[PATCH] cifs endianness annotations
[linux-2.6/linux-mips.git] / mm / page_alloc.c
blob353ce9039a86f477ac13897bb76ab522c718ab87
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/bootmem.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/suspend.h>
27 #include <linux/pagevec.h>
28 #include <linux/blkdev.h>
29 #include <linux/slab.h>
30 #include <linux/notifier.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/memory_hotplug.h>
36 #include <linux/nodemask.h>
37 #include <linux/vmalloc.h>
38 #include <linux/mempolicy.h>
39 #include <linux/stop_machine.h>
40 #include <linux/sort.h>
41 #include <linux/pfn.h>
42 #include <linux/backing-dev.h>
43 #include <linux/fault-inject.h>
45 #include <asm/tlbflush.h>
46 #include <asm/div64.h>
47 #include "internal.h"
50 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
51 * initializer cleaner
53 nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
54 EXPORT_SYMBOL(node_online_map);
55 nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
56 EXPORT_SYMBOL(node_possible_map);
57 unsigned long totalram_pages __read_mostly;
58 unsigned long totalreserve_pages __read_mostly;
59 long nr_swap_pages;
60 int percpu_pagelist_fraction;
62 static void __free_pages_ok(struct page *page, unsigned int order);
65 * results with 256, 32 in the lowmem_reserve sysctl:
66 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
67 * 1G machine -> (16M dma, 784M normal, 224M high)
68 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
69 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
70 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
72 * TBD: should special case ZONE_DMA32 machines here - in those we normally
73 * don't need any ZONE_NORMAL reservation
75 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
76 #ifdef CONFIG_ZONE_DMA
77 256,
78 #endif
79 #ifdef CONFIG_ZONE_DMA32
80 256,
81 #endif
82 #ifdef CONFIG_HIGHMEM
84 #endif
87 EXPORT_SYMBOL(totalram_pages);
89 static char * const zone_names[MAX_NR_ZONES] = {
90 #ifdef CONFIG_ZONE_DMA
91 "DMA",
92 #endif
93 #ifdef CONFIG_ZONE_DMA32
94 "DMA32",
95 #endif
96 "Normal",
97 #ifdef CONFIG_HIGHMEM
98 "HighMem"
99 #endif
102 int min_free_kbytes = 1024;
104 unsigned long __meminitdata nr_kernel_pages;
105 unsigned long __meminitdata nr_all_pages;
106 static unsigned long __initdata dma_reserve;
108 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
110 * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct
111 * ranges of memory (RAM) that may be registered with add_active_range().
112 * Ranges passed to add_active_range() will be merged if possible
113 * so the number of times add_active_range() can be called is
114 * related to the number of nodes and the number of holes
116 #ifdef CONFIG_MAX_ACTIVE_REGIONS
117 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
118 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
119 #else
120 #if MAX_NUMNODES >= 32
121 /* If there can be many nodes, allow up to 50 holes per node */
122 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
123 #else
124 /* By default, allow up to 256 distinct regions */
125 #define MAX_ACTIVE_REGIONS 256
126 #endif
127 #endif
129 struct node_active_region __initdata early_node_map[MAX_ACTIVE_REGIONS];
130 int __initdata nr_nodemap_entries;
131 unsigned long __initdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
132 unsigned long __initdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
133 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
134 unsigned long __initdata node_boundary_start_pfn[MAX_NUMNODES];
135 unsigned long __initdata node_boundary_end_pfn[MAX_NUMNODES];
136 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
137 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
139 #ifdef CONFIG_DEBUG_VM
140 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
142 int ret = 0;
143 unsigned seq;
144 unsigned long pfn = page_to_pfn(page);
146 do {
147 seq = zone_span_seqbegin(zone);
148 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
149 ret = 1;
150 else if (pfn < zone->zone_start_pfn)
151 ret = 1;
152 } while (zone_span_seqretry(zone, seq));
154 return ret;
157 static int page_is_consistent(struct zone *zone, struct page *page)
159 #ifdef CONFIG_HOLES_IN_ZONE
160 if (!pfn_valid(page_to_pfn(page)))
161 return 0;
162 #endif
163 if (zone != page_zone(page))
164 return 0;
166 return 1;
169 * Temporary debugging check for pages not lying within a given zone.
171 static int bad_range(struct zone *zone, struct page *page)
173 if (page_outside_zone_boundaries(zone, page))
174 return 1;
175 if (!page_is_consistent(zone, page))
176 return 1;
178 return 0;
180 #else
181 static inline int bad_range(struct zone *zone, struct page *page)
183 return 0;
185 #endif
187 static void bad_page(struct page *page)
189 printk(KERN_EMERG "Bad page state in process '%s'\n"
190 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
191 KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
192 KERN_EMERG "Backtrace:\n",
193 current->comm, page, (int)(2*sizeof(unsigned long)),
194 (unsigned long)page->flags, page->mapping,
195 page_mapcount(page), page_count(page));
196 dump_stack();
197 page->flags &= ~(1 << PG_lru |
198 1 << PG_private |
199 1 << PG_locked |
200 1 << PG_active |
201 1 << PG_dirty |
202 1 << PG_reclaim |
203 1 << PG_slab |
204 1 << PG_swapcache |
205 1 << PG_writeback |
206 1 << PG_buddy );
207 set_page_count(page, 0);
208 reset_page_mapcount(page);
209 page->mapping = NULL;
210 add_taint(TAINT_BAD_PAGE);
214 * Higher-order pages are called "compound pages". They are structured thusly:
216 * The first PAGE_SIZE page is called the "head page".
218 * The remaining PAGE_SIZE pages are called "tail pages".
220 * All pages have PG_compound set. All pages have their ->private pointing at
221 * the head page (even the head page has this).
223 * The first tail page's ->lru.next holds the address of the compound page's
224 * put_page() function. Its ->lru.prev holds the order of allocation.
225 * This usage means that zero-order pages may not be compound.
228 static void free_compound_page(struct page *page)
230 __free_pages_ok(page, (unsigned long)page[1].lru.prev);
233 static void prep_compound_page(struct page *page, unsigned long order)
235 int i;
236 int nr_pages = 1 << order;
238 set_compound_page_dtor(page, free_compound_page);
239 page[1].lru.prev = (void *)order;
240 for (i = 0; i < nr_pages; i++) {
241 struct page *p = page + i;
243 __SetPageCompound(p);
244 set_page_private(p, (unsigned long)page);
248 static void destroy_compound_page(struct page *page, unsigned long order)
250 int i;
251 int nr_pages = 1 << order;
253 if (unlikely((unsigned long)page[1].lru.prev != order))
254 bad_page(page);
256 for (i = 0; i < nr_pages; i++) {
257 struct page *p = page + i;
259 if (unlikely(!PageCompound(p) |
260 (page_private(p) != (unsigned long)page)))
261 bad_page(page);
262 __ClearPageCompound(p);
266 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
268 int i;
270 VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
272 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
273 * and __GFP_HIGHMEM from hard or soft interrupt context.
275 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
276 for (i = 0; i < (1 << order); i++)
277 clear_highpage(page + i);
281 * function for dealing with page's order in buddy system.
282 * zone->lock is already acquired when we use these.
283 * So, we don't need atomic page->flags operations here.
285 static inline unsigned long page_order(struct page *page)
287 return page_private(page);
290 static inline void set_page_order(struct page *page, int order)
292 set_page_private(page, order);
293 __SetPageBuddy(page);
296 static inline void rmv_page_order(struct page *page)
298 __ClearPageBuddy(page);
299 set_page_private(page, 0);
303 * Locate the struct page for both the matching buddy in our
304 * pair (buddy1) and the combined O(n+1) page they form (page).
306 * 1) Any buddy B1 will have an order O twin B2 which satisfies
307 * the following equation:
308 * B2 = B1 ^ (1 << O)
309 * For example, if the starting buddy (buddy2) is #8 its order
310 * 1 buddy is #10:
311 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
313 * 2) Any buddy B will have an order O+1 parent P which
314 * satisfies the following equation:
315 * P = B & ~(1 << O)
317 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
319 static inline struct page *
320 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
322 unsigned long buddy_idx = page_idx ^ (1 << order);
324 return page + (buddy_idx - page_idx);
327 static inline unsigned long
328 __find_combined_index(unsigned long page_idx, unsigned int order)
330 return (page_idx & ~(1 << order));
334 * This function checks whether a page is free && is the buddy
335 * we can do coalesce a page and its buddy if
336 * (a) the buddy is not in a hole &&
337 * (b) the buddy is in the buddy system &&
338 * (c) a page and its buddy have the same order &&
339 * (d) a page and its buddy are in the same zone.
341 * For recording whether a page is in the buddy system, we use PG_buddy.
342 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
344 * For recording page's order, we use page_private(page).
346 static inline int page_is_buddy(struct page *page, struct page *buddy,
347 int order)
349 #ifdef CONFIG_HOLES_IN_ZONE
350 if (!pfn_valid(page_to_pfn(buddy)))
351 return 0;
352 #endif
354 if (page_zone_id(page) != page_zone_id(buddy))
355 return 0;
357 if (PageBuddy(buddy) && page_order(buddy) == order) {
358 BUG_ON(page_count(buddy) != 0);
359 return 1;
361 return 0;
365 * Freeing function for a buddy system allocator.
367 * The concept of a buddy system is to maintain direct-mapped table
368 * (containing bit values) for memory blocks of various "orders".
369 * The bottom level table contains the map for the smallest allocatable
370 * units of memory (here, pages), and each level above it describes
371 * pairs of units from the levels below, hence, "buddies".
372 * At a high level, all that happens here is marking the table entry
373 * at the bottom level available, and propagating the changes upward
374 * as necessary, plus some accounting needed to play nicely with other
375 * parts of the VM system.
376 * At each level, we keep a list of pages, which are heads of continuous
377 * free pages of length of (1 << order) and marked with PG_buddy. Page's
378 * order is recorded in page_private(page) field.
379 * So when we are allocating or freeing one, we can derive the state of the
380 * other. That is, if we allocate a small block, and both were
381 * free, the remainder of the region must be split into blocks.
382 * If a block is freed, and its buddy is also free, then this
383 * triggers coalescing into a block of larger size.
385 * -- wli
388 static inline void __free_one_page(struct page *page,
389 struct zone *zone, unsigned int order)
391 unsigned long page_idx;
392 int order_size = 1 << order;
394 if (unlikely(PageCompound(page)))
395 destroy_compound_page(page, order);
397 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
399 VM_BUG_ON(page_idx & (order_size - 1));
400 VM_BUG_ON(bad_range(zone, page));
402 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
403 while (order < MAX_ORDER-1) {
404 unsigned long combined_idx;
405 struct free_area *area;
406 struct page *buddy;
408 buddy = __page_find_buddy(page, page_idx, order);
409 if (!page_is_buddy(page, buddy, order))
410 break; /* Move the buddy up one level. */
412 list_del(&buddy->lru);
413 area = zone->free_area + order;
414 area->nr_free--;
415 rmv_page_order(buddy);
416 combined_idx = __find_combined_index(page_idx, order);
417 page = page + (combined_idx - page_idx);
418 page_idx = combined_idx;
419 order++;
421 set_page_order(page, order);
422 list_add(&page->lru, &zone->free_area[order].free_list);
423 zone->free_area[order].nr_free++;
426 static inline int free_pages_check(struct page *page)
428 if (unlikely(page_mapcount(page) |
429 (page->mapping != NULL) |
430 (page_count(page) != 0) |
431 (page->flags & (
432 1 << PG_lru |
433 1 << PG_private |
434 1 << PG_locked |
435 1 << PG_active |
436 1 << PG_reclaim |
437 1 << PG_slab |
438 1 << PG_swapcache |
439 1 << PG_writeback |
440 1 << PG_reserved |
441 1 << PG_buddy ))))
442 bad_page(page);
443 if (PageDirty(page))
444 __ClearPageDirty(page);
446 * For now, we report if PG_reserved was found set, but do not
447 * clear it, and do not free the page. But we shall soon need
448 * to do more, for when the ZERO_PAGE count wraps negative.
450 return PageReserved(page);
454 * Frees a list of pages.
455 * Assumes all pages on list are in same zone, and of same order.
456 * count is the number of pages to free.
458 * If the zone was previously in an "all pages pinned" state then look to
459 * see if this freeing clears that state.
461 * And clear the zone's pages_scanned counter, to hold off the "all pages are
462 * pinned" detection logic.
464 static void free_pages_bulk(struct zone *zone, int count,
465 struct list_head *list, int order)
467 spin_lock(&zone->lock);
468 zone->all_unreclaimable = 0;
469 zone->pages_scanned = 0;
470 while (count--) {
471 struct page *page;
473 VM_BUG_ON(list_empty(list));
474 page = list_entry(list->prev, struct page, lru);
475 /* have to delete it as __free_one_page list manipulates */
476 list_del(&page->lru);
477 __free_one_page(page, zone, order);
479 spin_unlock(&zone->lock);
482 static void free_one_page(struct zone *zone, struct page *page, int order)
484 spin_lock(&zone->lock);
485 zone->all_unreclaimable = 0;
486 zone->pages_scanned = 0;
487 __free_one_page(page, zone, order);
488 spin_unlock(&zone->lock);
491 static void __free_pages_ok(struct page *page, unsigned int order)
493 unsigned long flags;
494 int i;
495 int reserved = 0;
497 for (i = 0 ; i < (1 << order) ; ++i)
498 reserved += free_pages_check(page + i);
499 if (reserved)
500 return;
502 if (!PageHighMem(page))
503 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
504 arch_free_page(page, order);
505 kernel_map_pages(page, 1 << order, 0);
507 local_irq_save(flags);
508 __count_vm_events(PGFREE, 1 << order);
509 free_one_page(page_zone(page), page, order);
510 local_irq_restore(flags);
514 * permit the bootmem allocator to evade page validation on high-order frees
516 void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
518 if (order == 0) {
519 __ClearPageReserved(page);
520 set_page_count(page, 0);
521 set_page_refcounted(page);
522 __free_page(page);
523 } else {
524 int loop;
526 prefetchw(page);
527 for (loop = 0; loop < BITS_PER_LONG; loop++) {
528 struct page *p = &page[loop];
530 if (loop + 1 < BITS_PER_LONG)
531 prefetchw(p + 1);
532 __ClearPageReserved(p);
533 set_page_count(p, 0);
536 set_page_refcounted(page);
537 __free_pages(page, order);
543 * The order of subdivision here is critical for the IO subsystem.
544 * Please do not alter this order without good reasons and regression
545 * testing. Specifically, as large blocks of memory are subdivided,
546 * the order in which smaller blocks are delivered depends on the order
547 * they're subdivided in this function. This is the primary factor
548 * influencing the order in which pages are delivered to the IO
549 * subsystem according to empirical testing, and this is also justified
550 * by considering the behavior of a buddy system containing a single
551 * large block of memory acted on by a series of small allocations.
552 * This behavior is a critical factor in sglist merging's success.
554 * -- wli
556 static inline void expand(struct zone *zone, struct page *page,
557 int low, int high, struct free_area *area)
559 unsigned long size = 1 << high;
561 while (high > low) {
562 area--;
563 high--;
564 size >>= 1;
565 VM_BUG_ON(bad_range(zone, &page[size]));
566 list_add(&page[size].lru, &area->free_list);
567 area->nr_free++;
568 set_page_order(&page[size], high);
573 * This page is about to be returned from the page allocator
575 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
577 if (unlikely(page_mapcount(page) |
578 (page->mapping != NULL) |
579 (page_count(page) != 0) |
580 (page->flags & (
581 1 << PG_lru |
582 1 << PG_private |
583 1 << PG_locked |
584 1 << PG_active |
585 1 << PG_dirty |
586 1 << PG_reclaim |
587 1 << PG_slab |
588 1 << PG_swapcache |
589 1 << PG_writeback |
590 1 << PG_reserved |
591 1 << PG_buddy ))))
592 bad_page(page);
595 * For now, we report if PG_reserved was found set, but do not
596 * clear it, and do not allocate the page: as a safety net.
598 if (PageReserved(page))
599 return 1;
601 page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
602 1 << PG_referenced | 1 << PG_arch_1 |
603 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
604 set_page_private(page, 0);
605 set_page_refcounted(page);
607 arch_alloc_page(page, order);
608 kernel_map_pages(page, 1 << order, 1);
610 if (gfp_flags & __GFP_ZERO)
611 prep_zero_page(page, order, gfp_flags);
613 if (order && (gfp_flags & __GFP_COMP))
614 prep_compound_page(page, order);
616 return 0;
620 * Do the hard work of removing an element from the buddy allocator.
621 * Call me with the zone->lock already held.
623 static struct page *__rmqueue(struct zone *zone, unsigned int order)
625 struct free_area * area;
626 unsigned int current_order;
627 struct page *page;
629 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
630 area = zone->free_area + current_order;
631 if (list_empty(&area->free_list))
632 continue;
634 page = list_entry(area->free_list.next, struct page, lru);
635 list_del(&page->lru);
636 rmv_page_order(page);
637 area->nr_free--;
638 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
639 expand(zone, page, order, current_order, area);
640 return page;
643 return NULL;
647 * Obtain a specified number of elements from the buddy allocator, all under
648 * a single hold of the lock, for efficiency. Add them to the supplied list.
649 * Returns the number of new pages which were placed at *list.
651 static int rmqueue_bulk(struct zone *zone, unsigned int order,
652 unsigned long count, struct list_head *list)
654 int i;
656 spin_lock(&zone->lock);
657 for (i = 0; i < count; ++i) {
658 struct page *page = __rmqueue(zone, order);
659 if (unlikely(page == NULL))
660 break;
661 list_add_tail(&page->lru, list);
663 spin_unlock(&zone->lock);
664 return i;
667 #if MAX_NUMNODES > 1
668 int nr_node_ids __read_mostly;
669 EXPORT_SYMBOL(nr_node_ids);
672 * Figure out the number of possible node ids.
674 static void __init setup_nr_node_ids(void)
676 unsigned int node;
677 unsigned int highest = 0;
679 for_each_node_mask(node, node_possible_map)
680 highest = node;
681 nr_node_ids = highest + 1;
683 #else
684 static void __init setup_nr_node_ids(void) {}
685 #endif
687 #ifdef CONFIG_NUMA
689 * Called from the slab reaper to drain pagesets on a particular node that
690 * belongs to the currently executing processor.
691 * Note that this function must be called with the thread pinned to
692 * a single processor.
694 void drain_node_pages(int nodeid)
696 int i;
697 enum zone_type z;
698 unsigned long flags;
700 for (z = 0; z < MAX_NR_ZONES; z++) {
701 struct zone *zone = NODE_DATA(nodeid)->node_zones + z;
702 struct per_cpu_pageset *pset;
704 if (!populated_zone(zone))
705 continue;
707 pset = zone_pcp(zone, smp_processor_id());
708 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
709 struct per_cpu_pages *pcp;
711 pcp = &pset->pcp[i];
712 if (pcp->count) {
713 int to_drain;
715 local_irq_save(flags);
716 if (pcp->count >= pcp->batch)
717 to_drain = pcp->batch;
718 else
719 to_drain = pcp->count;
720 free_pages_bulk(zone, to_drain, &pcp->list, 0);
721 pcp->count -= to_drain;
722 local_irq_restore(flags);
727 #endif
729 static void __drain_pages(unsigned int cpu)
731 unsigned long flags;
732 struct zone *zone;
733 int i;
735 for_each_zone(zone) {
736 struct per_cpu_pageset *pset;
738 if (!populated_zone(zone))
739 continue;
741 pset = zone_pcp(zone, cpu);
742 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
743 struct per_cpu_pages *pcp;
745 pcp = &pset->pcp[i];
746 local_irq_save(flags);
747 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
748 pcp->count = 0;
749 local_irq_restore(flags);
754 #ifdef CONFIG_PM
756 void mark_free_pages(struct zone *zone)
758 unsigned long pfn, max_zone_pfn;
759 unsigned long flags;
760 int order;
761 struct list_head *curr;
763 if (!zone->spanned_pages)
764 return;
766 spin_lock_irqsave(&zone->lock, flags);
768 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
769 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
770 if (pfn_valid(pfn)) {
771 struct page *page = pfn_to_page(pfn);
773 if (!PageNosave(page))
774 ClearPageNosaveFree(page);
777 for (order = MAX_ORDER - 1; order >= 0; --order)
778 list_for_each(curr, &zone->free_area[order].free_list) {
779 unsigned long i;
781 pfn = page_to_pfn(list_entry(curr, struct page, lru));
782 for (i = 0; i < (1UL << order); i++)
783 SetPageNosaveFree(pfn_to_page(pfn + i));
786 spin_unlock_irqrestore(&zone->lock, flags);
790 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
792 void drain_local_pages(void)
794 unsigned long flags;
796 local_irq_save(flags);
797 __drain_pages(smp_processor_id());
798 local_irq_restore(flags);
800 #endif /* CONFIG_PM */
803 * Free a 0-order page
805 static void fastcall free_hot_cold_page(struct page *page, int cold)
807 struct zone *zone = page_zone(page);
808 struct per_cpu_pages *pcp;
809 unsigned long flags;
811 if (PageAnon(page))
812 page->mapping = NULL;
813 if (free_pages_check(page))
814 return;
816 if (!PageHighMem(page))
817 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
818 arch_free_page(page, 0);
819 kernel_map_pages(page, 1, 0);
821 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
822 local_irq_save(flags);
823 __count_vm_event(PGFREE);
824 list_add(&page->lru, &pcp->list);
825 pcp->count++;
826 if (pcp->count >= pcp->high) {
827 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
828 pcp->count -= pcp->batch;
830 local_irq_restore(flags);
831 put_cpu();
834 void fastcall free_hot_page(struct page *page)
836 free_hot_cold_page(page, 0);
839 void fastcall free_cold_page(struct page *page)
841 free_hot_cold_page(page, 1);
845 * split_page takes a non-compound higher-order page, and splits it into
846 * n (1<<order) sub-pages: page[0..n]
847 * Each sub-page must be freed individually.
849 * Note: this is probably too low level an operation for use in drivers.
850 * Please consult with lkml before using this in your driver.
852 void split_page(struct page *page, unsigned int order)
854 int i;
856 VM_BUG_ON(PageCompound(page));
857 VM_BUG_ON(!page_count(page));
858 for (i = 1; i < (1 << order); i++)
859 set_page_refcounted(page + i);
863 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
864 * we cheat by calling it from here, in the order > 0 path. Saves a branch
865 * or two.
867 static struct page *buffered_rmqueue(struct zonelist *zonelist,
868 struct zone *zone, int order, gfp_t gfp_flags)
870 unsigned long flags;
871 struct page *page;
872 int cold = !!(gfp_flags & __GFP_COLD);
873 int cpu;
875 again:
876 cpu = get_cpu();
877 if (likely(order == 0)) {
878 struct per_cpu_pages *pcp;
880 pcp = &zone_pcp(zone, cpu)->pcp[cold];
881 local_irq_save(flags);
882 if (!pcp->count) {
883 pcp->count = rmqueue_bulk(zone, 0,
884 pcp->batch, &pcp->list);
885 if (unlikely(!pcp->count))
886 goto failed;
888 page = list_entry(pcp->list.next, struct page, lru);
889 list_del(&page->lru);
890 pcp->count--;
891 } else {
892 spin_lock_irqsave(&zone->lock, flags);
893 page = __rmqueue(zone, order);
894 spin_unlock(&zone->lock);
895 if (!page)
896 goto failed;
899 __count_zone_vm_events(PGALLOC, zone, 1 << order);
900 zone_statistics(zonelist, zone);
901 local_irq_restore(flags);
902 put_cpu();
904 VM_BUG_ON(bad_range(zone, page));
905 if (prep_new_page(page, order, gfp_flags))
906 goto again;
907 return page;
909 failed:
910 local_irq_restore(flags);
911 put_cpu();
912 return NULL;
915 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
916 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
917 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
918 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
919 #define ALLOC_HARDER 0x10 /* try to alloc harder */
920 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
921 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
923 #ifdef CONFIG_FAIL_PAGE_ALLOC
925 static struct fail_page_alloc_attr {
926 struct fault_attr attr;
928 u32 ignore_gfp_highmem;
929 u32 ignore_gfp_wait;
931 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
933 struct dentry *ignore_gfp_highmem_file;
934 struct dentry *ignore_gfp_wait_file;
936 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
938 } fail_page_alloc = {
939 .attr = FAULT_ATTR_INITIALIZER,
940 .ignore_gfp_wait = 1,
941 .ignore_gfp_highmem = 1,
944 static int __init setup_fail_page_alloc(char *str)
946 return setup_fault_attr(&fail_page_alloc.attr, str);
948 __setup("fail_page_alloc=", setup_fail_page_alloc);
950 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
952 if (gfp_mask & __GFP_NOFAIL)
953 return 0;
954 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
955 return 0;
956 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
957 return 0;
959 return should_fail(&fail_page_alloc.attr, 1 << order);
962 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
964 static int __init fail_page_alloc_debugfs(void)
966 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
967 struct dentry *dir;
968 int err;
970 err = init_fault_attr_dentries(&fail_page_alloc.attr,
971 "fail_page_alloc");
972 if (err)
973 return err;
974 dir = fail_page_alloc.attr.dentries.dir;
976 fail_page_alloc.ignore_gfp_wait_file =
977 debugfs_create_bool("ignore-gfp-wait", mode, dir,
978 &fail_page_alloc.ignore_gfp_wait);
980 fail_page_alloc.ignore_gfp_highmem_file =
981 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
982 &fail_page_alloc.ignore_gfp_highmem);
984 if (!fail_page_alloc.ignore_gfp_wait_file ||
985 !fail_page_alloc.ignore_gfp_highmem_file) {
986 err = -ENOMEM;
987 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
988 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
989 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
992 return err;
995 late_initcall(fail_page_alloc_debugfs);
997 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
999 #else /* CONFIG_FAIL_PAGE_ALLOC */
1001 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1003 return 0;
1006 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1009 * Return 1 if free pages are above 'mark'. This takes into account the order
1010 * of the allocation.
1012 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1013 int classzone_idx, int alloc_flags)
1015 /* free_pages my go negative - that's OK */
1016 long min = mark;
1017 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1018 int o;
1020 if (alloc_flags & ALLOC_HIGH)
1021 min -= min / 2;
1022 if (alloc_flags & ALLOC_HARDER)
1023 min -= min / 4;
1025 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1026 return 0;
1027 for (o = 0; o < order; o++) {
1028 /* At the next order, this order's pages become unavailable */
1029 free_pages -= z->free_area[o].nr_free << o;
1031 /* Require fewer higher order pages to be free */
1032 min >>= 1;
1034 if (free_pages <= min)
1035 return 0;
1037 return 1;
1040 #ifdef CONFIG_NUMA
1042 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1043 * skip over zones that are not allowed by the cpuset, or that have
1044 * been recently (in last second) found to be nearly full. See further
1045 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1046 * that have to skip over alot of full or unallowed zones.
1048 * If the zonelist cache is present in the passed in zonelist, then
1049 * returns a pointer to the allowed node mask (either the current
1050 * tasks mems_allowed, or node_online_map.)
1052 * If the zonelist cache is not available for this zonelist, does
1053 * nothing and returns NULL.
1055 * If the fullzones BITMAP in the zonelist cache is stale (more than
1056 * a second since last zap'd) then we zap it out (clear its bits.)
1058 * We hold off even calling zlc_setup, until after we've checked the
1059 * first zone in the zonelist, on the theory that most allocations will
1060 * be satisfied from that first zone, so best to examine that zone as
1061 * quickly as we can.
1063 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1065 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1066 nodemask_t *allowednodes; /* zonelist_cache approximation */
1068 zlc = zonelist->zlcache_ptr;
1069 if (!zlc)
1070 return NULL;
1072 if (jiffies - zlc->last_full_zap > 1 * HZ) {
1073 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1074 zlc->last_full_zap = jiffies;
1077 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1078 &cpuset_current_mems_allowed :
1079 &node_online_map;
1080 return allowednodes;
1084 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1085 * if it is worth looking at further for free memory:
1086 * 1) Check that the zone isn't thought to be full (doesn't have its
1087 * bit set in the zonelist_cache fullzones BITMAP).
1088 * 2) Check that the zones node (obtained from the zonelist_cache
1089 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1090 * Return true (non-zero) if zone is worth looking at further, or
1091 * else return false (zero) if it is not.
1093 * This check -ignores- the distinction between various watermarks,
1094 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1095 * found to be full for any variation of these watermarks, it will
1096 * be considered full for up to one second by all requests, unless
1097 * we are so low on memory on all allowed nodes that we are forced
1098 * into the second scan of the zonelist.
1100 * In the second scan we ignore this zonelist cache and exactly
1101 * apply the watermarks to all zones, even it is slower to do so.
1102 * We are low on memory in the second scan, and should leave no stone
1103 * unturned looking for a free page.
1105 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1106 nodemask_t *allowednodes)
1108 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1109 int i; /* index of *z in zonelist zones */
1110 int n; /* node that zone *z is on */
1112 zlc = zonelist->zlcache_ptr;
1113 if (!zlc)
1114 return 1;
1116 i = z - zonelist->zones;
1117 n = zlc->z_to_n[i];
1119 /* This zone is worth trying if it is allowed but not full */
1120 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1124 * Given 'z' scanning a zonelist, set the corresponding bit in
1125 * zlc->fullzones, so that subsequent attempts to allocate a page
1126 * from that zone don't waste time re-examining it.
1128 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1130 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1131 int i; /* index of *z in zonelist zones */
1133 zlc = zonelist->zlcache_ptr;
1134 if (!zlc)
1135 return;
1137 i = z - zonelist->zones;
1139 set_bit(i, zlc->fullzones);
1142 #else /* CONFIG_NUMA */
1144 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1146 return NULL;
1149 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1150 nodemask_t *allowednodes)
1152 return 1;
1155 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1158 #endif /* CONFIG_NUMA */
1161 * get_page_from_freelist goes through the zonelist trying to allocate
1162 * a page.
1164 static struct page *
1165 get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
1166 struct zonelist *zonelist, int alloc_flags)
1168 struct zone **z;
1169 struct page *page = NULL;
1170 int classzone_idx = zone_idx(zonelist->zones[0]);
1171 struct zone *zone;
1172 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1173 int zlc_active = 0; /* set if using zonelist_cache */
1174 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1176 zonelist_scan:
1178 * Scan zonelist, looking for a zone with enough free.
1179 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1181 z = zonelist->zones;
1183 do {
1184 if (NUMA_BUILD && zlc_active &&
1185 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1186 continue;
1187 zone = *z;
1188 if (unlikely(NUMA_BUILD && (gfp_mask & __GFP_THISNODE) &&
1189 zone->zone_pgdat != zonelist->zones[0]->zone_pgdat))
1190 break;
1191 if ((alloc_flags & ALLOC_CPUSET) &&
1192 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1193 goto try_next_zone;
1195 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1196 unsigned long mark;
1197 if (alloc_flags & ALLOC_WMARK_MIN)
1198 mark = zone->pages_min;
1199 else if (alloc_flags & ALLOC_WMARK_LOW)
1200 mark = zone->pages_low;
1201 else
1202 mark = zone->pages_high;
1203 if (!zone_watermark_ok(zone, order, mark,
1204 classzone_idx, alloc_flags)) {
1205 if (!zone_reclaim_mode ||
1206 !zone_reclaim(zone, gfp_mask, order))
1207 goto this_zone_full;
1211 page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
1212 if (page)
1213 break;
1214 this_zone_full:
1215 if (NUMA_BUILD)
1216 zlc_mark_zone_full(zonelist, z);
1217 try_next_zone:
1218 if (NUMA_BUILD && !did_zlc_setup) {
1219 /* we do zlc_setup after the first zone is tried */
1220 allowednodes = zlc_setup(zonelist, alloc_flags);
1221 zlc_active = 1;
1222 did_zlc_setup = 1;
1224 } while (*(++z) != NULL);
1226 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1227 /* Disable zlc cache for second zonelist scan */
1228 zlc_active = 0;
1229 goto zonelist_scan;
1231 return page;
1235 * This is the 'heart' of the zoned buddy allocator.
1237 struct page * fastcall
1238 __alloc_pages(gfp_t gfp_mask, unsigned int order,
1239 struct zonelist *zonelist)
1241 const gfp_t wait = gfp_mask & __GFP_WAIT;
1242 struct zone **z;
1243 struct page *page;
1244 struct reclaim_state reclaim_state;
1245 struct task_struct *p = current;
1246 int do_retry;
1247 int alloc_flags;
1248 int did_some_progress;
1250 might_sleep_if(wait);
1252 if (should_fail_alloc_page(gfp_mask, order))
1253 return NULL;
1255 restart:
1256 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
1258 if (unlikely(*z == NULL)) {
1259 /* Should this ever happen?? */
1260 return NULL;
1263 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1264 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1265 if (page)
1266 goto got_pg;
1269 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1270 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1271 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1272 * using a larger set of nodes after it has established that the
1273 * allowed per node queues are empty and that nodes are
1274 * over allocated.
1276 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1277 goto nopage;
1279 for (z = zonelist->zones; *z; z++)
1280 wakeup_kswapd(*z, order);
1283 * OK, we're below the kswapd watermark and have kicked background
1284 * reclaim. Now things get more complex, so set up alloc_flags according
1285 * to how we want to proceed.
1287 * The caller may dip into page reserves a bit more if the caller
1288 * cannot run direct reclaim, or if the caller has realtime scheduling
1289 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1290 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1292 alloc_flags = ALLOC_WMARK_MIN;
1293 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1294 alloc_flags |= ALLOC_HARDER;
1295 if (gfp_mask & __GFP_HIGH)
1296 alloc_flags |= ALLOC_HIGH;
1297 if (wait)
1298 alloc_flags |= ALLOC_CPUSET;
1301 * Go through the zonelist again. Let __GFP_HIGH and allocations
1302 * coming from realtime tasks go deeper into reserves.
1304 * This is the last chance, in general, before the goto nopage.
1305 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1306 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1308 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
1309 if (page)
1310 goto got_pg;
1312 /* This allocation should allow future memory freeing. */
1314 rebalance:
1315 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1316 && !in_interrupt()) {
1317 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1318 nofail_alloc:
1319 /* go through the zonelist yet again, ignoring mins */
1320 page = get_page_from_freelist(gfp_mask, order,
1321 zonelist, ALLOC_NO_WATERMARKS);
1322 if (page)
1323 goto got_pg;
1324 if (gfp_mask & __GFP_NOFAIL) {
1325 congestion_wait(WRITE, HZ/50);
1326 goto nofail_alloc;
1329 goto nopage;
1332 /* Atomic allocations - we can't balance anything */
1333 if (!wait)
1334 goto nopage;
1336 cond_resched();
1338 /* We now go into synchronous reclaim */
1339 cpuset_memory_pressure_bump();
1340 p->flags |= PF_MEMALLOC;
1341 reclaim_state.reclaimed_slab = 0;
1342 p->reclaim_state = &reclaim_state;
1344 did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
1346 p->reclaim_state = NULL;
1347 p->flags &= ~PF_MEMALLOC;
1349 cond_resched();
1351 if (likely(did_some_progress)) {
1352 page = get_page_from_freelist(gfp_mask, order,
1353 zonelist, alloc_flags);
1354 if (page)
1355 goto got_pg;
1356 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1358 * Go through the zonelist yet one more time, keep
1359 * very high watermark here, this is only to catch
1360 * a parallel oom killing, we must fail if we're still
1361 * under heavy pressure.
1363 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1364 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1365 if (page)
1366 goto got_pg;
1368 out_of_memory(zonelist, gfp_mask, order);
1369 goto restart;
1373 * Don't let big-order allocations loop unless the caller explicitly
1374 * requests that. Wait for some write requests to complete then retry.
1376 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1377 * <= 3, but that may not be true in other implementations.
1379 do_retry = 0;
1380 if (!(gfp_mask & __GFP_NORETRY)) {
1381 if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1382 do_retry = 1;
1383 if (gfp_mask & __GFP_NOFAIL)
1384 do_retry = 1;
1386 if (do_retry) {
1387 congestion_wait(WRITE, HZ/50);
1388 goto rebalance;
1391 nopage:
1392 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1393 printk(KERN_WARNING "%s: page allocation failure."
1394 " order:%d, mode:0x%x\n",
1395 p->comm, order, gfp_mask);
1396 dump_stack();
1397 show_mem();
1399 got_pg:
1400 return page;
1403 EXPORT_SYMBOL(__alloc_pages);
1406 * Common helper functions.
1408 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1410 struct page * page;
1411 page = alloc_pages(gfp_mask, order);
1412 if (!page)
1413 return 0;
1414 return (unsigned long) page_address(page);
1417 EXPORT_SYMBOL(__get_free_pages);
1419 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1421 struct page * page;
1424 * get_zeroed_page() returns a 32-bit address, which cannot represent
1425 * a highmem page
1427 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1429 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1430 if (page)
1431 return (unsigned long) page_address(page);
1432 return 0;
1435 EXPORT_SYMBOL(get_zeroed_page);
1437 void __pagevec_free(struct pagevec *pvec)
1439 int i = pagevec_count(pvec);
1441 while (--i >= 0)
1442 free_hot_cold_page(pvec->pages[i], pvec->cold);
1445 fastcall void __free_pages(struct page *page, unsigned int order)
1447 if (put_page_testzero(page)) {
1448 if (order == 0)
1449 free_hot_page(page);
1450 else
1451 __free_pages_ok(page, order);
1455 EXPORT_SYMBOL(__free_pages);
1457 fastcall void free_pages(unsigned long addr, unsigned int order)
1459 if (addr != 0) {
1460 VM_BUG_ON(!virt_addr_valid((void *)addr));
1461 __free_pages(virt_to_page((void *)addr), order);
1465 EXPORT_SYMBOL(free_pages);
1467 static unsigned int nr_free_zone_pages(int offset)
1469 /* Just pick one node, since fallback list is circular */
1470 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1471 unsigned int sum = 0;
1473 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1474 struct zone **zonep = zonelist->zones;
1475 struct zone *zone;
1477 for (zone = *zonep++; zone; zone = *zonep++) {
1478 unsigned long size = zone->present_pages;
1479 unsigned long high = zone->pages_high;
1480 if (size > high)
1481 sum += size - high;
1484 return sum;
1488 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1490 unsigned int nr_free_buffer_pages(void)
1492 return nr_free_zone_pages(gfp_zone(GFP_USER));
1496 * Amount of free RAM allocatable within all zones
1498 unsigned int nr_free_pagecache_pages(void)
1500 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1503 static inline void show_node(struct zone *zone)
1505 if (NUMA_BUILD)
1506 printk("Node %d ", zone_to_nid(zone));
1509 void si_meminfo(struct sysinfo *val)
1511 val->totalram = totalram_pages;
1512 val->sharedram = 0;
1513 val->freeram = global_page_state(NR_FREE_PAGES);
1514 val->bufferram = nr_blockdev_pages();
1515 val->totalhigh = totalhigh_pages;
1516 val->freehigh = nr_free_highpages();
1517 val->mem_unit = PAGE_SIZE;
1520 EXPORT_SYMBOL(si_meminfo);
1522 #ifdef CONFIG_NUMA
1523 void si_meminfo_node(struct sysinfo *val, int nid)
1525 pg_data_t *pgdat = NODE_DATA(nid);
1527 val->totalram = pgdat->node_present_pages;
1528 val->freeram = node_page_state(nid, NR_FREE_PAGES);
1529 #ifdef CONFIG_HIGHMEM
1530 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1531 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1532 NR_FREE_PAGES);
1533 #else
1534 val->totalhigh = 0;
1535 val->freehigh = 0;
1536 #endif
1537 val->mem_unit = PAGE_SIZE;
1539 #endif
1541 #define K(x) ((x) << (PAGE_SHIFT-10))
1544 * Show free area list (used inside shift_scroll-lock stuff)
1545 * We also calculate the percentage fragmentation. We do this by counting the
1546 * memory on each free list with the exception of the first item on the list.
1548 void show_free_areas(void)
1550 int cpu;
1551 struct zone *zone;
1553 for_each_zone(zone) {
1554 if (!populated_zone(zone))
1555 continue;
1557 show_node(zone);
1558 printk("%s per-cpu:\n", zone->name);
1560 for_each_online_cpu(cpu) {
1561 struct per_cpu_pageset *pageset;
1563 pageset = zone_pcp(zone, cpu);
1565 printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d "
1566 "Cold: hi:%5d, btch:%4d usd:%4d\n",
1567 cpu, pageset->pcp[0].high,
1568 pageset->pcp[0].batch, pageset->pcp[0].count,
1569 pageset->pcp[1].high, pageset->pcp[1].batch,
1570 pageset->pcp[1].count);
1574 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
1575 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1576 global_page_state(NR_ACTIVE),
1577 global_page_state(NR_INACTIVE),
1578 global_page_state(NR_FILE_DIRTY),
1579 global_page_state(NR_WRITEBACK),
1580 global_page_state(NR_UNSTABLE_NFS),
1581 global_page_state(NR_FREE_PAGES),
1582 global_page_state(NR_SLAB_RECLAIMABLE) +
1583 global_page_state(NR_SLAB_UNRECLAIMABLE),
1584 global_page_state(NR_FILE_MAPPED),
1585 global_page_state(NR_PAGETABLE),
1586 global_page_state(NR_BOUNCE));
1588 for_each_zone(zone) {
1589 int i;
1591 if (!populated_zone(zone))
1592 continue;
1594 show_node(zone);
1595 printk("%s"
1596 " free:%lukB"
1597 " min:%lukB"
1598 " low:%lukB"
1599 " high:%lukB"
1600 " active:%lukB"
1601 " inactive:%lukB"
1602 " present:%lukB"
1603 " pages_scanned:%lu"
1604 " all_unreclaimable? %s"
1605 "\n",
1606 zone->name,
1607 K(zone_page_state(zone, NR_FREE_PAGES)),
1608 K(zone->pages_min),
1609 K(zone->pages_low),
1610 K(zone->pages_high),
1611 K(zone_page_state(zone, NR_ACTIVE)),
1612 K(zone_page_state(zone, NR_INACTIVE)),
1613 K(zone->present_pages),
1614 zone->pages_scanned,
1615 (zone->all_unreclaimable ? "yes" : "no")
1617 printk("lowmem_reserve[]:");
1618 for (i = 0; i < MAX_NR_ZONES; i++)
1619 printk(" %lu", zone->lowmem_reserve[i]);
1620 printk("\n");
1623 for_each_zone(zone) {
1624 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1626 if (!populated_zone(zone))
1627 continue;
1629 show_node(zone);
1630 printk("%s: ", zone->name);
1632 spin_lock_irqsave(&zone->lock, flags);
1633 for (order = 0; order < MAX_ORDER; order++) {
1634 nr[order] = zone->free_area[order].nr_free;
1635 total += nr[order] << order;
1637 spin_unlock_irqrestore(&zone->lock, flags);
1638 for (order = 0; order < MAX_ORDER; order++)
1639 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1640 printk("= %lukB\n", K(total));
1643 show_swap_cache_info();
1647 * Builds allocation fallback zone lists.
1649 * Add all populated zones of a node to the zonelist.
1651 static int __meminit build_zonelists_node(pg_data_t *pgdat,
1652 struct zonelist *zonelist, int nr_zones, enum zone_type zone_type)
1654 struct zone *zone;
1656 BUG_ON(zone_type >= MAX_NR_ZONES);
1657 zone_type++;
1659 do {
1660 zone_type--;
1661 zone = pgdat->node_zones + zone_type;
1662 if (populated_zone(zone)) {
1663 zonelist->zones[nr_zones++] = zone;
1664 check_highest_zone(zone_type);
1667 } while (zone_type);
1668 return nr_zones;
1671 #ifdef CONFIG_NUMA
1672 #define MAX_NODE_LOAD (num_online_nodes())
1673 static int __meminitdata node_load[MAX_NUMNODES];
1675 * find_next_best_node - find the next node that should appear in a given node's fallback list
1676 * @node: node whose fallback list we're appending
1677 * @used_node_mask: nodemask_t of already used nodes
1679 * We use a number of factors to determine which is the next node that should
1680 * appear on a given node's fallback list. The node should not have appeared
1681 * already in @node's fallback list, and it should be the next closest node
1682 * according to the distance array (which contains arbitrary distance values
1683 * from each node to each node in the system), and should also prefer nodes
1684 * with no CPUs, since presumably they'll have very little allocation pressure
1685 * on them otherwise.
1686 * It returns -1 if no node is found.
1688 static int __meminit find_next_best_node(int node, nodemask_t *used_node_mask)
1690 int n, val;
1691 int min_val = INT_MAX;
1692 int best_node = -1;
1694 /* Use the local node if we haven't already */
1695 if (!node_isset(node, *used_node_mask)) {
1696 node_set(node, *used_node_mask);
1697 return node;
1700 for_each_online_node(n) {
1701 cpumask_t tmp;
1703 /* Don't want a node to appear more than once */
1704 if (node_isset(n, *used_node_mask))
1705 continue;
1707 /* Use the distance array to find the distance */
1708 val = node_distance(node, n);
1710 /* Penalize nodes under us ("prefer the next node") */
1711 val += (n < node);
1713 /* Give preference to headless and unused nodes */
1714 tmp = node_to_cpumask(n);
1715 if (!cpus_empty(tmp))
1716 val += PENALTY_FOR_NODE_WITH_CPUS;
1718 /* Slight preference for less loaded node */
1719 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1720 val += node_load[n];
1722 if (val < min_val) {
1723 min_val = val;
1724 best_node = n;
1728 if (best_node >= 0)
1729 node_set(best_node, *used_node_mask);
1731 return best_node;
1734 static void __meminit build_zonelists(pg_data_t *pgdat)
1736 int j, node, local_node;
1737 enum zone_type i;
1738 int prev_node, load;
1739 struct zonelist *zonelist;
1740 nodemask_t used_mask;
1742 /* initialize zonelists */
1743 for (i = 0; i < MAX_NR_ZONES; i++) {
1744 zonelist = pgdat->node_zonelists + i;
1745 zonelist->zones[0] = NULL;
1748 /* NUMA-aware ordering of nodes */
1749 local_node = pgdat->node_id;
1750 load = num_online_nodes();
1751 prev_node = local_node;
1752 nodes_clear(used_mask);
1753 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1754 int distance = node_distance(local_node, node);
1757 * If another node is sufficiently far away then it is better
1758 * to reclaim pages in a zone before going off node.
1760 if (distance > RECLAIM_DISTANCE)
1761 zone_reclaim_mode = 1;
1764 * We don't want to pressure a particular node.
1765 * So adding penalty to the first node in same
1766 * distance group to make it round-robin.
1769 if (distance != node_distance(local_node, prev_node))
1770 node_load[node] += load;
1771 prev_node = node;
1772 load--;
1773 for (i = 0; i < MAX_NR_ZONES; i++) {
1774 zonelist = pgdat->node_zonelists + i;
1775 for (j = 0; zonelist->zones[j] != NULL; j++);
1777 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1778 zonelist->zones[j] = NULL;
1783 /* Construct the zonelist performance cache - see further mmzone.h */
1784 static void __meminit build_zonelist_cache(pg_data_t *pgdat)
1786 int i;
1788 for (i = 0; i < MAX_NR_ZONES; i++) {
1789 struct zonelist *zonelist;
1790 struct zonelist_cache *zlc;
1791 struct zone **z;
1793 zonelist = pgdat->node_zonelists + i;
1794 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
1795 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1796 for (z = zonelist->zones; *z; z++)
1797 zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z);
1801 #else /* CONFIG_NUMA */
1803 static void __meminit build_zonelists(pg_data_t *pgdat)
1805 int node, local_node;
1806 enum zone_type i,j;
1808 local_node = pgdat->node_id;
1809 for (i = 0; i < MAX_NR_ZONES; i++) {
1810 struct zonelist *zonelist;
1812 zonelist = pgdat->node_zonelists + i;
1814 j = build_zonelists_node(pgdat, zonelist, 0, i);
1816 * Now we build the zonelist so that it contains the zones
1817 * of all the other nodes.
1818 * We don't want to pressure a particular node, so when
1819 * building the zones for node N, we make sure that the
1820 * zones coming right after the local ones are those from
1821 * node N+1 (modulo N)
1823 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1824 if (!node_online(node))
1825 continue;
1826 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1828 for (node = 0; node < local_node; node++) {
1829 if (!node_online(node))
1830 continue;
1831 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1834 zonelist->zones[j] = NULL;
1838 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
1839 static void __meminit build_zonelist_cache(pg_data_t *pgdat)
1841 int i;
1843 for (i = 0; i < MAX_NR_ZONES; i++)
1844 pgdat->node_zonelists[i].zlcache_ptr = NULL;
1847 #endif /* CONFIG_NUMA */
1849 /* return values int ....just for stop_machine_run() */
1850 static int __meminit __build_all_zonelists(void *dummy)
1852 int nid;
1854 for_each_online_node(nid) {
1855 build_zonelists(NODE_DATA(nid));
1856 build_zonelist_cache(NODE_DATA(nid));
1858 return 0;
1861 void __meminit build_all_zonelists(void)
1863 if (system_state == SYSTEM_BOOTING) {
1864 __build_all_zonelists(NULL);
1865 cpuset_init_current_mems_allowed();
1866 } else {
1867 /* we have to stop all cpus to guaranntee there is no user
1868 of zonelist */
1869 stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
1870 /* cpuset refresh routine should be here */
1872 vm_total_pages = nr_free_pagecache_pages();
1873 printk("Built %i zonelists. Total pages: %ld\n",
1874 num_online_nodes(), vm_total_pages);
1878 * Helper functions to size the waitqueue hash table.
1879 * Essentially these want to choose hash table sizes sufficiently
1880 * large so that collisions trying to wait on pages are rare.
1881 * But in fact, the number of active page waitqueues on typical
1882 * systems is ridiculously low, less than 200. So this is even
1883 * conservative, even though it seems large.
1885 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1886 * waitqueues, i.e. the size of the waitq table given the number of pages.
1888 #define PAGES_PER_WAITQUEUE 256
1890 #ifndef CONFIG_MEMORY_HOTPLUG
1891 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1893 unsigned long size = 1;
1895 pages /= PAGES_PER_WAITQUEUE;
1897 while (size < pages)
1898 size <<= 1;
1901 * Once we have dozens or even hundreds of threads sleeping
1902 * on IO we've got bigger problems than wait queue collision.
1903 * Limit the size of the wait table to a reasonable size.
1905 size = min(size, 4096UL);
1907 return max(size, 4UL);
1909 #else
1911 * A zone's size might be changed by hot-add, so it is not possible to determine
1912 * a suitable size for its wait_table. So we use the maximum size now.
1914 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
1916 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
1917 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
1918 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
1920 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
1921 * or more by the traditional way. (See above). It equals:
1923 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
1924 * ia64(16K page size) : = ( 8G + 4M)byte.
1925 * powerpc (64K page size) : = (32G +16M)byte.
1927 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1929 return 4096UL;
1931 #endif
1934 * This is an integer logarithm so that shifts can be used later
1935 * to extract the more random high bits from the multiplicative
1936 * hash function before the remainder is taken.
1938 static inline unsigned long wait_table_bits(unsigned long size)
1940 return ffz(~size);
1943 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1946 * Initially all pages are reserved - free ones are freed
1947 * up by free_all_bootmem() once the early boot process is
1948 * done. Non-atomic initialization, single-pass.
1950 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1951 unsigned long start_pfn, enum memmap_context context)
1953 struct page *page;
1954 unsigned long end_pfn = start_pfn + size;
1955 unsigned long pfn;
1957 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1959 * There can be holes in boot-time mem_map[]s
1960 * handed to this function. They do not
1961 * exist on hotplugged memory.
1963 if (context == MEMMAP_EARLY) {
1964 if (!early_pfn_valid(pfn))
1965 continue;
1966 if (!early_pfn_in_nid(pfn, nid))
1967 continue;
1969 page = pfn_to_page(pfn);
1970 set_page_links(page, zone, nid, pfn);
1971 init_page_count(page);
1972 reset_page_mapcount(page);
1973 SetPageReserved(page);
1974 INIT_LIST_HEAD(&page->lru);
1975 #ifdef WANT_PAGE_VIRTUAL
1976 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1977 if (!is_highmem_idx(zone))
1978 set_page_address(page, __va(pfn << PAGE_SHIFT));
1979 #endif
1983 void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1984 unsigned long size)
1986 int order;
1987 for (order = 0; order < MAX_ORDER ; order++) {
1988 INIT_LIST_HEAD(&zone->free_area[order].free_list);
1989 zone->free_area[order].nr_free = 0;
1993 #ifndef __HAVE_ARCH_MEMMAP_INIT
1994 #define memmap_init(size, nid, zone, start_pfn) \
1995 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1996 #endif
1998 static int __cpuinit zone_batchsize(struct zone *zone)
2000 int batch;
2003 * The per-cpu-pages pools are set to around 1000th of the
2004 * size of the zone. But no more than 1/2 of a meg.
2006 * OK, so we don't know how big the cache is. So guess.
2008 batch = zone->present_pages / 1024;
2009 if (batch * PAGE_SIZE > 512 * 1024)
2010 batch = (512 * 1024) / PAGE_SIZE;
2011 batch /= 4; /* We effectively *= 4 below */
2012 if (batch < 1)
2013 batch = 1;
2016 * Clamp the batch to a 2^n - 1 value. Having a power
2017 * of 2 value was found to be more likely to have
2018 * suboptimal cache aliasing properties in some cases.
2020 * For example if 2 tasks are alternately allocating
2021 * batches of pages, one task can end up with a lot
2022 * of pages of one half of the possible page colors
2023 * and the other with pages of the other colors.
2025 batch = (1 << (fls(batch + batch/2)-1)) - 1;
2027 return batch;
2030 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2032 struct per_cpu_pages *pcp;
2034 memset(p, 0, sizeof(*p));
2036 pcp = &p->pcp[0]; /* hot */
2037 pcp->count = 0;
2038 pcp->high = 6 * batch;
2039 pcp->batch = max(1UL, 1 * batch);
2040 INIT_LIST_HEAD(&pcp->list);
2042 pcp = &p->pcp[1]; /* cold*/
2043 pcp->count = 0;
2044 pcp->high = 2 * batch;
2045 pcp->batch = max(1UL, batch/2);
2046 INIT_LIST_HEAD(&pcp->list);
2050 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2051 * to the value high for the pageset p.
2054 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2055 unsigned long high)
2057 struct per_cpu_pages *pcp;
2059 pcp = &p->pcp[0]; /* hot list */
2060 pcp->high = high;
2061 pcp->batch = max(1UL, high/4);
2062 if ((high/4) > (PAGE_SHIFT * 8))
2063 pcp->batch = PAGE_SHIFT * 8;
2067 #ifdef CONFIG_NUMA
2069 * Boot pageset table. One per cpu which is going to be used for all
2070 * zones and all nodes. The parameters will be set in such a way
2071 * that an item put on a list will immediately be handed over to
2072 * the buddy list. This is safe since pageset manipulation is done
2073 * with interrupts disabled.
2075 * Some NUMA counter updates may also be caught by the boot pagesets.
2077 * The boot_pagesets must be kept even after bootup is complete for
2078 * unused processors and/or zones. They do play a role for bootstrapping
2079 * hotplugged processors.
2081 * zoneinfo_show() and maybe other functions do
2082 * not check if the processor is online before following the pageset pointer.
2083 * Other parts of the kernel may not check if the zone is available.
2085 static struct per_cpu_pageset boot_pageset[NR_CPUS];
2088 * Dynamically allocate memory for the
2089 * per cpu pageset array in struct zone.
2091 static int __cpuinit process_zones(int cpu)
2093 struct zone *zone, *dzone;
2095 for_each_zone(zone) {
2097 if (!populated_zone(zone))
2098 continue;
2100 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2101 GFP_KERNEL, cpu_to_node(cpu));
2102 if (!zone_pcp(zone, cpu))
2103 goto bad;
2105 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2107 if (percpu_pagelist_fraction)
2108 setup_pagelist_highmark(zone_pcp(zone, cpu),
2109 (zone->present_pages / percpu_pagelist_fraction));
2112 return 0;
2113 bad:
2114 for_each_zone(dzone) {
2115 if (dzone == zone)
2116 break;
2117 kfree(zone_pcp(dzone, cpu));
2118 zone_pcp(dzone, cpu) = NULL;
2120 return -ENOMEM;
2123 static inline void free_zone_pagesets(int cpu)
2125 struct zone *zone;
2127 for_each_zone(zone) {
2128 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2130 /* Free per_cpu_pageset if it is slab allocated */
2131 if (pset != &boot_pageset[cpu])
2132 kfree(pset);
2133 zone_pcp(zone, cpu) = NULL;
2137 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2138 unsigned long action,
2139 void *hcpu)
2141 int cpu = (long)hcpu;
2142 int ret = NOTIFY_OK;
2144 switch (action) {
2145 case CPU_UP_PREPARE:
2146 if (process_zones(cpu))
2147 ret = NOTIFY_BAD;
2148 break;
2149 case CPU_UP_CANCELED:
2150 case CPU_DEAD:
2151 free_zone_pagesets(cpu);
2152 break;
2153 default:
2154 break;
2156 return ret;
2159 static struct notifier_block __cpuinitdata pageset_notifier =
2160 { &pageset_cpuup_callback, NULL, 0 };
2162 void __init setup_per_cpu_pageset(void)
2164 int err;
2166 /* Initialize per_cpu_pageset for cpu 0.
2167 * A cpuup callback will do this for every cpu
2168 * as it comes online
2170 err = process_zones(smp_processor_id());
2171 BUG_ON(err);
2172 register_cpu_notifier(&pageset_notifier);
2175 #endif
2177 static __meminit
2178 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2180 int i;
2181 struct pglist_data *pgdat = zone->zone_pgdat;
2182 size_t alloc_size;
2185 * The per-page waitqueue mechanism uses hashed waitqueues
2186 * per zone.
2188 zone->wait_table_hash_nr_entries =
2189 wait_table_hash_nr_entries(zone_size_pages);
2190 zone->wait_table_bits =
2191 wait_table_bits(zone->wait_table_hash_nr_entries);
2192 alloc_size = zone->wait_table_hash_nr_entries
2193 * sizeof(wait_queue_head_t);
2195 if (system_state == SYSTEM_BOOTING) {
2196 zone->wait_table = (wait_queue_head_t *)
2197 alloc_bootmem_node(pgdat, alloc_size);
2198 } else {
2200 * This case means that a zone whose size was 0 gets new memory
2201 * via memory hot-add.
2202 * But it may be the case that a new node was hot-added. In
2203 * this case vmalloc() will not be able to use this new node's
2204 * memory - this wait_table must be initialized to use this new
2205 * node itself as well.
2206 * To use this new node's memory, further consideration will be
2207 * necessary.
2209 zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size);
2211 if (!zone->wait_table)
2212 return -ENOMEM;
2214 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2215 init_waitqueue_head(zone->wait_table + i);
2217 return 0;
2220 static __meminit void zone_pcp_init(struct zone *zone)
2222 int cpu;
2223 unsigned long batch = zone_batchsize(zone);
2225 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2226 #ifdef CONFIG_NUMA
2227 /* Early boot. Slab allocator not functional yet */
2228 zone_pcp(zone, cpu) = &boot_pageset[cpu];
2229 setup_pageset(&boot_pageset[cpu],0);
2230 #else
2231 setup_pageset(zone_pcp(zone,cpu), batch);
2232 #endif
2234 if (zone->present_pages)
2235 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2236 zone->name, zone->present_pages, batch);
2239 __meminit int init_currently_empty_zone(struct zone *zone,
2240 unsigned long zone_start_pfn,
2241 unsigned long size,
2242 enum memmap_context context)
2244 struct pglist_data *pgdat = zone->zone_pgdat;
2245 int ret;
2246 ret = zone_wait_table_init(zone, size);
2247 if (ret)
2248 return ret;
2249 pgdat->nr_zones = zone_idx(zone) + 1;
2251 zone->zone_start_pfn = zone_start_pfn;
2253 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2255 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
2257 return 0;
2260 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2262 * Basic iterator support. Return the first range of PFNs for a node
2263 * Note: nid == MAX_NUMNODES returns first region regardless of node
2265 static int __init first_active_region_index_in_nid(int nid)
2267 int i;
2269 for (i = 0; i < nr_nodemap_entries; i++)
2270 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2271 return i;
2273 return -1;
2277 * Basic iterator support. Return the next active range of PFNs for a node
2278 * Note: nid == MAX_NUMNODES returns next region regardles of node
2280 static int __init next_active_region_index_in_nid(int index, int nid)
2282 for (index = index + 1; index < nr_nodemap_entries; index++)
2283 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2284 return index;
2286 return -1;
2289 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2291 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2292 * Architectures may implement their own version but if add_active_range()
2293 * was used and there are no special requirements, this is a convenient
2294 * alternative
2296 int __init early_pfn_to_nid(unsigned long pfn)
2298 int i;
2300 for (i = 0; i < nr_nodemap_entries; i++) {
2301 unsigned long start_pfn = early_node_map[i].start_pfn;
2302 unsigned long end_pfn = early_node_map[i].end_pfn;
2304 if (start_pfn <= pfn && pfn < end_pfn)
2305 return early_node_map[i].nid;
2308 return 0;
2310 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2312 /* Basic iterator support to walk early_node_map[] */
2313 #define for_each_active_range_index_in_nid(i, nid) \
2314 for (i = first_active_region_index_in_nid(nid); i != -1; \
2315 i = next_active_region_index_in_nid(i, nid))
2318 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2319 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2320 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2322 * If an architecture guarantees that all ranges registered with
2323 * add_active_ranges() contain no holes and may be freed, this
2324 * this function may be used instead of calling free_bootmem() manually.
2326 void __init free_bootmem_with_active_regions(int nid,
2327 unsigned long max_low_pfn)
2329 int i;
2331 for_each_active_range_index_in_nid(i, nid) {
2332 unsigned long size_pages = 0;
2333 unsigned long end_pfn = early_node_map[i].end_pfn;
2335 if (early_node_map[i].start_pfn >= max_low_pfn)
2336 continue;
2338 if (end_pfn > max_low_pfn)
2339 end_pfn = max_low_pfn;
2341 size_pages = end_pfn - early_node_map[i].start_pfn;
2342 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2343 PFN_PHYS(early_node_map[i].start_pfn),
2344 size_pages << PAGE_SHIFT);
2349 * sparse_memory_present_with_active_regions - Call memory_present for each active range
2350 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
2352 * If an architecture guarantees that all ranges registered with
2353 * add_active_ranges() contain no holes and may be freed, this
2354 * function may be used instead of calling memory_present() manually.
2356 void __init sparse_memory_present_with_active_regions(int nid)
2358 int i;
2360 for_each_active_range_index_in_nid(i, nid)
2361 memory_present(early_node_map[i].nid,
2362 early_node_map[i].start_pfn,
2363 early_node_map[i].end_pfn);
2367 * push_node_boundaries - Push node boundaries to at least the requested boundary
2368 * @nid: The nid of the node to push the boundary for
2369 * @start_pfn: The start pfn of the node
2370 * @end_pfn: The end pfn of the node
2372 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2373 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2374 * be hotplugged even though no physical memory exists. This function allows
2375 * an arch to push out the node boundaries so mem_map is allocated that can
2376 * be used later.
2378 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2379 void __init push_node_boundaries(unsigned int nid,
2380 unsigned long start_pfn, unsigned long end_pfn)
2382 printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
2383 nid, start_pfn, end_pfn);
2385 /* Initialise the boundary for this node if necessary */
2386 if (node_boundary_end_pfn[nid] == 0)
2387 node_boundary_start_pfn[nid] = -1UL;
2389 /* Update the boundaries */
2390 if (node_boundary_start_pfn[nid] > start_pfn)
2391 node_boundary_start_pfn[nid] = start_pfn;
2392 if (node_boundary_end_pfn[nid] < end_pfn)
2393 node_boundary_end_pfn[nid] = end_pfn;
2396 /* If necessary, push the node boundary out for reserve hotadd */
2397 static void __init account_node_boundary(unsigned int nid,
2398 unsigned long *start_pfn, unsigned long *end_pfn)
2400 printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
2401 nid, *start_pfn, *end_pfn);
2403 /* Return if boundary information has not been provided */
2404 if (node_boundary_end_pfn[nid] == 0)
2405 return;
2407 /* Check the boundaries and update if necessary */
2408 if (node_boundary_start_pfn[nid] < *start_pfn)
2409 *start_pfn = node_boundary_start_pfn[nid];
2410 if (node_boundary_end_pfn[nid] > *end_pfn)
2411 *end_pfn = node_boundary_end_pfn[nid];
2413 #else
2414 void __init push_node_boundaries(unsigned int nid,
2415 unsigned long start_pfn, unsigned long end_pfn) {}
2417 static void __init account_node_boundary(unsigned int nid,
2418 unsigned long *start_pfn, unsigned long *end_pfn) {}
2419 #endif
2423 * get_pfn_range_for_nid - Return the start and end page frames for a node
2424 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
2425 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
2426 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
2428 * It returns the start and end page frame of a node based on information
2429 * provided by an arch calling add_active_range(). If called for a node
2430 * with no available memory, a warning is printed and the start and end
2431 * PFNs will be 0.
2433 void __init get_pfn_range_for_nid(unsigned int nid,
2434 unsigned long *start_pfn, unsigned long *end_pfn)
2436 int i;
2437 *start_pfn = -1UL;
2438 *end_pfn = 0;
2440 for_each_active_range_index_in_nid(i, nid) {
2441 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
2442 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
2445 if (*start_pfn == -1UL) {
2446 printk(KERN_WARNING "Node %u active with no memory\n", nid);
2447 *start_pfn = 0;
2450 /* Push the node boundaries out if requested */
2451 account_node_boundary(nid, start_pfn, end_pfn);
2455 * Return the number of pages a zone spans in a node, including holes
2456 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
2458 unsigned long __init zone_spanned_pages_in_node(int nid,
2459 unsigned long zone_type,
2460 unsigned long *ignored)
2462 unsigned long node_start_pfn, node_end_pfn;
2463 unsigned long zone_start_pfn, zone_end_pfn;
2465 /* Get the start and end of the node and zone */
2466 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2467 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
2468 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2470 /* Check that this node has pages within the zone's required range */
2471 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
2472 return 0;
2474 /* Move the zone boundaries inside the node if necessary */
2475 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
2476 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
2478 /* Return the spanned pages */
2479 return zone_end_pfn - zone_start_pfn;
2483 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
2484 * then all holes in the requested range will be accounted for.
2486 unsigned long __init __absent_pages_in_range(int nid,
2487 unsigned long range_start_pfn,
2488 unsigned long range_end_pfn)
2490 int i = 0;
2491 unsigned long prev_end_pfn = 0, hole_pages = 0;
2492 unsigned long start_pfn;
2494 /* Find the end_pfn of the first active range of pfns in the node */
2495 i = first_active_region_index_in_nid(nid);
2496 if (i == -1)
2497 return 0;
2499 /* Account for ranges before physical memory on this node */
2500 if (early_node_map[i].start_pfn > range_start_pfn)
2501 hole_pages = early_node_map[i].start_pfn - range_start_pfn;
2503 prev_end_pfn = early_node_map[i].start_pfn;
2505 /* Find all holes for the zone within the node */
2506 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
2508 /* No need to continue if prev_end_pfn is outside the zone */
2509 if (prev_end_pfn >= range_end_pfn)
2510 break;
2512 /* Make sure the end of the zone is not within the hole */
2513 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
2514 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
2516 /* Update the hole size cound and move on */
2517 if (start_pfn > range_start_pfn) {
2518 BUG_ON(prev_end_pfn > start_pfn);
2519 hole_pages += start_pfn - prev_end_pfn;
2521 prev_end_pfn = early_node_map[i].end_pfn;
2524 /* Account for ranges past physical memory on this node */
2525 if (range_end_pfn > prev_end_pfn)
2526 hole_pages += range_end_pfn -
2527 max(range_start_pfn, prev_end_pfn);
2529 return hole_pages;
2533 * absent_pages_in_range - Return number of page frames in holes within a range
2534 * @start_pfn: The start PFN to start searching for holes
2535 * @end_pfn: The end PFN to stop searching for holes
2537 * It returns the number of pages frames in memory holes within a range.
2539 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
2540 unsigned long end_pfn)
2542 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
2545 /* Return the number of page frames in holes in a zone on a node */
2546 unsigned long __init zone_absent_pages_in_node(int nid,
2547 unsigned long zone_type,
2548 unsigned long *ignored)
2550 unsigned long node_start_pfn, node_end_pfn;
2551 unsigned long zone_start_pfn, zone_end_pfn;
2553 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2554 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
2555 node_start_pfn);
2556 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
2557 node_end_pfn);
2559 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
2562 #else
2563 static inline unsigned long zone_spanned_pages_in_node(int nid,
2564 unsigned long zone_type,
2565 unsigned long *zones_size)
2567 return zones_size[zone_type];
2570 static inline unsigned long zone_absent_pages_in_node(int nid,
2571 unsigned long zone_type,
2572 unsigned long *zholes_size)
2574 if (!zholes_size)
2575 return 0;
2577 return zholes_size[zone_type];
2580 #endif
2582 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
2583 unsigned long *zones_size, unsigned long *zholes_size)
2585 unsigned long realtotalpages, totalpages = 0;
2586 enum zone_type i;
2588 for (i = 0; i < MAX_NR_ZONES; i++)
2589 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
2590 zones_size);
2591 pgdat->node_spanned_pages = totalpages;
2593 realtotalpages = totalpages;
2594 for (i = 0; i < MAX_NR_ZONES; i++)
2595 realtotalpages -=
2596 zone_absent_pages_in_node(pgdat->node_id, i,
2597 zholes_size);
2598 pgdat->node_present_pages = realtotalpages;
2599 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
2600 realtotalpages);
2604 * Set up the zone data structures:
2605 * - mark all pages reserved
2606 * - mark all memory queues empty
2607 * - clear the memory bitmaps
2609 static void __meminit free_area_init_core(struct pglist_data *pgdat,
2610 unsigned long *zones_size, unsigned long *zholes_size)
2612 enum zone_type j;
2613 int nid = pgdat->node_id;
2614 unsigned long zone_start_pfn = pgdat->node_start_pfn;
2615 int ret;
2617 pgdat_resize_init(pgdat);
2618 pgdat->nr_zones = 0;
2619 init_waitqueue_head(&pgdat->kswapd_wait);
2620 pgdat->kswapd_max_order = 0;
2622 for (j = 0; j < MAX_NR_ZONES; j++) {
2623 struct zone *zone = pgdat->node_zones + j;
2624 unsigned long size, realsize, memmap_pages;
2626 size = zone_spanned_pages_in_node(nid, j, zones_size);
2627 realsize = size - zone_absent_pages_in_node(nid, j,
2628 zholes_size);
2631 * Adjust realsize so that it accounts for how much memory
2632 * is used by this zone for memmap. This affects the watermark
2633 * and per-cpu initialisations
2635 memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
2636 if (realsize >= memmap_pages) {
2637 realsize -= memmap_pages;
2638 printk(KERN_DEBUG
2639 " %s zone: %lu pages used for memmap\n",
2640 zone_names[j], memmap_pages);
2641 } else
2642 printk(KERN_WARNING
2643 " %s zone: %lu pages exceeds realsize %lu\n",
2644 zone_names[j], memmap_pages, realsize);
2646 /* Account for reserved pages */
2647 if (j == 0 && realsize > dma_reserve) {
2648 realsize -= dma_reserve;
2649 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
2650 zone_names[0], dma_reserve);
2653 if (!is_highmem_idx(j))
2654 nr_kernel_pages += realsize;
2655 nr_all_pages += realsize;
2657 zone->spanned_pages = size;
2658 zone->present_pages = realsize;
2659 #ifdef CONFIG_NUMA
2660 zone->node = nid;
2661 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
2662 / 100;
2663 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
2664 #endif
2665 zone->name = zone_names[j];
2666 spin_lock_init(&zone->lock);
2667 spin_lock_init(&zone->lru_lock);
2668 zone_seqlock_init(zone);
2669 zone->zone_pgdat = pgdat;
2671 zone->prev_priority = DEF_PRIORITY;
2673 zone_pcp_init(zone);
2674 INIT_LIST_HEAD(&zone->active_list);
2675 INIT_LIST_HEAD(&zone->inactive_list);
2676 zone->nr_scan_active = 0;
2677 zone->nr_scan_inactive = 0;
2678 zap_zone_vm_stats(zone);
2679 atomic_set(&zone->reclaim_in_progress, 0);
2680 if (!size)
2681 continue;
2683 ret = init_currently_empty_zone(zone, zone_start_pfn,
2684 size, MEMMAP_EARLY);
2685 BUG_ON(ret);
2686 zone_start_pfn += size;
2690 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2692 /* Skip empty nodes */
2693 if (!pgdat->node_spanned_pages)
2694 return;
2696 #ifdef CONFIG_FLAT_NODE_MEM_MAP
2697 /* ia64 gets its own node_mem_map, before this, without bootmem */
2698 if (!pgdat->node_mem_map) {
2699 unsigned long size, start, end;
2700 struct page *map;
2703 * The zone's endpoints aren't required to be MAX_ORDER
2704 * aligned but the node_mem_map endpoints must be in order
2705 * for the buddy allocator to function correctly.
2707 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
2708 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
2709 end = ALIGN(end, MAX_ORDER_NR_PAGES);
2710 size = (end - start) * sizeof(struct page);
2711 map = alloc_remap(pgdat->node_id, size);
2712 if (!map)
2713 map = alloc_bootmem_node(pgdat, size);
2714 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
2716 #ifdef CONFIG_FLATMEM
2718 * With no DISCONTIG, the global mem_map is just set as node 0's
2720 if (pgdat == NODE_DATA(0)) {
2721 mem_map = NODE_DATA(0)->node_mem_map;
2722 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2723 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
2724 mem_map -= pgdat->node_start_pfn;
2725 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
2727 #endif
2728 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
2731 void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
2732 unsigned long *zones_size, unsigned long node_start_pfn,
2733 unsigned long *zholes_size)
2735 pgdat->node_id = nid;
2736 pgdat->node_start_pfn = node_start_pfn;
2737 calculate_node_totalpages(pgdat, zones_size, zholes_size);
2739 alloc_node_mem_map(pgdat);
2741 free_area_init_core(pgdat, zones_size, zholes_size);
2744 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2746 * add_active_range - Register a range of PFNs backed by physical memory
2747 * @nid: The node ID the range resides on
2748 * @start_pfn: The start PFN of the available physical memory
2749 * @end_pfn: The end PFN of the available physical memory
2751 * These ranges are stored in an early_node_map[] and later used by
2752 * free_area_init_nodes() to calculate zone sizes and holes. If the
2753 * range spans a memory hole, it is up to the architecture to ensure
2754 * the memory is not freed by the bootmem allocator. If possible
2755 * the range being registered will be merged with existing ranges.
2757 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
2758 unsigned long end_pfn)
2760 int i;
2762 printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
2763 "%d entries of %d used\n",
2764 nid, start_pfn, end_pfn,
2765 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
2767 /* Merge with existing active regions if possible */
2768 for (i = 0; i < nr_nodemap_entries; i++) {
2769 if (early_node_map[i].nid != nid)
2770 continue;
2772 /* Skip if an existing region covers this new one */
2773 if (start_pfn >= early_node_map[i].start_pfn &&
2774 end_pfn <= early_node_map[i].end_pfn)
2775 return;
2777 /* Merge forward if suitable */
2778 if (start_pfn <= early_node_map[i].end_pfn &&
2779 end_pfn > early_node_map[i].end_pfn) {
2780 early_node_map[i].end_pfn = end_pfn;
2781 return;
2784 /* Merge backward if suitable */
2785 if (start_pfn < early_node_map[i].end_pfn &&
2786 end_pfn >= early_node_map[i].start_pfn) {
2787 early_node_map[i].start_pfn = start_pfn;
2788 return;
2792 /* Check that early_node_map is large enough */
2793 if (i >= MAX_ACTIVE_REGIONS) {
2794 printk(KERN_CRIT "More than %d memory regions, truncating\n",
2795 MAX_ACTIVE_REGIONS);
2796 return;
2799 early_node_map[i].nid = nid;
2800 early_node_map[i].start_pfn = start_pfn;
2801 early_node_map[i].end_pfn = end_pfn;
2802 nr_nodemap_entries = i + 1;
2806 * shrink_active_range - Shrink an existing registered range of PFNs
2807 * @nid: The node id the range is on that should be shrunk
2808 * @old_end_pfn: The old end PFN of the range
2809 * @new_end_pfn: The new PFN of the range
2811 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
2812 * The map is kept at the end physical page range that has already been
2813 * registered with add_active_range(). This function allows an arch to shrink
2814 * an existing registered range.
2816 void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
2817 unsigned long new_end_pfn)
2819 int i;
2821 /* Find the old active region end and shrink */
2822 for_each_active_range_index_in_nid(i, nid)
2823 if (early_node_map[i].end_pfn == old_end_pfn) {
2824 early_node_map[i].end_pfn = new_end_pfn;
2825 break;
2830 * remove_all_active_ranges - Remove all currently registered regions
2832 * During discovery, it may be found that a table like SRAT is invalid
2833 * and an alternative discovery method must be used. This function removes
2834 * all currently registered regions.
2836 void __init remove_all_active_ranges(void)
2838 memset(early_node_map, 0, sizeof(early_node_map));
2839 nr_nodemap_entries = 0;
2840 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2841 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
2842 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
2843 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
2846 /* Compare two active node_active_regions */
2847 static int __init cmp_node_active_region(const void *a, const void *b)
2849 struct node_active_region *arange = (struct node_active_region *)a;
2850 struct node_active_region *brange = (struct node_active_region *)b;
2852 /* Done this way to avoid overflows */
2853 if (arange->start_pfn > brange->start_pfn)
2854 return 1;
2855 if (arange->start_pfn < brange->start_pfn)
2856 return -1;
2858 return 0;
2861 /* sort the node_map by start_pfn */
2862 static void __init sort_node_map(void)
2864 sort(early_node_map, (size_t)nr_nodemap_entries,
2865 sizeof(struct node_active_region),
2866 cmp_node_active_region, NULL);
2869 /* Find the lowest pfn for a node */
2870 unsigned long __init find_min_pfn_for_node(unsigned long nid)
2872 int i;
2873 unsigned long min_pfn = ULONG_MAX;
2875 /* Assuming a sorted map, the first range found has the starting pfn */
2876 for_each_active_range_index_in_nid(i, nid)
2877 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
2879 if (min_pfn == ULONG_MAX) {
2880 printk(KERN_WARNING
2881 "Could not find start_pfn for node %lu\n", nid);
2882 return 0;
2885 return min_pfn;
2889 * find_min_pfn_with_active_regions - Find the minimum PFN registered
2891 * It returns the minimum PFN based on information provided via
2892 * add_active_range().
2894 unsigned long __init find_min_pfn_with_active_regions(void)
2896 return find_min_pfn_for_node(MAX_NUMNODES);
2900 * find_max_pfn_with_active_regions - Find the maximum PFN registered
2902 * It returns the maximum PFN based on information provided via
2903 * add_active_range().
2905 unsigned long __init find_max_pfn_with_active_regions(void)
2907 int i;
2908 unsigned long max_pfn = 0;
2910 for (i = 0; i < nr_nodemap_entries; i++)
2911 max_pfn = max(max_pfn, early_node_map[i].end_pfn);
2913 return max_pfn;
2917 * free_area_init_nodes - Initialise all pg_data_t and zone data
2918 * @max_zone_pfn: an array of max PFNs for each zone
2920 * This will call free_area_init_node() for each active node in the system.
2921 * Using the page ranges provided by add_active_range(), the size of each
2922 * zone in each node and their holes is calculated. If the maximum PFN
2923 * between two adjacent zones match, it is assumed that the zone is empty.
2924 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
2925 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
2926 * starts where the previous one ended. For example, ZONE_DMA32 starts
2927 * at arch_max_dma_pfn.
2929 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
2931 unsigned long nid;
2932 enum zone_type i;
2934 /* Sort early_node_map as initialisation assumes it is sorted */
2935 sort_node_map();
2937 /* Record where the zone boundaries are */
2938 memset(arch_zone_lowest_possible_pfn, 0,
2939 sizeof(arch_zone_lowest_possible_pfn));
2940 memset(arch_zone_highest_possible_pfn, 0,
2941 sizeof(arch_zone_highest_possible_pfn));
2942 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
2943 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
2944 for (i = 1; i < MAX_NR_ZONES; i++) {
2945 arch_zone_lowest_possible_pfn[i] =
2946 arch_zone_highest_possible_pfn[i-1];
2947 arch_zone_highest_possible_pfn[i] =
2948 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
2951 /* Print out the zone ranges */
2952 printk("Zone PFN ranges:\n");
2953 for (i = 0; i < MAX_NR_ZONES; i++)
2954 printk(" %-8s %8lu -> %8lu\n",
2955 zone_names[i],
2956 arch_zone_lowest_possible_pfn[i],
2957 arch_zone_highest_possible_pfn[i]);
2959 /* Print out the early_node_map[] */
2960 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
2961 for (i = 0; i < nr_nodemap_entries; i++)
2962 printk(" %3d: %8lu -> %8lu\n", early_node_map[i].nid,
2963 early_node_map[i].start_pfn,
2964 early_node_map[i].end_pfn);
2966 /* Initialise every node */
2967 setup_nr_node_ids();
2968 for_each_online_node(nid) {
2969 pg_data_t *pgdat = NODE_DATA(nid);
2970 free_area_init_node(nid, pgdat, NULL,
2971 find_min_pfn_for_node(nid), NULL);
2974 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
2977 * set_dma_reserve - set the specified number of pages reserved in the first zone
2978 * @new_dma_reserve: The number of pages to mark reserved
2980 * The per-cpu batchsize and zone watermarks are determined by present_pages.
2981 * In the DMA zone, a significant percentage may be consumed by kernel image
2982 * and other unfreeable allocations which can skew the watermarks badly. This
2983 * function may optionally be used to account for unfreeable pages in the
2984 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
2985 * smaller per-cpu batchsize.
2987 void __init set_dma_reserve(unsigned long new_dma_reserve)
2989 dma_reserve = new_dma_reserve;
2992 #ifndef CONFIG_NEED_MULTIPLE_NODES
2993 static bootmem_data_t contig_bootmem_data;
2994 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2996 EXPORT_SYMBOL(contig_page_data);
2997 #endif
2999 void __init free_area_init(unsigned long *zones_size)
3001 free_area_init_node(0, NODE_DATA(0), zones_size,
3002 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
3005 static int page_alloc_cpu_notify(struct notifier_block *self,
3006 unsigned long action, void *hcpu)
3008 int cpu = (unsigned long)hcpu;
3010 if (action == CPU_DEAD) {
3011 local_irq_disable();
3012 __drain_pages(cpu);
3013 vm_events_fold_cpu(cpu);
3014 local_irq_enable();
3015 refresh_cpu_vm_stats(cpu);
3017 return NOTIFY_OK;
3020 void __init page_alloc_init(void)
3022 hotcpu_notifier(page_alloc_cpu_notify, 0);
3026 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
3027 * or min_free_kbytes changes.
3029 static void calculate_totalreserve_pages(void)
3031 struct pglist_data *pgdat;
3032 unsigned long reserve_pages = 0;
3033 enum zone_type i, j;
3035 for_each_online_pgdat(pgdat) {
3036 for (i = 0; i < MAX_NR_ZONES; i++) {
3037 struct zone *zone = pgdat->node_zones + i;
3038 unsigned long max = 0;
3040 /* Find valid and maximum lowmem_reserve in the zone */
3041 for (j = i; j < MAX_NR_ZONES; j++) {
3042 if (zone->lowmem_reserve[j] > max)
3043 max = zone->lowmem_reserve[j];
3046 /* we treat pages_high as reserved pages. */
3047 max += zone->pages_high;
3049 if (max > zone->present_pages)
3050 max = zone->present_pages;
3051 reserve_pages += max;
3054 totalreserve_pages = reserve_pages;
3058 * setup_per_zone_lowmem_reserve - called whenever
3059 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
3060 * has a correct pages reserved value, so an adequate number of
3061 * pages are left in the zone after a successful __alloc_pages().
3063 static void setup_per_zone_lowmem_reserve(void)
3065 struct pglist_data *pgdat;
3066 enum zone_type j, idx;
3068 for_each_online_pgdat(pgdat) {
3069 for (j = 0; j < MAX_NR_ZONES; j++) {
3070 struct zone *zone = pgdat->node_zones + j;
3071 unsigned long present_pages = zone->present_pages;
3073 zone->lowmem_reserve[j] = 0;
3075 idx = j;
3076 while (idx) {
3077 struct zone *lower_zone;
3079 idx--;
3081 if (sysctl_lowmem_reserve_ratio[idx] < 1)
3082 sysctl_lowmem_reserve_ratio[idx] = 1;
3084 lower_zone = pgdat->node_zones + idx;
3085 lower_zone->lowmem_reserve[j] = present_pages /
3086 sysctl_lowmem_reserve_ratio[idx];
3087 present_pages += lower_zone->present_pages;
3092 /* update totalreserve_pages */
3093 calculate_totalreserve_pages();
3097 * setup_per_zone_pages_min - called when min_free_kbytes changes.
3099 * Ensures that the pages_{min,low,high} values for each zone are set correctly
3100 * with respect to min_free_kbytes.
3102 void setup_per_zone_pages_min(void)
3104 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
3105 unsigned long lowmem_pages = 0;
3106 struct zone *zone;
3107 unsigned long flags;
3109 /* Calculate total number of !ZONE_HIGHMEM pages */
3110 for_each_zone(zone) {
3111 if (!is_highmem(zone))
3112 lowmem_pages += zone->present_pages;
3115 for_each_zone(zone) {
3116 u64 tmp;
3118 spin_lock_irqsave(&zone->lru_lock, flags);
3119 tmp = (u64)pages_min * zone->present_pages;
3120 do_div(tmp, lowmem_pages);
3121 if (is_highmem(zone)) {
3123 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
3124 * need highmem pages, so cap pages_min to a small
3125 * value here.
3127 * The (pages_high-pages_low) and (pages_low-pages_min)
3128 * deltas controls asynch page reclaim, and so should
3129 * not be capped for highmem.
3131 int min_pages;
3133 min_pages = zone->present_pages / 1024;
3134 if (min_pages < SWAP_CLUSTER_MAX)
3135 min_pages = SWAP_CLUSTER_MAX;
3136 if (min_pages > 128)
3137 min_pages = 128;
3138 zone->pages_min = min_pages;
3139 } else {
3141 * If it's a lowmem zone, reserve a number of pages
3142 * proportionate to the zone's size.
3144 zone->pages_min = tmp;
3147 zone->pages_low = zone->pages_min + (tmp >> 2);
3148 zone->pages_high = zone->pages_min + (tmp >> 1);
3149 spin_unlock_irqrestore(&zone->lru_lock, flags);
3152 /* update totalreserve_pages */
3153 calculate_totalreserve_pages();
3157 * Initialise min_free_kbytes.
3159 * For small machines we want it small (128k min). For large machines
3160 * we want it large (64MB max). But it is not linear, because network
3161 * bandwidth does not increase linearly with machine size. We use
3163 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
3164 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
3166 * which yields
3168 * 16MB: 512k
3169 * 32MB: 724k
3170 * 64MB: 1024k
3171 * 128MB: 1448k
3172 * 256MB: 2048k
3173 * 512MB: 2896k
3174 * 1024MB: 4096k
3175 * 2048MB: 5792k
3176 * 4096MB: 8192k
3177 * 8192MB: 11584k
3178 * 16384MB: 16384k
3180 static int __init init_per_zone_pages_min(void)
3182 unsigned long lowmem_kbytes;
3184 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
3186 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
3187 if (min_free_kbytes < 128)
3188 min_free_kbytes = 128;
3189 if (min_free_kbytes > 65536)
3190 min_free_kbytes = 65536;
3191 setup_per_zone_pages_min();
3192 setup_per_zone_lowmem_reserve();
3193 return 0;
3195 module_init(init_per_zone_pages_min)
3198 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
3199 * that we can call two helper functions whenever min_free_kbytes
3200 * changes.
3202 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
3203 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3205 proc_dointvec(table, write, file, buffer, length, ppos);
3206 setup_per_zone_pages_min();
3207 return 0;
3210 #ifdef CONFIG_NUMA
3211 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
3212 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3214 struct zone *zone;
3215 int rc;
3217 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3218 if (rc)
3219 return rc;
3221 for_each_zone(zone)
3222 zone->min_unmapped_pages = (zone->present_pages *
3223 sysctl_min_unmapped_ratio) / 100;
3224 return 0;
3227 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
3228 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3230 struct zone *zone;
3231 int rc;
3233 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3234 if (rc)
3235 return rc;
3237 for_each_zone(zone)
3238 zone->min_slab_pages = (zone->present_pages *
3239 sysctl_min_slab_ratio) / 100;
3240 return 0;
3242 #endif
3245 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
3246 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
3247 * whenever sysctl_lowmem_reserve_ratio changes.
3249 * The reserve ratio obviously has absolutely no relation with the
3250 * pages_min watermarks. The lowmem reserve ratio can only make sense
3251 * if in function of the boot time zone sizes.
3253 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
3254 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3256 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3257 setup_per_zone_lowmem_reserve();
3258 return 0;
3262 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
3263 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
3264 * can have before it gets flushed back to buddy allocator.
3267 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
3268 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3270 struct zone *zone;
3271 unsigned int cpu;
3272 int ret;
3274 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3275 if (!write || (ret == -EINVAL))
3276 return ret;
3277 for_each_zone(zone) {
3278 for_each_online_cpu(cpu) {
3279 unsigned long high;
3280 high = zone->present_pages / percpu_pagelist_fraction;
3281 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
3284 return 0;
3287 int hashdist = HASHDIST_DEFAULT;
3289 #ifdef CONFIG_NUMA
3290 static int __init set_hashdist(char *str)
3292 if (!str)
3293 return 0;
3294 hashdist = simple_strtoul(str, &str, 0);
3295 return 1;
3297 __setup("hashdist=", set_hashdist);
3298 #endif
3301 * allocate a large system hash table from bootmem
3302 * - it is assumed that the hash table must contain an exact power-of-2
3303 * quantity of entries
3304 * - limit is the number of hash buckets, not the total allocation size
3306 void *__init alloc_large_system_hash(const char *tablename,
3307 unsigned long bucketsize,
3308 unsigned long numentries,
3309 int scale,
3310 int flags,
3311 unsigned int *_hash_shift,
3312 unsigned int *_hash_mask,
3313 unsigned long limit)
3315 unsigned long long max = limit;
3316 unsigned long log2qty, size;
3317 void *table = NULL;
3319 /* allow the kernel cmdline to have a say */
3320 if (!numentries) {
3321 /* round applicable memory size up to nearest megabyte */
3322 numentries = nr_kernel_pages;
3323 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
3324 numentries >>= 20 - PAGE_SHIFT;
3325 numentries <<= 20 - PAGE_SHIFT;
3327 /* limit to 1 bucket per 2^scale bytes of low memory */
3328 if (scale > PAGE_SHIFT)
3329 numentries >>= (scale - PAGE_SHIFT);
3330 else
3331 numentries <<= (PAGE_SHIFT - scale);
3333 /* Make sure we've got at least a 0-order allocation.. */
3334 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
3335 numentries = PAGE_SIZE / bucketsize;
3337 numentries = roundup_pow_of_two(numentries);
3339 /* limit allocation size to 1/16 total memory by default */
3340 if (max == 0) {
3341 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
3342 do_div(max, bucketsize);
3345 if (numentries > max)
3346 numentries = max;
3348 log2qty = ilog2(numentries);
3350 do {
3351 size = bucketsize << log2qty;
3352 if (flags & HASH_EARLY)
3353 table = alloc_bootmem(size);
3354 else if (hashdist)
3355 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
3356 else {
3357 unsigned long order;
3358 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
3360 table = (void*) __get_free_pages(GFP_ATOMIC, order);
3362 } while (!table && size > PAGE_SIZE && --log2qty);
3364 if (!table)
3365 panic("Failed to allocate %s hash table\n", tablename);
3367 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
3368 tablename,
3369 (1U << log2qty),
3370 ilog2(size) - PAGE_SHIFT,
3371 size);
3373 if (_hash_shift)
3374 *_hash_shift = log2qty;
3375 if (_hash_mask)
3376 *_hash_mask = (1 << log2qty) - 1;
3378 return table;
3381 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
3382 struct page *pfn_to_page(unsigned long pfn)
3384 return __pfn_to_page(pfn);
3386 unsigned long page_to_pfn(struct page *page)
3388 return __page_to_pfn(page);
3390 EXPORT_SYMBOL(pfn_to_page);
3391 EXPORT_SYMBOL(page_to_pfn);
3392 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */