6 * Address space accounting code <alan@redhat.com>
9 #include <linux/slab.h>
11 #include <linux/shm.h>
12 #include <linux/mman.h>
13 #include <linux/pagemap.h>
14 #include <linux/swap.h>
15 #include <linux/syscalls.h>
16 #include <linux/capability.h>
17 #include <linux/init.h>
18 #include <linux/file.h>
20 #include <linux/personality.h>
21 #include <linux/security.h>
22 #include <linux/hugetlb.h>
23 #include <linux/profile.h>
24 #include <linux/module.h>
25 #include <linux/mount.h>
26 #include <linux/mempolicy.h>
27 #include <linux/rmap.h>
29 #include <asm/uaccess.h>
30 #include <asm/cacheflush.h>
33 #ifndef arch_mmap_check
34 #define arch_mmap_check(addr, len, flags) (0)
37 static void unmap_region(struct mm_struct
*mm
,
38 struct vm_area_struct
*vma
, struct vm_area_struct
*prev
,
39 unsigned long start
, unsigned long end
);
42 * WARNING: the debugging will use recursive algorithms so never enable this
43 * unless you know what you are doing.
47 /* description of effects of mapping type and prot in current implementation.
48 * this is due to the limited x86 page protection hardware. The expected
49 * behavior is in parens:
52 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
53 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
54 * w: (no) no w: (no) no w: (yes) yes w: (no) no
55 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
57 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
58 * w: (no) no w: (no) no w: (copy) copy w: (no) no
59 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
62 pgprot_t protection_map
[16] = {
63 __P000
, __P001
, __P010
, __P011
, __P100
, __P101
, __P110
, __P111
,
64 __S000
, __S001
, __S010
, __S011
, __S100
, __S101
, __S110
, __S111
67 pgprot_t
vm_get_page_prot(unsigned long vm_flags
)
69 return protection_map
[vm_flags
&
70 (VM_READ
|VM_WRITE
|VM_EXEC
|VM_SHARED
)];
72 EXPORT_SYMBOL(vm_get_page_prot
);
74 int sysctl_overcommit_memory
= OVERCOMMIT_GUESS
; /* heuristic overcommit */
75 int sysctl_overcommit_ratio
= 50; /* default is 50% */
76 int sysctl_max_map_count __read_mostly
= DEFAULT_MAX_MAP_COUNT
;
77 atomic_t vm_committed_space
= ATOMIC_INIT(0);
80 * Check that a process has enough memory to allocate a new virtual
81 * mapping. 0 means there is enough memory for the allocation to
82 * succeed and -ENOMEM implies there is not.
84 * We currently support three overcommit policies, which are set via the
85 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
87 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
88 * Additional code 2002 Jul 20 by Robert Love.
90 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
92 * Note this is a helper function intended to be used by LSMs which
93 * wish to use this logic.
95 int __vm_enough_memory(long pages
, int cap_sys_admin
)
97 unsigned long free
, allowed
;
99 vm_acct_memory(pages
);
102 * Sometimes we want to use more memory than we have
104 if (sysctl_overcommit_memory
== OVERCOMMIT_ALWAYS
)
107 if (sysctl_overcommit_memory
== OVERCOMMIT_GUESS
) {
110 free
= global_page_state(NR_FILE_PAGES
);
111 free
+= nr_swap_pages
;
114 * Any slabs which are created with the
115 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
116 * which are reclaimable, under pressure. The dentry
117 * cache and most inode caches should fall into this
119 free
+= global_page_state(NR_SLAB_RECLAIMABLE
);
122 * Leave the last 3% for root
131 * nr_free_pages() is very expensive on large systems,
132 * only call if we're about to fail.
137 * Leave reserved pages. The pages are not for anonymous pages.
139 if (n
<= totalreserve_pages
)
142 n
-= totalreserve_pages
;
145 * Leave the last 3% for root
157 allowed
= (totalram_pages
- hugetlb_total_pages())
158 * sysctl_overcommit_ratio
/ 100;
160 * Leave the last 3% for root
163 allowed
-= allowed
/ 32;
164 allowed
+= total_swap_pages
;
166 /* Don't let a single process grow too big:
167 leave 3% of the size of this process for other processes */
168 allowed
-= current
->mm
->total_vm
/ 32;
171 * cast `allowed' as a signed long because vm_committed_space
172 * sometimes has a negative value
174 if (atomic_read(&vm_committed_space
) < (long)allowed
)
177 vm_unacct_memory(pages
);
182 EXPORT_SYMBOL(__vm_enough_memory
);
185 * Requires inode->i_mapping->i_mmap_lock
187 static void __remove_shared_vm_struct(struct vm_area_struct
*vma
,
188 struct file
*file
, struct address_space
*mapping
)
190 if (vma
->vm_flags
& VM_DENYWRITE
)
191 atomic_inc(&file
->f_path
.dentry
->d_inode
->i_writecount
);
192 if (vma
->vm_flags
& VM_SHARED
)
193 mapping
->i_mmap_writable
--;
195 flush_dcache_mmap_lock(mapping
);
196 if (unlikely(vma
->vm_flags
& VM_NONLINEAR
))
197 list_del_init(&vma
->shared
.vm_set
.list
);
199 vma_prio_tree_remove(vma
, &mapping
->i_mmap
);
200 flush_dcache_mmap_unlock(mapping
);
204 * Unlink a file-based vm structure from its prio_tree, to hide
205 * vma from rmap and vmtruncate before freeing its page tables.
207 void unlink_file_vma(struct vm_area_struct
*vma
)
209 struct file
*file
= vma
->vm_file
;
212 struct address_space
*mapping
= file
->f_mapping
;
213 spin_lock(&mapping
->i_mmap_lock
);
214 __remove_shared_vm_struct(vma
, file
, mapping
);
215 spin_unlock(&mapping
->i_mmap_lock
);
220 * Close a vm structure and free it, returning the next.
222 static struct vm_area_struct
*remove_vma(struct vm_area_struct
*vma
)
224 struct vm_area_struct
*next
= vma
->vm_next
;
227 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
228 vma
->vm_ops
->close(vma
);
231 mpol_free(vma_policy(vma
));
232 kmem_cache_free(vm_area_cachep
, vma
);
236 asmlinkage
unsigned long sys_brk(unsigned long brk
)
238 unsigned long rlim
, retval
;
239 unsigned long newbrk
, oldbrk
;
240 struct mm_struct
*mm
= current
->mm
;
242 down_write(&mm
->mmap_sem
);
244 if (brk
< mm
->end_code
)
248 * Check against rlimit here. If this check is done later after the test
249 * of oldbrk with newbrk then it can escape the test and let the data
250 * segment grow beyond its set limit the in case where the limit is
251 * not page aligned -Ram Gupta
253 rlim
= current
->signal
->rlim
[RLIMIT_DATA
].rlim_cur
;
254 if (rlim
< RLIM_INFINITY
&& brk
- mm
->start_data
> rlim
)
257 newbrk
= PAGE_ALIGN(brk
);
258 oldbrk
= PAGE_ALIGN(mm
->brk
);
259 if (oldbrk
== newbrk
)
262 /* Always allow shrinking brk. */
263 if (brk
<= mm
->brk
) {
264 if (!do_munmap(mm
, newbrk
, oldbrk
-newbrk
))
269 /* Check against existing mmap mappings. */
270 if (find_vma_intersection(mm
, oldbrk
, newbrk
+PAGE_SIZE
))
273 /* Ok, looks good - let it rip. */
274 if (do_brk(oldbrk
, newbrk
-oldbrk
) != oldbrk
)
280 up_write(&mm
->mmap_sem
);
285 static int browse_rb(struct rb_root
*root
)
288 struct rb_node
*nd
, *pn
= NULL
;
289 unsigned long prev
= 0, pend
= 0;
291 for (nd
= rb_first(root
); nd
; nd
= rb_next(nd
)) {
292 struct vm_area_struct
*vma
