2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/bootmem.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/suspend.h>
27 #include <linux/pagevec.h>
28 #include <linux/blkdev.h>
29 #include <linux/slab.h>
30 #include <linux/notifier.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/memory_hotplug.h>
36 #include <linux/nodemask.h>
37 #include <linux/vmalloc.h>
38 #include <linux/mempolicy.h>
39 #include <linux/stop_machine.h>
40 #include <linux/sort.h>
41 #include <linux/pfn.h>
42 #include <linux/backing-dev.h>
43 #include <linux/fault-inject.h>
45 #include <asm/tlbflush.h>
46 #include <asm/div64.h>
50 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
53 nodemask_t node_online_map __read_mostly
= { { [0] = 1UL } };
54 EXPORT_SYMBOL(node_online_map
);
55 nodemask_t node_possible_map __read_mostly
= NODE_MASK_ALL
;
56 EXPORT_SYMBOL(node_possible_map
);
57 unsigned long totalram_pages __read_mostly
;
58 unsigned long totalreserve_pages __read_mostly
;
60 int percpu_pagelist_fraction
;
62 static void __free_pages_ok(struct page
*page
, unsigned int order
);
65 * results with 256, 32 in the lowmem_reserve sysctl:
66 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
67 * 1G machine -> (16M dma, 784M normal, 224M high)
68 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
69 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
70 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
72 * TBD: should special case ZONE_DMA32 machines here - in those we normally
73 * don't need any ZONE_NORMAL reservation
75 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = {
76 #ifdef CONFIG_ZONE_DMA
79 #ifdef CONFIG_ZONE_DMA32
87 EXPORT_SYMBOL(totalram_pages
);
89 static char * const zone_names
[MAX_NR_ZONES
] = {
90 #ifdef CONFIG_ZONE_DMA
93 #ifdef CONFIG_ZONE_DMA32
102 int min_free_kbytes
= 1024;
104 unsigned long __meminitdata nr_kernel_pages
;
105 unsigned long __meminitdata nr_all_pages
;
106 static unsigned long __initdata dma_reserve
;
108 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
110 * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct
111 * ranges of memory (RAM) that may be registered with add_active_range().
112 * Ranges passed to add_active_range() will be merged if possible
113 * so the number of times add_active_range() can be called is
114 * related to the number of nodes and the number of holes
116 #ifdef CONFIG_MAX_ACTIVE_REGIONS
117 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
118 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
120 #if MAX_NUMNODES >= 32
121 /* If there can be many nodes, allow up to 50 holes per node */
122 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
124 /* By default, allow up to 256 distinct regions */
125 #define MAX_ACTIVE_REGIONS 256
129 struct node_active_region __initdata early_node_map
[MAX_ACTIVE_REGIONS
];
130 int __initdata nr_nodemap_entries
;
131 unsigned long __initdata arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
];
132 unsigned long __initdata arch_zone_highest_possible_pfn
[MAX_NR_ZONES
];
133 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
134 unsigned long __initdata node_boundary_start_pfn
[MAX_NUMNODES
];
135 unsigned long __initdata node_boundary_end_pfn
[MAX_NUMNODES
];
136 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
137 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
139 #ifdef CONFIG_DEBUG_VM
140 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
144 unsigned long pfn
= page_to_pfn(page
);
147 seq
= zone_span_seqbegin(zone
);
148 if (pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
150 else if (pfn
< zone
->zone_start_pfn
)
152 } while (zone_span_seqretry(zone
, seq
));
157 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
159 #ifdef CONFIG_HOLES_IN_ZONE
160 if (!pfn_valid(page_to_pfn(page
)))
163 if (zone
!= page_zone(page
))
169 * Temporary debugging check for pages not lying within a given zone.
171 static int bad_range(struct zone
*zone
, struct page
*page
)
173 if (page_outside_zone_boundaries(zone
, page
))
175 if (!page_is_consistent(zone
, page
))
181 static inline int bad_range(struct zone
*zone
, struct page
*page
)
187 static void bad_page(struct page
*page
)
189 printk(KERN_EMERG
"Bad page state in process '%s'\n"
190 KERN_EMERG
"page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
191 KERN_EMERG
"Trying to fix it up, but a reboot is needed\n"
192 KERN_EMERG
"Backtrace:\n",
193 current
->comm
, page
, (int)(2*sizeof(unsigned long)),
194 (unsigned long)page
->flags
, page
->mapping
,
195 page_mapcount(page
), page_count(page
));
197 page
->flags
&= ~(1 << PG_lru
|
207 set_page_count(page
, 0);
208 reset_page_mapcount(page
);
209 page
->mapping
= NULL
;
210 add_taint(TAINT_BAD_PAGE
);
214 * Higher-order pages are called "compound pages". They are structured thusly:
216 * The first PAGE_SIZE page is called the "head page".
218 * The remaining PAGE_SIZE pages are called "tail pages".
220 * All pages have PG_compound set. All pages have their ->private pointing at
221 * the head page (even the head page has this).
223 * The first tail page's ->lru.next holds the address of the compound page's
224 * put_page() function. Its ->lru.prev holds the order of allocation.
225 * This usage means that zero-order pages may not be compound.
228 static void free_compound_page(struct page
*page
)
230 __free_pages_ok(page
, (unsigned long)page
[1].lru
.prev
);
233 static void prep_compound_page(struct page
*page
, unsigned long order
)
236 int nr_pages
= 1 << order
;
238 set_compound_page_dtor(page
, free_compound_page
);
239 page
[1].lru
.prev
= (void *)order
;
240 for (i
= 0; i
< nr_pages
; i
++) {
241 struct page
*p
= page
+ i
;
243 __SetPageCompound(p
);
244 set_page_private(p
, (unsigned long)page
);
248 static void destroy_compound_page(struct page
*page
, unsigned long order
)
251 int nr_pages
= 1 << order
;
253 if (unlikely((unsigned long)page
[1].lru
.prev
!= order
))
256 for (i
= 0; i
< nr_pages
; i
++) {
257 struct page
*p
= page
+ i
;
259 if (unlikely(!PageCompound(p
) |
260 (page_private(p
) != (unsigned long)page
)))
262 __ClearPageCompound(p
);
266 static inline void prep_zero_page(struct page
*page
, int order
, gfp_t gfp_flags
)
270 VM_BUG_ON((gfp_flags
& (__GFP_WAIT
| __GFP_HIGHMEM
)) == __GFP_HIGHMEM
);
272 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
273 * and __GFP_HIGHMEM from hard or soft interrupt context.
275 VM_BUG_ON((gfp_flags
& __GFP_HIGHMEM
) && in_interrupt());
276 for (i
= 0; i
< (1 << order
); i
++)
277 clear_highpage(page
+ i
);
281 * function for dealing with page's order in buddy system.
282 * zone->lock is already acquired when we use these.
283 * So, we don't need atomic page->flags operations here.
285 static inline unsigned long page_order(struct page
*page
)
287 return page_private(page
);
290 static inline void set_page_order(struct page
*page
, int order
)
292 set_page_private(page
, order
);
293 __SetPageBuddy(page
);
296 static inline void rmv_page_order(struct page
*page
)
298 __ClearPageBuddy(page
);
299 set_page_private(page
, 0);
303 * Locate the struct page for both the matching buddy in our
304 * pair (buddy1) and the combined O(n+1) page they form (page).
306 * 1) Any buddy B1 will have an order O twin B2 which satisfies
307 * the following equation:
309 * For example, if the starting buddy (buddy2) is #8 its order
311 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
313 * 2) Any buddy B will have an order O+1 parent P which
314 * satisfies the following equation:
317 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
319 static inline struct page
*
320 __page_find_buddy(struct page
*page
, unsigned long page_idx
, unsigned int order
)
322 unsigned long buddy_idx
= page_idx
^ (1 << order
);
324 return page
+ (buddy_idx
- page_idx
);
327 static inline unsigned long
328 __find_combined_index(unsigned long page_idx
, unsigned int order
)
330 return (page_idx
& ~(1 << order
));
334 * This function checks whether a page is free && is the buddy
335 * we can do coalesce a page and its buddy if
336 * (a) the buddy is not in a hole &&
337 * (b) the buddy is in the buddy system &&
338 * (c) a page and its buddy have the same order &&
339 * (d) a page and its buddy are in the same zone.
341 * For recording whether a page is in the buddy system, we use PG_buddy.
342 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
344 * For recording page's order, we use page_private(page).
346 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
349 #ifdef CONFIG_HOLES_IN_ZONE
350 if (!pfn_valid(page_to_pfn(buddy
)))
354 if (page_zone_id(page
) != page_zone_id(buddy
))
357 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
358 BUG_ON(page_count(buddy
) != 0);
365 * Freeing function for a buddy system allocator.
367 * The concept of a buddy system is to maintain direct-mapped table
368 * (containing bit values) for memory blocks of various "orders".
369 * The bottom level table contains the map for the smallest allocatable
370 * units of memory (here, pages), and each level above it describes
371 * pairs of units from the levels below, hence, "buddies".
372 * At a high level, all that happens here is marking the table entry
373 * at the bottom level available, and propagating the changes upward
374 * as necessary, plus some accounting needed to play nicely with other
375 * parts of the VM system.
376 * At each level, we keep a list of pages, which are heads of continuous
377 * free pages of length of (1 << order) and marked with PG_buddy. Page's
378 * order is recorded in page_private(page) field.
379 * So when we are allocating or freeing one, we can derive the state of the
380 * other. That is, if we allocate a small block, and both were
381 * free, the remainder of the region must be split into blocks.
382 * If a block is freed, and its buddy is also free, then this
383 * triggers coalescing into a block of larger size.
388 static inline void __free_one_page(struct page
*page
,
389 struct zone
*zone
, unsigned int order
)
391 unsigned long page_idx
;
392 int order_size
= 1 << order
;
394 if (unlikely(PageCompound(page
)))
395 destroy_compound_page(page
, order
);
397 page_idx
= page_to_pfn(page
) & ((1 << MAX_ORDER
) - 1);
399 VM_BUG_ON(page_idx
& (order_size
- 1));
400 VM_BUG_ON(bad_range(zone
, page
));
402 __mod_zone_page_state(zone
, NR_FREE_PAGES
, order_size
);
403 while (order
< MAX_ORDER
-1) {
404 unsigned long combined_idx
;
405 struct free_area
*area
;
408 buddy
= __page_find_buddy(page
, page_idx
, order
);
409 if (!page_is_buddy(page
, buddy
, order
))
410 break; /* Move the buddy up one level. */
412 list_del(&buddy
->lru
);
413 area
= zone
->free_area
+ order
;
415 rmv_page_order(buddy
);
416 combined_idx
= __find_combined_index(page_idx
, order
);
417 page
= page
+ (combined_idx
- page_idx
);
418 page_idx
= combined_idx
;
421 set_page_order(page
, order
);
422 list_add(&page
->lru
, &zone
->free_area
[order
].free_list
);
423 zone
->free_area
[order
].nr_free
++;
426 static inline int free_pages_check(struct page
*page
)
428 if (unlikely(page_mapcount(page
) |
429 (page
->mapping
!= NULL
) |
430 (page_count(page
) != 0) |
444 __ClearPageDirty(page
);
446 * For now, we report if PG_reserved was found set, but do not
447 * clear it, and do not free the page. But we shall soon need
448 * to do more, for when the ZERO_PAGE count wraps negative.
450 return PageReserved(page
);
454 * Frees a list of pages.
455 * Assumes all pages on list are in same zone, and of same order.
456 * count is the number of pages to free.
458 * If the zone was previously in an "all pages pinned" state then look to
459 * see if this freeing clears that state.
461 * And clear the zone's pages_scanned counter, to hold off the "all pages are
462 * pinned" detection logic.
464 static void free_pages_bulk(struct zone
*zone
, int count
,
465 struct list_head
*list
, int order
)
467 spin_lock(&zone
->lock
);
468 zone
->all_unreclaimable
= 0;
469 zone
->pages_scanned
= 0;
473 VM_BUG_ON(list_empty(list
));
474 page
= list_entry(list
->prev
, struct page
, lru
);
475 /* have to delete it as __free_one_page list manipulates */
476 list_del(&page
->lru
);
477 __free_one_page(page
, zone
, order
);
479 spin_unlock(&zone
->lock
);
482 static void free_one_page(struct zone
*zone
, struct page
*page
, int order
)
484 spin_lock(&zone
->lock
);
485 zone
->all_unreclaimable
= 0;
486 zone
->pages_scanned
= 0;
487 __free_one_page(page
, zone
, order
);
488 spin_unlock(&zone
->lock
);
491 static void __free_pages_ok(struct page
*page
, unsigned int order
)
497 for (i
= 0 ; i
< (1 << order
) ; ++i
)
498 reserved
+= free_pages_check(page
+ i
);
502 if (!PageHighMem(page
))
503 debug_check_no_locks_freed(page_address(page
),PAGE_SIZE
<<order
);
504 arch_free_page(page
, order
);
505 kernel_map_pages(page
, 1 << order
, 0);
507 local_irq_save(flags
);
508 __count_vm_events(PGFREE
, 1 << order
);
509 free_one_page(page_zone(page
), page
, order
);
510 local_irq_restore(flags
);
514 * permit the bootmem allocator to evade page validation on high-order frees
516 void fastcall __init
__free_pages_bootmem(struct page
*page
, unsigned int order
)
519 __ClearPageReserved(page
);
520 set_page_count(page
, 0);
521 set_page_refcounted(page
);
527 for (loop
= 0; loop
< BITS_PER_LONG
; loop
++) {
528 struct page
*p
= &page
[loop
];
530 if (loop
+ 1 < BITS_PER_LONG
)
532 __ClearPageReserved(p
);
533 set_page_count(p
, 0);
536 set_page_refcounted(page
);
537 __free_pages(page
, order
);
543 * The order of subdivision here is critical for the IO subsystem.
544 * Please do not alter this order without good reasons and regression
545 * testing. Specifically, as large blocks of memory are subdivided,
546 * the order in which smaller blocks are delivered depends on the order
547 * they're subdivided in this function. This is the primary factor
548 * influencing the order in which pages are delivered to the IO
549 * subsystem according to empirical testing, and this is also justified
550 * by considering the behavior of a buddy system containing a single
551 * large block of memory acted on by a series of small allocations.
552 * This behavior is a critical factor in sglist merging's success.
556 static inline void expand(struct zone
*zone
, struct page
*page
,
557 int low
, int high
, struct free_area
*area
)
559 unsigned long size
= 1 << high
;
565 VM_BUG_ON(bad_range(zone
, &page
[size
]));
566 list_add(&page
[size
].lru
, &area
->free_list
);
568 set_page_order(&page
[size
], high
);
573 * This page is about to be returned from the page allocator
575 static int prep_new_page(struct page
*page
, int order
, gfp_t gfp_flags
)
577 if (unlikely(page_mapcount(page
) |
578 (page
->mapping
!= NULL
) |
579 (page_count(page
) != 0) |
595 * For now, we report if PG_reserved was found set, but do not
596 * clear it, and do not allocate the page: as a safety net.
598 if (PageReserved(page
))
601 page
->flags
&= ~(1 << PG_uptodate
| 1 << PG_error
|
602 1 << PG_referenced
| 1 << PG_arch_1
|
603 1 << PG_owner_priv_1
| 1 << PG_mappedtodisk
);
604 set_page_private(page
, 0);
605 set_page_refcounted(page
);
607 arch_alloc_page(page
, order
);
608 kernel_map_pages(page
, 1 << order
, 1);
610 if (gfp_flags
& __GFP_ZERO
)
611 prep_zero_page(page
, order
, gfp_flags
);
613 if (order
&& (gfp_flags
& __GFP_COMP
))
614 prep_compound_page(page
, order
);
620 * Do the hard work of removing an element from the buddy allocator.
621 * Call me with the zone->lock already held.
623 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
)
625 struct free_area
* area
;
626 unsigned int current_order
;
629 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
630 area
= zone
->free_area
+ current_order
;
631 if (list_empty(&area
->free_list
))
634 page
= list_entry(area
->free_list
.next
, struct page
, lru
);
635 list_del(&page
->lru
);
636 rmv_page_order(page
);
638 __mod_zone_page_state(zone
, NR_FREE_PAGES
, - (1UL << order
));
639 expand(zone
, page
, order
, current_order
, area
);
647 * Obtain a specified number of elements from the buddy allocator, all under
648 * a single hold of the lock, for efficiency. Add them to the supplied list.
649 * Returns the number of new pages which were placed at *list.
651 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
652 unsigned long count
, struct list_head
*list
)
656 spin_lock(&zone
->lock
);
657 for (i
= 0; i
< count
; ++i
) {
658 struct page
*page
= __rmqueue(zone
, order
);
659 if (unlikely(page
== NULL
))
661 list_add_tail(&page
->lru
, list
);
663 spin_unlock(&zone
->lock
);
668 int nr_node_ids __read_mostly
;
669 EXPORT_SYMBOL(nr_node_ids
);
672 * Figure out the number of possible node ids.
674 static void __init
setup_nr_node_ids(void)
677 unsigned int highest
= 0;
679 for_each_node_mask(node
, node_possible_map
)
681 nr_node_ids
= highest
+ 1;
684 static void __init
setup_nr_node_ids(void) {}
689 * Called from the slab reaper to drain pagesets on a particular node that
690 * belongs to the currently executing processor.
691 * Note that this function must be called with the thread pinned to
692 * a single processor.
694 void drain_node_pages(int nodeid
)
700 for (z
= 0; z
< MAX_NR_ZONES
; z
++) {
701 struct zone
*zone
= NODE_DATA(nodeid
)->node_zones
+ z
;
702 struct per_cpu_pageset
*pset
;
704 if (!populated_zone(zone
))
707 pset
= zone_pcp(zone
, smp_processor_id());
708 for (i
= 0; i
< ARRAY_SIZE(pset
->pcp
); i
++) {
709 struct per_cpu_pages
*pcp
;
715 local_irq_save(flags
);
716 if (pcp
->count
>= pcp
->batch
)
717 to_drain
= pcp
->batch
;
719 to_drain
= pcp
->count
;
720 free_pages_bulk(zone
, to_drain
, &pcp
->list
, 0);
721 pcp
->count
-= to_drain
;
722 local_irq_restore(flags
);
729 static void __drain_pages(unsigned int cpu
)
735 for_each_zone(zone
) {
736 struct per_cpu_pageset
*pset
;
738 if (!populated_zone(zone
))
741 pset
= zone_pcp(zone
, cpu
);
742 for (i
= 0; i
< ARRAY_SIZE(pset
->pcp
); i
++) {
743 struct per_cpu_pages
*pcp
;
746 local_irq_save(flags
);
747 free_pages_bulk(zone
, pcp
->count
, &pcp
->list
, 0);
749 local_irq_restore(flags
);
756 void mark_free_pages(struct zone
*zone
)
758 unsigned long pfn
, max_zone_pfn
;
761 struct list_head
*curr
;
763 if (!zone
->spanned_pages
)
766 spin_lock_irqsave(&zone
->lock
, flags
);
768 max_zone_pfn
= zone
->zone_start_pfn
+ zone
->spanned_pages
;
769 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
770 if (pfn_valid(pfn
)) {
771 struct page
*page
= pfn_to_page(pfn
);
773 if (!PageNosave(page
))
774 ClearPageNosaveFree(page
);
777 for (order
= MAX_ORDER
- 1; order
>= 0; --order
)
778 list_for_each(curr
, &zone
->free_area
[order
].free_list
) {
781 pfn
= page_to_pfn(list_entry(curr
, struct page
, lru
));
782 for (i
= 0; i
< (1UL << order
); i
++)
783 SetPageNosaveFree(pfn_to_page(pfn
+ i
));
786 spin_unlock_irqrestore(&zone
->lock
, flags
);
790 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
792 void drain_local_pages(void)
796 local_irq_save(flags
);
797 __drain_pages(smp_processor_id());
798 local_irq_restore(flags
);
800 #endif /* CONFIG_PM */
803 * Free a 0-order page
805 static void fastcall
free_hot_cold_page(struct page
*page
, int cold
)
807 struct zone
*zone
= page_zone(page
);
808 struct per_cpu_pages
*pcp
;
812 page
->mapping
= NULL
;
813 if (free_pages_check(page
))
816 if (!PageHighMem(page
))
817 debug_check_no_locks_freed(page_address(page
), PAGE_SIZE
);
818 arch_free_page(page
, 0);
819 kernel_map_pages(page
, 1, 0);
821 pcp
= &zone_pcp(zone
, get_cpu())->pcp
[cold
];
822 local_irq_save(flags
);
823 __count_vm_event(PGFREE
);
824 list_add(&page
->lru
, &pcp
->list
);
826 if (pcp
->count
>= pcp
->high
) {
827 free_pages_bulk(zone
, pcp
->batch
, &pcp
->list
, 0);
828 pcp
->count
-= pcp
->batch
;
830 local_irq_restore(flags
);
834 void fastcall
free_hot_page(struct page
*page
)
836 free_hot_cold_page(page
, 0);
839 void fastcall
free_cold_page(struct page
*page
)
841 free_hot_cold_page(page
, 1);
845 * split_page takes a non-compound higher-order page, and splits it into
846 * n (1<<order) sub-pages: page[0..n]
847 * Each sub-page must be freed individually.
849 * Note: this is probably too low level an operation for use in drivers.
850 * Please consult with lkml before using this in your driver.
852 void split_page(struct page
*page
, unsigned int order
)
856 VM_BUG_ON(PageCompound(page
));
857 VM_BUG_ON(!page_count(page
));
858 for (i
= 1; i
< (1 << order
); i
++)
859 set_page_refcounted(page
+ i
);
863 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
864 * we cheat by calling it from here, in the order > 0 path. Saves a branch
867 static struct page
*buffered_rmqueue(struct zonelist
*zonelist
,
868 struct zone
*zone
, int order
, gfp_t gfp_flags
)
872 int cold
= !!(gfp_flags
& __GFP_COLD
);
877 if (likely(order
== 0)) {
878 struct per_cpu_pages
*pcp
;
880 pcp
= &zone_pcp(zone
, cpu
)->pcp
[cold
];
881 local_irq_save(flags
);
883 pcp
->count
= rmqueue_bulk(zone
, 0,
884 pcp
->batch
, &pcp
->list
);
885 if (unlikely(!pcp
->count
))
888 page
= list_entry(pcp
->list
.next
, struct page
, lru
);
889 list_del(&page
->lru
);
892 spin_lock_irqsave(&zone
->lock
, flags
);
893 page
= __rmqueue(zone
, order
);
894 spin_unlock(&zone
->lock
);
899 __count_zone_vm_events(PGALLOC
, zone
, 1 << order
);
900 zone_statistics(zonelist
, zone
);
901 local_irq_restore(flags
);
904 VM_BUG_ON(bad_range(zone
, page
));
905 if (prep_new_page(page
, order
, gfp_flags
))
910 local_irq_restore(flags
);
915 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
916 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
917 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
918 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
919 #define ALLOC_HARDER 0x10 /* try to alloc harder */
920 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
921 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
923 #ifdef CONFIG_FAIL_PAGE_ALLOC
925 static struct fail_page_alloc_attr
{
926 struct fault_attr attr
;
928 u32 ignore_gfp_highmem
;
931 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
933 struct dentry
*ignore_gfp_highmem_file
;
934 struct dentry
*ignore_gfp_wait_file
;
936 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
938 } fail_page_alloc
= {
939 .attr
= FAULT_ATTR_INITIALIZER
,
940 .ignore_gfp_wait
= 1,
941 .ignore_gfp_highmem
= 1,
944 static int __init
setup_fail_page_alloc(char *str
)
946 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
948 __setup("fail_page_alloc=", setup_fail_page_alloc
);
950 static int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
952 if (gfp_mask
& __GFP_NOFAIL
)
954 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
956 if (fail_page_alloc
.ignore_gfp_wait
&& (gfp_mask
& __GFP_WAIT
))
959 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
962 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
964 static int __init
fail_page_alloc_debugfs(void)
966 mode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
970 err
= init_fault_attr_dentries(&fail_page_alloc
.attr
,
974 dir
= fail_page_alloc
.attr
.dentries
.dir
;
976 fail_page_alloc
.ignore_gfp_wait_file
=
977 debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
978 &fail_page_alloc
.ignore_gfp_wait
);
980 fail_page_alloc
.ignore_gfp_highmem_file
=
981 debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
982 &fail_page_alloc
.ignore_gfp_highmem
);
984 if (!fail_page_alloc
.ignore_gfp_wait_file
||
985 !fail_page_alloc
.ignore_gfp_highmem_file
) {
987 debugfs_remove(fail_page_alloc
.ignore_gfp_wait_file
);
988 debugfs_remove(fail_page_alloc
.ignore_gfp_highmem_file
);
989 cleanup_fault_attr_dentries(&fail_page_alloc
.attr
);
995 late_initcall(fail_page_alloc_debugfs
);
997 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
999 #else /* CONFIG_FAIL_PAGE_ALLOC */
1001 static inline int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1006 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1009 * Return 1 if free pages are above 'mark'. This takes into account the order
1010 * of the allocation.
1012 int zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
1013 int classzone_idx
, int alloc_flags
)
1015 /* free_pages my go negative - that's OK */
1017 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
) - (1 << order
) + 1;
1020 if (alloc_flags
& ALLOC_HIGH
)
1022 if (alloc_flags
& ALLOC_HARDER
)
1025 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
1027 for (o
= 0; o
< order
; o
++) {
1028 /* At the next order, this order's pages become unavailable */
1029 free_pages
-= z
->free_area
[o
].nr_free
<< o
;
1031 /* Require fewer higher order pages to be free */
1034 if (free_pages
<= min
)
1042 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1043 * skip over zones that are not allowed by the cpuset, or that have
1044 * been recently (in last second) found to be nearly full. See further
1045 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1046 * that have to skip over alot of full or unallowed zones.
1048 * If the zonelist cache is present in the passed in zonelist, then
1049 * returns a pointer to the allowed node mask (either the current
1050 * tasks mems_allowed, or node_online_map.)
1052 * If the zonelist cache is not available for this zonelist, does
1053 * nothing and returns NULL.
1055 * If the fullzones BITMAP in the zonelist cache is stale (more than
1056 * a second since last zap'd) then we zap it out (clear its bits.)
1058 * We hold off even calling zlc_setup, until after we've checked the
1059 * first zone in the zonelist, on the theory that most allocations will
1060 * be satisfied from that first zone, so best to examine that zone as
1061 * quickly as we can.
1063 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1065 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1066 nodemask_t
*allowednodes
; /* zonelist_cache approximation */
1068 zlc
= zonelist
->zlcache_ptr
;
1072 if (jiffies
- zlc
->last_full_zap
> 1 * HZ
) {
1073 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1074 zlc
->last_full_zap
= jiffies
;
1077 allowednodes
= !in_interrupt() && (alloc_flags
& ALLOC_CPUSET
) ?
1078 &cpuset_current_mems_allowed
:
1080 return allowednodes
;
1084 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1085 * if it is worth looking at further for free memory:
1086 * 1) Check that the zone isn't thought to be full (doesn't have its
1087 * bit set in the zonelist_cache fullzones BITMAP).
1088 * 2) Check that the zones node (obtained from the zonelist_cache
1089 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1090 * Return true (non-zero) if zone is worth looking at further, or
1091 * else return false (zero) if it is not.
1093 * This check -ignores- the distinction between various watermarks,
1094 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1095 * found to be full for any variation of these watermarks, it will
1096 * be considered full for up to one second by all requests, unless
1097 * we are so low on memory on all allowed nodes that we are forced
1098 * into the second scan of the zonelist.
1100 * In the second scan we ignore this zonelist cache and exactly
1101 * apply the watermarks to all zones, even it is slower to do so.
1102 * We are low on memory in the second scan, and should leave no stone
1103 * unturned looking for a free page.
1105 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zone
**z
,
1106 nodemask_t
*allowednodes
)
1108 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1109 int i
; /* index of *z in zonelist zones */
1110 int n
; /* node that zone *z is on */
1112 zlc
= zonelist
->zlcache_ptr
;
1116 i
= z
- zonelist
->zones
;
1119 /* This zone is worth trying if it is allowed but not full */
1120 return node_isset(n
, *allowednodes
) && !test_bit(i
, zlc
->fullzones
);
1124 * Given 'z' scanning a zonelist, set the corresponding bit in
1125 * zlc->fullzones, so that subsequent attempts to allocate a page
1126 * from that zone don't waste time re-examining it.
1128 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zone
**z
)
1130 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1131 int i
; /* index of *z in zonelist zones */
1133 zlc
= zonelist
->zlcache_ptr
;
1137 i
= z
- zonelist
->zones
;
1139 set_bit(i
, zlc
->fullzones
);
1142 #else /* CONFIG_NUMA */
1144 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1149 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zone
**z
,
1150 nodemask_t
*allowednodes
)
1155 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zone
**z
)
1158 #endif /* CONFIG_NUMA */
1161 * get_page_from_freelist goes through the zonelist trying to allocate
1164 static struct page
*
1165 get_page_from_freelist(gfp_t gfp_mask
, unsigned int order
,
1166 struct zonelist
*zonelist
, int alloc_flags
)
1169 struct page
*page
= NULL
;
1170 int classzone_idx
= zone_idx(zonelist
->zones
[0]);
1172 nodemask_t
*allowednodes
= NULL
;/* zonelist_cache approximation */
1173 int zlc_active
= 0; /* set if using zonelist_cache */
1174 int did_zlc_setup
= 0; /* just call zlc_setup() one time */
1178 * Scan zonelist, looking for a zone with enough free.
1179 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1181 z
= zonelist
->zones
;
1184 if (NUMA_BUILD
&& zlc_active
&&
1185 !zlc_zone_worth_trying(zonelist
, z
, allowednodes
))
1188 if (unlikely(NUMA_BUILD
&& (gfp_mask
& __GFP_THISNODE
) &&
1189 zone
->zone_pgdat
!= zonelist
->zones
[0]->zone_pgdat
))
1191 if ((alloc_flags
& ALLOC_CPUSET
) &&
1192 !cpuset_zone_allowed_softwall(zone
, gfp_mask
))
1195 if (!(alloc_flags
& ALLOC_NO_WATERMARKS
)) {
1197 if (alloc_flags
& ALLOC_WMARK_MIN
)
1198 mark
= zone
->pages_min
;
1199 else if (alloc_flags
& ALLOC_WMARK_LOW
)
1200 mark
= zone
->pages_low
;
1202 mark
= zone
->pages_high
;
1203 if (!zone_watermark_ok(zone
, order
, mark
,
1204 classzone_idx
, alloc_flags
)) {
1205 if (!zone_reclaim_mode
||
1206 !zone_reclaim(zone
, gfp_mask
, order
))
1207 goto this_zone_full
;
1211 page
= buffered_rmqueue(zonelist
, zone
, order
, gfp_mask
);
1216 zlc_mark_zone_full(zonelist
, z
);
1218 if (NUMA_BUILD
&& !did_zlc_setup
) {
1219 /* we do zlc_setup after the first zone is tried */
1220 allowednodes
= zlc_setup(zonelist
, alloc_flags
);
1224 } while (*(++z
) != NULL
);
1226 if (unlikely(NUMA_BUILD
&& page
== NULL
&& zlc_active
)) {
1227 /* Disable zlc cache for second zonelist scan */
1235 * This is the 'heart' of the zoned buddy allocator.
1237 struct page
* fastcall
1238 __alloc_pages(gfp_t gfp_mask
, unsigned int order
,
1239 struct zonelist
*zonelist
)
1241 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
1244 struct reclaim_state reclaim_state
;
1245 struct task_struct
*p
= current
;
1248 int did_some_progress
;
1250 might_sleep_if(wait
);
1252 if (should_fail_alloc_page(gfp_mask
, order
))
1256 z
= zonelist
->zones
; /* the list of zones suitable for gfp_mask */
1258 if (unlikely(*z
== NULL
)) {
1259 /* Should this ever happen?? */
1263 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, order
,
1264 zonelist
, ALLOC_WMARK_LOW
|ALLOC_CPUSET
);
1269 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1270 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1271 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1272 * using a larger set of nodes after it has established that the
1273 * allowed per node queues are empty and that nodes are
1276 if (NUMA_BUILD
&& (gfp_mask
& GFP_THISNODE
) == GFP_THISNODE
)
1279 for (z
= zonelist
->zones
; *z
; z
++)
1280 wakeup_kswapd(*z
, order
);
1283 * OK, we're below the kswapd watermark and have kicked background
1284 * reclaim. Now things get more complex, so set up alloc_flags according
1285 * to how we want to proceed.
1287 * The caller may dip into page reserves a bit more if the caller
1288 * cannot run direct reclaim, or if the caller has realtime scheduling
1289 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1290 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1292 alloc_flags
= ALLOC_WMARK_MIN
;
1293 if ((unlikely(rt_task(p
)) && !in_interrupt()) || !wait
)
1294 alloc_flags
|= ALLOC_HARDER
;
1295 if (gfp_mask
& __GFP_HIGH
)
1296 alloc_flags
|= ALLOC_HIGH
;
1298 alloc_flags
|= ALLOC_CPUSET
;
1301 * Go through the zonelist again. Let __GFP_HIGH and allocations
1302 * coming from realtime tasks go deeper into reserves.
1304 * This is the last chance, in general, before the goto nopage.
1305 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1306 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1308 page
= get_page_from_freelist(gfp_mask
, order
, zonelist
, alloc_flags
);
1312 /* This allocation should allow future memory freeing. */
1315 if (((p
->flags
& PF_MEMALLOC
) || unlikely(test_thread_flag(TIF_MEMDIE
)))
1316 && !in_interrupt()) {
1317 if (!(gfp_mask
& __GFP_NOMEMALLOC
)) {
1319 /* go through the zonelist yet again, ignoring mins */
1320 page
= get_page_from_freelist(gfp_mask
, order
,
1321 zonelist
, ALLOC_NO_WATERMARKS
);
1324 if (gfp_mask
& __GFP_NOFAIL
) {
1325 congestion_wait(WRITE
, HZ
/50);
1332 /* Atomic allocations - we can't balance anything */
1338 /* We now go into synchronous reclaim */
1339 cpuset_memory_pressure_bump();
1340 p
->flags
|= PF_MEMALLOC
;
1341 reclaim_state
.reclaimed_slab
= 0;
1342 p
->reclaim_state
= &reclaim_state
;
1344 did_some_progress
= try_to_free_pages(zonelist
->zones
, gfp_mask
);
1346 p
->reclaim_state
= NULL
;
1347 p
->flags
&= ~PF_MEMALLOC
;
1351 if (likely(did_some_progress
)) {
1352 page
= get_page_from_freelist(gfp_mask
, order
,
1353 zonelist
, alloc_flags
);
1356 } else if ((gfp_mask
& __GFP_FS
) && !(gfp_mask
& __GFP_NORETRY
)) {
1358 * Go through the zonelist yet one more time, keep
1359 * very high watermark here, this is only to catch
1360 * a parallel oom killing, we must fail if we're still
1361 * under heavy pressure.
1363 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, order
,
1364 zonelist
, ALLOC_WMARK_HIGH
|ALLOC_CPUSET
);
1368 out_of_memory(zonelist
, gfp_mask
, order
);
1373 * Don't let big-order allocations loop unless the caller explicitly
1374 * requests that. Wait for some write requests to complete then retry.
1376 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1377 * <= 3, but that may not be true in other implementations.
1380 if (!(gfp_mask
& __GFP_NORETRY
)) {
1381 if ((order
<= 3) || (gfp_mask
& __GFP_REPEAT
))
1383 if (gfp_mask
& __GFP_NOFAIL
)
1387 congestion_wait(WRITE
, HZ
/50);
1392 if (!(gfp_mask
& __GFP_NOWARN
) && printk_ratelimit()) {
1393 printk(KERN_WARNING
"%s: page allocation failure."
1394 " order:%d, mode:0x%x\n",
1395 p
->comm
, order
, gfp_mask
);
1403 EXPORT_SYMBOL(__alloc_pages
);
1406 * Common helper functions.
1408 fastcall
unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
1411 page
= alloc_pages(gfp_mask
, order
);
1414 return (unsigned long) page_address(page
);
1417 EXPORT_SYMBOL(__get_free_pages
);
1419 fastcall
unsigned long get_zeroed_page(gfp_t gfp_mask
)
1424 * get_zeroed_page() returns a 32-bit address, which cannot represent
1427 VM_BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
1429 page
= alloc_pages(gfp_mask
| __GFP_ZERO
, 0);
1431 return (unsigned long) page_address(page
);
1435 EXPORT_SYMBOL(get_zeroed_page
);
1437 void __pagevec_free(struct pagevec
*pvec
)
1439 int i
= pagevec_count(pvec
);
1442 free_hot_cold_page(pvec
->pages
[i
], pvec
->cold
);
1445 fastcall
void __free_pages(struct page
*page
, unsigned int order
)
1447 if (put_page_testzero(page
)) {
1449 free_hot_page(page
);
1451 __free_pages_ok(page
, order
);
1455 EXPORT_SYMBOL(__free_pages
);
1457 fastcall
void free_pages(unsigned long addr
, unsigned int order
)
1460 VM_BUG_ON(!virt_addr_valid((void *)addr
));
1461 __free_pages(virt_to_page((void *)addr
), order
);
1465 EXPORT_SYMBOL(free_pages
);
1467 static unsigned int nr_free_zone_pages(int offset
)
1469 /* Just pick one node, since fallback list is circular */
1470 pg_data_t
*pgdat
= NODE_DATA(numa_node_id());
1471 unsigned int sum
= 0;
1473 struct zonelist
*zonelist
= pgdat
->node_zonelists
+ offset
;
1474 struct zone
**zonep
= zonelist
->zones
;
1477 for (zone
= *zonep
++; zone
; zone
= *zonep
++) {
1478 unsigned long size
= zone
->present_pages
;
1479 unsigned long high
= zone
->pages_high
;
1488 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1490 unsigned int nr_free_buffer_pages(void)
1492 return nr_free_zone_pages(gfp_zone(GFP_USER
));
1496 * Amount of free RAM allocatable within all zones
1498 unsigned int nr_free_pagecache_pages(void)
1500 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER
));
1503 static inline void show_node(struct zone
*zone
)
1506 printk("Node %d ", zone_to_nid(zone
));
1509 void si_meminfo(struct sysinfo
*val
)
1511 val
->totalram
= totalram_pages
;
1513 val
->freeram
= global_page_state(NR_FREE_PAGES
);
1514 val
->bufferram
= nr_blockdev_pages();
1515 val
->totalhigh
= totalhigh_pages
;
1516 val
->freehigh
= nr_free_highpages();
1517 val
->mem_unit
= PAGE_SIZE
;
1520 EXPORT_SYMBOL(si_meminfo
);
1523 void si_meminfo_node(struct sysinfo
*val
, int nid
)
1525 pg_data_t
*pgdat
= NODE_DATA(nid
);
1527 val
->totalram
= pgdat
->node_present_pages
;
1528 val
->freeram
= node_page_state(nid
, NR_FREE_PAGES
);
1529 #ifdef CONFIG_HIGHMEM
1530 val
->totalhigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].present_pages
;
1531 val
->freehigh
= zone_page_state(&pgdat
->node_zones
[ZONE_HIGHMEM
],
1537 val
->mem_unit
= PAGE_SIZE
;
1541 #define K(x) ((x) << (PAGE_SHIFT-10))
1544 * Show free area list (used inside shift_scroll-lock stuff)
1545 * We also calculate the percentage fragmentation. We do this by counting the
1546 * memory on each free list with the exception of the first item on the list.
1548 void show_free_areas(void)
1553 for_each_zone(zone
) {
1554 if (!populated_zone(zone
))
1558 printk("%s per-cpu:\n", zone
->name
);
1560 for_each_online_cpu(cpu
) {
1561 struct per_cpu_pageset
*pageset
;
1563 pageset
= zone_pcp(zone
, cpu
);
1565 printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d "
1566 "Cold: hi:%5d, btch:%4d usd:%4d\n",
1567 cpu
, pageset
->pcp
[0].high
,
1568 pageset
->pcp
[0].batch
, pageset
->pcp
[0].count
,
1569 pageset
->pcp
[1].high
, pageset
->pcp
[1].batch
,
1570 pageset
->pcp
[1].count
);
1574 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
1575 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1576 global_page_state(NR_ACTIVE
),
1577 global_page_state(NR_INACTIVE
),
1578 global_page_state(NR_FILE_DIRTY
),
1579 global_page_state(NR_WRITEBACK
),
1580 global_page_state(NR_UNSTABLE_NFS
),
1581 global_page_state(NR_FREE_PAGES
),
1582 global_page_state(NR_SLAB_RECLAIMABLE
) +
1583 global_page_state(NR_SLAB_UNRECLAIMABLE
),
1584 global_page_state(NR_FILE_MAPPED
),
1585 global_page_state(NR_PAGETABLE
),
1586 global_page_state(NR_BOUNCE
));
1588 for_each_zone(zone
) {
1591 if (!populated_zone(zone
))
1603 " pages_scanned:%lu"
1604 " all_unreclaimable? %s"
1607 K(zone_page_state(zone
, NR_FREE_PAGES
)),
1610 K(zone
->pages_high
),
1611 K(zone_page_state(zone
, NR_ACTIVE
)),
1612 K(zone_page_state(zone
, NR_INACTIVE
)),
1613 K(zone
->present_pages
),
1614 zone
->pages_scanned
,
1615 (zone
->all_unreclaimable
? "yes" : "no")
1617 printk("lowmem_reserve[]:");
1618 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
1619 printk(" %lu", zone
->lowmem_reserve
[i
]);
1623 for_each_zone(zone
) {
1624 unsigned long nr
[MAX_ORDER
], flags
, order
, total
= 0;
1626 if (!populated_zone(zone
))
1630 printk("%s: ", zone
->name
);
1632 spin_lock_irqsave(&zone
->lock
, flags
);
1633 for (order
= 0; order
< MAX_ORDER
; order
++) {
1634 nr
[order
] = zone
->free_area
[order
].nr_free
;
1635 total
+= nr
[order
] << order
;
1637 spin_unlock_irqrestore(&zone
->lock
, flags
);
1638 for (order
= 0; order
< MAX_ORDER
; order
++)
1639 printk("%lu*%lukB ", nr
[order
], K(1UL) << order
);
1640 printk("= %lukB\n", K(total
));
1643 show_swap_cache_info();
1647 * Builds allocation fallback zone lists.
1649 * Add all populated zones of a node to the zonelist.
1651 static int __meminit
build_zonelists_node(pg_data_t
*pgdat
,
1652 struct zonelist
*zonelist
, int nr_zones
, enum zone_type zone_type
)
1656 BUG_ON(zone_type
>= MAX_NR_ZONES
);
1661 zone
= pgdat
->node_zones
+ zone_type
;
1662 if (populated_zone(zone
)) {
1663 zonelist
->zones
[nr_zones
++] = zone
;
1664 check_highest_zone(zone_type
);
1667 } while (zone_type
);
1672 #define MAX_NODE_LOAD (num_online_nodes())
1673 static int __meminitdata node_load
[MAX_NUMNODES
];
1675 * find_next_best_node - find the next node that should appear in a given node's fallback list
1676 * @node: node whose fallback list we're appending
1677 * @used_node_mask: nodemask_t of already used nodes
1679 * We use a number of factors to determine which is the next node that should
1680 * appear on a given node's fallback list. The node should not have appeared
1681 * already in @node's fallback list, and it should be the next closest node
1682 * according to the distance array (which contains arbitrary distance values
1683 * from each node to each node in the system), and should also prefer nodes
1684 * with no CPUs, since presumably they'll have very little allocation pressure
1685 * on them otherwise.
1686 * It returns -1 if no node is found.
1688 static int __meminit
find_next_best_node(int node
, nodemask_t
*used_node_mask
)
1691 int min_val
= INT_MAX
;
1694 /* Use the local node if we haven't already */
1695 if (!node_isset(node
, *used_node_mask
)) {
1696 node_set(node
, *used_node_mask
);
1700 for_each_online_node(n
) {
1703 /* Don't want a node to appear more than once */
1704 if (node_isset(n
, *used_node_mask
))
1707 /* Use the distance array to find the distance */
1708 val
= node_distance(node
, n
);
1710 /* Penalize nodes under us ("prefer the next node") */
1713 /* Give preference to headless and unused nodes */
1714 tmp
= node_to_cpumask(n
);
1715 if (!cpus_empty(tmp
))
1716 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
1718 /* Slight preference for less loaded node */
1719 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
1720 val
+= node_load
[n
];
1722 if (val
< min_val
) {
1729 node_set(best_node
, *used_node_mask
);
1734 static void __meminit
build_zonelists(pg_data_t
*pgdat
)
1736 int j
, node
, local_node
;
1738 int prev_node
, load
;
1739 struct zonelist
*zonelist
;
1740 nodemask_t used_mask
;
1742 /* initialize zonelists */
1743 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
1744 zonelist
= pgdat
->node_zonelists
+ i
;
1745 zonelist
->zones
[0] = NULL
;
1748 /* NUMA-aware ordering of nodes */
1749 local_node
= pgdat
->node_id
;
1750 load
= num_online_nodes();
1751 prev_node
= local_node
;
1752 nodes_clear(used_mask
);
1753 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
1754 int distance
= node_distance(local_node
, node
);
1757 * If another node is sufficiently far away then it is better
1758 * to reclaim pages in a zone before going off node.
1760 if (distance
> RECLAIM_DISTANCE
)
1761 zone_reclaim_mode
= 1;
1764 * We don't want to pressure a particular node.
1765 * So adding penalty to the first node in same
1766 * distance group to make it round-robin.
1769 if (distance
!= node_distance(local_node
, prev_node
))
1770 node_load
[node
] += load
;
1773 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
1774 zonelist
= pgdat
->node_zonelists
+ i
;
1775 for (j
= 0; zonelist
->zones
[j
] != NULL
; j
++);
1777 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
, i
);
1778 zonelist
->zones
[j
] = NULL
;
1783 /* Construct the zonelist performance cache - see further mmzone.h */
1784 static void __meminit
build_zonelist_cache(pg_data_t
*pgdat
)
1788 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
1789 struct zonelist
*zonelist
;
1790 struct zonelist_cache
*zlc
;
1793 zonelist
= pgdat
->node_zonelists
+ i
;
1794 zonelist
->zlcache_ptr
= zlc
= &zonelist
->zlcache
;
1795 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1796 for (z
= zonelist
->zones
; *z
; z
++)
1797 zlc
->z_to_n
[z
- zonelist
->zones
] = zone_to_nid(*z
);
1801 #else /* CONFIG_NUMA */
1803 static void __meminit
build_zonelists(pg_data_t
*pgdat
)
1805 int node
, local_node
;
1808 local_node
= pgdat
->node_id
;
1809 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
1810 struct zonelist
*zonelist
;
1812 zonelist
= pgdat
->node_zonelists
+ i
;
1814 j
= build_zonelists_node(pgdat
, zonelist
, 0, i
);
1816 * Now we build the zonelist so that it contains the zones
1817 * of all the other nodes.
1818 * We don't want to pressure a particular node, so when
1819 * building the zones for node N, we make sure that the
1820 * zones coming right after the local ones are those from
1821 * node N+1 (modulo N)
1823 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
1824 if (!node_online(node
))
1826 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
, i
);
1828 for (node
= 0; node
< local_node
; node
++) {
1829 if (!node_online(node
))
1831 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
, i
);
1834 zonelist
->zones
[j
] = NULL
;
1838 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
1839 static void __meminit
build_zonelist_cache(pg_data_t
*pgdat
)
1843 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
1844 pgdat
->node_zonelists
[i
].zlcache_ptr
= NULL
;
1847 #endif /* CONFIG_NUMA */
1849 /* return values int ....just for stop_machine_run() */
1850 static int __meminit
__build_all_zonelists(void *dummy
)
1854 for_each_online_node(nid
) {
1855 build_zonelists(NODE_DATA(nid
));
1856 build_zonelist_cache(NODE_DATA(nid
));
1861 void __meminit
build_all_zonelists(void)
1863 if (system_state
== SYSTEM_BOOTING
) {
1864 __build_all_zonelists(NULL
);
1865 cpuset_init_current_mems_allowed();
1867 /* we have to stop all cpus to guaranntee there is no user
1869 stop_machine_run(__build_all_zonelists
, NULL
, NR_CPUS
);
1870 /* cpuset refresh routine should be here */
1872 vm_total_pages
= nr_free_pagecache_pages();
1873 printk("Built %i zonelists. Total pages: %ld\n",
1874 num_online_nodes(), vm_total_pages
);
1878 * Helper functions to size the waitqueue hash table.
1879 * Essentially these want to choose hash table sizes sufficiently
1880 * large so that collisions trying to wait on pages are rare.
1881 * But in fact, the number of active page waitqueues on typical
1882 * systems is ridiculously low, less than 200. So this is even
1883 * conservative, even though it seems large.
1885 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1886 * waitqueues, i.e. the size of the waitq table given the number of pages.
1888 #define PAGES_PER_WAITQUEUE 256
1890 #ifndef CONFIG_MEMORY_HOTPLUG
1891 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
1893 unsigned long size
= 1;
1895 pages
/= PAGES_PER_WAITQUEUE
;
1897 while (size
< pages
)
1901 * Once we have dozens or even hundreds of threads sleeping
1902 * on IO we've got bigger problems than wait queue collision.
1903 * Limit the size of the wait table to a reasonable size.
1905 size
= min(size
, 4096UL);
1907 return max(size
, 4UL);
1911 * A zone's size might be changed by hot-add, so it is not possible to determine
1912 * a suitable size for its wait_table. So we use the maximum size now.
1914 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
1916 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
1917 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
1918 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
1920 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
1921 * or more by the traditional way. (See above). It equals:
1923 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
1924 * ia64(16K page size) : = ( 8G + 4M)byte.
1925 * powerpc (64K page size) : = (32G +16M)byte.
1927 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
1934 * This is an integer logarithm so that shifts can be used later
1935 * to extract the more random high bits from the multiplicative
1936 * hash function before the remainder is taken.
1938 static inline unsigned long wait_table_bits(unsigned long size
)
1943 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1946 * Initially all pages are reserved - free ones are freed
1947 * up by free_all_bootmem() once the early boot process is
1948 * done. Non-atomic initialization, single-pass.
1950 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
1951 unsigned long start_pfn
, enum memmap_context context
)
1954 unsigned long end_pfn
= start_pfn
+ size
;
1957 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
1959 * There can be holes in boot-time mem_map[]s
1960 * handed to this function. They do not
1961 * exist on hotplugged memory.
1963 if (context
== MEMMAP_EARLY
) {
1964 if (!early_pfn_valid(pfn
))
1966 if (!early_pfn_in_nid(pfn
, nid
))
1969 page
= pfn_to_page(pfn
);
1970 set_page_links(page
, zone
, nid
, pfn
);
1971 init_page_count(page
);
1972 reset_page_mapcount(page
);
1973 SetPageReserved(page
);
1974 INIT_LIST_HEAD(&page
->lru
);
1975 #ifdef WANT_PAGE_VIRTUAL
1976 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1977 if (!is_highmem_idx(zone
))
1978 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
1983 void zone_init_free_lists(struct pglist_data
*pgdat
, struct zone
*zone
,
1987 for (order
= 0; order
< MAX_ORDER
; order
++) {
1988 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
);
1989 zone
->free_area
[order
].nr_free
= 0;
1993 #ifndef __HAVE_ARCH_MEMMAP_INIT
1994 #define memmap_init(size, nid, zone, start_pfn) \
1995 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1998 static int __cpuinit
zone_batchsize(struct zone
*zone
)
2003 * The per-cpu-pages pools are set to around 1000th of the
2004 * size of the zone. But no more than 1/2 of a meg.
2006 * OK, so we don't know how big the cache is. So guess.
2008 batch
= zone
->present_pages
/ 1024;
2009 if (batch
* PAGE_SIZE
> 512 * 1024)
2010 batch
= (512 * 1024) / PAGE_SIZE
;
2011 batch
/= 4; /* We effectively *= 4 below */
2016 * Clamp the batch to a 2^n - 1 value. Having a power
2017 * of 2 value was found to be more likely to have
2018 * suboptimal cache aliasing properties in some cases.
2020 * For example if 2 tasks are alternately allocating
2021 * batches of pages, one task can end up with a lot
2022 * of pages of one half of the possible page colors
2023 * and the other with pages of the other colors.
2025 batch
= (1 << (fls(batch
+ batch
/2)-1)) - 1;
2030 inline void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
2032 struct per_cpu_pages
*pcp
;
2034 memset(p
, 0, sizeof(*p
));
2036 pcp
= &p
->pcp
[0]; /* hot */
2038 pcp
->high
= 6 * batch
;
2039 pcp
->batch
= max(1UL, 1 * batch
);
2040 INIT_LIST_HEAD(&pcp
->list
);
2042 pcp
= &p
->pcp
[1]; /* cold*/
2044 pcp
->high
= 2 * batch
;
2045 pcp
->batch
= max(1UL, batch
/2);
2046 INIT_LIST_HEAD(&pcp
->list
);
2050 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2051 * to the value high for the pageset p.
2054 static void setup_pagelist_highmark(struct per_cpu_pageset
*p
,
2057 struct per_cpu_pages
*pcp
;
2059 pcp
= &p
->pcp
[0]; /* hot list */
2061 pcp
->batch
= max(1UL, high
/4);
2062 if ((high
/4) > (PAGE_SHIFT
* 8))
2063 pcp
->batch
= PAGE_SHIFT
* 8;
2069 * Boot pageset table. One per cpu which is going to be used for all
2070 * zones and all nodes. The parameters will be set in such a way
2071 * that an item put on a list will immediately be handed over to
2072 * the buddy list. This is safe since pageset manipulation is done
2073 * with interrupts disabled.
2075 * Some NUMA counter updates may also be caught by the boot pagesets.
2077 * The boot_pagesets must be kept even after bootup is complete for
2078 * unused processors and/or zones. They do play a role for bootstrapping
2079 * hotplugged processors.
2081 * zoneinfo_show() and maybe other functions do
2082 * not check if the processor is online before following the pageset pointer.
2083 * Other parts of the kernel may not check if the zone is available.
2085 static struct per_cpu_pageset boot_pageset
[NR_CPUS
];
2088 * Dynamically allocate memory for the
2089 * per cpu pageset array in struct zone.
2091 static int __cpuinit
process_zones(int cpu
)
2093 struct zone
*zone
, *dzone
;
2095 for_each_zone(zone
) {
2097 if (!populated_zone(zone
))
2100 zone_pcp(zone
, cpu
) = kmalloc_node(sizeof(struct per_cpu_pageset
),
2101 GFP_KERNEL
, cpu_to_node(cpu
));
2102 if (!zone_pcp(zone
, cpu
))
2105 setup_pageset(zone_pcp(zone
, cpu
), zone_batchsize(zone
));
2107 if (percpu_pagelist_fraction
)
2108 setup_pagelist_highmark(zone_pcp(zone
, cpu
),
2109 (zone
->present_pages
/ percpu_pagelist_fraction
));
2114 for_each_zone(dzone
) {
2117 kfree(zone_pcp(dzone
, cpu
));
2118 zone_pcp(dzone
, cpu
) = NULL
;
2123 static inline void free_zone_pagesets(int cpu
)
2127 for_each_zone(zone
) {
2128 struct per_cpu_pageset
*pset
= zone_pcp(zone
, cpu
);
2130 /* Free per_cpu_pageset if it is slab allocated */
2131 if (pset
!= &boot_pageset
[cpu
])
2133 zone_pcp(zone
, cpu
) = NULL
;
2137 static int __cpuinit
pageset_cpuup_callback(struct notifier_block
*nfb
,
2138 unsigned long action
,
2141 int cpu
= (long)hcpu
;
2142 int ret
= NOTIFY_OK
;
2145 case CPU_UP_PREPARE
:
2146 if (process_zones(cpu
))
2149 case CPU_UP_CANCELED
:
2151 free_zone_pagesets(cpu
);
2159 static struct notifier_block __cpuinitdata pageset_notifier
=
2160 { &pageset_cpuup_callback
, NULL
, 0 };
2162 void __init
setup_per_cpu_pageset(void)
2166 /* Initialize per_cpu_pageset for cpu 0.
2167 * A cpuup callback will do this for every cpu
2168 * as it comes online
2170 err
= process_zones(smp_processor_id());
2172 register_cpu_notifier(&pageset_notifier
);
2178 int zone_wait_table_init(struct zone
*zone
, unsigned long zone_size_pages
)
2181 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
2185 * The per-page waitqueue mechanism uses hashed waitqueues
2188 zone
->wait_table_hash_nr_entries
=
2189 wait_table_hash_nr_entries(zone_size_pages
);
2190 zone
->wait_table_bits
=
2191 wait_table_bits(zone
->wait_table_hash_nr_entries
);
2192 alloc_size
= zone
->wait_table_hash_nr_entries
2193 * sizeof(wait_queue_head_t
);
2195 if (system_state
== SYSTEM_BOOTING
) {
2196 zone
->wait_table
= (wait_queue_head_t
*)
2197 alloc_bootmem_node(pgdat
, alloc_size
);
2200 * This case means that a zone whose size was 0 gets new memory
2201 * via memory hot-add.
2202 * But it may be the case that a new node was hot-added. In
2203 * this case vmalloc() will not be able to use this new node's
2204 * memory - this wait_table must be initialized to use this new
2205 * node itself as well.
2206 * To use this new node's memory, further consideration will be
2209 zone
->wait_table
= (wait_queue_head_t
*)vmalloc(alloc_size
);
2211 if (!zone
->wait_table
)
2214 for(i
= 0; i
< zone
->wait_table_hash_nr_entries
; ++i
)
2215 init_waitqueue_head(zone
->wait_table
+ i
);
2220 static __meminit
void zone_pcp_init(struct zone
*zone
)
2223 unsigned long batch
= zone_batchsize(zone
);
2225 for (cpu
= 0; cpu
< NR_CPUS
; cpu
++) {
2227 /* Early boot. Slab allocator not functional yet */
2228 zone_pcp(zone
, cpu
) = &boot_pageset
[cpu
];
2229 setup_pageset(&boot_pageset
[cpu
],0);
2231 setup_pageset(zone_pcp(zone
,cpu
), batch
);
2234 if (zone
->present_pages
)
2235 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%lu\n",
2236 zone
->name
, zone
->present_pages
, batch
);
2239 __meminit
int init_currently_empty_zone(struct zone
*zone
,
2240 unsigned long zone_start_pfn
,
2242 enum memmap_context context
)
2244 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
2246 ret
= zone_wait_table_init(zone
, size
);
2249 pgdat
->nr_zones
= zone_idx(zone
) + 1;
2251 zone
->zone_start_pfn
= zone_start_pfn
;
2253 memmap_init(size
, pgdat
->node_id
, zone_idx(zone
), zone_start_pfn
);
2255 zone_init_free_lists(pgdat
, zone
, zone
->spanned_pages
);
2260 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2262 * Basic iterator support. Return the first range of PFNs for a node
2263 * Note: nid == MAX_NUMNODES returns first region regardless of node
2265 static int __init
first_active_region_index_in_nid(int nid
)
2269 for (i
= 0; i
< nr_nodemap_entries
; i
++)
2270 if (nid
== MAX_NUMNODES
|| early_node_map
[i
].nid
== nid
)
2277 * Basic iterator support. Return the next active range of PFNs for a node
2278 * Note: nid == MAX_NUMNODES returns next region regardles of node
2280 static int __init
next_active_region_index_in_nid(int index
, int nid
)
2282 for (index
= index
+ 1; index
< nr_nodemap_entries
; index
++)
2283 if (nid
== MAX_NUMNODES
|| early_node_map
[index
].nid
== nid
)
2289 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2291 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2292 * Architectures may implement their own version but if add_active_range()
2293 * was used and there are no special requirements, this is a convenient
2296 int __init
early_pfn_to_nid(unsigned long pfn
)
2300 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
2301 unsigned long start_pfn
= early_node_map
[i
].start_pfn
;
2302 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
2304 if (start_pfn
<= pfn
&& pfn
< end_pfn
)
2305 return early_node_map
[i
].nid
;
2310 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2312 /* Basic iterator support to walk early_node_map[] */
2313 #define for_each_active_range_index_in_nid(i, nid) \
2314 for (i = first_active_region_index_in_nid(nid); i != -1; \
2315 i = next_active_region_index_in_nid(i, nid))
2318 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2319 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2320 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2322 * If an architecture guarantees that all ranges registered with
2323 * add_active_ranges() contain no holes and may be freed, this
2324 * this function may be used instead of calling free_bootmem() manually.
2326 void __init
free_bootmem_with_active_regions(int nid
,
2327 unsigned long max_low_pfn
)
2331 for_each_active_range_index_in_nid(i
, nid
) {
2332 unsigned long size_pages
= 0;
2333 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
2335 if (early_node_map
[i
].start_pfn
>= max_low_pfn
)
2338 if (end_pfn
> max_low_pfn
)
2339 end_pfn
= max_low_pfn
;
2341 size_pages
= end_pfn
- early_node_map
[i
].start_pfn
;
2342 free_bootmem_node(NODE_DATA(early_node_map
[i
].nid
),
2343 PFN_PHYS(early_node_map
[i
].start_pfn
),
2344 size_pages
<< PAGE_SHIFT
);
2349 * sparse_memory_present_with_active_regions - Call memory_present for each active range
2350 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
2352 * If an architecture guarantees that all ranges registered with
2353 * add_active_ranges() contain no holes and may be freed, this
2354 * function may be used instead of calling memory_present() manually.
2356 void __init
sparse_memory_present_with_active_regions(int nid
)
2360 for_each_active_range_index_in_nid(i
, nid
)
2361 memory_present(early_node_map
[i
].nid
,
2362 early_node_map
[i
].start_pfn
,
2363 early_node_map
[i
].end_pfn
);
2367 * push_node_boundaries - Push node boundaries to at least the requested boundary
2368 * @nid: The nid of the node to push the boundary for
2369 * @start_pfn: The start pfn of the node
2370 * @end_pfn: The end pfn of the node
2372 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2373 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2374 * be hotplugged even though no physical memory exists. This function allows
2375 * an arch to push out the node boundaries so mem_map is allocated that can
2378 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2379 void __init
push_node_boundaries(unsigned int nid
,
2380 unsigned long start_pfn
, unsigned long end_pfn
)
2382 printk(KERN_DEBUG
"Entering push_node_boundaries(%u, %lu, %lu)\n",
2383 nid
, start_pfn
, end_pfn
);
2385 /* Initialise the boundary for this node if necessary */
2386 if (node_boundary_end_pfn
[nid
] == 0)
2387 node_boundary_start_pfn
[nid
] = -1UL;
2389 /* Update the boundaries */
2390 if (node_boundary_start_pfn
[nid
] > start_pfn
)
2391 node_boundary_start_pfn
[nid
] = start_pfn
;
2392 if (node_boundary_end_pfn
[nid
] < end_pfn
)
2393 node_boundary_end_pfn
[nid
] = end_pfn
;
2396 /* If necessary, push the node boundary out for reserve hotadd */
2397 static void __init
account_node_boundary(unsigned int nid
,
2398 unsigned long *start_pfn
, unsigned long *end_pfn
)
2400 printk(KERN_DEBUG
"Entering account_node_boundary(%u, %lu, %lu)\n",
2401 nid
, *start_pfn
, *end_pfn
);
2403 /* Return if boundary information has not been provided */
2404 if (node_boundary_end_pfn
[nid
] == 0)
2407 /* Check the boundaries and update if necessary */
2408 if (node_boundary_start_pfn
[nid
] < *start_pfn
)
2409 *start_pfn
= node_boundary_start_pfn
[nid
];
2410 if (node_boundary_end_pfn
[nid
] > *end_pfn
)
2411 *end_pfn
= node_boundary_end_pfn
[nid
];
2414 void __init
push_node_boundaries(unsigned int nid
,
2415 unsigned long start_pfn
, unsigned long end_pfn
) {}
2417 static void __init
account_node_boundary(unsigned int nid
,
2418 unsigned long *start_pfn
, unsigned long *end_pfn
) {}
2423 * get_pfn_range_for_nid - Return the start and end page frames for a node
2424 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
2425 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
2426 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
2428 * It returns the start and end page frame of a node based on information
2429 * provided by an arch calling add_active_range(). If called for a node
2430 * with no available memory, a warning is printed and the start and end
2433 void __init
get_pfn_range_for_nid(unsigned int nid
,
2434 unsigned long *start_pfn
, unsigned long *end_pfn
)
2440 for_each_active_range_index_in_nid(i
, nid
) {
2441 *start_pfn
= min(*start_pfn
, early_node_map
[i
].start_pfn
);
2442 *end_pfn
= max(*end_pfn
, early_node_map
[i
].end_pfn
);
2445 if (*start_pfn
== -1UL) {
2446 printk(KERN_WARNING
"Node %u active with no memory\n", nid
);
2450 /* Push the node boundaries out if requested */
2451 account_node_boundary(nid
, start_pfn
, end_pfn
);
2455 * Return the number of pages a zone spans in a node, including holes
2456 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
2458 unsigned long __init
zone_spanned_pages_in_node(int nid
,
2459 unsigned long zone_type
,
2460 unsigned long *ignored
)
2462 unsigned long node_start_pfn
, node_end_pfn
;
2463 unsigned long zone_start_pfn
, zone_end_pfn
;
2465 /* Get the start and end of the node and zone */
2466 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
2467 zone_start_pfn
= arch_zone_lowest_possible_pfn
[zone_type
];
2468 zone_end_pfn
= arch_zone_highest_possible_pfn
[zone_type
];
2470 /* Check that this node has pages within the zone's required range */
2471 if (zone_end_pfn
< node_start_pfn
|| zone_start_pfn
> node_end_pfn
)
2474 /* Move the zone boundaries inside the node if necessary */
2475 zone_end_pfn
= min(zone_end_pfn
, node_end_pfn
);
2476 zone_start_pfn
= max(zone_start_pfn
, node_start_pfn
);
2478 /* Return the spanned pages */
2479 return zone_end_pfn
- zone_start_pfn
;
2483 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
2484 * then all holes in the requested range will be accounted for.
2486 unsigned long __init
__absent_pages_in_range(int nid
,
2487 unsigned long range_start_pfn
,
2488 unsigned long range_end_pfn
)
2491 unsigned long prev_end_pfn
= 0, hole_pages
= 0;
2492 unsigned long start_pfn
;
2494 /* Find the end_pfn of the first active range of pfns in the node */
2495 i
= first_active_region_index_in_nid(nid
);
2499 /* Account for ranges before physical memory on this node */
2500 if (early_node_map
[i
].start_pfn
> range_start_pfn
)
2501 hole_pages
= early_node_map
[i
].start_pfn
- range_start_pfn
;
2503 prev_end_pfn
= early_node_map
[i
].start_pfn
;
2505 /* Find all holes for the zone within the node */
2506 for (; i
!= -1; i
= next_active_region_index_in_nid(i
, nid
)) {
2508 /* No need to continue if prev_end_pfn is outside the zone */
2509 if (prev_end_pfn
>= range_end_pfn
)
2512 /* Make sure the end of the zone is not within the hole */
2513 start_pfn
= min(early_node_map
[i
].start_pfn
, range_end_pfn
);
2514 prev_end_pfn
= max(prev_end_pfn
, range_start_pfn
);
2516 /* Update the hole size cound and move on */
2517 if (start_pfn
> range_start_pfn
) {
2518 BUG_ON(prev_end_pfn
> start_pfn
);
2519 hole_pages
+= start_pfn
- prev_end_pfn
;
2521 prev_end_pfn
= early_node_map
[i
].end_pfn
;
2524 /* Account for ranges past physical memory on this node */
2525 if (range_end_pfn
> prev_end_pfn
)
2526 hole_pages
+= range_end_pfn
-
2527 max(range_start_pfn
, prev_end_pfn
);
2533 * absent_pages_in_range - Return number of page frames in holes within a range
2534 * @start_pfn: The start PFN to start searching for holes
2535 * @end_pfn: The end PFN to stop searching for holes
2537 * It returns the number of pages frames in memory holes within a range.
2539 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
2540 unsigned long end_pfn
)
2542 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
2545 /* Return the number of page frames in holes in a zone on a node */
2546 unsigned long __init
zone_absent_pages_in_node(int nid
,
2547 unsigned long zone_type
,
2548 unsigned long *ignored
)
2550 unsigned long node_start_pfn
, node_end_pfn
;
2551 unsigned long zone_start_pfn
, zone_end_pfn
;
2553 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
2554 zone_start_pfn
= max(arch_zone_lowest_possible_pfn
[zone_type
],
2556 zone_end_pfn
= min(arch_zone_highest_possible_pfn
[zone_type
],
2559 return __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
2563 static inline unsigned long zone_spanned_pages_in_node(int nid
,
2564 unsigned long zone_type
,
2565 unsigned long *zones_size
)
2567 return zones_size
[zone_type
];
2570 static inline unsigned long zone_absent_pages_in_node(int nid
,
2571 unsigned long zone_type
,
2572 unsigned long *zholes_size
)
2577 return zholes_size
[zone_type
];
2582 static void __init
calculate_node_totalpages(struct pglist_data
*pgdat
,
2583 unsigned long *zones_size
, unsigned long *zholes_size
)
2585 unsigned long realtotalpages
, totalpages
= 0;
2588 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
2589 totalpages
+= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
2591 pgdat
->node_spanned_pages
= totalpages
;
2593 realtotalpages
= totalpages
;
2594 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
2596 zone_absent_pages_in_node(pgdat
->node_id
, i
,
2598 pgdat
->node_present_pages
= realtotalpages
;
2599 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
2604 * Set up the zone data structures:
2605 * - mark all pages reserved
2606 * - mark all memory queues empty
2607 * - clear the memory bitmaps
2609 static void __meminit
free_area_init_core(struct pglist_data
*pgdat
,
2610 unsigned long *zones_size
, unsigned long *zholes_size
)
2613 int nid
= pgdat
->node_id
;
2614 unsigned long zone_start_pfn
= pgdat
->node_start_pfn
;
2617 pgdat_resize_init(pgdat
);
2618 pgdat
->nr_zones
= 0;
2619 init_waitqueue_head(&pgdat
->kswapd_wait
);
2620 pgdat
->kswapd_max_order
= 0;
2622 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
2623 struct zone
*zone
= pgdat
->node_zones
+ j
;
2624 unsigned long size
, realsize
, memmap_pages
;
2626 size
= zone_spanned_pages_in_node(nid
, j
, zones_size
);
2627 realsize
= size
- zone_absent_pages_in_node(nid
, j
,
2631 * Adjust realsize so that it accounts for how much memory
2632 * is used by this zone for memmap. This affects the watermark
2633 * and per-cpu initialisations
2635 memmap_pages
= (size
* sizeof(struct page
)) >> PAGE_SHIFT
;
2636 if (realsize
>= memmap_pages
) {
2637 realsize
-= memmap_pages
;
2639 " %s zone: %lu pages used for memmap\n",
2640 zone_names
[j
], memmap_pages
);
2643 " %s zone: %lu pages exceeds realsize %lu\n",
2644 zone_names
[j
], memmap_pages
, realsize
);
2646 /* Account for reserved pages */
2647 if (j
== 0 && realsize
> dma_reserve
) {
2648 realsize
-= dma_reserve
;
2649 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
2650 zone_names
[0], dma_reserve
);
2653 if (!is_highmem_idx(j
))
2654 nr_kernel_pages
+= realsize
;
2655 nr_all_pages
+= realsize
;
2657 zone
->spanned_pages
= size
;
2658 zone
->present_pages
= realsize
;
2661 zone
->min_unmapped_pages
= (realsize
*sysctl_min_unmapped_ratio
)
2663 zone
->min_slab_pages
= (realsize
* sysctl_min_slab_ratio
) / 100;
2665 zone
->name
= zone_names
[j
];
2666 spin_lock_init(&zone
->lock
);
2667 spin_lock_init(&zone
->lru_lock
);
2668 zone_seqlock_init(zone
);
2669 zone
->zone_pgdat
= pgdat
;
2671 zone
->prev_priority
= DEF_PRIORITY
;
2673 zone_pcp_init(zone
);
2674 INIT_LIST_HEAD(&zone
->active_list
);
2675 INIT_LIST_HEAD(&zone
->inactive_list
);
2676 zone
->nr_scan_active
= 0;
2677 zone
->nr_scan_inactive
= 0;
2678 zap_zone_vm_stats(zone
);
2679 atomic_set(&zone
->reclaim_in_progress
, 0);
2683 ret
= init_currently_empty_zone(zone
, zone_start_pfn
,
2684 size
, MEMMAP_EARLY
);
2686 zone_start_pfn
+= size
;
2690 static void __init
alloc_node_mem_map(struct pglist_data
*pgdat
)
2692 /* Skip empty nodes */
2693 if (!pgdat
->node_spanned_pages
)
2696 #ifdef CONFIG_FLAT_NODE_MEM_MAP
2697 /* ia64 gets its own node_mem_map, before this, without bootmem */
2698 if (!pgdat
->node_mem_map
) {
2699 unsigned long size
, start
, end
;
2703 * The zone's endpoints aren't required to be MAX_ORDER
2704 * aligned but the node_mem_map endpoints must be in order
2705 * for the buddy allocator to function correctly.
2707 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
2708 end
= pgdat
->node_start_pfn
+ pgdat
->node_spanned_pages
;
2709 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
2710 size
= (end
- start
) * sizeof(struct page
);
2711 map
= alloc_remap(pgdat
->node_id
, size
);
2713 map
= alloc_bootmem_node(pgdat
, size
);
2714 pgdat
->node_mem_map
= map
+ (pgdat
->node_start_pfn
- start
);
2716 #ifdef CONFIG_FLATMEM
2718 * With no DISCONTIG, the global mem_map is just set as node 0's
2720 if (pgdat
== NODE_DATA(0)) {
2721 mem_map
= NODE_DATA(0)->node_mem_map
;
2722 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2723 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
2724 mem_map
-= pgdat
->node_start_pfn
;
2725 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
2728 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
2731 void __meminit
free_area_init_node(int nid
, struct pglist_data
*pgdat
,
2732 unsigned long *zones_size
, unsigned long node_start_pfn
,
2733 unsigned long *zholes_size
)
2735 pgdat
->node_id
= nid
;
2736 pgdat
->node_start_pfn
= node_start_pfn
;
2737 calculate_node_totalpages(pgdat
, zones_size
, zholes_size
);
2739 alloc_node_mem_map(pgdat
);
2741 free_area_init_core(pgdat
, zones_size
, zholes_size
);
2744 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2746 * add_active_range - Register a range of PFNs backed by physical memory
2747 * @nid: The node ID the range resides on
2748 * @start_pfn: The start PFN of the available physical memory
2749 * @end_pfn: The end PFN of the available physical memory
2751 * These ranges are stored in an early_node_map[] and later used by
2752 * free_area_init_nodes() to calculate zone sizes and holes. If the
2753 * range spans a memory hole, it is up to the architecture to ensure
2754 * the memory is not freed by the bootmem allocator. If possible
2755 * the range being registered will be merged with existing ranges.
2757 void __init
add_active_range(unsigned int nid
, unsigned long start_pfn
,
2758 unsigned long end_pfn
)
2762 printk(KERN_DEBUG
"Entering add_active_range(%d, %lu, %lu) "
2763 "%d entries of %d used\n",
2764 nid
, start_pfn
, end_pfn
,
2765 nr_nodemap_entries
, MAX_ACTIVE_REGIONS
);
2767 /* Merge with existing active regions if possible */
2768 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
2769 if (early_node_map
[i
].nid
!= nid
)
2772 /* Skip if an existing region covers this new one */
2773 if (start_pfn
>= early_node_map
[i
].start_pfn
&&
2774 end_pfn
<= early_node_map
[i
].end_pfn
)
2777 /* Merge forward if suitable */
2778 if (start_pfn
<= early_node_map
[i
].end_pfn
&&
2779 end_pfn
> early_node_map
[i
].end_pfn
) {
2780 early_node_map
[i
].end_pfn
= end_pfn
;
2784 /* Merge backward if suitable */
2785 if (start_pfn
< early_node_map
[i
].end_pfn
&&
2786 end_pfn
>= early_node_map
[i
].start_pfn
) {
2787 early_node_map
[i
].start_pfn
= start_pfn
;
2792 /* Check that early_node_map is large enough */
2793 if (i
>= MAX_ACTIVE_REGIONS
) {
2794 printk(KERN_CRIT
"More than %d memory regions, truncating\n",
2795 MAX_ACTIVE_REGIONS
);
2799 early_node_map
[i
].nid
= nid
;
2800 early_node_map
[i
].start_pfn
= start_pfn
;
2801 early_node_map
[i
].end_pfn
= end_pfn
;
2802 nr_nodemap_entries
= i
+ 1;
2806 * shrink_active_range - Shrink an existing registered range of PFNs
2807 * @nid: The node id the range is on that should be shrunk
2808 * @old_end_pfn: The old end PFN of the range
2809 * @new_end_pfn: The new PFN of the range
2811 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
2812 * The map is kept at the end physical page range that has already been
2813 * registered with add_active_range(). This function allows an arch to shrink
2814 * an existing registered range.
2816 void __init
shrink_active_range(unsigned int nid
, unsigned long old_end_pfn
,
2817 unsigned long new_end_pfn
)
2821 /* Find the old active region end and shrink */
2822 for_each_active_range_index_in_nid(i
, nid
)
2823 if (early_node_map
[i
].end_pfn
== old_end_pfn
) {
2824 early_node_map
[i
].end_pfn
= new_end_pfn
;
2830 * remove_all_active_ranges - Remove all currently registered regions
2832 * During discovery, it may be found that a table like SRAT is invalid
2833 * and an alternative discovery method must be used. This function removes
2834 * all currently registered regions.
2836 void __init
remove_all_active_ranges(void)
2838 memset(early_node_map
, 0, sizeof(early_node_map
));
2839 nr_nodemap_entries
= 0;
2840 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2841 memset(node_boundary_start_pfn
, 0, sizeof(node_boundary_start_pfn
));
2842 memset(node_boundary_end_pfn
, 0, sizeof(node_boundary_end_pfn
));
2843 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
2846 /* Compare two active node_active_regions */
2847 static int __init
cmp_node_active_region(const void *a
, const void *b
)
2849 struct node_active_region
*arange
= (struct node_active_region
*)a
;
2850 struct node_active_region
*brange
= (struct node_active_region
*)b
;
2852 /* Done this way to avoid overflows */
2853 if (arange
->start_pfn
> brange
->start_pfn
)
2855 if (arange
->start_pfn
< brange
->start_pfn
)
2861 /* sort the node_map by start_pfn */
2862 static void __init
sort_node_map(void)
2864 sort(early_node_map
, (size_t)nr_nodemap_entries
,
2865 sizeof(struct node_active_region
),
2866 cmp_node_active_region
, NULL
);
2869 /* Find the lowest pfn for a node */
2870 unsigned long __init
find_min_pfn_for_node(unsigned long nid
)
2873 unsigned long min_pfn
= ULONG_MAX
;
2875 /* Assuming a sorted map, the first range found has the starting pfn */
2876 for_each_active_range_index_in_nid(i
, nid
)
2877 min_pfn
= min(min_pfn
, early_node_map
[i
].start_pfn
);
2879 if (min_pfn
== ULONG_MAX
) {
2881 "Could not find start_pfn for node %lu\n", nid
);
2889 * find_min_pfn_with_active_regions - Find the minimum PFN registered
2891 * It returns the minimum PFN based on information provided via
2892 * add_active_range().
2894 unsigned long __init
find_min_pfn_with_active_regions(void)
2896 return find_min_pfn_for_node(MAX_NUMNODES
);
2900 * find_max_pfn_with_active_regions - Find the maximum PFN registered
2902 * It returns the maximum PFN based on information provided via
2903 * add_active_range().
2905 unsigned long __init
find_max_pfn_with_active_regions(void)
2908 unsigned long max_pfn
= 0;
2910 for (i
= 0; i
< nr_nodemap_entries
; i
++)
2911 max_pfn
= max(max_pfn
, early_node_map
[i
].end_pfn
);
2917 * free_area_init_nodes - Initialise all pg_data_t and zone data
2918 * @max_zone_pfn: an array of max PFNs for each zone
2920 * This will call free_area_init_node() for each active node in the system.
2921 * Using the page ranges provided by add_active_range(), the size of each
2922 * zone in each node and their holes is calculated. If the maximum PFN
2923 * between two adjacent zones match, it is assumed that the zone is empty.
2924 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
2925 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
2926 * starts where the previous one ended. For example, ZONE_DMA32 starts
2927 * at arch_max_dma_pfn.
2929 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
2934 /* Sort early_node_map as initialisation assumes it is sorted */
2937 /* Record where the zone boundaries are */
2938 memset(arch_zone_lowest_possible_pfn
, 0,
2939 sizeof(arch_zone_lowest_possible_pfn
));
2940 memset(arch_zone_highest_possible_pfn
, 0,
2941 sizeof(arch_zone_highest_possible_pfn
));
2942 arch_zone_lowest_possible_pfn
[0] = find_min_pfn_with_active_regions();
2943 arch_zone_highest_possible_pfn
[0] = max_zone_pfn
[0];
2944 for (i
= 1; i
< MAX_NR_ZONES
; i
++) {
2945 arch_zone_lowest_possible_pfn
[i
] =
2946 arch_zone_highest_possible_pfn
[i
-1];
2947 arch_zone_highest_possible_pfn
[i
] =
2948 max(max_zone_pfn
[i
], arch_zone_lowest_possible_pfn
[i
]);
2951 /* Print out the zone ranges */
2952 printk("Zone PFN ranges:\n");
2953 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
2954 printk(" %-8s %8lu -> %8lu\n",
2956 arch_zone_lowest_possible_pfn
[i
],
2957 arch_zone_highest_possible_pfn
[i
]);
2959 /* Print out the early_node_map[] */
2960 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries
);
2961 for (i
= 0; i
< nr_nodemap_entries
; i
++)
2962 printk(" %3d: %8lu -> %8lu\n", early_node_map
[i
].nid
,
2963 early_node_map
[i
].start_pfn
,
2964 early_node_map
[i
].end_pfn
);
2966 /* Initialise every node */
2967 setup_nr_node_ids();
2968 for_each_online_node(nid
) {
2969 pg_data_t
*pgdat
= NODE_DATA(nid
);
2970 free_area_init_node(nid
, pgdat
, NULL
,
2971 find_min_pfn_for_node(nid
), NULL
);
2974 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
2977 * set_dma_reserve - set the specified number of pages reserved in the first zone
2978 * @new_dma_reserve: The number of pages to mark reserved
2980 * The per-cpu batchsize and zone watermarks are determined by present_pages.
2981 * In the DMA zone, a significant percentage may be consumed by kernel image
2982 * and other unfreeable allocations which can skew the watermarks badly. This
2983 * function may optionally be used to account for unfreeable pages in the
2984 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
2985 * smaller per-cpu batchsize.
2987 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
2989 dma_reserve
= new_dma_reserve
;
2992 #ifndef CONFIG_NEED_MULTIPLE_NODES
2993 static bootmem_data_t contig_bootmem_data
;
2994 struct pglist_data contig_page_data
= { .bdata
= &contig_bootmem_data
};
2996 EXPORT_SYMBOL(contig_page_data
);
2999 void __init
free_area_init(unsigned long *zones_size
)
3001 free_area_init_node(0, NODE_DATA(0), zones_size
,
3002 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
3005 static int page_alloc_cpu_notify(struct notifier_block
*self
,
3006 unsigned long action
, void *hcpu
)
3008 int cpu
= (unsigned long)hcpu
;
3010 if (action
== CPU_DEAD
) {
3011 local_irq_disable();
3013 vm_events_fold_cpu(cpu
);
3015 refresh_cpu_vm_stats(cpu
);
3020 void __init
page_alloc_init(void)
3022 hotcpu_notifier(page_alloc_cpu_notify
, 0);
3026 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
3027 * or min_free_kbytes changes.
3029 static void calculate_totalreserve_pages(void)
3031 struct pglist_data
*pgdat
;
3032 unsigned long reserve_pages
= 0;
3033 enum zone_type i
, j
;
3035 for_each_online_pgdat(pgdat
) {
3036 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
3037 struct zone
*zone
= pgdat
->node_zones
+ i
;
3038 unsigned long max
= 0;
3040 /* Find valid and maximum lowmem_reserve in the zone */
3041 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
3042 if (zone
->lowmem_reserve
[j
] > max
)
3043 max
= zone
->lowmem_reserve
[j
];
3046 /* we treat pages_high as reserved pages. */
3047 max
+= zone
->pages_high
;
3049 if (max
> zone
->present_pages
)
3050 max
= zone
->present_pages
;
3051 reserve_pages
+= max
;
3054 totalreserve_pages
= reserve_pages
;
3058 * setup_per_zone_lowmem_reserve - called whenever
3059 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
3060 * has a correct pages reserved value, so an adequate number of
3061 * pages are left in the zone after a successful __alloc_pages().
3063 static void setup_per_zone_lowmem_reserve(void)
3065 struct pglist_data
*pgdat
;
3066 enum zone_type j
, idx
;
3068 for_each_online_pgdat(pgdat
) {
3069 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
3070 struct zone
*zone
= pgdat
->node_zones
+ j
;
3071 unsigned long present_pages
= zone
->present_pages
;
3073 zone
->lowmem_reserve
[j
] = 0;
3077 struct zone
*lower_zone
;
3081 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
3082 sysctl_lowmem_reserve_ratio
[idx
] = 1;
3084 lower_zone
= pgdat
->node_zones
+ idx
;
3085 lower_zone
->lowmem_reserve
[j
] = present_pages
/
3086 sysctl_lowmem_reserve_ratio
[idx
];
3087 present_pages
+= lower_zone
->present_pages
;
3092 /* update totalreserve_pages */
3093 calculate_totalreserve_pages();
3097 * setup_per_zone_pages_min - called when min_free_kbytes changes.
3099 * Ensures that the pages_{min,low,high} values for each zone are set correctly
3100 * with respect to min_free_kbytes.
3102 void setup_per_zone_pages_min(void)
3104 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
3105 unsigned long lowmem_pages
= 0;
3107 unsigned long flags
;
3109 /* Calculate total number of !ZONE_HIGHMEM pages */
3110 for_each_zone(zone
) {
3111 if (!is_highmem(zone
))
3112 lowmem_pages
+= zone
->present_pages
;
3115 for_each_zone(zone
) {
3118 spin_lock_irqsave(&zone
->lru_lock
, flags
);
3119 tmp
= (u64
)pages_min
* zone
->present_pages
;
3120 do_div(tmp
, lowmem_pages
);
3121 if (is_highmem(zone
)) {
3123 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
3124 * need highmem pages, so cap pages_min to a small
3127 * The (pages_high-pages_low) and (pages_low-pages_min)
3128 * deltas controls asynch page reclaim, and so should
3129 * not be capped for highmem.
3133 min_pages
= zone
->present_pages
/ 1024;
3134 if (min_pages
< SWAP_CLUSTER_MAX
)
3135 min_pages
= SWAP_CLUSTER_MAX
;
3136 if (min_pages
> 128)
3138 zone
->pages_min
= min_pages
;
3141 * If it's a lowmem zone, reserve a number of pages
3142 * proportionate to the zone's size.
3144 zone
->pages_min
= tmp
;
3147 zone
->pages_low
= zone
->pages_min
+ (tmp
>> 2);
3148 zone
->pages_high
= zone
->pages_min
+ (tmp
>> 1);
3149 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
3152 /* update totalreserve_pages */
3153 calculate_totalreserve_pages();
3157 * Initialise min_free_kbytes.
3159 * For small machines we want it small (128k min). For large machines
3160 * we want it large (64MB max). But it is not linear, because network
3161 * bandwidth does not increase linearly with machine size. We use
3163 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
3164 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
3180 static int __init
init_per_zone_pages_min(void)
3182 unsigned long lowmem_kbytes
;
3184 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
3186 min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
3187 if (min_free_kbytes
< 128)
3188 min_free_kbytes
= 128;
3189 if (min_free_kbytes
> 65536)
3190 min_free_kbytes
= 65536;
3191 setup_per_zone_pages_min();
3192 setup_per_zone_lowmem_reserve();
3195 module_init(init_per_zone_pages_min
)
3198 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
3199 * that we can call two helper functions whenever min_free_kbytes
3202 int min_free_kbytes_sysctl_handler(ctl_table
*table
, int write
,
3203 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
3205 proc_dointvec(table
, write
, file
, buffer
, length
, ppos
);
3206 setup_per_zone_pages_min();
3211 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table
*table
, int write
,
3212 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
3217 rc
= proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
3222 zone
->min_unmapped_pages
= (zone
->present_pages
*
3223 sysctl_min_unmapped_ratio
) / 100;
3227 int sysctl_min_slab_ratio_sysctl_handler(ctl_table
*table
, int write
,
3228 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
3233 rc
= proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
3238 zone
->min_slab_pages
= (zone
->present_pages
*
3239 sysctl_min_slab_ratio
) / 100;
3245 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
3246 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
3247 * whenever sysctl_lowmem_reserve_ratio changes.
3249 * The reserve ratio obviously has absolutely no relation with the
3250 * pages_min watermarks. The lowmem reserve ratio can only make sense
3251 * if in function of the boot time zone sizes.
3253 int lowmem_reserve_ratio_sysctl_handler(ctl_table
*table
, int write
,
3254 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
3256 proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
3257 setup_per_zone_lowmem_reserve();
3262 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
3263 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
3264 * can have before it gets flushed back to buddy allocator.
3267 int percpu_pagelist_fraction_sysctl_handler(ctl_table
*table
, int write
,
3268 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
3274 ret
= proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
3275 if (!write
|| (ret
== -EINVAL
))
3277 for_each_zone(zone
) {
3278 for_each_online_cpu(cpu
) {
3280 high
= zone
->present_pages
/ percpu_pagelist_fraction
;
3281 setup_pagelist_highmark(zone_pcp(zone
, cpu
), high
);
3287 int hashdist
= HASHDIST_DEFAULT
;
3290 static int __init
set_hashdist(char *str
)
3294 hashdist
= simple_strtoul(str
, &str
, 0);
3297 __setup("hashdist=", set_hashdist
);
3301 * allocate a large system hash table from bootmem
3302 * - it is assumed that the hash table must contain an exact power-of-2
3303 * quantity of entries
3304 * - limit is the number of hash buckets, not the total allocation size
3306 void *__init
alloc_large_system_hash(const char *tablename
,
3307 unsigned long bucketsize
,
3308 unsigned long numentries
,
3311 unsigned int *_hash_shift
,
3312 unsigned int *_hash_mask
,
3313 unsigned long limit
)
3315 unsigned long long max
= limit
;
3316 unsigned long log2qty
, size
;
3319 /* allow the kernel cmdline to have a say */
3321 /* round applicable memory size up to nearest megabyte */
3322 numentries
= nr_kernel_pages
;
3323 numentries
+= (1UL << (20 - PAGE_SHIFT
)) - 1;
3324 numentries
>>= 20 - PAGE_SHIFT
;
3325 numentries
<<= 20 - PAGE_SHIFT
;
3327 /* limit to 1 bucket per 2^scale bytes of low memory */
3328 if (scale
> PAGE_SHIFT
)
3329 numentries
>>= (scale
- PAGE_SHIFT
);
3331 numentries
<<= (PAGE_SHIFT
- scale
);
3333 /* Make sure we've got at least a 0-order allocation.. */
3334 if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
3335 numentries
= PAGE_SIZE
/ bucketsize
;
3337 numentries
= roundup_pow_of_two(numentries
);
3339 /* limit allocation size to 1/16 total memory by default */
3341 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
3342 do_div(max
, bucketsize
);
3345 if (numentries
> max
)
3348 log2qty
= ilog2(numentries
);
3351 size
= bucketsize
<< log2qty
;
3352 if (flags
& HASH_EARLY
)
3353 table
= alloc_bootmem(size
);
3355 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
3357 unsigned long order
;
3358 for (order
= 0; ((1UL << order
) << PAGE_SHIFT
) < size
; order
++)
3360 table
= (void*) __get_free_pages(GFP_ATOMIC
, order
);
3362 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
3365 panic("Failed to allocate %s hash table\n", tablename
);
3367 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
3370 ilog2(size
) - PAGE_SHIFT
,
3374 *_hash_shift
= log2qty
;
3376 *_hash_mask
= (1 << log2qty
) - 1;
3381 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
3382 struct page
*pfn_to_page(unsigned long pfn
)
3384 return __pfn_to_page(pfn
);
3386 unsigned long page_to_pfn(struct page
*page
)
3388 return __page_to_pfn(page
);
3390 EXPORT_SYMBOL(pfn_to_page
);
3391 EXPORT_SYMBOL(page_to_pfn
);
3392 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */