structure */
3898 struct sk_buff *pMsgBlock; /* pointer to a new message block */
3900 pMsgBlock = alloc_skb(BufferSize + sizeof(SK_MBUF), GFP_ATOMIC);
3901 if (pMsgBlock == NULL) {
3902 return (NULL);
3904 pRlmtMbuf = (SK_MBUF*) pMsgBlock->data;
3905 skb_reserve(pMsgBlock, sizeof(SK_MBUF));
3906 pRlmtMbuf->pNext = NULL;
3907 pRlmtMbuf->pOs = pMsgBlock;
3908 pRlmtMbuf->pData = pMsgBlock->data; /* Data buffer. */
3909 pRlmtMbuf->Size = BufferSize; /* Data buffer size. */
3910 pRlmtMbuf->Length = 0; /* Length of packet (<= Size). */
3911 return (pRlmtMbuf);
3913 } /* SkDrvAllocRlmtMbuf */
3916 /*****************************************************************************
3918 * SkDrvFreeRlmtMbuf - free an RLMT mbuf
3920 * Description:
3921 * This routine frees one or more RLMT mbuf(s).
3923 * Context:
3924 * runtime
3926 * Returns:
3927 * Nothing
3929 void SkDrvFreeRlmtMbuf(
3930 SK_AC *pAC, /* pointer to adapter context */
3931 SK_IOC IoC, /* the IO-context */
3932 SK_MBUF *pMbuf) /* size of the requested buffer */
3934 SK_MBUF *pFreeMbuf;
3935 SK_MBUF *pNextMbuf;
3937 pFreeMbuf = pMbuf;
3938 do {
3939 pNextMbuf = pFreeMbuf->pNext;
3940 DEV_KFREE_SKB_ANY(pFreeMbuf->pOs);
3941 pFreeMbuf = pNextMbuf;
3942 } while ( pFreeMbuf != NULL );
3943 } /* SkDrvFreeRlmtMbuf */
3946 /*****************************************************************************
3948 * SkOsGetTime - provide a time value
3950 * Description:
3951 * This routine provides a time value. The unit is 1/HZ (defined by Linux).
3952 * It is not used for absolute time, but only for time differences.
3955 * Returns:
3956 * Time value
3958 SK_U64 SkOsGetTime(SK_AC *pAC)
3960 SK_U64 PrivateJiffies;
3961 SkOsGetTimeCurrent(pAC, &PrivateJiffies);
3962 return PrivateJiffies;
3963 } /* SkOsGetTime */
3966 /*****************************************************************************
3968 * SkPciReadCfgDWord - read a 32 bit value from pci config space
3970 * Description:
3971 * This routine reads a 32 bit value from the pci configuration
3972 * space.
3974 * Returns:
3975 * 0 - indicate everything worked ok.
3976 * != 0 - error indication
3978 int SkPciReadCfgDWord(
3979 SK_AC *pAC, /* Adapter Control structure pointer */
3980 int PciAddr, /* PCI register address */
3981 SK_U32 *pVal) /* pointer to store the read value */
3983 pci_read_config_dword(pAC->PciDev, PciAddr, pVal);
3984 return(0);
3985 } /* SkPciReadCfgDWord */
3988 /*****************************************************************************
3990 * SkPciReadCfgWord - read a 16 bit value from pci config space
3992 * Description:
3993 * This routine reads a 16 bit value from the pci configuration
3994 * space.
3996 * Returns:
3997 * 0 - indicate everything worked ok.
3998 * != 0 - error indication
4000 int SkPciReadCfgWord(
4001 SK_AC *pAC, /* Adapter Control structure pointer */
4002 int PciAddr, /* PCI register address */
4003 SK_U16 *pVal) /* pointer to store the read value */
4005 pci_read_config_word(pAC->PciDev, PciAddr, pVal);
4006 return(0);
4007 } /* SkPciReadCfgWord */
4010 /*****************************************************************************
4012 * SkPciReadCfgByte - read a 8 bit value from pci config space
4014 * Description:
4015 * This routine reads a 8 bit value from the pci configuration
4016 * space.
4018 * Returns:
4019 * 0 - indicate everything worked ok.
4020 * != 0 - error indication
4022 int SkPciReadCfgByte(
4023 SK_AC *pAC, /* Adapter Control structure pointer */
4024 int PciAddr, /* PCI register address */
4025 SK_U8 *pVal) /* pointer to store the read value */
4027 pci_read_config_byte(pAC->PciDev, PciAddr, pVal);
4028 return(0);
4029 } /* SkPciReadCfgByte */
4032 /*****************************************************************************
4034 * SkPciWriteCfgWord - write a 16 bit value to pci config space
4036 * Description:
4037 * This routine writes a 16 bit value to the pci configuration
4038 * space. The flag PciConfigUp indicates whether the config space
4039 * is accesible or must be set up first.
4041 * Returns:
4042 * 0 - indicate everything worked ok.
4043 * != 0 - error indication
4045 int SkPciWriteCfgWord(
4046 SK_AC *pAC, /* Adapter Control structure pointer */
4047 int PciAddr, /* PCI register address */
4048 SK_U16 Val) /* pointer to store the read value */
4050 pci_write_config_word(pAC->PciDev, PciAddr, Val);
4051 return(0);
4052 } /* SkPciWriteCfgWord */
4055 /*****************************************************************************
4057 * SkPciWriteCfgWord - write a 8 bit value to pci config space
4059 * Description:
4060 * This routine writes a 8 bit value to the pci configuration
4061 * space. The flag PciConfigUp indicates whether the config space
4062 * is accesible or must be set up first.
4064 * Returns:
4065 * 0 - indicate everything worked ok.
4066 * != 0 - error indication
4068 int SkPciWriteCfgByte(
4069 SK_AC *pAC, /* Adapter Control structure pointer */
4070 int PciAddr, /* PCI register address */
4071 SK_U8 Val) /* pointer to store the read value */
4073 pci_write_config_byte(pAC->PciDev, PciAddr, Val);
4074 return(0);
4075 } /* SkPciWriteCfgByte */
4078 /*****************************************************************************
4080 * SkDrvEvent - handle driver events
4082 * Description:
4083 * This function handles events from all modules directed to the driver
4085 * Context:
4086 * Is called under protection of slow path lock.
4088 * Returns:
4089 * 0 if everything ok
4090 * < 0 on error
4093 int SkDrvEvent(
4094 SK_AC *pAC, /* pointer to adapter context */
4095 SK_IOC IoC, /* io-context */
4096 SK_U32 Event, /* event-id */
4097 SK_EVPARA Param) /* event-parameter */
4099 SK_MBUF *pRlmtMbuf; /* pointer to a rlmt-mbuf structure */
4100 struct sk_buff *pMsg; /* pointer to a message block */
4101 int FromPort; /* the port from which we switch away */
4102 int ToPort; /* the port we switch to */
4103 SK_EVPARA NewPara; /* parameter for further events */
4104 int Stat;
4105 unsigned long Flags;
4106 SK_BOOL DualNet;
4108 switch (Event) {
4109 case SK_DRV_ADAP_FAIL:
4110 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4111 ("ADAPTER FAIL EVENT\n"));
4112 printk("%s: Adapter failed.\n", pAC->dev[0]->name);
4113 /* disable interrupts */
4114 SK_OUT32(pAC->IoBase, B0_IMSK, 0);
4115 /* cgoos */
4116 break;
4117 case SK_DRV_PORT_FAIL:
4118 FromPort = Param.Para32[0];
4119 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4120 ("PORT FAIL EVENT, Port: %d\n", FromPort));
4121 if (FromPort == 0) {
4122 printk("%s: Port A failed.\n", pAC->dev[0]->name);
4123 } else {
4124 printk("%s: Port B failed.\n", pAC->dev[1]->name);
4126 /* cgoos */
4127 break;
4128 case SK_DRV_PORT_RESET: /* SK_U32 PortIdx */
4129 /* action list 4 */
4130 FromPort = Param.Para32[0];
4131 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4132 ("PORT RESET EVENT, Port: %d ", FromPort));
4133 NewPara.Para64 = FromPort;
4134 SkPnmiEvent(pAC, IoC, SK_PNMI_EVT_XMAC_RESET, NewPara);
4135 spin_lock_irqsave(
4136 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4137 Flags);
4139 SkGeStopPort(pAC, IoC, FromPort, SK_STOP_ALL, SK_HARD_RST);
4140 netif_carrier_off(pAC->dev[Param.Para32[0]]);
4141 spin_unlock_irqrestore(
4142 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4143 Flags);
4145 /* clear rx ring from received frames */
4146 ReceiveIrq(pAC, &pAC->RxPort[FromPort], SK_FALSE);
4148 ClearTxRing(pAC, &pAC->TxPort[FromPort][TX_PRIO_LOW]);
4149 spin_lock_irqsave(
4150 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4151 Flags);
4153 /* tschilling: Handling of return value inserted. */
4154 if (SkGeInitPort(pAC, IoC, FromPort)) {
4155 if (FromPort == 0) {
4156 printk("%s: SkGeInitPort A failed.\n", pAC->dev[0]->name);
4157 } else {
4158 printk("%s: SkGeInitPort B failed.\n", pAC->dev[1]->name);
4161 SkAddrMcUpdate(pAC,IoC, FromPort);
4162 PortReInitBmu(pAC, FromPort);
4163 SkGePollTxD(pAC, IoC, FromPort, SK_TRUE);
4164 ClearAndStartRx(pAC, FromPort);
4165 spin_unlock_irqrestore(
4166 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4167 Flags);
4168 break;
4169 case SK_DRV_NET_UP: /* SK_U32 PortIdx */
4170 { struct net_device *dev = pAC->dev[Param.Para32[0]];
4171 /* action list 5 */
4172 FromPort = Param.Para32[0];
4173 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4174 ("NET UP EVENT, Port: %d ", Param.Para32[0]));
4175 /* Mac update */
4176 SkAddrMcUpdate(pAC,IoC, FromPort);
4178 if (DoPrintInterfaceChange) {
4179 printk("%s: network connection up using"
4180 " port %c\n", pAC->dev[Param.Para32[0]]->name, 'A'+Param.Para32[0]);
4182 /* tschilling: Values changed according to LinkSpeedUsed. */
4183 Stat = pAC->GIni.GP[FromPort].PLinkSpeedUsed;
4184 if (Stat == SK_LSPEED_STAT_10MBPS) {
4185 printk(" speed: 10\n");
4186 } else if (Stat == SK_LSPEED_STAT_100MBPS) {
4187 printk(" speed: 100\n");
4188 } else if (Stat == SK_LSPEED_STAT_1000MBPS) {
4189 printk(" speed: 1000\n");
4190 } else {
4191 printk(" speed: unknown\n");
4195 Stat = pAC->GIni.GP[FromPort].PLinkModeStatus;
4196 if (Stat == SK_LMODE_STAT_AUTOHALF ||
4197 Stat == SK_LMODE_STAT_AUTOFULL) {
4198 printk(" autonegotiation: yes\n");
4200 else {
4201 printk(" autonegotiation: no\n");
4203 if (Stat == SK_LMODE_STAT_AUTOHALF ||
4204 Stat == SK_LMODE_STAT_HALF) {
4205 printk(" duplex mode: half\n");
4207 else {
4208 printk(" duplex mode: full\n");
4210 Stat = pAC->GIni.GP[FromPort].PFlowCtrlStatus;
4211 if (Stat == SK_FLOW_STAT_REM_SEND ) {
4212 printk(" flowctrl: remote send\n");
4214 else if (Stat == SK_FLOW_STAT_LOC_SEND ){
4215 printk(" flowctrl: local send\n");
4217 else if (Stat == SK_FLOW_STAT_SYMMETRIC ){
4218 printk(" flowctrl: symmetric\n");
4220 else {
4221 printk(" flowctrl: none\n");
4224 /* tschilling: Check against CopperType now. */
4225 if ((pAC->GIni.GICopperType == SK_TRUE) &&
4226 (pAC->GIni.GP[FromPort].PLinkSpeedUsed ==
4227 SK_LSPEED_STAT_1000MBPS)) {
4228 Stat = pAC->GIni.GP[FromPort].PMSStatus;
4229 if (Stat == SK_MS_STAT_MASTER ) {
4230 printk(" role: master\n");
4232 else if (Stat == SK_MS_STAT_SLAVE ) {
4233 printk(" role: slave\n");
4235 else {
4236 printk(" role: ???\n");
4241 Display dim (dynamic interrupt moderation)
4242 informations
4244 if (pAC->DynIrqModInfo.IntModTypeSelect == C_INT_MOD_STATIC)
4245 printk(" irq moderation: static (%d ints/sec)\n",
4246 pAC->DynIrqModInfo.MaxModIntsPerSec);
4247 else if (pAC->DynIrqModInfo.IntModTypeSelect == C_INT_MOD_DYNAMIC)
4248 printk(" irq moderation: dynamic (%d ints/sec)\n",
4249 pAC->DynIrqModInfo.MaxModIntsPerSec);
4250 else
4251 printk(" irq moderation: disabled\n");
4254 printk(" scatter-gather: %s\n",
4255 (dev->features & NETIF_F_SG) ? "enabled" : "disabled");
4256 printk(" tx-checksum: %s\n",
4257 (dev->features & NETIF_F_IP_CSUM) ? "enabled" : "disabled");
4258 printk(" rx-checksum: %s\n",
4259 pAC->RxPort[Param.Para32[0]].RxCsum ? "enabled" : "disabled");
4261 } else {
4262 DoPrintInterfaceChange = SK_TRUE;
4265 if ((Param.Para32[0] != pAC->ActivePort) &&
4266 (pAC->RlmtNets == 1)) {
4267 NewPara.Para32[0] = pAC->ActivePort;
4268 NewPara.Para32[1] = Param.Para32[0];
4269 SkEventQueue(pAC, SKGE_DRV, SK_DRV_SWITCH_INTERN,
4270 NewPara);
4273 /* Inform the world that link protocol is up. */
4274 netif_carrier_on(dev);
4275 break;
4277 case SK_DRV_NET_DOWN: /* SK_U32 Reason */
4278 /* action list 7 */
4279 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4280 ("NET DOWN EVENT "));
4281 if (DoPrintInterfaceChange) {
4282 printk("%s: network connection down\n",
4283 pAC->dev[Param.Para32[1]]->name);
4284 } else {
4285 DoPrintInterfaceChange = SK_TRUE;
4287 netif_carrier_off(pAC->dev[Param.Para32[1]]);
4288 break;
4289 case SK_DRV_SWITCH_HARD: /* SK_U32 FromPortIdx SK_U32 ToPortIdx */
4290 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4291 ("PORT SWITCH HARD "));
4292 case SK_DRV_SWITCH_SOFT: /* SK_U32 FromPortIdx SK_U32 ToPortIdx */
4293 /* action list 6 */
4294 printk("%s: switching to port %c\n", pAC->dev[0]->name,
4295 'A'+Param.Para32[1]);
4296 case SK_DRV_SWITCH_INTERN: /* SK_U32 FromPortIdx SK_U32 ToPortIdx */
4297 FromPort = Param.Para32[0];
4298 ToPort = Param.Para32[1];
4299 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4300 ("PORT SWITCH EVENT, From: %d To: %d (Pref %d) ",
4301 FromPort, ToPort, pAC->Rlmt.Net[0].PrefPort));
4302 NewPara.Para64 = FromPort;
4303 SkPnmiEvent(pAC, IoC, SK_PNMI_EVT_XMAC_RESET, NewPara);
4304 NewPara.Para64 = ToPort;
4305 SkPnmiEvent(pAC, IoC, SK_PNMI_EVT_XMAC_RESET, NewPara);
4306 spin_lock_irqsave(
4307 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4308 Flags);
4309 spin_lock(&pAC->TxPort[ToPort][TX_PRIO_LOW].TxDesRingLock);
4310 SkGeStopPort(pAC, IoC, FromPort, SK_STOP_ALL, SK_SOFT_RST);
4311 SkGeStopPort(pAC, IoC, ToPort, SK_STOP_ALL, SK_SOFT_RST);
4312 spin_unlock(&pAC->TxPort[ToPort][TX_PRIO_LOW].TxDesRingLock);
4313 spin_unlock_irqrestore(
4314 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4315 Flags);
4317 ReceiveIrq(pAC, &pAC->RxPort[FromPort], SK_FALSE); /* clears rx ring */
4318 ReceiveIrq(pAC, &pAC->RxPort[ToPort], SK_FALSE); /* clears rx ring */
4320 ClearTxRing(pAC, &pAC->TxPort[FromPort][TX_PRIO_LOW]);
4321 ClearTxRing(pAC, &pAC->TxPort[ToPort][TX_PRIO_LOW]);
4322 spin_lock_irqsave(
4323 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4324 Flags);
4325 spin_lock(&pAC->TxPort[ToPort][TX_PRIO_LOW].TxDesRingLock);
4326 pAC->ActivePort = ToPort;
4327 #if 0
4328 SetQueueSizes(pAC);
4329 #else
4330 /* tschilling: New common function with minimum size check. */
4331 DualNet = SK_FALSE;
4332 if (pAC->RlmtNets == 2) {
4333 DualNet = SK_TRUE;
4336 if (SkGeInitAssignRamToQueues(
4337 pAC,
4338 pAC->ActivePort,
4339 DualNet)) {
4340 spin_unlock(&pAC->TxPort[ToPort][TX_PRIO_LOW].TxDesRingLock);
4341 spin_unlock_irqrestore(
4342 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4343 Flags);
4344 printk("SkGeInitAssignRamToQueues failed.\n");
4345 break;
4347 #endif
4348 /* tschilling: Handling of return values inserted. */
4349 if (SkGeInitPort(pAC, IoC, FromPort) ||
4350 SkGeInitPort(pAC, IoC, ToPort)) {
4351 printk("%s: SkGeInitPort failed.\n", pAC->dev[0]->name);
4353 if (Event == SK_DRV_SWITCH_SOFT) {
4354 SkMacRxTxEnable(pAC, IoC, FromPort);
4356 SkMacRxTxEnable(pAC, IoC, ToPort);
4357 SkAddrSwap(pAC, IoC, FromPort, ToPort);
4358 SkAddrMcUpdate(pAC, IoC, FromPort);
4359 SkAddrMcUpdate(pAC, IoC, ToPort);
4360 PortReInitBmu(pAC, FromPort);
4361 PortReInitBmu(pAC, ToPort);
4362 SkGePollTxD(pAC, IoC, FromPort, SK_TRUE);
4363 SkGePollTxD(pAC, IoC, ToPort, SK_TRUE);
4364 ClearAndStartRx(pAC, FromPort);
4365 ClearAndStartRx(pAC, ToPort);
4366 spin_unlock(&pAC->TxPort[ToPort][TX_PRIO_LOW].TxDesRingLock);
4367 spin_unlock_irqrestore(
4368 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4369 Flags);
4370 break;
4371 case SK_DRV_RLMT_SEND: /* SK_MBUF *pMb */
4372 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4373 ("RLS "));
4374 pRlmtMbuf = (SK_MBUF*) Param.pParaPtr;
4375 pMsg = (struct sk_buff*) pRlmtMbuf->pOs;
4376 skb_put(pMsg, pRlmtMbuf->Length);
4377 if (XmitFrame(pAC, &pAC->TxPort[pRlmtMbuf->PortIdx][TX_PRIO_LOW],
4378 pMsg) < 0)
4380 DEV_KFREE_SKB_ANY(pMsg);
4381 break;
4382 case SK_DRV_TIMER:
4383 if (Param.Para32[0] == SK_DRV_MODERATION_TIMER) {
4385 ** expiration of the moderation timer implies that
4386 ** dynamic moderation is to be applied
4388 SkDimStartModerationTimer(pAC);
4389 SkDimModerate(pAC);
4390 if (pAC->DynIrqModInfo.DisplayStats) {
4391 SkDimDisplayModerationSettings(pAC);
4393 } else if (Param.Para32[0] == SK_DRV_RX_CLEANUP_TIMER) {
4395 ** check if we need to check for descriptors which
4396 ** haven't been handled the last millisecs
4398 StartDrvCleanupTimer(pAC);
4399 if (pAC->GIni.GIMacsFound == 2) {
4400 ReceiveIrq(pAC, &pAC->RxPort[1], SK_FALSE);
4402 ReceiveIrq(pAC, &pAC->RxPort[0], SK_FALSE);
4403 } else {
4404 printk("Expiration of unknown timer\n");
4406 break;
4407 default:
4408 break;
4410 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4411 ("END EVENT "));
4413 return (0);
4414 } /* SkDrvEvent */
4417 /*****************************************************************************
4419 * SkErrorLog - log errors
4421 * Description:
4422 * This function logs errors to the system buffer and to the console
4424 * Returns:
4425 * 0 if everything ok
4426 * < 0 on error
4429 void SkErrorLog(
4430 SK_AC *pAC,
4431 int ErrClass,
4432 int ErrNum,
4433 char *pErrorMsg)
4435 char ClassStr[80];
4437 switch (ErrClass) {
4438 case SK_ERRCL_OTHER:
4439 strcpy(ClassStr, "Other error");
4440 break;
4441 case SK_ERRCL_CONFIG:
4442 strcpy(ClassStr, "Configuration error");
4443 break;
4444 case SK_ERRCL_INIT:
4445 strcpy(ClassStr, "Initialization error");
4446 break;
4447 case SK_ERRCL_NORES:
4448 strcpy(ClassStr, "Out of resources error");
4449 break;
4450 case SK_ERRCL_SW:
4451 strcpy(ClassStr, "internal Software error");
4452 break;
4453 case SK_ERRCL_HW:
4454 strcpy(ClassStr, "Hardware failure");
4455 break;
4456 case SK_ERRCL_COMM:
4457 strcpy(ClassStr, "Communication error");
4458 break;
4460 printk(KERN_INFO "%s: -- ERROR --\n Class: %s\n"
4461 " Nr: 0x%x\n Msg: %s\n", pAC->dev[0]->name,
4462 ClassStr, ErrNum, pErrorMsg);
4464 } /* SkErrorLog */
4466 #ifdef SK_DIAG_SUPPORT
4468 /*****************************************************************************
4470 * SkDrvEnterDiagMode - handles DIAG attach request
4472 * Description:
4473 * Notify the kernel to NOT access the card any longer due to DIAG
4474 * Deinitialize the Card
4476 * Returns:
4477 * int
4479 int SkDrvEnterDiagMode(
4480 SK_AC *pAc) /* pointer to adapter context */
4482 DEV_NET *pNet = netdev_priv(pAc->dev[0]);
4483 SK_AC *pAC = pNet->pAC;
4485 SK_MEMCPY(&(pAc->PnmiBackup), &(pAc->PnmiStruct),
4486 sizeof(SK_PNMI_STRUCT_DATA));
4488 pAC->DiagModeActive = DIAG_ACTIVE;
4489 if (pAC->BoardLevel > SK_INIT_DATA) {
4490 if (netif_running(pAC->dev[0])) {
4491 pAC->WasIfUp[0] = SK_TRUE;
4492 pAC->DiagFlowCtrl = SK_TRUE; /* for SkGeClose */
4493 DoPrintInterfaceChange = SK_FALSE;
4494 SkDrvDeInitAdapter(pAC, 0); /* performs SkGeClose */
4495 } else {
4496 pAC->WasIfUp[0] = SK_FALSE;
4498 if (pNet != netdev_priv(pAC->dev[1])) {
4499 pNet = netdev_priv(pAC->dev[1]);
4500 if (netif_running(pAC->dev[1])) {
4501 pAC->WasIfUp[1] = SK_TRUE;
4502 pAC->DiagFlowCtrl = SK_TRUE; /* for SkGeClose */
4503 DoPrintInterfaceChange = SK_FALSE;
4504 SkDrvDeInitAdapter(pAC, 1); /* do SkGeClose */
4505 } else {
4506 pAC->WasIfUp[1] = SK_FALSE;
4509 pAC->BoardLevel = SK_INIT_DATA;
4511 return(0);
4514 /*****************************************************************************
4516 * SkDrvLeaveDiagMode - handles DIAG detach request
4518 * Description:
4519 * Notify the kernel to may access the card again after use by DIAG
4520 * Initialize the Card
4522 * Returns:
4523 * int
4525 int SkDrvLeaveDiagMode(
4526 SK_AC *pAc) /* pointer to adapter control context */
4528 SK_MEMCPY(&(pAc->PnmiStruct), &(pAc->PnmiBackup),
4529 sizeof(SK_PNMI_STRUCT_DATA));
4530 pAc->DiagModeActive = DIAG_NOTACTIVE;
4531 pAc->Pnmi.DiagAttached = SK_DIAG_IDLE;
4532 if (pAc->WasIfUp[0] == SK_TRUE) {
4533 pAc->DiagFlowCtrl = SK_TRUE; /* for SkGeClose */
4534 DoPrintInterfaceChange = SK_FALSE;
4535 SkDrvInitAdapter(pAc, 0); /* first device */
4537 if (pAc->WasIfUp[1] == SK_TRUE) {
4538 pAc->DiagFlowCtrl = SK_TRUE; /* for SkGeClose */
4539 DoPrintInterfaceChange = SK_FALSE;
4540 SkDrvInitAdapter(pAc, 1); /* second device */
4542 return(0);
4545 /*****************************************************************************
4547 * ParseDeviceNbrFromSlotName - Evaluate PCI device number
4549 * Description:
4550 * This function parses the PCI slot name information string and will
4551 * retrieve the devcie number out of it. The slot_name maintianed by
4552 * linux is in the form of '02:0a.0', whereas the first two characters
4553 * represent the bus number in hex (in the sample above this is
4554 * pci bus 0x02) and the next two characters the device number (0x0a).
4556 * Returns:
4557 * SK_U32: The device number from the PCI slot name
4560 static SK_U32 ParseDeviceNbrFromSlotName(
4561 const char *SlotName) /* pointer to pci slot name eg. '02:0a.0' */
4563 char *CurrCharPos = (char *) SlotName;
4564 int FirstNibble = -1;
4565 int SecondNibble = -1;
4566 SK_U32 Result = 0;
4568 while (*CurrCharPos != '\0') {
4569 if (*CurrCharPos == ':') {
4570 while (*CurrCharPos != '.') {
4571 CurrCharPos++;
4572 if ( (*CurrCharPos >= '0') &&
4573 (*CurrCharPos <= '9')) {
4574 if (FirstNibble == -1) {
4575 /* dec. value for '0' */
4576 FirstNibble = *CurrCharPos - 48;
4577 } else {
4578 SecondNibble = *CurrCharPos - 48;
4580 } else if ( (*CurrCharPos >= 'a') &&
4581 (*CurrCharPos <= 'f') ) {
4582 if (FirstNibble == -1) {
4583 FirstNibble = *CurrCharPos - 87;
4584 } else {
4585 SecondNibble = *CurrCharPos - 87;
4587 } else {
4588 Result = 0;
4592 Result = FirstNibble;
4593 Result = Result << 4; /* first nibble is higher one */
4594 Result = Result | SecondNibble;
4596 CurrCharPos++; /* next character */
4598 return (Result);
4601 /****************************************************************************
4603 * SkDrvDeInitAdapter - deinitialize adapter (this function is only
4604 * called if Diag attaches to that card)
4606 * Description:
4607 * Close initialized adapter.
4609 * Returns:
4610 * 0 - on success
4611 * error code - on error
4613 static int SkDrvDeInitAdapter(
4614 SK_AC *pAC, /* pointer to adapter context */
4615 int devNbr) /* what device is to be handled */
4617 struct SK_NET_DEVICE *dev;
4619 dev = pAC->dev[devNbr];
4621 /* On Linux 2.6 the network driver does NOT mess with reference
4622 ** counts. The driver MUST be able to be unloaded at any time
4623 ** due to the possibility of hotplug.
4625 if (SkGeClose(dev) != 0) {
4626 return (-1);
4628 return (0);
4630 } /* SkDrvDeInitAdapter() */
4632 /****************************************************************************
4634 * SkDrvInitAdapter - Initialize adapter (this function is only
4635 * called if Diag deattaches from that card)
4637 * Description:
4638 * Close initialized adapter.
4640 * Returns:
4641 * 0 - on success
4642 * error code - on error
4644 static int SkDrvInitAdapter(
4645 SK_AC *pAC, /* pointer to adapter context */
4646 int devNbr) /* what device is to be handled */
4648 struct SK_NET_DEVICE *dev;
4650 dev = pAC->dev[devNbr];
4652 if (SkGeOpen(dev) != 0) {
4653 return (-1);
4657 ** Use correct MTU size and indicate to kernel TX queue can be started
4659 if (SkGeChangeMtu(dev, dev->mtu) != 0) {
4660 return (-1);
4662 return (0);
4664 } /* SkDrvInitAdapter */
4666 #endif
4668 #ifdef DEBUG
4669 /****************************************************************************/
4670 /* "debug only" section *****************************************************/
4671 /****************************************************************************/
4674 /*****************************************************************************
4676 * DumpMsg - print a frame
4678 * Description:
4679 * This function prints frames to the system logfile/to the console.
4681 * Returns: N/A
4684 static void DumpMsg(struct sk_buff *skb, char *str)
4686 int msglen;
4688 if (skb == NULL) {
4689 printk("DumpMsg(): NULL-Message\n");
4690 return;
4693 if (skb->data == NULL) {
4694 printk("DumpMsg(): Message empty\n");
4695 return;
4698 msglen = skb->len;
4699 if (msglen > 64)
4700 msglen = 64;
4702 printk("--- Begin of message from %s , len %d (from %d) ----\n", str, msglen, skb->len);
4704 DumpData((char *)skb->data, msglen);
4706 printk("------- End of message ---------\n");
4707 } /* DumpMsg */
4711 /*****************************************************************************
4713 * DumpData - print a data area
4715 * Description:
4716 * This function prints a area of data to the system logfile/to the
4717 * console.
4719 * Returns: N/A
4722 static void DumpData(char *p, int size)
4724 register int i;
4725 int haddr, addr;
4726 char hex_buffer[180];
4727 char asc_buffer[180];
4728 char HEXCHAR[] = "0123456789ABCDEF";
4730 addr = 0;
4731 haddr = 0;
4732 hex_buffer[0] = 0;
4733 asc_buffer[0] = 0;
4734 for (i=0; i < size; ) {
4735 if (*p >= '0' && *p <='z')
4736 asc_buffer[addr] = *p;
4737 else
4738 asc_buffer[addr] = '.';
4739 addr++;
4740 asc_buffer[addr] = 0;
4741 hex_buffer[haddr] = HEXCHAR[(*p & 0xf0) >> 4];
4742 haddr++;
4743 hex_buffer[haddr] = HEXCHAR[*p & 0x0f];
4744 haddr++;
4745 hex_buffer[haddr] = ' ';
4746 haddr++;
4747 hex_buffer[haddr] = 0;
4748 p++;
4749 i++;
4750 if (i%16 == 0) {
4751 printk("%s %s\n", hex_buffer, asc_buffer);
4752 addr = 0;
4753 haddr = 0;
4756 } /* DumpData */
4759 /*****************************************************************************
4761 * DumpLong - print a data area as long values
4763 * Description:
4764 * This function prints a area of data to the system logfile/to the
4765 * console.
4767 * Returns: N/A
4770 static void DumpLong(char *pc, int size)
4772 register int i;
4773 int haddr, addr;
4774 char hex_buffer[180];
4775 char asc_buffer[180];
4776 char HEXCHAR[] = "0123456789ABCDEF";
4777 long *p;
4778 int l;
4780 addr = 0;
4781 haddr = 0;
4782 hex_buffer[0] = 0;
4783 asc_buffer[0] = 0;
4784 p = (long*) pc;
4785 for (i=0; i < size; ) {
4786 l = (long) *p;
4787 hex_buffer[haddr] = HEXCHAR[(l >> 28) & 0xf];
4788 haddr++;
4789 hex_buffer[haddr] = HEXCHAR[(l >> 24) & 0xf];
4790 haddr++;
4791 hex_buffer[haddr] = HEXCHAR[(l >> 20) & 0xf];
4792 haddr++;
4793 hex_buffer[haddr] = HEXCHAR[(l >> 16) & 0xf];
4794 haddr++;
4795 hex_buffer[haddr] = HEXCHAR[(l >> 12) & 0xf];
4796 haddr++;
4797 hex_buffer[haddr] = HEXCHAR[(l >> 8) & 0xf];
4798 haddr++;
4799 hex_buffer[haddr] = HEXCHAR[(l >> 4) & 0xf];
4800 haddr++;
4801 hex_buffer[haddr] = HEXCHAR[l & 0x0f];
4802 haddr++;
4803 hex_buffer[haddr] = ' ';
4804 haddr++;
4805 hex_buffer[haddr] = 0;
4806 p++;
4807 i++;
4808 if (i%8 == 0) {
4809 printk("%4x %s\n", (i-8)*4, hex_buffer);
4810 haddr = 0;
4813 printk("------------------------\n");
4814 } /* DumpLong */
4816 #endif
4818 static int __devinit skge_probe_one(struct pci_dev *pdev,
4819 const struct pci_device_id *ent)
4821 SK_AC *pAC;
4822 DEV_NET *pNet = NULL;
4823 struct net_device *dev = NULL;
4824 static int boards_found = 0;
4825 int error = -ENODEV;
4826 int using_dac = 0;
4827 char DeviceStr[80];
4829 if (pci_enable_device(pdev))
4830 goto out;
4832 /* Configure DMA attributes. */
4833 if (sizeof(dma_addr_t) > sizeof(u32) &&
4834 !(error = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) {
4835 using_dac = 1;
4836 error = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
4837 if (error < 0) {
4838 printk(KERN_ERR "sk98lin %s unable to obtain 64 bit DMA "
4839 "for consistent allocations\n", pci_name(pdev));
4840 goto out_disable_device;
4842 } else {
4843 error = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
4844 if (error) {
4845 printk(KERN_ERR "sk98lin %s no usable DMA configuration\n",
4846 pci_name(pdev));
4847 goto out_disable_device;
4851 error = -ENOMEM;
4852 dev = alloc_etherdev(sizeof(DEV_NET));
4853 if (!dev) {
4854 printk(KERN_ERR "sk98lin: unable to allocate etherdev "
4855 "structure!\n");
4856 goto out_disable_device;
4859 pNet = netdev_priv(dev);
4860 pNet->pAC = kzalloc(sizeof(SK_AC), GFP_KERNEL);
4861 if (!pNet->pAC) {
4862 printk(KERN_ERR "sk98lin: unable to allocate adapter "
4863 "structure!\n");
4864 goto out_free_netdev;
4867 pAC = pNet->pAC;
4868 pAC->PciDev = pdev;
4870 pAC->dev[0] = dev;
4871 pAC->dev[1] = dev;
4872 pAC->CheckQueue = SK_FALSE;
4874 dev->irq = pdev->irq;
4876 error = SkGeInitPCI(pAC);
4877 if (error) {
4878 printk(KERN_ERR "sk98lin: PCI setup failed: %i\n", error);
4879 goto out_free_netdev;
4882 SET_MODULE_OWNER(dev);
4883 dev->open = &SkGeOpen;
4884 dev->stop = &SkGeClose;
4885 dev->hard_start_xmit = &SkGeXmit;
4886 dev->get_stats = &SkGeStats;
4887 dev->set_multicast_list = &SkGeSetRxMode;
4888 dev->set_mac_address = &SkGeSetMacAddr;
4889 dev->do_ioctl = &SkGeIoctl;
4890 dev->change_mtu = &SkGeChangeMtu;
4891 #ifdef CONFIG_NET_POLL_CONTROLLER
4892 dev->poll_controller = &SkGePollController;
4893 #endif
4894 SET_NETDEV_DEV(dev, &pdev->dev);
4895 SET_ETHTOOL_OPS(dev, &SkGeEthtoolOps);
4897 /* Use only if yukon hardware */
4898 if (pAC->ChipsetType) {
4899 #ifdef USE_SK_TX_CHECKSUM
4900 dev->features |= NETIF_F_IP_CSUM;
4901 #endif
4902 #ifdef SK_ZEROCOPY
4903 dev->features |= NETIF_F_SG;
4904 #endif
4905 #ifdef USE_SK_RX_CHECKSUM
4906 pAC->RxPort[0].RxCsum = 1;
4907 #endif
4910 if (using_dac)
4911 dev->features |= NETIF_F_HIGHDMA;
4913 pAC->Index = boards_found++;
4915 error = SkGeBoardInit(dev, pAC);
4916 if (error)
4917 goto out_free_netdev;
4919 /* Read Adapter name from VPD */
4920 if (ProductStr(pAC, DeviceStr, sizeof(DeviceStr)) != 0) {
4921 error = -EIO;
4922 printk(KERN_ERR "sk98lin: Could not read VPD data.\n");
4923 goto out_free_resources;
4926 /* Register net device */
4927 error = register_netdev(dev);
4928 if (error) {
4929 printk(KERN_ERR "sk98lin: Could not register device.\n");
4930 goto out_free_resources;
4933 /* Print adapter specific string from vpd */
4934 printk("%s: %s\n", dev->name, DeviceStr);
4936 /* Print configuration settings */
4937 printk(" PrefPort:%c RlmtMode:%s\n",
4938 'A' + pAC->Rlmt.Net[0].Port[pAC->Rlmt.Net[0].PrefPort]->PortNumber,
4939 (pAC->RlmtMode==0) ? "Check Link State" :
4940 ((pAC->RlmtMode==1) ? "Check Link State" :
4941 ((pAC->RlmtMode==3) ? "Check Local Port" :
4942 ((pAC->RlmtMode==7) ? "Check Segmentation" :
4943 ((pAC->RlmtMode==17) ? "Dual Check Link State" :"Error")))));
4945 SkGeYellowLED(pAC, pAC->IoBase, 1);
4947 memcpy(&dev->dev_addr, &pAC->Addr.Net[0].CurrentMacAddress, 6);
4948 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
4950 pNet->PortNr = 0;
4951 pNet->NetNr = 0;
4953 boards_found++;
4955 pci_set_drvdata(pdev, dev);
4957 /* More then one port found */
4958 if ((pAC->GIni.GIMacsFound == 2 ) && (pAC->RlmtNets == 2)) {
4959 dev = alloc_etherdev(sizeof(DEV_NET));
4960 if (!dev) {
4961 printk(KERN_ERR "sk98lin: unable to allocate etherdev "
4962 "structure!\n");
4963 goto single_port;
4966 pNet = netdev_priv(dev);
4967 pNet->PortNr = 1;
4968 pNet->NetNr = 1;
4969 pNet->pAC = pAC;
4971 dev->open = &SkGeOpen;
4972 dev->stop = &SkGeClose;
4973 dev->hard_start_xmit = &SkGeXmit;
4974 dev->get_stats = &SkGeStats;
4975 dev->set_multicast_list = &SkGeSetRxMode;
4976 dev->set_mac_address = &SkGeSetMacAddr;
4977 dev->do_ioctl = &SkGeIoctl;
4978 dev->change_mtu = &SkGeChangeMtu;
4979 SET_NETDEV_DEV(dev, &pdev->dev);
4980 SET_ETHTOOL_OPS(dev, &SkGeEthtoolOps);
4982 if (pAC->ChipsetType) {
4983 #ifdef USE_SK_TX_CHECKSUM
4984 dev->features |= NETIF_F_IP_CSUM;
4985 #endif
4986 #ifdef SK_ZEROCOPY
4987 dev->features |= NETIF_F_SG;
4988 #endif
4989 #ifdef USE_SK_RX_CHECKSUM
4990 pAC->RxPort[1].RxCsum = 1;
4991 #endif
4994 if (using_dac)
4995 dev->features |= NETIF_F_HIGHDMA;
4997 error = register_netdev(dev);
4998 if (error) {
4999 printk(KERN_ERR "sk98lin: Could not register device"
5000 " for second port. (%d)\n", error);
5001 free_netdev(dev);
5002 goto single_port;
5005 pAC->dev[1] = dev;
5006 memcpy(&dev->dev_addr,
5007 &pAC->Addr.Net[1].CurrentMacAddress, 6);
5008 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
5010 printk("%s: %s\n", dev->name, DeviceStr);
5011 printk(" PrefPort:B RlmtMode:Dual Check Link State\n");
5014 single_port:
5016 /* Save the hardware revision */
5017 pAC->HWRevision = (((pAC->GIni.GIPciHwRev >> 4) & 0x0F)*10) +
5018 (pAC->GIni.GIPciHwRev & 0x0F);
5020 /* Set driver globals */
5021 pAC->Pnmi.pDriverFileName = DRIVER_FILE_NAME;
5022 pAC->Pnmi.pDriverReleaseDate = DRIVER_REL_DATE;
5024 memset(&pAC->PnmiBackup, 0, sizeof(SK_PNMI_STRUCT_DATA));
5025 memcpy(&pAC->PnmiBackup, &pAC->PnmiStruct, sizeof(SK_PNMI_STRUCT_DATA));
5027 return 0;
5029 out_free_resources:
5030 FreeResources(dev);
5031 out_free_netdev:
5032 free_netdev(dev);
5033 out_disable_device:
5034 pci_disable_device(pdev);
5035 out:
5036 return error;
5039 static void __devexit skge_remove_one(struct pci_dev *pdev)
5041 struct net_device *dev = pci_get_drvdata(pdev);
5042 DEV_NET *pNet = netdev_priv(dev);
5043 SK_AC *pAC = pNet->pAC;
5044 struct net_device *otherdev = pAC->dev[1];
5046 unregister_netdev(dev);
5048 SkGeYellowLED(pAC, pAC->IoBase, 0);
5050 if (pAC->BoardLevel == SK_INIT_RUN) {
5051 SK_EVPARA EvPara;
5052 unsigned long Flags;
5054 /* board is still alive */
5055 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
5056 EvPara.Para32[0] = 0;
5057 EvPara.Para32[1] = -1;
5058 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
5059 EvPara.Para32[0] = 1;
5060 EvPara.Para32[1] = -1;
5061 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
5062 SkEventDispatcher(pAC, pAC->IoBase);
5063 /* disable interrupts */
5064 SK_OUT32(pAC->IoBase, B0_IMSK, 0);
5065 SkGeDeInit(pAC, pAC->IoBase);
5066 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
5067 pAC->BoardLevel = SK_INIT_DATA;
5068 /* We do NOT check here, if IRQ was pending, of course*/
5071 if (pAC->BoardLevel == SK_INIT_IO) {
5072 /* board is still alive */
5073 SkGeDeInit(pAC, pAC->IoBase);
5074 pAC->BoardLevel = SK_INIT_DATA;
5077 FreeResources(dev);
5078 free_netdev(dev);
5079 if (otherdev != dev)
5080 free_netdev(otherdev);
5081 kfree(pAC);
5084 #ifdef CONFIG_PM
5085 static int skge_suspend(struct pci_dev *pdev, pm_message_t state)
5087 struct net_device *dev = pci_get_drvdata(pdev);
5088 DEV_NET *pNet = netdev_priv(dev);
5089 SK_AC *pAC = pNet->pAC;
5090 struct net_device *otherdev = pAC->dev[1];
5092 if (netif_running(dev)) {
5093 netif_carrier_off(dev);
5094 DoPrintInterfaceChange = SK_FALSE;
5095 SkDrvDeInitAdapter(pAC, 0); /* performs SkGeClose */
5096 netif_device_detach(dev);
5098 if (otherdev != dev) {
5099 if (netif_running(otherdev)) {
5100 netif_carrier_off(otherdev);
5101 DoPrintInterfaceChange = SK_FALSE;
5102 SkDrvDeInitAdapter(pAC, 1); /* performs SkGeClose */
5103 netif_device_detach(otherdev);
5107 pci_save_state(pdev);
5108 pci_enable_wake(pdev, pci_choose_state(pdev, state), 0);
5109 if (pAC->AllocFlag & SK_ALLOC_IRQ) {
5110 free_irq(dev->irq, dev);
5112 pci_disable_device(pdev);
5113 pci_set_power_state(pdev, pci_choose_state(pdev, state));
5115 return 0;
5118 static int skge_resume(struct pci_dev *pdev)
5120 struct net_device *dev = pci_get_drvdata(pdev);
5121 DEV_NET *pNet = netdev_priv(dev);
5122 SK_AC *pAC = pNet->pAC;
5123 struct net_device *otherdev = pAC->dev[1];
5124 int ret;
5126 pci_set_power_state(pdev, PCI_D0);
5127 pci_restore_state(pdev);
5128 pci_enable_device(pdev);
5129 pci_set_master(pdev);
5130 if (pAC->GIni.GIMacsFound == 2)
5131 ret = request_irq(dev->irq, SkGeIsr, IRQF_SHARED, "sk98lin", dev);
5132 else
5133 ret = request_irq(dev->irq, SkGeIsrOnePort, IRQF_SHARED, "sk98lin", dev);
5134 if (ret) {
5135 printk(KERN_WARNING "sk98lin: unable to acquire IRQ %d\n", dev->irq);
5136 pAC->AllocFlag &= ~SK_ALLOC_IRQ;
5137 dev->irq = 0;
5138 pci_disable_device(pdev);
5139 return -EBUSY;
5142 netif_device_attach(dev);
5143 if (netif_running(dev)) {
5144 DoPrintInterfaceChange = SK_FALSE;
5145 SkDrvInitAdapter(pAC, 0); /* first device */
5147 if (otherdev != dev) {
5148 netif_device_attach(otherdev);
5149 if (netif_running(otherdev)) {
5150 DoPrintInterfaceChange = SK_FALSE;
5151 SkDrvInitAdapter(pAC, 1); /* second device */
5155 return 0;
5157 #else
5158 #define skge_suspend NULL
5159 #define skge_resume NULL
5160 #endif
5162 static struct pci_device_id skge_pci_tbl[] = {
5163 { PCI_VENDOR_ID_3COM, 0x1700, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
5164 { PCI_VENDOR_ID_3COM, 0x80eb, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
5165 { PCI_VENDOR_ID_SYSKONNECT, 0x4300, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
5166 { PCI_VENDOR_ID_SYSKONNECT, 0x4320, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
5167 /* DLink card does not have valid VPD so this driver gags
5168 * { PCI_VENDOR_ID_DLINK, 0x4c00, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
5170 { PCI_VENDOR_ID_MARVELL, 0x4320, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
5171 { PCI_VENDOR_ID_MARVELL, 0x5005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
5172 { PCI_VENDOR_ID_CNET, 0x434e, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
5173 { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015, },
5174 { PCI_VENDOR_ID_LINKSYS, 0x1064, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
5175 { 0 }
5178 MODULE_DEVICE_TABLE(pci, skge_pci_tbl);
5180 static struct pci_driver skge_driver = {
5181 .name = "sk98lin",
5182 .id_table = skge_pci_tbl,
5183 .probe = skge_probe_one,
5184 .remove = __devexit_p(skge_remove_one),
5185 .suspend = skge_suspend,
5186 .resume = skge_resume,
5189 static int __init skge_init(void)
5191 printk(KERN_NOTICE "sk98lin: driver has been replaced by the skge driver"
5192 " and is scheduled for removal\n");
5194 return pci_register_driver(&skge_driver);
5197 static void __exit skge_exit(void)
5199 pci_unregister_driver(&skge_driver);
5202 module_init(skge_init);
5203 module_exit(skge_exit);