;
293 vma
= rb_entry(nd
, struct vm_area_struct
, vm_rb
);
294 if (vma
->vm_start
< prev
)
295 printk("vm_start %lx prev %lx\n", vma
->vm_start
, prev
), i
= -1;
296 if (vma
->vm_start
< pend
)
297 printk("vm_start %lx pend %lx\n", vma
->vm_start
, pend
);
298 if (vma
->vm_start
> vma
->vm_end
)
299 printk("vm_end %lx < vm_start %lx\n", vma
->vm_end
, vma
->vm_start
);
302 prev
= vma
->vm_start
;
306 for (nd
= pn
; nd
; nd
= rb_prev(nd
)) {
310 printk("backwards %d, forwards %d\n", j
, i
), i
= 0;
314 void validate_mm(struct mm_struct
*mm
)
318 struct vm_area_struct
*tmp
= mm
->mmap
;
323 if (i
!= mm
->map_count
)
324 printk("map_count %d vm_next %d\n", mm
->map_count
, i
), bug
= 1;
325 i
= browse_rb(&mm
->mm_rb
);
326 if (i
!= mm
->map_count
)
327 printk("map_count %d rb %d\n", mm
->map_count
, i
), bug
= 1;
331 #define validate_mm(mm) do { } while (0)
334 static struct vm_area_struct
*
335 find_vma_prepare(struct mm_struct
*mm
, unsigned long addr
,
336 struct vm_area_struct
**pprev
, struct rb_node
***rb_link
,
337 struct rb_node
** rb_parent
)
339 struct vm_area_struct
* vma
;
340 struct rb_node
** __rb_link
, * __rb_parent
, * rb_prev
;
342 __rb_link
= &mm
->mm_rb
.rb_node
;
343 rb_prev
= __rb_parent
= NULL
;
347 struct vm_area_struct
*vma_tmp
;
349 __rb_parent
= *__rb_link
;
350 vma_tmp
= rb_entry(__rb_parent
, struct vm_area_struct
, vm_rb
);
352 if (vma_tmp
->vm_end
> addr
) {
354 if (vma_tmp
->vm_start
<= addr
)
356 __rb_link
= &__rb_parent
->rb_left
;
358 rb_prev
= __rb_parent
;
359 __rb_link
= &__rb_parent
->rb_right
;
365 *pprev
= rb_entry(rb_prev
, struct vm_area_struct
, vm_rb
);
366 *rb_link
= __rb_link
;
367 *rb_parent
= __rb_parent
;
372 __vma_link_list(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
373 struct vm_area_struct
*prev
, struct rb_node
*rb_parent
)
376 vma
->vm_next
= prev
->vm_next
;
381 vma
->vm_next
= rb_entry(rb_parent
,
382 struct vm_area_struct
, vm_rb
);
388 void __vma_link_rb(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
389 struct rb_node
**rb_link
, struct rb_node
*rb_parent
)
391 rb_link_node(&vma
->vm_rb
, rb_parent
, rb_link
);
392 rb_insert_color(&vma
->vm_rb
, &mm
->mm_rb
);
395 static inline void __vma_link_file(struct vm_area_struct
*vma
)
401 struct address_space
*mapping
= file
->f_mapping
;
403 if (vma
->vm_flags
& VM_DENYWRITE
)
404 atomic_dec(&file
->f_path
.dentry
->d_inode
->i_writecount
);
405 if (vma
->vm_flags
& VM_SHARED
)
406 mapping
->i_mmap_writable
++;
408 flush_dcache_mmap_lock(mapping
);
409 if (unlikely(vma
->vm_flags
& VM_NONLINEAR
))
410 vma_nonlinear_insert(vma
, &mapping
->i_mmap_nonlinear
);
412 vma_prio_tree_insert(vma
, &mapping
->i_mmap
);
413 flush_dcache_mmap_unlock(mapping
);
418 __vma_link(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
419 struct vm_area_struct
*prev
, struct rb_node
**rb_link
,
420 struct rb_node
*rb_parent
)
422 __vma_link_list(mm
, vma
, prev
, rb_parent
);
423 __vma_link_rb(mm
, vma
, rb_link
, rb_parent
);
424 __anon_vma_link(vma
);
427 static void vma_link(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
428 struct vm_area_struct
*prev
, struct rb_node
**rb_link
,
429 struct rb_node
*rb_parent
)
431 struct address_space
*mapping
= NULL
;
434 mapping
= vma
->vm_file
->f_mapping
;
437 spin_lock(&mapping
->i_mmap_lock
);
438 vma
->vm_truncate_count
= mapping
->truncate_count
;
442 __vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
443 __vma_link_file(vma
);
445 anon_vma_unlock(vma
);
447 spin_unlock(&mapping
->i_mmap_lock
);
454 * Helper for vma_adjust in the split_vma insert case:
455 * insert vm structure into list and rbtree and anon_vma,
456 * but it has already been inserted into prio_tree earlier.
459 __insert_vm_struct(struct mm_struct
* mm
, struct vm_area_struct
* vma
)
461 struct vm_area_struct
* __vma
, * prev
;
462 struct rb_node
** rb_link
, * rb_parent
;
464 __vma
= find_vma_prepare(mm
, vma
->vm_start
,&prev
, &rb_link
, &rb_parent
);
465 BUG_ON(__vma
&& __vma
->vm_start
< vma
->vm_end
);
466 __vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
471 __vma_unlink(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
472 struct vm_area_struct
*prev
)
474 prev
->vm_next
= vma
->vm_next
;
475 rb_erase(&vma
->vm_rb
, &mm
->mm_rb
);
476 if (mm
->mmap_cache
== vma
)
477 mm
->mmap_cache
= prev
;
481 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
482 * is already present in an i_mmap tree without adjusting the tree.
483 * The following helper function should be used when such adjustments
484 * are necessary. The "insert" vma (if any) is to be inserted
485 * before we drop the necessary locks.
487 void vma_adjust(struct vm_area_struct
*vma
, unsigned long start
,
488 unsigned long end
, pgoff_t pgoff
, struct vm_area_struct
*insert
)
490 struct mm_struct
*mm
= vma
->vm_mm
;
491 struct vm_area_struct
*next
= vma
->vm_next
;
492 struct vm_area_struct
*importer
= NULL
;
493 struct address_space
*mapping
= NULL
;
494 struct prio_tree_root
*root
= NULL
;
495 struct file
*file
= vma
->vm_file
;
496 struct anon_vma
*anon_vma
= NULL
;
497 long adjust_next
= 0;
500 if (next
&& !insert
) {
501 if (end
>= next
->vm_end
) {
503 * vma expands, overlapping all the next, and
504 * perhaps the one after too (mprotect case 6).
506 again
: remove_next
= 1 + (end
> next
->vm_end
);
508 anon_vma
= next
->anon_vma
;
510 } else if (end
> next
->vm_start
) {
512 * vma expands, overlapping part of the next:
513 * mprotect case 5 shifting the boundary up.
515 adjust_next
= (end
- next
->vm_start
) >> PAGE_SHIFT
;
516 anon_vma
= next
->anon_vma
;
518 } else if (end
< vma
->vm_end
) {
520 * vma shrinks, and !insert tells it's not
521 * split_vma inserting another: so it must be
522 * mprotect case 4 shifting the boundary down.
524 adjust_next
= - ((vma
->vm_end
- end
) >> PAGE_SHIFT
);
525 anon_vma
= next
->anon_vma
;
531 mapping
= file
->f_mapping
;
532 if (!(vma
->vm_flags
& VM_NONLINEAR
))
533 root
= &mapping
->i_mmap
;
534 spin_lock(&mapping
->i_mmap_lock
);
536 vma
->vm_truncate_count
!= next
->vm_truncate_count
) {
538 * unmap_mapping_range might be in progress:
539 * ensure that the expanding vma is rescanned.
541 importer
->vm_truncate_count
= 0;
544 insert
->vm_truncate_count
= vma
->vm_truncate_count
;
546 * Put into prio_tree now, so instantiated pages
547 * are visible to arm/parisc __flush_dcache_page
548 * throughout; but we cannot insert into address
549 * space until vma start or end is updated.
551 __vma_link_file(insert
);
556 * When changing only vma->vm_end, we don't really need
557 * anon_vma lock: but is that case worth optimizing out?
560 anon_vma
= vma
->anon_vma
;
562 spin_lock(&anon_vma
->lock
);
564 * Easily overlooked: when mprotect shifts the boundary,
565 * make sure the expanding vma has anon_vma set if the
566 * shrinking vma had, to cover any anon pages imported.
568 if (importer
&& !importer
->anon_vma
) {
569 importer
->anon_vma
= anon_vma
;
570 __anon_vma_link(importer
);
575 flush_dcache_mmap_lock(mapping
);
576 vma_prio_tree_remove(vma
, root
);
578 vma_prio_tree_remove(next
, root
);
581 vma
->vm_start
= start
;
583 vma
->vm_pgoff
= pgoff
;
585 next
->vm_start
+= adjust_next
<< PAGE_SHIFT
;
586 next
->vm_pgoff
+= adjust_next
;
591 vma_prio_tree_insert(next
, root
);
592 vma_prio_tree_insert(vma
, root
);
593 flush_dcache_mmap_unlock(mapping
);
598 * vma_merge has merged next into vma, and needs
599 * us to remove next before dropping the locks.
601 __vma_unlink(mm
, next
, vma
);
603 __remove_shared_vm_struct(next
, file
, mapping
);
605 __anon_vma_merge(vma
, next
);
608 * split_vma has split insert from vma, and needs
609 * us to insert it before dropping the locks
610 * (it may either follow vma or precede it).
612 __insert_vm_struct(mm
, insert
);
616 spin_unlock(&anon_vma
->lock
);
618 spin_unlock(&mapping
->i_mmap_lock
);
624 mpol_free(vma_policy(next
));
625 kmem_cache_free(vm_area_cachep
, next
);
627 * In mprotect's case 6 (see comments on vma_merge),
628 * we must remove another next too. It would clutter
629 * up the code too much to do both in one go.
631 if (remove_next
== 2) {
641 * If the vma has a ->close operation then the driver probably needs to release
642 * per-vma resources, so we don't attempt to merge those.
644 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP)
646 static inline int is_mergeable_vma(struct vm_area_struct
*vma
,
647 struct file
*file
, unsigned long vm_flags
)
649 if (vma
->vm_flags
!= vm_flags
)
651 if (vma
->vm_file
!= file
)
653 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
658 static inline int is_mergeable_anon_vma(struct anon_vma
*anon_vma1
,
659 struct anon_vma
*anon_vma2
)
661 return !anon_vma1
|| !anon_vma2
|| (anon_vma1
== anon_vma2
);
665 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
666 * in front of (at a lower virtual address and file offset than) the vma.
668 * We cannot merge two vmas if they have differently assigned (non-NULL)
669 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
671 * We don't check here for the merged mmap wrapping around the end of pagecache
672 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
673 * wrap, nor mmaps which cover the final page at index -1UL.
676 can_vma_merge_before(struct vm_area_struct
*vma
, unsigned long vm_flags
,
677 struct anon_vma
*anon_vma
, struct file
*file
, pgoff_t vm_pgoff
)
679 if (is_mergeable_vma(vma
, file
, vm_flags
) &&
680 is_mergeable_anon_vma(anon_vma
, vma
->anon_vma
)) {
681 if (vma
->vm_pgoff
== vm_pgoff
)
688 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
689 * beyond (at a higher virtual address and file offset than) the vma.
691 * We cannot merge two vmas if they have differently assigned (non-NULL)
692 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
695 can_vma_merge_after(struct vm_area_struct
*vma
, unsigned long vm_flags
,
696 struct anon_vma
*anon_vma
, struct file
*file
, pgoff_t vm_pgoff
)
698 if (is_mergeable_vma(vma
, file
, vm_flags
) &&
699 is_mergeable_anon_vma(anon_vma
, vma
->anon_vma
)) {
701 vm_pglen
= (vma
->vm_end
- vma
->vm_start
) >> PAGE_SHIFT
;
702 if (vma
->vm_pgoff
+ vm_pglen
== vm_pgoff
)
709 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
710 * whether that can be merged with its predecessor or its successor.
711 * Or both (it neatly fills a hole).
713 * In most cases - when called for mmap, brk or mremap - [addr,end) is
714 * certain not to be mapped by the time vma_merge is called; but when
715 * called for mprotect, it is certain to be already mapped (either at
716 * an offset within prev, or at the start of next), and the flags of
717 * this area are about to be changed to vm_flags - and the no-change
718 * case has already been eliminated.
720 * The following mprotect cases have to be considered, where AAAA is
721 * the area passed down from mprotect_fixup, never extending beyond one
722 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
724 * AAAA AAAA AAAA AAAA
725 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
726 * cannot merge might become might become might become
727 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
728 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
729 * mremap move: PPPPNNNNNNNN 8
731 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
732 * might become case 1 below case 2 below case 3 below
734 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
735 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
737 struct vm_area_struct
*vma_merge(struct mm_struct
*mm
,
738 struct vm_area_struct
*prev
, unsigned long addr
,
739 unsigned long end
, unsigned long vm_flags
,
740 struct anon_vma
*anon_vma
, struct file
*file
,
741 pgoff_t pgoff
, struct mempolicy
*policy
)
743 pgoff_t pglen
= (end
- addr
) >> PAGE_SHIFT
;
744 struct vm_area_struct
*area
, *next
;
747 * We later require that vma->vm_flags == vm_flags,
748 * so this tests vma->vm_flags & VM_SPECIAL, too.
750 if (vm_flags
& VM_SPECIAL
)
754 next
= prev
->vm_next
;
758 if (next
&& next
->vm_end
== end
) /* cases 6, 7, 8 */
759 next
= next
->vm_next
;
762 * Can it merge with the predecessor?
764 if (prev
&& prev
->vm_end
== addr
&&
765 mpol_equal(vma_policy(prev
), policy
) &&
766 can_vma_merge_after(prev
, vm_flags
,
767 anon_vma
, file
, pgoff
)) {
769 * OK, it can. Can we now merge in the successor as well?
771 if (next
&& end
== next
->vm_start
&&
772 mpol_equal(policy
, vma_policy(next
)) &&
773 can_vma_merge_before(next
, vm_flags
,
774 anon_vma
, file
, pgoff
+pglen
) &&
775 is_mergeable_anon_vma(prev
->anon_vma
,
778 vma_adjust(prev
, prev
->vm_start
,
779 next
->vm_end
, prev
->vm_pgoff
, NULL
);
780 } else /* cases 2, 5, 7 */
781 vma_adjust(prev
, prev
->vm_start
,
782 end
, prev
->vm_pgoff
, NULL
);
787 * Can this new request be merged in front of next?
789 if (next
&& end
== next
->vm_start
&&
790 mpol_equal(policy
, vma_policy(next
)) &&
791 can_vma_merge_before(next
, vm_flags
,
792 anon_vma
, file
, pgoff
+pglen
)) {
793 if (prev
&& addr
< prev
->vm_end
) /* case 4 */
794 vma_adjust(prev
, prev
->vm_start
,
795 addr
, prev
->vm_pgoff
, NULL
);
796 else /* cases 3, 8 */
797 vma_adjust(area
, addr
, next
->vm_end
,
798 next
->vm_pgoff
- pglen
, NULL
);
806 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
807 * neighbouring vmas for a suitable anon_vma, before it goes off
808 * to allocate a new anon_vma. It checks because a repetitive
809 * sequence of mprotects and faults may otherwise lead to distinct
810 * anon_vmas being allocated, preventing vma merge in subsequent
813 struct anon_vma
*find_mergeable_anon_vma(struct vm_area_struct
*vma
)
815 struct vm_area_struct
*near
;
816 unsigned long vm_flags
;
823 * Since only mprotect tries to remerge vmas, match flags
824 * which might be mprotected into each other later on.
825 * Neither mlock nor madvise tries to remerge at present,
826 * so leave their flags as obstructing a merge.
828 vm_flags
= vma
->vm_flags
& ~(VM_READ
|VM_WRITE
|VM_EXEC
);
829 vm_flags
|= near
->vm_flags
& (VM_READ
|VM_WRITE
|VM_EXEC
);
831 if (near
->anon_vma
&& vma
->vm_end
== near
->vm_start
&&
832 mpol_equal(vma_policy(vma
), vma_policy(near
)) &&
833 can_vma_merge_before(near
, vm_flags
,
834 NULL
, vma
->vm_file
, vma
->vm_pgoff
+
835 ((vma
->vm_end
- vma
->vm_start
) >> PAGE_SHIFT
)))
836 return near
->anon_vma
;
839 * It is potentially slow to have to call find_vma_prev here.
840 * But it's only on the first write fault on the vma, not
841 * every time, and we could devise a way to avoid it later
842 * (e.g. stash info in next's anon_vma_node when assigning
843 * an anon_vma, or when trying vma_merge). Another time.
845 BUG_ON(find_vma_prev(vma
->vm_mm
, vma
->vm_start
, &near
) != vma
);
849 vm_flags
= vma
->vm_flags
& ~(VM_READ
|VM_WRITE
|VM_EXEC
);
850 vm_flags
|= near
->vm_flags
& (VM_READ
|VM_WRITE
|VM_EXEC
);
852 if (near
->anon_vma
&& near
->vm_end
== vma
->vm_start
&&
853 mpol_equal(vma_policy(near
), vma_policy(vma
)) &&
854 can_vma_merge_after(near
, vm_flags
,
855 NULL
, vma
->vm_file
, vma
->vm_pgoff
))
856 return near
->anon_vma
;
859 * There's no absolute need to look only at touching neighbours:
860 * we could search further afield for "compatible" anon_vmas.
861 * But it would probably just be a waste of time searching,
862 * or lead to too many vmas hanging off the same anon_vma.
863 * We're trying to allow mprotect remerging later on,
864 * not trying to minimize memory used for anon_vmas.
869 #ifdef CONFIG_PROC_FS
870 void vm_stat_account(struct mm_struct
*mm
, unsigned long flags
,
871 struct file
*file
, long pages
)
873 const unsigned long stack_flags
874 = VM_STACK_FLAGS
& (VM_GROWSUP
|VM_GROWSDOWN
);
877 mm
->shared_vm
+= pages
;
878 if ((flags
& (VM_EXEC
|VM_WRITE
)) == VM_EXEC
)
879 mm
->exec_vm
+= pages
;
880 } else if (flags
& stack_flags
)
881 mm
->stack_vm
+= pages
;
882 if (flags
& (VM_RESERVED
|VM_IO
))
883 mm
->reserved_vm
+= pages
;
885 #endif /* CONFIG_PROC_FS */
888 * The caller must hold down_write(current->mm->mmap_sem).
891 unsigned long do_mmap_pgoff(struct file
* file
, unsigned long addr
,
892 unsigned long len
, unsigned long prot
,
893 unsigned long flags
, unsigned long pgoff
)
895 struct mm_struct
* mm
= current
->mm
;
896 struct vm_area_struct
* vma
, * prev
;
898 unsigned int vm_flags
;
899 int correct_wcount
= 0;
901 struct rb_node
** rb_link
, * rb_parent
;
903 unsigned long charged
= 0, reqprot
= prot
;
906 * Does the application expect PROT_READ to imply PROT_EXEC?
908 * (the exception is when the underlying filesystem is noexec
909 * mounted, in which case we dont add PROT_EXEC.)
911 if ((prot
& PROT_READ
) && (current
->personality
& READ_IMPLIES_EXEC
))
912 if (!(file
&& (file
->f_path
.mnt
->mnt_flags
& MNT_NOEXEC
)))
918 error
= arch_mmap_check(addr
, len
, flags
);
922 /* Careful about overflows.. */
923 len
= PAGE_ALIGN(len
);
924 if (!len
|| len
> TASK_SIZE
)
927 /* offset overflow? */
928 if ((pgoff
+ (len
>> PAGE_SHIFT
)) < pgoff
)
931 /* Too many mappings? */
932 if (mm
->map_count
> sysctl_max_map_count
)
935 /* Obtain the address to map to. we verify (or select) it and ensure
936 * that it represents a valid section of the address space.
938 addr
= get_unmapped_area(file
, addr
, len
, pgoff
, flags
);
939 if (addr
& ~PAGE_MASK
)
942 /* Do simple checking here so the lower-level routines won't have
943 * to. we assume access permissions have been handled by the open
944 * of the memory object, so we don't do any here.
946 vm_flags
= calc_vm_prot_bits(prot
) | calc_vm_flag_bits(flags
) |
947 mm
->def_flags
| VM_MAYREAD
| VM_MAYWRITE
| VM_MAYEXEC
;
949 if (flags
& MAP_LOCKED
) {
952 vm_flags
|= VM_LOCKED
;
954 /* mlock MCL_FUTURE? */
955 if (vm_flags
& VM_LOCKED
) {
956 unsigned long locked
, lock_limit
;
957 locked
= len
>> PAGE_SHIFT
;
958 locked
+= mm
->locked_vm
;
959 lock_limit
= current
->signal
->rlim
[RLIMIT_MEMLOCK
].rlim_cur
;
960 lock_limit
>>= PAGE_SHIFT
;
961 if (locked
> lock_limit
&& !capable(CAP_IPC_LOCK
))
965 inode
= file
? file
->f_path
.dentry
->d_inode
: NULL
;
968 switch (flags
& MAP_TYPE
) {
970 if ((prot
&PROT_WRITE
) && !(file
->f_mode
&FMODE_WRITE
))
974 * Make sure we don't allow writing to an append-only
977 if (IS_APPEND(inode
) && (file
->f_mode
& FMODE_WRITE
))
981 * Make sure there are no mandatory locks on the file.
983 if (locks_verify_locked(inode
))
986 vm_flags
|= VM_SHARED
| VM_MAYSHARE
;
987 if (!(file
->f_mode
& FMODE_WRITE
))
988 vm_flags
&= ~(VM_MAYWRITE
| VM_SHARED
);
992 if (!(file
->f_mode
& FMODE_READ
))
994 if (file
->f_path
.mnt
->mnt_flags
& MNT_NOEXEC
) {
995 if (vm_flags
& VM_EXEC
)
997 vm_flags
&= ~VM_MAYEXEC
;
999 if (is_file_hugepages(file
))
1002 if (!file
->f_op
|| !file
->f_op
->mmap
)
1010 switch (flags
& MAP_TYPE
) {
1012 vm_flags
|= VM_SHARED
| VM_MAYSHARE
;
1016 * Set pgoff according to addr for anon_vma.
1018 pgoff
= addr
>> PAGE_SHIFT
;
1025 error
= security_file_mmap(file
, reqprot
, prot
, flags
);
1029 /* Clear old maps */
1032 vma
= find_vma_prepare(mm
, addr
, &prev
, &rb_link
, &rb_parent
);
1033 if (vma
&& vma
->vm_start
< addr
+ len
) {
1034 if (do_munmap(mm
, addr
, len
))
1039 /* Check against address space limit. */
1040 if (!may_expand_vm(mm
, len
>> PAGE_SHIFT
))
1043 if (accountable
&& (!(flags
& MAP_NORESERVE
) ||
1044 sysctl_overcommit_memory
== OVERCOMMIT_NEVER
)) {
1045 if (vm_flags
& VM_SHARED
) {
1046 /* Check memory availability in shmem_file_setup? */
1047 vm_flags
|= VM_ACCOUNT
;
1048 } else if (vm_flags
& VM_WRITE
) {
1050 * Private writable mapping: check memory availability
1052 charged
= len
>> PAGE_SHIFT
;
1053 if (security_vm_enough_memory(charged
))
1055 vm_flags
|= VM_ACCOUNT
;
1060 * Can we just expand an old private anonymous mapping?
1061 * The VM_SHARED test is necessary because shmem_zero_setup
1062 * will create the file object for a shared anonymous map below.
1064 if (!file
&& !(vm_flags
& VM_SHARED
) &&
1065 vma_merge(mm
, prev
, addr
, addr
+ len
, vm_flags
,
1066 NULL
, NULL
, pgoff
, NULL
))
1070 * Determine the object being mapped and call the appropriate
1071 * specific mapper. the address has already been validated, but
1072 * not unmapped, but the maps are removed from the list.
1074 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
1081 vma
->vm_start
= addr
;
1082 vma
->vm_end
= addr
+ len
;
1083 vma
->vm_flags
= vm_flags
;
1084 vma
->vm_page_prot
= protection_map
[vm_flags
&
1085 (VM_READ
|VM_WRITE
|VM_EXEC
|VM_SHARED
)];
1086 vma
->vm_pgoff
= pgoff
;
1090 if (vm_flags
& (VM_GROWSDOWN
|VM_GROWSUP
))
1092 if (vm_flags
& VM_DENYWRITE
) {
1093 error
= deny_write_access(file
);
1098 vma
->vm_file
= file
;
1100 error
= file
->f_op
->mmap(file
, vma
);
1102 goto unmap_and_free_vma
;
1103 } else if (vm_flags
& VM_SHARED
) {
1104 error
= shmem_zero_setup(vma
);
1109 /* We set VM_ACCOUNT in a shared mapping's vm_flags, to inform
1110 * shmem_zero_setup (perhaps called through /dev/zero's ->mmap)
1111 * that memory reservation must be checked; but that reservation
1112 * belongs to shared memory object, not to vma: so now clear it.
1114 if ((vm_flags
& (VM_SHARED
|VM_ACCOUNT
)) == (VM_SHARED
|VM_ACCOUNT
))
1115 vma
->vm_flags
&= ~VM_ACCOUNT
;
1117 /* Can addr have changed??
1119 * Answer: Yes, several device drivers can do it in their
1120 * f_op->mmap method. -DaveM
1122 addr
= vma
->vm_start
;
1123 pgoff
= vma
->vm_pgoff
;
1124 vm_flags
= vma
->vm_flags
;
1126 if (vma_wants_writenotify(vma
))
1128 protection_map
[vm_flags
& (VM_READ
|VM_WRITE
|VM_EXEC
)];
1130 if (!file
|| !vma_merge(mm
, prev
, addr
, vma
->vm_end
,
1131 vma
->vm_flags
, NULL
, file
, pgoff
, vma_policy(vma
))) {
1132 file
= vma
->vm_file
;
1133 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
1135 atomic_inc(&inode
->i_writecount
);
1139 atomic_inc(&inode
->i_writecount
);
1142 mpol_free(vma_policy(vma
));
1143 kmem_cache_free(vm_area_cachep
, vma
);
1146 mm
->total_vm
+= len
>> PAGE_SHIFT
;
1147 vm_stat_account(mm
, vm_flags
, file
, len
>> PAGE_SHIFT
);
1148 if (vm_flags
& VM_LOCKED
) {
1149 mm
->locked_vm
+= len
>> PAGE_SHIFT
;
1150 make_pages_present(addr
, addr
+ len
);
1152 if (flags
& MAP_POPULATE
) {
1153 up_write(&mm
->mmap_sem
);
1154 sys_remap_file_pages(addr
, len
, 0,
1155 pgoff
, flags
& MAP_NONBLOCK
);
1156 down_write(&mm
->mmap_sem
);
1162 atomic_inc(&inode
->i_writecount
);
1163 vma
->vm_file
= NULL
;
1166 /* Undo any partial mapping done by a device driver. */
1167 unmap_region(mm
, vma
, prev
, vma
->vm_start
, vma
->vm_end
);
1170 kmem_cache_free(vm_area_cachep
, vma
);
1173 vm_unacct_memory(charged
);
1177 EXPORT_SYMBOL(do_mmap_pgoff
);
1179 /* Get an address range which is currently unmapped.
1180 * For shmat() with addr=0.
1182 * Ugly calling convention alert:
1183 * Return value with the low bits set means error value,
1185 * if (ret & ~PAGE_MASK)
1188 * This function "knows" that -ENOMEM has the bits set.
1190 #ifndef HAVE_ARCH_UNMAPPED_AREA
1192 arch_get_unmapped_area(struct file
*filp
, unsigned long addr
,
1193 unsigned long len
, unsigned long pgoff
, unsigned long flags
)
1195 struct mm_struct
*mm
= current
->mm
;
1196 struct vm_area_struct
*vma
;
1197 unsigned long start_addr
;
1199 if (len
> TASK_SIZE
)
1203 addr
= PAGE_ALIGN(addr
);
1204 vma
= find_vma(mm
, addr
);
1205 if (TASK_SIZE
- len
>= addr
&&
1206 (!vma
|| addr
+ len
<= vma
->vm_start
))
1209 if (len
> mm
->cached_hole_size
) {
1210 start_addr
= addr
= mm
->free_area_cache
;
1212 start_addr
= addr
= TASK_UNMAPPED_BASE
;
1213 mm
->cached_hole_size
= 0;
1217 for (vma
= find_vma(mm
, addr
); ; vma
= vma
->vm_next
) {
1218 /* At this point: (!vma || addr < vma->vm_end). */
1219 if (TASK_SIZE
- len
< addr
) {
1221 * Start a new search - just in case we missed
1224 if (start_addr
!= TASK_UNMAPPED_BASE
) {
1225 addr
= TASK_UNMAPPED_BASE
;
1227 mm
->cached_hole_size
= 0;
1232 if (!vma
|| addr
+ len
<= vma
->vm_start
) {
1234 * Remember the place where we stopped the search:
1236 mm
->free_area_cache
= addr
+ len
;
1239 if (addr
+ mm
->cached_hole_size
< vma
->vm_start
)
1240 mm
->cached_hole_size
= vma
->vm_start
- addr
;
1246 void arch_unmap_area(struct mm_struct
*mm
, unsigned long addr
)
1249 * Is this a new hole at the lowest possible address?
1251 if (addr
>= TASK_UNMAPPED_BASE
&& addr
< mm
->free_area_cache
) {
1252 mm
->free_area_cache
= addr
;
1253 mm
->cached_hole_size
= ~0UL;
1258 * This mmap-allocator allocates new areas top-down from below the
1259 * stack's low limit (the base):
1261 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1263 arch_get_unmapped_area_topdown(struct file
*filp
, const unsigned long addr0
,
1264 const unsigned long len
, const unsigned long pgoff
,
1265 const unsigned long flags
)
1267 struct vm_area_struct
*vma
;
1268 struct mm_struct
*mm
= current
->mm
;
1269 unsigned long addr
= addr0
;
1271 /* requested length too big for entire address space */
1272 if (len
> TASK_SIZE
)
1275 /* requesting a specific address */
1277 addr
= PAGE_ALIGN(addr
);
1278 vma
= find_vma(mm
, addr
);
1279 if (TASK_SIZE
- len
>= addr
&&
1280 (!vma
|| addr
+ len
<= vma
->vm_start
))
1284 /* check if free_area_cache is useful for us */
1285 if (len
<= mm
->cached_hole_size
) {
1286 mm
->cached_hole_size
= 0;
1287 mm
->free_area_cache
= mm
->mmap_base
;
1290 /* either no address requested or can't fit in requested address hole */
1291 addr
= mm
->free_area_cache
;
1293 /* make sure it can fit in the remaining address space */
1295 vma
= find_vma(mm
, addr
-len
);
1296 if (!vma
|| addr
<= vma
->vm_start
)
1297 /* remember the address as a hint for next time */
1298 return (mm
->free_area_cache
= addr
-len
);
1301 if (mm
->mmap_base
< len
)
1304 addr
= mm
->mmap_base
-len
;
1308 * Lookup failure means no vma is above this address,
1309 * else if new region fits below vma->vm_start,
1310 * return with success:
1312 vma
= find_vma(mm
, addr
);
1313 if (!vma
|| addr
+len
<= vma
->vm_start
)
1314 /* remember the address as a hint for next time */
1315 return (mm
->free_area_cache
= addr
);
1317 /* remember the largest hole we saw so far */
1318 if (addr
+ mm
->cached_hole_size
< vma
->vm_start
)
1319 mm
->cached_hole_size
= vma
->vm_start
- addr
;
1321 /* try just below the current vma->vm_start */
1322 addr
= vma
->vm_start
-len
;
1323 } while (len
< vma
->vm_start
);
1327 * A failed mmap() very likely causes application failure,
1328 * so fall back to the bottom-up function here. This scenario
1329 * can happen with large stack limits and large mmap()
1332 mm
->cached_hole_size
= ~0UL;
1333 mm
->free_area_cache
= TASK_UNMAPPED_BASE
;
1334 addr
= arch_get_unmapped_area(filp
, addr0
, len
, pgoff
, flags
);
1336 * Restore the topdown base:
1338 mm
->free_area_cache
= mm
->mmap_base
;
1339 mm
->cached_hole_size
= ~0UL;
1345 void arch_unmap_area_topdown(struct mm_struct
*mm
, unsigned long addr
)
1348 * Is this a new hole at the highest possible address?
1350 if (addr
> mm
->free_area_cache
)
1351 mm
->free_area_cache
= addr
;
1353 /* dont allow allocations above current base */
1354 if (mm
->free_area_cache
> mm
->mmap_base
)
1355 mm
->free_area_cache
= mm
->mmap_base
;
1359 get_unmapped_area(struct file
*file
, unsigned long addr
, unsigned long len
,
1360 unsigned long pgoff
, unsigned long flags
)
1364 if (!(flags
& MAP_FIXED
)) {
1365 unsigned long (*get_area
)(struct file
*, unsigned long, unsigned long, unsigned long, unsigned long);
1367 get_area
= current
->mm
->get_unmapped_area
;
1368 if (file
&& file
->f_op
&& file
->f_op
->get_unmapped_area
)
1369 get_area
= file
->f_op
->get_unmapped_area
;
1370 addr
= get_area(file
, addr
, len
, pgoff
, flags
);
1371 if (IS_ERR_VALUE(addr
))
1375 if (addr
> TASK_SIZE
- len
)
1377 if (addr
& ~PAGE_MASK
)
1379 if (file
&& is_file_hugepages(file
)) {
1381 * Check if the given range is hugepage aligned, and
1382 * can be made suitable for hugepages.
1384 ret
= prepare_hugepage_range(addr
, len
, pgoff
);
1387 * Ensure that a normal request is not falling in a
1388 * reserved hugepage range. For some archs like IA-64,
1389 * there is a separate region for hugepages.
1391 ret
= is_hugepage_only_range(current
->mm
, addr
, len
);
1398 EXPORT_SYMBOL(get_unmapped_area
);
1400 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1401 struct vm_area_struct
* find_vma(struct mm_struct
* mm
, unsigned long addr
)
1403 struct vm_area_struct
*vma
= NULL
;
1406 /* Check the cache first. */
1407 /* (Cache hit rate is typically around 35%.) */
1408 vma
= mm
->mmap_cache
;
1409 if (!(vma
&& vma
->vm_end
> addr
&& vma
->vm_start
<= addr
)) {
1410 struct rb_node
* rb_node
;
1412 rb_node
= mm
->mm_rb
.rb_node
;
1416 struct vm_area_struct
* vma_tmp
;
1418 vma_tmp
= rb_entry(rb_node
,
1419 struct vm_area_struct
, vm_rb
);
1421 if (vma_tmp
->vm_end
> addr
) {
1423 if (vma_tmp
->vm_start
<= addr
)
1425 rb_node
= rb_node
->rb_left
;
1427 rb_node
= rb_node
->rb_right
;
1430 mm
->mmap_cache
= vma
;
1436 EXPORT_SYMBOL(find_vma
);
1438 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1439 struct vm_area_struct
*
1440 find_vma_prev(struct mm_struct
*mm
, unsigned long addr
,
1441 struct vm_area_struct
**pprev
)
1443 struct vm_area_struct
*vma
= NULL
, *prev
= NULL
;
1444 struct rb_node
* rb_node
;
1448 /* Guard against addr being lower than the first VMA */
1451 /* Go through the RB tree quickly. */
1452 rb_node
= mm
->mm_rb
.rb_node
;
1455 struct vm_area_struct
*vma_tmp
;
1456 vma_tmp
= rb_entry(rb_node
, struct vm_area_struct
, vm_rb
);
1458 if (addr
< vma_tmp
->vm_end
) {
1459 rb_node
= rb_node
->rb_left
;
1462 if (!prev
->vm_next
|| (addr
< prev
->vm_next
->vm_end
))
1464 rb_node
= rb_node
->rb_right
;
1470 return prev
? prev
->vm_next
: vma
;
1474 * Verify that the stack growth is acceptable and
1475 * update accounting. This is shared with both the
1476 * grow-up and grow-down cases.
1478 static int acct_stack_growth(struct vm_area_struct
* vma
, unsigned long size
, unsigned long grow
)
1480 struct mm_struct
*mm
= vma
->vm_mm
;
1481 struct rlimit
*rlim
= current
->signal
->rlim
;
1482 unsigned long new_start
;
1484 /* address space limit tests */
1485 if (!may_expand_vm(mm
, grow
))
1488 /* Stack limit test */
1489 if (size
> rlim
[RLIMIT_STACK
].rlim_cur
)
1492 /* mlock limit tests */
1493 if (vma
->vm_flags
& VM_LOCKED
) {
1494 unsigned long locked
;
1495 unsigned long limit
;
1496 locked
= mm
->locked_vm
+ grow
;
1497 limit
= rlim
[RLIMIT_MEMLOCK
].rlim_cur
>> PAGE_SHIFT
;
1498 if (locked
> limit
&& !capable(CAP_IPC_LOCK
))
1502 /* Check to ensure the stack will not grow into a hugetlb-only region */
1503 new_start
= (vma
->vm_flags
& VM_GROWSUP
) ? vma
->vm_start
:
1505 if (is_hugepage_only_range(vma
->vm_mm
, new_start
, size
))
1509 * Overcommit.. This must be the final test, as it will
1510 * update security statistics.
1512 if (security_vm_enough_memory(grow
))
1515 /* Ok, everything looks good - let it rip */
1516 mm
->total_vm
+= grow
;
1517 if (vma
->vm_flags
& VM_LOCKED
)
1518 mm
->locked_vm
+= grow
;
1519 vm_stat_account(mm
, vma
->vm_flags
, vma
->vm_file
, grow
);
1523 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1525 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1526 * vma is the last one with address > vma->vm_end. Have to extend vma.
1531 int expand_upwards(struct vm_area_struct
*vma
, unsigned long address
)
1535 if (!(vma
->vm_flags
& VM_GROWSUP
))
1539 * We must make sure the anon_vma is allocated
1540 * so that the anon_vma locking is not a noop.
1542 if (unlikely(anon_vma_prepare(vma
)))
1547 * vma->vm_start/vm_end cannot change under us because the caller
1548 * is required to hold the mmap_sem in read mode. We need the
1549 * anon_vma lock to serialize against concurrent expand_stacks.
1551 address
+= 4 + PAGE_SIZE
- 1;
1552 address
&= PAGE_MASK
;
1555 /* Somebody else might have raced and expanded it already */
1556 if (address
> vma
->vm_end
) {
1557 unsigned long size
, grow
;
1559 size
= address
- vma
->vm_start
;
1560 grow
= (address
- vma
->vm_end
) >> PAGE_SHIFT
;
1562 error
= acct_stack_growth(vma
, size
, grow
);
1564 vma
->vm_end
= address
;
1566 anon_vma_unlock(vma
);
1569 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1571 #ifdef CONFIG_STACK_GROWSUP
1572 int expand_stack(struct vm_area_struct
*vma
, unsigned long address
)
1574 return expand_upwards(vma
, address
);
1577 struct vm_area_struct
*
1578 find_extend_vma(struct mm_struct
*mm
, unsigned long addr
)
1580 struct vm_area_struct
*vma
, *prev
;
1583 vma
= find_vma_prev(mm
, addr
, &prev
);
1584 if (vma
&& (vma
->vm_start
<= addr
))
1586 if (!prev
|| expand_stack(prev
, addr
))
1588 if (prev
->vm_flags
& VM_LOCKED
) {
1589 make_pages_present(addr
, prev
->vm_end
);
1595 * vma is the first one with address < vma->vm_start. Have to extend vma.
1597 int expand_stack(struct vm_area_struct
*vma
, unsigned long address
)
1602 * We must make sure the anon_vma is allocated
1603 * so that the anon_vma locking is not a noop.
1605 if (unlikely(anon_vma_prepare(vma
)))
1610 * vma->vm_start/vm_end cannot change under us because the caller
1611 * is required to hold the mmap_sem in read mode. We need the
1612 * anon_vma lock to serialize against concurrent expand_stacks.
1614 address
&= PAGE_MASK
;
1617 /* Somebody else might have raced and expanded it already */
1618 if (address
< vma
->vm_start
) {
1619 unsigned long size
, grow
;
1621 size
= vma
->vm_end
- address
;
1622 grow
= (vma
->vm_start
- address
) >> PAGE_SHIFT
;
1624 error
= acct_stack_growth(vma
, size
, grow
);
1626 vma
->vm_start
= address
;
1627 vma
->vm_pgoff
-= grow
;
1630 anon_vma_unlock(vma
);
1634 struct vm_area_struct
*
1635 find_extend_vma(struct mm_struct
* mm
, unsigned long addr
)
1637 struct vm_area_struct
* vma
;
1638 unsigned long start
;
1641 vma
= find_vma(mm
,addr
);
1644 if (vma
->vm_start
<= addr
)
1646 if (!(vma
->vm_flags
& VM_GROWSDOWN
))
1648 start
= vma
->vm_start
;
1649 if (expand_stack(vma
, addr
))
1651 if (vma
->vm_flags
& VM_LOCKED
) {
1652 make_pages_present(addr
, start
);
1659 * Ok - we have the memory areas we should free on the vma list,
1660 * so release them, and do the vma updates.
1662 * Called with the mm semaphore held.
1664 static void remove_vma_list(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
1666 /* Update high watermark before we lower total_vm */
1667 update_hiwater_vm(mm
);
1669 long nrpages
= vma_pages(vma
);
1671 mm
->total_vm
-= nrpages
;
1672 if (vma
->vm_flags
& VM_LOCKED
)
1673 mm
->locked_vm
-= nrpages
;
1674 vm_stat_account(mm
, vma
->vm_flags
, vma
->vm_file
, -nrpages
);
1675 vma
= remove_vma(vma
);
1681 * Get rid of page table information in the indicated region.
1683 * Called with the mm semaphore held.
1685 static void unmap_region(struct mm_struct
*mm
,
1686 struct vm_area_struct
*vma
, struct vm_area_struct
*prev
,
1687 unsigned long start
, unsigned long end
)
1689 struct vm_area_struct
*next
= prev
? prev
->vm_next
: mm
->mmap
;
1690 struct mmu_gather
*tlb
;
1691 unsigned long nr_accounted
= 0;
1694 tlb
= tlb_gather_mmu(mm
, 0);
1695 update_hiwater_rss(mm
);
1696 unmap_vmas(&tlb
, vma
, start
, end
, &nr_accounted
, NULL
);
1697 vm_unacct_memory(nr_accounted
);
1698 free_pgtables(&tlb
, vma
, prev
? prev
->vm_end
: FIRST_USER_ADDRESS
,
1699 next
? next
->vm_start
: 0);
1700 tlb_finish_mmu(tlb
, start
, end
);
1704 * Create a list of vma's touched by the unmap, removing them from the mm's
1705 * vma list as we go..
1708 detach_vmas_to_be_unmapped(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1709 struct vm_area_struct
*prev
, unsigned long end
)
1711 struct vm_area_struct
**insertion_point
;
1712 struct vm_area_struct
*tail_vma
= NULL
;
1715 insertion_point
= (prev
? &prev
->vm_next
: &mm
->mmap
);
1717 rb_erase(&vma
->vm_rb
, &mm
->mm_rb
);
1721 } while (vma
&& vma
->vm_start
< end
);
1722 *insertion_point
= vma
;
1723 tail_vma
->vm_next
= NULL
;
1724 if (mm
->unmap_area
== arch_unmap_area
)
1725 addr
= prev
? prev
->vm_end
: mm
->mmap_base
;
1727 addr
= vma
? vma
->vm_start
: mm
->mmap_base
;
1728 mm
->unmap_area(mm
, addr
);
1729 mm
->mmap_cache
= NULL
; /* Kill the cache. */
1733 * Split a vma into two pieces at address 'addr', a new vma is allocated
1734 * either for the first part or the the tail.
1736 int split_vma(struct mm_struct
* mm
, struct vm_area_struct
* vma
,
1737 unsigned long addr
, int new_below
)
1739 struct mempolicy
*pol
;
1740 struct vm_area_struct
*new;
1742 if (is_vm_hugetlb_page(vma
) && (addr
& ~HPAGE_MASK
))
1745 if (mm
->map_count
>= sysctl_max_map_count
)
1748 new = kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
1752 /* most fields are the same, copy all, and then fixup */
1758 new->vm_start
= addr
;
1759 new->vm_pgoff
+= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
);
1762 pol
= mpol_copy(vma_policy(vma
));
1764 kmem_cache_free(vm_area_cachep
, new);
1765 return PTR_ERR(pol
);
1767 vma_set_policy(new, pol
);
1770 get_file(new->vm_file
);
1772 if (new->vm_ops
&& new->vm_ops
->open
)
1773 new->vm_ops
->open(new);
1776 vma_adjust(vma
, addr
, vma
->vm_end
, vma
->vm_pgoff
+
1777 ((addr
- new->vm_start
) >> PAGE_SHIFT
), new);
1779 vma_adjust(vma
, vma
->vm_start
, addr
, vma
->vm_pgoff
, new);
1784 /* Munmap is split into 2 main parts -- this part which finds
1785 * what needs doing, and the areas themselves, which do the
1786 * work. This now handles partial unmappings.
1787 * Jeremy Fitzhardinge <jeremy@goop.org>
1789 int do_munmap(struct mm_struct
*mm
, unsigned long start
, size_t len
)
1792 struct vm_area_struct
*vma
, *prev
, *last
;
1794 if ((start
& ~PAGE_MASK
) || start
> TASK_SIZE
|| len
> TASK_SIZE
-start
)
1797 if ((len
= PAGE_ALIGN(len
)) == 0)
1800 /* Find the first overlapping VMA */
1801 vma
= find_vma_prev(mm
, start
, &prev
);
1804 /* we have start < vma->vm_end */
1806 /* if it doesn't overlap, we have nothing.. */
1808 if (vma
->vm_start
>= end
)
1812 * If we need to split any vma, do it now to save pain later.
1814 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
1815 * unmapped vm_area_struct will remain in use: so lower split_vma
1816 * places tmp vma above, and higher split_vma places tmp vma below.
1818 if (start
> vma
->vm_start
) {
1819 int error
= split_vma(mm
, vma
, start
, 0);
1825 /* Does it split the last one? */
1826 last
= find_vma(mm
, end
);
1827 if (last
&& end
> last
->vm_start
) {
1828 int error
= split_vma(mm
, last
, end
, 1);
1832 vma
= prev
? prev
->vm_next
: mm
->mmap
;
1835 * Remove the vma's, and unmap the actual pages
1837 detach_vmas_to_be_unmapped(mm
, vma
, prev
, end
);
1838 unmap_region(mm
, vma
, prev
, start
, end
);
1840 /* Fix up all other VM information */
1841 remove_vma_list(mm
, vma
);
1846 EXPORT_SYMBOL(do_munmap
);
1848 asmlinkage
long sys_munmap(unsigned long addr
, size_t len
)
1851 struct mm_struct
*mm
= current
->mm
;
1853 profile_munmap(addr
);
1855 down_write(&mm
->mmap_sem
);
1856 ret
= do_munmap(mm
, addr
, len
);
1857 up_write(&mm
->mmap_sem
);
1861 static inline void verify_mm_writelocked(struct mm_struct
*mm
)
1863 #ifdef CONFIG_DEBUG_VM
1864 if (unlikely(down_read_trylock(&mm
->mmap_sem
))) {
1866 up_read(&mm
->mmap_sem
);
1872 * this is really a simplified "do_mmap". it only handles
1873 * anonymous maps. eventually we may be able to do some
1874 * brk-specific accounting here.
1876 unsigned long do_brk(unsigned long addr
, unsigned long len
)
1878 struct mm_struct
* mm
= current
->mm
;
1879 struct vm_area_struct
* vma
, * prev
;
1880 unsigned long flags
;
1881 struct rb_node
** rb_link
, * rb_parent
;
1882 pgoff_t pgoff
= addr
>> PAGE_SHIFT
;
1885 len
= PAGE_ALIGN(len
);
1889 if ((addr
+ len
) > TASK_SIZE
|| (addr
+ len
) < addr
)
1892 if (is_hugepage_only_range(mm
, addr
, len
))
1895 flags
= VM_DATA_DEFAULT_FLAGS
| VM_ACCOUNT
| mm
->def_flags
;
1897 error
= arch_mmap_check(addr
, len
, flags
);
1904 if (mm
->def_flags
& VM_LOCKED
) {
1905 unsigned long locked
, lock_limit
;
1906 locked
= len
>> PAGE_SHIFT
;
1907 locked
+= mm
->locked_vm
;
1908 lock_limit
= current
->signal
->rlim
[RLIMIT_MEMLOCK
].rlim_cur
;
1909 lock_limit
>>= PAGE_SHIFT
;
1910 if (locked
> lock_limit
&& !capable(CAP_IPC_LOCK
))
1915 * mm->mmap_sem is required to protect against another thread
1916 * changing the mappings in case we sleep.
1918 verify_mm_writelocked(mm
);
1921 * Clear old maps. this also does some error checking for us
1924 vma
= find_vma_prepare(mm
, addr
, &prev
, &rb_link
, &rb_parent
);
1925 if (vma
&& vma
->vm_start
< addr
+ len
) {
1926 if (do_munmap(mm
, addr
, len
))
1931 /* Check against address space limits *after* clearing old maps... */
1932 if (!may_expand_vm(mm
, len
>> PAGE_SHIFT
))
1935 if (mm
->map_count
> sysctl_max_map_count
)
1938 if (security_vm_enough_memory(len
>> PAGE_SHIFT
))
1941 /* Can we just expand an old private anonymous mapping? */
1942 if (vma_merge(mm
, prev
, addr
, addr
+ len
, flags
,
1943 NULL
, NULL
, pgoff
, NULL
))
1947 * create a vma struct for an anonymous mapping
1949 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
1951 vm_unacct_memory(len
>> PAGE_SHIFT
);
1956 vma
->vm_start
= addr
;
1957 vma
->vm_end
= addr
+ len
;
1958 vma
->vm_pgoff
= pgoff
;
1959 vma
->vm_flags
= flags
;
1960 vma
->vm_page_prot
= protection_map
[flags
&
1961 (VM_READ
|VM_WRITE
|VM_EXEC
|VM_SHARED
)];
1962 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
1964 mm
->total_vm
+= len
>> PAGE_SHIFT
;
1965 if (flags
& VM_LOCKED
) {
1966 mm
->locked_vm
+= len
>> PAGE_SHIFT
;
1967 make_pages_present(addr
, addr
+ len
);
1972 EXPORT_SYMBOL(do_brk
);
1974 /* Release all mmaps. */
1975 void exit_mmap(struct mm_struct
*mm
)
1977 struct mmu_gather
*tlb
;
1978 struct vm_area_struct
*vma
= mm
->mmap
;
1979 unsigned long nr_accounted
= 0;
1984 tlb
= tlb_gather_mmu(mm
, 1);
1985 /* Don't update_hiwater_rss(mm) here, do_exit already did */
1986 /* Use -1 here to ensure all VMAs in the mm are unmapped */
1987 end
= unmap_vmas(&tlb
, vma
, 0, -1, &nr_accounted
, NULL
);
1988 vm_unacct_memory(nr_accounted
);
1989 free_pgtables(&tlb
, vma
, FIRST_USER_ADDRESS
, 0);
1990 tlb_finish_mmu(tlb
, 0, end
);
1993 * Walk the list again, actually closing and freeing it,
1994 * with preemption enabled, without holding any MM locks.
1997 vma
= remove_vma(vma
);
1999 BUG_ON(mm
->nr_ptes
> (FIRST_USER_ADDRESS
+PMD_SIZE
-1)>>PMD_SHIFT
);
2002 /* Insert vm structure into process list sorted by address
2003 * and into the inode's i_mmap tree. If vm_file is non-NULL
2004 * then i_mmap_lock is taken here.
2006 int insert_vm_struct(struct mm_struct
* mm
, struct vm_area_struct
* vma
)
2008 struct vm_area_struct
* __vma
, * prev
;
2009 struct rb_node
** rb_link
, * rb_parent
;
2012 * The vm_pgoff of a purely anonymous vma should be irrelevant
2013 * until its first write fault, when page's anon_vma and index
2014 * are set. But now set the vm_pgoff it will almost certainly
2015 * end up with (unless mremap moves it elsewhere before that
2016 * first wfault), so /proc/pid/maps tells a consistent story.
2018 * By setting it to reflect the virtual start address of the
2019 * vma, merges and splits can happen in a seamless way, just
2020 * using the existing file pgoff checks and manipulations.
2021 * Similarly in do_mmap_pgoff and in do_brk.
2023 if (!vma
->vm_file
) {
2024 BUG_ON(vma
->anon_vma
);
2025 vma
->vm_pgoff
= vma
->vm_start
>> PAGE_SHIFT
;
2027 __vma
= find_vma_prepare(mm
,vma
->vm_start
,&prev
,&rb_link
,&rb_parent
);
2028 if (__vma
&& __vma
->vm_start
< vma
->vm_end
)
2030 if ((vma
->vm_flags
& VM_ACCOUNT
) &&
2031 security_vm_enough_memory(vma_pages(vma
)))
2033 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
2038 * Copy the vma structure to a new location in the same mm,
2039 * prior to moving page table entries, to effect an mremap move.
2041 struct vm_area_struct
*copy_vma(struct vm_area_struct
**vmap
,
2042 unsigned long addr
, unsigned long len
, pgoff_t pgoff
)
2044 struct vm_area_struct
*vma
= *vmap
;
2045 unsigned long vma_start
= vma
->vm_start
;
2046 struct mm_struct
*mm
= vma
->vm_mm
;
2047 struct vm_area_struct
*new_vma
, *prev
;
2048 struct rb_node
**rb_link
, *rb_parent
;
2049 struct mempolicy
*pol
;
2052 * If anonymous vma has not yet been faulted, update new pgoff
2053 * to match new location, to increase its chance of merging.
2055 if (!vma
->vm_file
&& !vma
->anon_vma
)
2056 pgoff
= addr
>> PAGE_SHIFT
;
2058 find_vma_prepare(mm
, addr
, &prev
, &rb_link
, &rb_parent
);
2059 new_vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, vma
->vm_flags
,
2060 vma
->anon_vma
, vma
->vm_file
, pgoff
, vma_policy(vma
));
2063 * Source vma may have been merged into new_vma
2065 if (vma_start
>= new_vma
->vm_start
&&
2066 vma_start
< new_vma
->vm_end
)
2069 new_vma
= kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
2072 pol
= mpol_copy(vma_policy(vma
));
2074 kmem_cache_free(vm_area_cachep
, new_vma
);
2077 vma_set_policy(new_vma
, pol
);
2078 new_vma
->vm_start
= addr
;
2079 new_vma
->vm_end
= addr
+ len
;
2080 new_vma
->vm_pgoff
= pgoff
;
2081 if (new_vma
->vm_file
)
2082 get_file(new_vma
->vm_file
);
2083 if (new_vma
->vm_ops
&& new_vma
->vm_ops
->open
)
2084 new_vma
->vm_ops
->open(new_vma
);
2085 vma_link(mm
, new_vma
, prev
, rb_link
, rb_parent
);
2092 * Return true if the calling process may expand its vm space by the passed
2095 int may_expand_vm(struct mm_struct
*mm
, unsigned long npages
)
2097 unsigned long cur
= mm
->total_vm
; /* pages */
2100 lim
= current
->signal
->rlim
[RLIMIT_AS
].rlim_cur
>> PAGE_SHIFT
;
2102 if (cur
+ npages
> lim
)
2108 static struct page
*special_mapping_nopage(struct vm_area_struct
*vma
,
2109 unsigned long address
, int *type
)
2111 struct page
**pages
;
2113 BUG_ON(address
< vma
->vm_start
|| address
>= vma
->vm_end
);
2115 address
-= vma
->vm_start
;
2116 for (pages
= vma
->vm_private_data
; address
> 0 && *pages
; ++pages
)
2117 address
-= PAGE_SIZE
;
2120 struct page
*page
= *pages
;
2125 return NOPAGE_SIGBUS
;
2129 * Having a close hook prevents vma merging regardless of flags.
2131 static void special_mapping_close(struct vm_area_struct
*vma
)
2135 static struct vm_operations_struct special_mapping_vmops
= {
2136 .close
= special_mapping_close
,
2137 .nopage
= special_mapping_nopage
,
2141 * Called with mm->mmap_sem held for writing.
2142 * Insert a new vma covering the given region, with the given flags.
2143 * Its pages are supplied by the given array of struct page *.
2144 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2145 * The region past the last page supplied will always produce SIGBUS.
2146 * The array pointer and the pages it points to are assumed to stay alive
2147 * for as long as this mapping might exist.
2149 int install_special_mapping(struct mm_struct
*mm
,
2150 unsigned long addr
, unsigned long len
,
2151 unsigned long vm_flags
, struct page
**pages
)
2153 struct vm_area_struct
*vma
;
2155 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
2156 if (unlikely(vma
== NULL
))
2160 vma
->vm_start
= addr
;
2161 vma
->vm_end
= addr
+ len
;
2163 vma
->vm_flags
= vm_flags
| mm
->def_flags
;
2164 vma
->vm_page_prot
= protection_map
[vma
->vm_flags
& 7];
2166 vma
->vm_ops
= &special_mapping_vmops
;
2167 vma
->vm_private_data
= pages
;
2169 if (unlikely(insert_vm_struct(mm
, vma
))) {
2170 kmem_cache_free(vm_area_cachep
, vma
);
2174 mm
->total_vm
+= len
>> PAGE_SHIFT
;