[PATCH] Fix COW D-cache aliasing on fork
[linux-2.6/linux-mips.git] / kernel / auditsc.c
blob298897559ca4ab9d346566cfac6d50791371e9d3
1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <asm/atomic.h>
48 #include <asm/types.h>
49 #include <linux/fs.h>
50 #include <linux/namei.h>
51 #include <linux/mm.h>
52 #include <linux/module.h>
53 #include <linux/mount.h>
54 #include <linux/socket.h>
55 #include <linux/mqueue.h>
56 #include <linux/audit.h>
57 #include <linux/personality.h>
58 #include <linux/time.h>
59 #include <linux/netlink.h>
60 #include <linux/compiler.h>
61 #include <asm/unistd.h>
62 #include <linux/security.h>
63 #include <linux/list.h>
64 #include <linux/tty.h>
65 #include <linux/selinux.h>
66 #include <linux/binfmts.h>
67 #include <linux/highmem.h>
68 #include <linux/syscalls.h>
70 #include "audit.h"
72 extern struct list_head audit_filter_list[];
74 /* No syscall auditing will take place unless audit_enabled != 0. */
75 extern int audit_enabled;
77 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
78 * for saving names from getname(). */
79 #define AUDIT_NAMES 20
81 /* AUDIT_NAMES_RESERVED is the number of slots we reserve in the
82 * audit_context from being used for nameless inodes from
83 * path_lookup. */
84 #define AUDIT_NAMES_RESERVED 7
86 /* Indicates that audit should log the full pathname. */
87 #define AUDIT_NAME_FULL -1
89 /* number of audit rules */
90 int audit_n_rules;
92 /* When fs/namei.c:getname() is called, we store the pointer in name and
93 * we don't let putname() free it (instead we free all of the saved
94 * pointers at syscall exit time).
96 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
97 struct audit_names {
98 const char *name;
99 int name_len; /* number of name's characters to log */
100 unsigned name_put; /* call __putname() for this name */
101 unsigned long ino;
102 dev_t dev;
103 umode_t mode;
104 uid_t uid;
105 gid_t gid;
106 dev_t rdev;
107 u32 osid;
110 struct audit_aux_data {
111 struct audit_aux_data *next;
112 int type;
115 #define AUDIT_AUX_IPCPERM 0
117 struct audit_aux_data_mq_open {
118 struct audit_aux_data d;
119 int oflag;
120 mode_t mode;
121 struct mq_attr attr;
124 struct audit_aux_data_mq_sendrecv {
125 struct audit_aux_data d;
126 mqd_t mqdes;
127 size_t msg_len;
128 unsigned int msg_prio;
129 struct timespec abs_timeout;
132 struct audit_aux_data_mq_notify {
133 struct audit_aux_data d;
134 mqd_t mqdes;
135 struct sigevent notification;
138 struct audit_aux_data_mq_getsetattr {
139 struct audit_aux_data d;
140 mqd_t mqdes;
141 struct mq_attr mqstat;
144 struct audit_aux_data_ipcctl {
145 struct audit_aux_data d;
146 struct ipc_perm p;
147 unsigned long qbytes;
148 uid_t uid;
149 gid_t gid;
150 mode_t mode;
151 u32 osid;
154 struct audit_aux_data_execve {
155 struct audit_aux_data d;
156 int argc;
157 int envc;
158 char mem[0];
161 struct audit_aux_data_socketcall {
162 struct audit_aux_data d;
163 int nargs;
164 unsigned long args[0];
167 struct audit_aux_data_sockaddr {
168 struct audit_aux_data d;
169 int len;
170 char a[0];
173 struct audit_aux_data_path {
174 struct audit_aux_data d;
175 struct dentry *dentry;
176 struct vfsmount *mnt;
179 /* The per-task audit context. */
180 struct audit_context {
181 int dummy; /* must be the first element */
182 int in_syscall; /* 1 if task is in a syscall */
183 enum audit_state state;
184 unsigned int serial; /* serial number for record */
185 struct timespec ctime; /* time of syscall entry */
186 uid_t loginuid; /* login uid (identity) */
187 int major; /* syscall number */
188 unsigned long argv[4]; /* syscall arguments */
189 int return_valid; /* return code is valid */
190 long return_code;/* syscall return code */
191 int auditable; /* 1 if record should be written */
192 int name_count;
193 struct audit_names names[AUDIT_NAMES];
194 char * filterkey; /* key for rule that triggered record */
195 struct dentry * pwd;
196 struct vfsmount * pwdmnt;
197 struct audit_context *previous; /* For nested syscalls */
198 struct audit_aux_data *aux;
200 /* Save things to print about task_struct */
201 pid_t pid, ppid;
202 uid_t uid, euid, suid, fsuid;
203 gid_t gid, egid, sgid, fsgid;
204 unsigned long personality;
205 int arch;
207 #if AUDIT_DEBUG
208 int put_count;
209 int ino_count;
210 #endif
213 #define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE])
214 static inline int open_arg(int flags, int mask)
216 int n = ACC_MODE(flags);
217 if (flags & (O_TRUNC | O_CREAT))
218 n |= AUDIT_PERM_WRITE;
219 return n & mask;
222 static int audit_match_perm(struct audit_context *ctx, int mask)
224 unsigned n = ctx->major;
225 switch (audit_classify_syscall(ctx->arch, n)) {
226 case 0: /* native */
227 if ((mask & AUDIT_PERM_WRITE) &&
228 audit_match_class(AUDIT_CLASS_WRITE, n))
229 return 1;
230 if ((mask & AUDIT_PERM_READ) &&
231 audit_match_class(AUDIT_CLASS_READ, n))
232 return 1;
233 if ((mask & AUDIT_PERM_ATTR) &&
234 audit_match_class(AUDIT_CLASS_CHATTR, n))
235 return 1;
236 return 0;
237 case 1: /* 32bit on biarch */
238 if ((mask & AUDIT_PERM_WRITE) &&
239 audit_match_class(AUDIT_CLASS_WRITE_32, n))
240 return 1;
241 if ((mask & AUDIT_PERM_READ) &&
242 audit_match_class(AUDIT_CLASS_READ_32, n))
243 return 1;
244 if ((mask & AUDIT_PERM_ATTR) &&
245 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
246 return 1;
247 return 0;
248 case 2: /* open */
249 return mask & ACC_MODE(ctx->argv[1]);
250 case 3: /* openat */
251 return mask & ACC_MODE(ctx->argv[2]);
252 case 4: /* socketcall */
253 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
254 case 5: /* execve */
255 return mask & AUDIT_PERM_EXEC;
256 default:
257 return 0;
261 /* Determine if any context name data matches a rule's watch data */
262 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
263 * otherwise. */
264 static int audit_filter_rules(struct task_struct *tsk,
265 struct audit_krule *rule,
266 struct audit_context *ctx,
267 struct audit_names *name,
268 enum audit_state *state)
270 int i, j, need_sid = 1;
271 u32 sid;
273 for (i = 0; i < rule->field_count; i++) {
274 struct audit_field *f = &rule->fields[i];
275 int result = 0;
277 switch (f->type) {
278 case AUDIT_PID:
279 result = audit_comparator(tsk->pid, f->op, f->val);
280 break;
281 case AUDIT_PPID:
282 if (ctx) {
283 if (!ctx->ppid)
284 ctx->ppid = sys_getppid();
285 result = audit_comparator(ctx->ppid, f->op, f->val);
287 break;
288 case AUDIT_UID:
289 result = audit_comparator(tsk->uid, f->op, f->val);
290 break;
291 case AUDIT_EUID:
292 result = audit_comparator(tsk->euid, f->op, f->val);
293 break;
294 case AUDIT_SUID:
295 result = audit_comparator(tsk->suid, f->op, f->val);
296 break;
297 case AUDIT_FSUID:
298 result = audit_comparator(tsk->fsuid, f->op, f->val);
299 break;
300 case AUDIT_GID:
301 result = audit_comparator(tsk->gid, f->op, f->val);
302 break;
303 case AUDIT_EGID:
304 result = audit_comparator(tsk->egid, f->op, f->val);
305 break;
306 case AUDIT_SGID:
307 result = audit_comparator(tsk->sgid, f->op, f->val);
308 break;
309 case AUDIT_FSGID:
310 result = audit_comparator(tsk->fsgid, f->op, f->val);
311 break;
312 case AUDIT_PERS:
313 result = audit_comparator(tsk->personality, f->op, f->val);
314 break;
315 case AUDIT_ARCH:
316 if (ctx)
317 result = audit_comparator(ctx->arch, f->op, f->val);
318 break;
320 case AUDIT_EXIT:
321 if (ctx && ctx->return_valid)
322 result = audit_comparator(ctx->return_code, f->op, f->val);
323 break;
324 case AUDIT_SUCCESS:
325 if (ctx && ctx->return_valid) {
326 if (f->val)
327 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
328 else
329 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
331 break;
332 case AUDIT_DEVMAJOR:
333 if (name)
334 result = audit_comparator(MAJOR(name->dev),
335 f->op, f->val);
336 else if (ctx) {
337 for (j = 0; j < ctx->name_count; j++) {
338 if (audit_comparator(MAJOR(ctx->names[j].dev), f->op, f->val)) {
339 ++result;
340 break;
344 break;
345 case AUDIT_DEVMINOR:
346 if (name)
347 result = audit_comparator(MINOR(name->dev),
348 f->op, f->val);
349 else if (ctx) {
350 for (j = 0; j < ctx->name_count; j++) {
351 if (audit_comparator(MINOR(ctx->names[j].dev), f->op, f->val)) {
352 ++result;
353 break;
357 break;
358 case AUDIT_INODE:
359 if (name)
360 result = (name->ino == f->val);
361 else if (ctx) {
362 for (j = 0; j < ctx->name_count; j++) {
363 if (audit_comparator(ctx->names[j].ino, f->op, f->val)) {
364 ++result;
365 break;
369 break;
370 case AUDIT_WATCH:
371 if (name && rule->watch->ino != (unsigned long)-1)
372 result = (name->dev == rule->watch->dev &&
373 name->ino == rule->watch->ino);
374 break;
375 case AUDIT_LOGINUID:
376 result = 0;
377 if (ctx)
378 result = audit_comparator(ctx->loginuid, f->op, f->val);
379 break;
380 case AUDIT_SUBJ_USER:
381 case AUDIT_SUBJ_ROLE:
382 case AUDIT_SUBJ_TYPE:
383 case AUDIT_SUBJ_SEN:
384 case AUDIT_SUBJ_CLR:
385 /* NOTE: this may return negative values indicating
386 a temporary error. We simply treat this as a
387 match for now to avoid losing information that
388 may be wanted. An error message will also be
389 logged upon error */
390 if (f->se_rule) {
391 if (need_sid) {
392 selinux_get_task_sid(tsk, &sid);
393 need_sid = 0;
395 result = selinux_audit_rule_match(sid, f->type,
396 f->op,
397 f->se_rule,
398 ctx);
400 break;
401 case AUDIT_OBJ_USER:
402 case AUDIT_OBJ_ROLE:
403 case AUDIT_OBJ_TYPE:
404 case AUDIT_OBJ_LEV_LOW:
405 case AUDIT_OBJ_LEV_HIGH:
406 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
407 also applies here */
408 if (f->se_rule) {
409 /* Find files that match */
410 if (name) {
411 result = selinux_audit_rule_match(
412 name->osid, f->type, f->op,
413 f->se_rule, ctx);
414 } else if (ctx) {
415 for (j = 0; j < ctx->name_count; j++) {
416 if (selinux_audit_rule_match(
417 ctx->names[j].osid,
418 f->type, f->op,
419 f->se_rule, ctx)) {
420 ++result;
421 break;
425 /* Find ipc objects that match */
426 if (ctx) {
427 struct audit_aux_data *aux;
428 for (aux = ctx->aux; aux;
429 aux = aux->next) {
430 if (aux->type == AUDIT_IPC) {
431 struct audit_aux_data_ipcctl *axi = (void *)aux;
432 if (selinux_audit_rule_match(axi->osid, f->type, f->op, f->se_rule, ctx)) {
433 ++result;
434 break;
440 break;
441 case AUDIT_ARG0:
442 case AUDIT_ARG1:
443 case AUDIT_ARG2:
444 case AUDIT_ARG3:
445 if (ctx)
446 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
447 break;
448 case AUDIT_FILTERKEY:
449 /* ignore this field for filtering */
450 result = 1;
451 break;
452 case AUDIT_PERM:
453 result = audit_match_perm(ctx, f->val);
454 break;
457 if (!result)
458 return 0;
460 if (rule->filterkey)
461 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
462 switch (rule->action) {
463 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
464 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
466 return 1;
469 /* At process creation time, we can determine if system-call auditing is
470 * completely disabled for this task. Since we only have the task
471 * structure at this point, we can only check uid and gid.
473 static enum audit_state audit_filter_task(struct task_struct *tsk)
475 struct audit_entry *e;
476 enum audit_state state;
478 rcu_read_lock();
479 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
480 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, &state)) {
481 rcu_read_unlock();
482 return state;
485 rcu_read_unlock();
486 return AUDIT_BUILD_CONTEXT;
489 /* At syscall entry and exit time, this filter is called if the
490 * audit_state is not low enough that auditing cannot take place, but is
491 * also not high enough that we already know we have to write an audit
492 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
494 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
495 struct audit_context *ctx,
496 struct list_head *list)
498 struct audit_entry *e;
499 enum audit_state state;
501 if (audit_pid && tsk->tgid == audit_pid)
502 return AUDIT_DISABLED;
504 rcu_read_lock();
505 if (!list_empty(list)) {
506 int word = AUDIT_WORD(ctx->major);
507 int bit = AUDIT_BIT(ctx->major);
509 list_for_each_entry_rcu(e, list, list) {
510 if ((e->rule.mask[word] & bit) == bit &&
511 audit_filter_rules(tsk, &e->rule, ctx, NULL,
512 &state)) {
513 rcu_read_unlock();
514 return state;
518 rcu_read_unlock();
519 return AUDIT_BUILD_CONTEXT;
522 /* At syscall exit time, this filter is called if any audit_names[] have been
523 * collected during syscall processing. We only check rules in sublists at hash
524 * buckets applicable to the inode numbers in audit_names[].
525 * Regarding audit_state, same rules apply as for audit_filter_syscall().
527 enum audit_state audit_filter_inodes(struct task_struct *tsk,
528 struct audit_context *ctx)
530 int i;
531 struct audit_entry *e;
532 enum audit_state state;
534 if (audit_pid && tsk->tgid == audit_pid)
535 return AUDIT_DISABLED;
537 rcu_read_lock();
538 for (i = 0; i < ctx->name_count; i++) {
539 int word = AUDIT_WORD(ctx->major);
540 int bit = AUDIT_BIT(ctx->major);
541 struct audit_names *n = &ctx->names[i];
542 int h = audit_hash_ino((u32)n->ino);
543 struct list_head *list = &audit_inode_hash[h];
545 if (list_empty(list))
546 continue;
548 list_for_each_entry_rcu(e, list, list) {
549 if ((e->rule.mask[word] & bit) == bit &&
550 audit_filter_rules(tsk, &e->rule, ctx, n, &state)) {
551 rcu_read_unlock();
552 return state;
556 rcu_read_unlock();
557 return AUDIT_BUILD_CONTEXT;
560 void audit_set_auditable(struct audit_context *ctx)
562 ctx->auditable = 1;
565 static inline struct audit_context *audit_get_context(struct task_struct *tsk,
566 int return_valid,
567 int return_code)
569 struct audit_context *context = tsk->audit_context;
571 if (likely(!context))
572 return NULL;
573 context->return_valid = return_valid;
574 context->return_code = return_code;
576 if (context->in_syscall && !context->dummy && !context->auditable) {
577 enum audit_state state;
579 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
580 if (state == AUDIT_RECORD_CONTEXT) {
581 context->auditable = 1;
582 goto get_context;
585 state = audit_filter_inodes(tsk, context);
586 if (state == AUDIT_RECORD_CONTEXT)
587 context->auditable = 1;
591 get_context:
593 tsk->audit_context = NULL;
594 return context;
597 static inline void audit_free_names(struct audit_context *context)
599 int i;
601 #if AUDIT_DEBUG == 2
602 if (context->auditable
603 ||context->put_count + context->ino_count != context->name_count) {
604 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
605 " name_count=%d put_count=%d"
606 " ino_count=%d [NOT freeing]\n",
607 __FILE__, __LINE__,
608 context->serial, context->major, context->in_syscall,
609 context->name_count, context->put_count,
610 context->ino_count);
611 for (i = 0; i < context->name_count; i++) {
612 printk(KERN_ERR "names[%d] = %p = %s\n", i,
613 context->names[i].name,
614 context->names[i].name ?: "(null)");
616 dump_stack();
617 return;
619 #endif
620 #if AUDIT_DEBUG
621 context->put_count = 0;
622 context->ino_count = 0;
623 #endif
625 for (i = 0; i < context->name_count; i++) {
626 if (context->names[i].name && context->names[i].name_put)
627 __putname(context->names[i].name);
629 context->name_count = 0;
630 if (context->pwd)
631 dput(context->pwd);
632 if (context->pwdmnt)
633 mntput(context->pwdmnt);
634 context->pwd = NULL;
635 context->pwdmnt = NULL;
638 static inline void audit_free_aux(struct audit_context *context)
640 struct audit_aux_data *aux;
642 while ((aux = context->aux)) {
643 if (aux->type == AUDIT_AVC_PATH) {
644 struct audit_aux_data_path *axi = (void *)aux;
645 dput(axi->dentry);
646 mntput(axi->mnt);
649 context->aux = aux->next;
650 kfree(aux);
654 static inline void audit_zero_context(struct audit_context *context,
655 enum audit_state state)
657 uid_t loginuid = context->loginuid;
659 memset(context, 0, sizeof(*context));
660 context->state = state;
661 context->loginuid = loginuid;
664 static inline struct audit_context *audit_alloc_context(enum audit_state state)
666 struct audit_context *context;
668 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
669 return NULL;
670 audit_zero_context(context, state);
671 return context;
675 * audit_alloc - allocate an audit context block for a task
676 * @tsk: task
678 * Filter on the task information and allocate a per-task audit context
679 * if necessary. Doing so turns on system call auditing for the
680 * specified task. This is called from copy_process, so no lock is
681 * needed.
683 int audit_alloc(struct task_struct *tsk)
685 struct audit_context *context;
686 enum audit_state state;
688 if (likely(!audit_enabled))
689 return 0; /* Return if not auditing. */
691 state = audit_filter_task(tsk);
692 if (likely(state == AUDIT_DISABLED))
693 return 0;
695 if (!(context = audit_alloc_context(state))) {
696 audit_log_lost("out of memory in audit_alloc");
697 return -ENOMEM;
700 /* Preserve login uid */
701 context->loginuid = -1;
702 if (current->audit_context)
703 context->loginuid = current->audit_context->loginuid;
705 tsk->audit_context = context;
706 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
707 return 0;
710 static inline void audit_free_context(struct audit_context *context)
712 struct audit_context *previous;
713 int count = 0;
715 do {
716 previous = context->previous;
717 if (previous || (count && count < 10)) {
718 ++count;
719 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
720 " freeing multiple contexts (%d)\n",
721 context->serial, context->major,
722 context->name_count, count);
724 audit_free_names(context);
725 audit_free_aux(context);
726 kfree(context->filterkey);
727 kfree(context);
728 context = previous;
729 } while (context);
730 if (count >= 10)
731 printk(KERN_ERR "audit: freed %d contexts\n", count);
734 void audit_log_task_context(struct audit_buffer *ab)
736 char *ctx = NULL;
737 ssize_t len = 0;
739 len = security_getprocattr(current, "current", NULL, 0);
740 if (len < 0) {
741 if (len != -EINVAL)
742 goto error_path;
743 return;
746 ctx = kmalloc(len, GFP_KERNEL);
747 if (!ctx)
748 goto error_path;
750 len = security_getprocattr(current, "current", ctx, len);
751 if (len < 0 )
752 goto error_path;
754 audit_log_format(ab, " subj=%s", ctx);
755 return;
757 error_path:
758 kfree(ctx);
759 audit_panic("error in audit_log_task_context");
760 return;
763 EXPORT_SYMBOL(audit_log_task_context);
765 static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
767 char name[sizeof(tsk->comm)];
768 struct mm_struct *mm = tsk->mm;
769 struct vm_area_struct *vma;
771 /* tsk == current */
773 get_task_comm(name, tsk);
774 audit_log_format(ab, " comm=");
775 audit_log_untrustedstring(ab, name);
777 if (mm) {
778 down_read(&mm->mmap_sem);
779 vma = mm->mmap;
780 while (vma) {
781 if ((vma->vm_flags & VM_EXECUTABLE) &&
782 vma->vm_file) {
783 audit_log_d_path(ab, "exe=",
784 vma->vm_file->f_path.dentry,
785 vma->vm_file->f_path.mnt);
786 break;
788 vma = vma->vm_next;
790 up_read(&mm->mmap_sem);
792 audit_log_task_context(ab);
795 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
797 int i, call_panic = 0;
798 struct audit_buffer *ab;
799 struct audit_aux_data *aux;
800 const char *tty;
802 /* tsk == current */
803 context->pid = tsk->pid;
804 if (!context->ppid)
805 context->ppid = sys_getppid();
806 context->uid = tsk->uid;
807 context->gid = tsk->gid;
808 context->euid = tsk->euid;
809 context->suid = tsk->suid;
810 context->fsuid = tsk->fsuid;
811 context->egid = tsk->egid;
812 context->sgid = tsk->sgid;
813 context->fsgid = tsk->fsgid;
814 context->personality = tsk->personality;
816 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
817 if (!ab)
818 return; /* audit_panic has been called */
819 audit_log_format(ab, "arch=%x syscall=%d",
820 context->arch, context->major);
821 if (context->personality != PER_LINUX)
822 audit_log_format(ab, " per=%lx", context->personality);
823 if (context->return_valid)
824 audit_log_format(ab, " success=%s exit=%ld",
825 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
826 context->return_code);
828 mutex_lock(&tty_mutex);
829 read_lock(&tasklist_lock);
830 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
831 tty = tsk->signal->tty->name;
832 else
833 tty = "(none)";
834 read_unlock(&tasklist_lock);
835 audit_log_format(ab,
836 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
837 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
838 " euid=%u suid=%u fsuid=%u"
839 " egid=%u sgid=%u fsgid=%u tty=%s",
840 context->argv[0],
841 context->argv[1],
842 context->argv[2],
843 context->argv[3],
844 context->name_count,
845 context->ppid,
846 context->pid,
847 context->loginuid,
848 context->uid,
849 context->gid,
850 context->euid, context->suid, context->fsuid,
851 context->egid, context->sgid, context->fsgid, tty);
853 mutex_unlock(&tty_mutex);
855 audit_log_task_info(ab, tsk);
856 if (context->filterkey) {
857 audit_log_format(ab, " key=");
858 audit_log_untrustedstring(ab, context->filterkey);
859 } else
860 audit_log_format(ab, " key=(null)");
861 audit_log_end(ab);
863 for (aux = context->aux; aux; aux = aux->next) {
865 ab = audit_log_start(context, GFP_KERNEL, aux->type);
866 if (!ab)
867 continue; /* audit_panic has been called */
869 switch (aux->type) {
870 case AUDIT_MQ_OPEN: {
871 struct audit_aux_data_mq_open *axi = (void *)aux;
872 audit_log_format(ab,
873 "oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
874 "mq_msgsize=%ld mq_curmsgs=%ld",
875 axi->oflag, axi->mode, axi->attr.mq_flags,
876 axi->attr.mq_maxmsg, axi->attr.mq_msgsize,
877 axi->attr.mq_curmsgs);
878 break; }
880 case AUDIT_MQ_SENDRECV: {
881 struct audit_aux_data_mq_sendrecv *axi = (void *)aux;
882 audit_log_format(ab,
883 "mqdes=%d msg_len=%zd msg_prio=%u "
884 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
885 axi->mqdes, axi->msg_len, axi->msg_prio,
886 axi->abs_timeout.tv_sec, axi->abs_timeout.tv_nsec);
887 break; }
889 case AUDIT_MQ_NOTIFY: {
890 struct audit_aux_data_mq_notify *axi = (void *)aux;
891 audit_log_format(ab,
892 "mqdes=%d sigev_signo=%d",
893 axi->mqdes,
894 axi->notification.sigev_signo);
895 break; }
897 case AUDIT_MQ_GETSETATTR: {
898 struct audit_aux_data_mq_getsetattr *axi = (void *)aux;
899 audit_log_format(ab,
900 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
901 "mq_curmsgs=%ld ",
902 axi->mqdes,
903 axi->mqstat.mq_flags, axi->mqstat.mq_maxmsg,
904 axi->mqstat.mq_msgsize, axi->mqstat.mq_curmsgs);
905 break; }
907 case AUDIT_IPC: {
908 struct audit_aux_data_ipcctl *axi = (void *)aux;
909 audit_log_format(ab,
910 "ouid=%u ogid=%u mode=%x",
911 axi->uid, axi->gid, axi->mode);
912 if (axi->osid != 0) {
913 char *ctx = NULL;
914 u32 len;
915 if (selinux_sid_to_string(
916 axi->osid, &ctx, &len)) {
917 audit_log_format(ab, " osid=%u",
918 axi->osid);
919 call_panic = 1;
920 } else
921 audit_log_format(ab, " obj=%s", ctx);
922 kfree(ctx);
924 break; }
926 case AUDIT_IPC_SET_PERM: {
927 struct audit_aux_data_ipcctl *axi = (void *)aux;
928 audit_log_format(ab,
929 "qbytes=%lx ouid=%u ogid=%u mode=%x",
930 axi->qbytes, axi->uid, axi->gid, axi->mode);
931 break; }
933 case AUDIT_EXECVE: {
934 struct audit_aux_data_execve *axi = (void *)aux;
935 int i;
936 const char *p;
937 for (i = 0, p = axi->mem; i < axi->argc; i++) {
938 audit_log_format(ab, "a%d=", i);
939 p = audit_log_untrustedstring(ab, p);
940 audit_log_format(ab, "\n");
942 break; }
944 case AUDIT_SOCKETCALL: {
945 int i;
946 struct audit_aux_data_socketcall *axs = (void *)aux;
947 audit_log_format(ab, "nargs=%d", axs->nargs);
948 for (i=0; i<axs->nargs; i++)
949 audit_log_format(ab, " a%d=%lx", i, axs->args[i]);
950 break; }
952 case AUDIT_SOCKADDR: {
953 struct audit_aux_data_sockaddr *axs = (void *)aux;
955 audit_log_format(ab, "saddr=");
956 audit_log_hex(ab, axs->a, axs->len);
957 break; }
959 case AUDIT_AVC_PATH: {
960 struct audit_aux_data_path *axi = (void *)aux;
961 audit_log_d_path(ab, "path=", axi->dentry, axi->mnt);
962 break; }
965 audit_log_end(ab);
968 if (context->pwd && context->pwdmnt) {
969 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
970 if (ab) {
971 audit_log_d_path(ab, "cwd=", context->pwd, context->pwdmnt);
972 audit_log_end(ab);
975 for (i = 0; i < context->name_count; i++) {
976 struct audit_names *n = &context->names[i];
978 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
979 if (!ab)
980 continue; /* audit_panic has been called */
982 audit_log_format(ab, "item=%d", i);
984 if (n->name) {
985 switch(n->name_len) {
986 case AUDIT_NAME_FULL:
987 /* log the full path */
988 audit_log_format(ab, " name=");
989 audit_log_untrustedstring(ab, n->name);
990 break;
991 case 0:
992 /* name was specified as a relative path and the
993 * directory component is the cwd */
994 audit_log_d_path(ab, " name=", context->pwd,
995 context->pwdmnt);
996 break;
997 default:
998 /* log the name's directory component */
999 audit_log_format(ab, " name=");
1000 audit_log_n_untrustedstring(ab, n->name_len,
1001 n->name);
1003 } else
1004 audit_log_format(ab, " name=(null)");
1006 if (n->ino != (unsigned long)-1) {
1007 audit_log_format(ab, " inode=%lu"
1008 " dev=%02x:%02x mode=%#o"
1009 " ouid=%u ogid=%u rdev=%02x:%02x",
1010 n->ino,
1011 MAJOR(n->dev),
1012 MINOR(n->dev),
1013 n->mode,
1014 n->uid,
1015 n->gid,
1016 MAJOR(n->rdev),
1017 MINOR(n->rdev));
1019 if (n->osid != 0) {
1020 char *ctx = NULL;
1021 u32 len;
1022 if (selinux_sid_to_string(
1023 n->osid, &ctx, &len)) {
1024 audit_log_format(ab, " osid=%u", n->osid);
1025 call_panic = 2;
1026 } else
1027 audit_log_format(ab, " obj=%s", ctx);
1028 kfree(ctx);
1031 audit_log_end(ab);
1033 if (call_panic)
1034 audit_panic("error converting sid to string");
1038 * audit_free - free a per-task audit context
1039 * @tsk: task whose audit context block to free
1041 * Called from copy_process and do_exit
1043 void audit_free(struct task_struct *tsk)
1045 struct audit_context *context;
1047 context = audit_get_context(tsk, 0, 0);
1048 if (likely(!context))
1049 return;
1051 /* Check for system calls that do not go through the exit
1052 * function (e.g., exit_group), then free context block.
1053 * We use GFP_ATOMIC here because we might be doing this
1054 * in the context of the idle thread */
1055 /* that can happen only if we are called from do_exit() */
1056 if (context->in_syscall && context->auditable)
1057 audit_log_exit(context, tsk);
1059 audit_free_context(context);
1063 * audit_syscall_entry - fill in an audit record at syscall entry
1064 * @tsk: task being audited
1065 * @arch: architecture type
1066 * @major: major syscall type (function)
1067 * @a1: additional syscall register 1
1068 * @a2: additional syscall register 2
1069 * @a3: additional syscall register 3
1070 * @a4: additional syscall register 4
1072 * Fill in audit context at syscall entry. This only happens if the
1073 * audit context was created when the task was created and the state or
1074 * filters demand the audit context be built. If the state from the
1075 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1076 * then the record will be written at syscall exit time (otherwise, it
1077 * will only be written if another part of the kernel requests that it
1078 * be written).
1080 void audit_syscall_entry(int arch, int major,
1081 unsigned long a1, unsigned long a2,
1082 unsigned long a3, unsigned long a4)
1084 struct task_struct *tsk = current;
1085 struct audit_context *context = tsk->audit_context;
1086 enum audit_state state;
1088 BUG_ON(!context);
1091 * This happens only on certain architectures that make system
1092 * calls in kernel_thread via the entry.S interface, instead of
1093 * with direct calls. (If you are porting to a new
1094 * architecture, hitting this condition can indicate that you
1095 * got the _exit/_leave calls backward in entry.S.)
1097 * i386 no
1098 * x86_64 no
1099 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1101 * This also happens with vm86 emulation in a non-nested manner
1102 * (entries without exits), so this case must be caught.
1104 if (context->in_syscall) {
1105 struct audit_context *newctx;
1107 #if AUDIT_DEBUG
1108 printk(KERN_ERR
1109 "audit(:%d) pid=%d in syscall=%d;"
1110 " entering syscall=%d\n",
1111 context->serial, tsk->pid, context->major, major);
1112 #endif
1113 newctx = audit_alloc_context(context->state);
1114 if (newctx) {
1115 newctx->previous = context;
1116 context = newctx;
1117 tsk->audit_context = newctx;
1118 } else {
1119 /* If we can't alloc a new context, the best we
1120 * can do is to leak memory (any pending putname
1121 * will be lost). The only other alternative is
1122 * to abandon auditing. */
1123 audit_zero_context(context, context->state);
1126 BUG_ON(context->in_syscall || context->name_count);
1128 if (!audit_enabled)
1129 return;
1131 context->arch = arch;
1132 context->major = major;
1133 context->argv[0] = a1;
1134 context->argv[1] = a2;
1135 context->argv[2] = a3;
1136 context->argv[3] = a4;
1138 state = context->state;
1139 context->dummy = !audit_n_rules;
1140 if (!context->dummy && (state == AUDIT_SETUP_CONTEXT || state == AUDIT_BUILD_CONTEXT))
1141 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1142 if (likely(state == AUDIT_DISABLED))
1143 return;
1145 context->serial = 0;
1146 context->ctime = CURRENT_TIME;
1147 context->in_syscall = 1;
1148 context->auditable = !!(state == AUDIT_RECORD_CONTEXT);
1149 context->ppid = 0;
1153 * audit_syscall_exit - deallocate audit context after a system call
1154 * @tsk: task being audited
1155 * @valid: success/failure flag
1156 * @return_code: syscall return value
1158 * Tear down after system call. If the audit context has been marked as
1159 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1160 * filtering, or because some other part of the kernel write an audit
1161 * message), then write out the syscall information. In call cases,
1162 * free the names stored from getname().
1164 void audit_syscall_exit(int valid, long return_code)
1166 struct task_struct *tsk = current;
1167 struct audit_context *context;
1169 context = audit_get_context(tsk, valid, return_code);
1171 if (likely(!context))
1172 return;
1174 if (context->in_syscall && context->auditable)
1175 audit_log_exit(context, tsk);
1177 context->in_syscall = 0;
1178 context->auditable = 0;
1180 if (context->previous) {
1181 struct audit_context *new_context = context->previous;
1182 context->previous = NULL;
1183 audit_free_context(context);
1184 tsk->audit_context = new_context;
1185 } else {
1186 audit_free_names(context);
1187 audit_free_aux(context);
1188 kfree(context->filterkey);
1189 context->filterkey = NULL;
1190 tsk->audit_context = context;
1195 * audit_getname - add a name to the list
1196 * @name: name to add
1198 * Add a name to the list of audit names for this context.
1199 * Called from fs/namei.c:getname().
1201 void __audit_getname(const char *name)
1203 struct audit_context *context = current->audit_context;
1205 if (IS_ERR(name) || !name)
1206 return;
1208 if (!context->in_syscall) {
1209 #if AUDIT_DEBUG == 2
1210 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1211 __FILE__, __LINE__, context->serial, name);
1212 dump_stack();
1213 #endif
1214 return;
1216 BUG_ON(context->name_count >= AUDIT_NAMES);
1217 context->names[context->name_count].name = name;
1218 context->names[context->name_count].name_len = AUDIT_NAME_FULL;
1219 context->names[context->name_count].name_put = 1;
1220 context->names[context->name_count].ino = (unsigned long)-1;
1221 ++context->name_count;
1222 if (!context->pwd) {
1223 read_lock(&current->fs->lock);
1224 context->pwd = dget(current->fs->pwd);
1225 context->pwdmnt = mntget(current->fs->pwdmnt);
1226 read_unlock(&current->fs->lock);
1231 /* audit_putname - intercept a putname request
1232 * @name: name to intercept and delay for putname
1234 * If we have stored the name from getname in the audit context,
1235 * then we delay the putname until syscall exit.
1236 * Called from include/linux/fs.h:putname().
1238 void audit_putname(const char *name)
1240 struct audit_context *context = current->audit_context;
1242 BUG_ON(!context);
1243 if (!context->in_syscall) {
1244 #if AUDIT_DEBUG == 2
1245 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
1246 __FILE__, __LINE__, context->serial, name);
1247 if (context->name_count) {
1248 int i;
1249 for (i = 0; i < context->name_count; i++)
1250 printk(KERN_ERR "name[%d] = %p = %s\n", i,
1251 context->names[i].name,
1252 context->names[i].name ?: "(null)");
1254 #endif
1255 __putname(name);
1257 #if AUDIT_DEBUG
1258 else {
1259 ++context->put_count;
1260 if (context->put_count > context->name_count) {
1261 printk(KERN_ERR "%s:%d(:%d): major=%d"
1262 " in_syscall=%d putname(%p) name_count=%d"
1263 " put_count=%d\n",
1264 __FILE__, __LINE__,
1265 context->serial, context->major,
1266 context->in_syscall, name, context->name_count,
1267 context->put_count);
1268 dump_stack();
1271 #endif
1274 /* Copy inode data into an audit_names. */
1275 static void audit_copy_inode(struct audit_names *name, const struct inode *inode)
1277 name->ino = inode->i_ino;
1278 name->dev = inode->i_sb->s_dev;
1279 name->mode = inode->i_mode;
1280 name->uid = inode->i_uid;
1281 name->gid = inode->i_gid;
1282 name->rdev = inode->i_rdev;
1283 selinux_get_inode_sid(inode, &name->osid);
1287 * audit_inode - store the inode and device from a lookup
1288 * @name: name being audited
1289 * @inode: inode being audited
1291 * Called from fs/namei.c:path_lookup().
1293 void __audit_inode(const char *name, const struct inode *inode)
1295 int idx;
1296 struct audit_context *context = current->audit_context;
1298 if (!context->in_syscall)
1299 return;
1300 if (context->name_count
1301 && context->names[context->name_count-1].name
1302 && context->names[context->name_count-1].name == name)
1303 idx = context->name_count - 1;
1304 else if (context->name_count > 1
1305 && context->names[context->name_count-2].name
1306 && context->names[context->name_count-2].name == name)
1307 idx = context->name_count - 2;
1308 else {
1309 /* FIXME: how much do we care about inodes that have no
1310 * associated name? */
1311 if (context->name_count >= AUDIT_NAMES - AUDIT_NAMES_RESERVED)
1312 return;
1313 idx = context->name_count++;
1314 context->names[idx].name = NULL;
1315 #if AUDIT_DEBUG
1316 ++context->ino_count;
1317 #endif
1319 audit_copy_inode(&context->names[idx], inode);
1323 * audit_inode_child - collect inode info for created/removed objects
1324 * @dname: inode's dentry name
1325 * @inode: inode being audited
1326 * @parent: inode of dentry parent
1328 * For syscalls that create or remove filesystem objects, audit_inode
1329 * can only collect information for the filesystem object's parent.
1330 * This call updates the audit context with the child's information.
1331 * Syscalls that create a new filesystem object must be hooked after
1332 * the object is created. Syscalls that remove a filesystem object
1333 * must be hooked prior, in order to capture the target inode during
1334 * unsuccessful attempts.
1336 void __audit_inode_child(const char *dname, const struct inode *inode,
1337 const struct inode *parent)
1339 int idx;
1340 struct audit_context *context = current->audit_context;
1341 const char *found_name = NULL;
1342 int dirlen = 0;
1344 if (!context->in_syscall)
1345 return;
1347 /* determine matching parent */
1348 if (!dname)
1349 goto update_context;
1350 for (idx = 0; idx < context->name_count; idx++)
1351 if (context->names[idx].ino == parent->i_ino) {
1352 const char *name = context->names[idx].name;
1354 if (!name)
1355 continue;
1357 if (audit_compare_dname_path(dname, name, &dirlen) == 0) {
1358 context->names[idx].name_len = dirlen;
1359 found_name = name;
1360 break;
1364 update_context:
1365 idx = context->name_count;
1366 if (context->name_count == AUDIT_NAMES) {
1367 printk(KERN_DEBUG "name_count maxed and losing %s\n",
1368 found_name ?: "(null)");
1369 return;
1371 context->name_count++;
1372 #if AUDIT_DEBUG
1373 context->ino_count++;
1374 #endif
1375 /* Re-use the name belonging to the slot for a matching parent directory.
1376 * All names for this context are relinquished in audit_free_names() */
1377 context->names[idx].name = found_name;
1378 context->names[idx].name_len = AUDIT_NAME_FULL;
1379 context->names[idx].name_put = 0; /* don't call __putname() */
1381 if (!inode)
1382 context->names[idx].ino = (unsigned long)-1;
1383 else
1384 audit_copy_inode(&context->names[idx], inode);
1386 /* A parent was not found in audit_names, so copy the inode data for the
1387 * provided parent. */
1388 if (!found_name) {
1389 idx = context->name_count;
1390 if (context->name_count == AUDIT_NAMES) {
1391 printk(KERN_DEBUG
1392 "name_count maxed and losing parent inode data: dev=%02x:%02x, inode=%lu",
1393 MAJOR(parent->i_sb->s_dev),
1394 MINOR(parent->i_sb->s_dev),
1395 parent->i_ino);
1396 return;
1398 context->name_count++;
1399 #if AUDIT_DEBUG
1400 context->ino_count++;
1401 #endif
1402 audit_copy_inode(&context->names[idx], parent);
1407 * audit_inode_update - update inode info for last collected name
1408 * @inode: inode being audited
1410 * When open() is called on an existing object with the O_CREAT flag, the inode
1411 * data audit initially collects is incorrect. This additional hook ensures
1412 * audit has the inode data for the actual object to be opened.
1414 void __audit_inode_update(const struct inode *inode)
1416 struct audit_context *context = current->audit_context;
1417 int idx;
1419 if (!context->in_syscall || !inode)
1420 return;
1422 if (context->name_count == 0) {
1423 context->name_count++;
1424 #if AUDIT_DEBUG
1425 context->ino_count++;
1426 #endif
1428 idx = context->name_count - 1;
1430 audit_copy_inode(&context->names[idx], inode);
1434 * auditsc_get_stamp - get local copies of audit_context values
1435 * @ctx: audit_context for the task
1436 * @t: timespec to store time recorded in the audit_context
1437 * @serial: serial value that is recorded in the audit_context
1439 * Also sets the context as auditable.
1441 void auditsc_get_stamp(struct audit_context *ctx,
1442 struct timespec *t, unsigned int *serial)
1444 if (!ctx->serial)
1445 ctx->serial = audit_serial();
1446 t->tv_sec = ctx->ctime.tv_sec;
1447 t->tv_nsec = ctx->ctime.tv_nsec;
1448 *serial = ctx->serial;
1449 ctx->auditable = 1;
1453 * audit_set_loginuid - set a task's audit_context loginuid
1454 * @task: task whose audit context is being modified
1455 * @loginuid: loginuid value
1457 * Returns 0.
1459 * Called (set) from fs/proc/base.c::proc_loginuid_write().
1461 int audit_set_loginuid(struct task_struct *task, uid_t loginuid)
1463 struct audit_context *context = task->audit_context;
1465 if (context) {
1466 /* Only log if audit is enabled */
1467 if (context->in_syscall) {
1468 struct audit_buffer *ab;
1470 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
1471 if (ab) {
1472 audit_log_format(ab, "login pid=%d uid=%u "
1473 "old auid=%u new auid=%u",
1474 task->pid, task->uid,
1475 context->loginuid, loginuid);
1476 audit_log_end(ab);
1479 context->loginuid = loginuid;
1481 return 0;
1485 * audit_get_loginuid - get the loginuid for an audit_context
1486 * @ctx: the audit_context
1488 * Returns the context's loginuid or -1 if @ctx is NULL.
1490 uid_t audit_get_loginuid(struct audit_context *ctx)
1492 return ctx ? ctx->loginuid : -1;
1495 EXPORT_SYMBOL(audit_get_loginuid);
1498 * __audit_mq_open - record audit data for a POSIX MQ open
1499 * @oflag: open flag
1500 * @mode: mode bits
1501 * @u_attr: queue attributes
1503 * Returns 0 for success or NULL context or < 0 on error.
1505 int __audit_mq_open(int oflag, mode_t mode, struct mq_attr __user *u_attr)
1507 struct audit_aux_data_mq_open *ax;
1508 struct audit_context *context = current->audit_context;
1510 if (!audit_enabled)
1511 return 0;
1513 if (likely(!context))
1514 return 0;
1516 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1517 if (!ax)
1518 return -ENOMEM;
1520 if (u_attr != NULL) {
1521 if (copy_from_user(&ax->attr, u_attr, sizeof(ax->attr))) {
1522 kfree(ax);
1523 return -EFAULT;
1525 } else
1526 memset(&ax->attr, 0, sizeof(ax->attr));
1528 ax->oflag = oflag;
1529 ax->mode = mode;
1531 ax->d.type = AUDIT_MQ_OPEN;
1532 ax->d.next = context->aux;
1533 context->aux = (void *)ax;
1534 return 0;
1538 * __audit_mq_timedsend - record audit data for a POSIX MQ timed send
1539 * @mqdes: MQ descriptor
1540 * @msg_len: Message length
1541 * @msg_prio: Message priority
1542 * @u_abs_timeout: Message timeout in absolute time
1544 * Returns 0 for success or NULL context or < 0 on error.
1546 int __audit_mq_timedsend(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
1547 const struct timespec __user *u_abs_timeout)
1549 struct audit_aux_data_mq_sendrecv *ax;
1550 struct audit_context *context = current->audit_context;
1552 if (!audit_enabled)
1553 return 0;
1555 if (likely(!context))
1556 return 0;
1558 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1559 if (!ax)
1560 return -ENOMEM;
1562 if (u_abs_timeout != NULL) {
1563 if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) {
1564 kfree(ax);
1565 return -EFAULT;
1567 } else
1568 memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout));
1570 ax->mqdes = mqdes;
1571 ax->msg_len = msg_len;
1572 ax->msg_prio = msg_prio;
1574 ax->d.type = AUDIT_MQ_SENDRECV;
1575 ax->d.next = context->aux;
1576 context->aux = (void *)ax;
1577 return 0;
1581 * __audit_mq_timedreceive - record audit data for a POSIX MQ timed receive
1582 * @mqdes: MQ descriptor
1583 * @msg_len: Message length
1584 * @u_msg_prio: Message priority
1585 * @u_abs_timeout: Message timeout in absolute time
1587 * Returns 0 for success or NULL context or < 0 on error.
1589 int __audit_mq_timedreceive(mqd_t mqdes, size_t msg_len,
1590 unsigned int __user *u_msg_prio,
1591 const struct timespec __user *u_abs_timeout)
1593 struct audit_aux_data_mq_sendrecv *ax;
1594 struct audit_context *context = current->audit_context;
1596 if (!audit_enabled)
1597 return 0;
1599 if (likely(!context))
1600 return 0;
1602 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1603 if (!ax)
1604 return -ENOMEM;
1606 if (u_msg_prio != NULL) {
1607 if (get_user(ax->msg_prio, u_msg_prio)) {
1608 kfree(ax);
1609 return -EFAULT;
1611 } else
1612 ax->msg_prio = 0;
1614 if (u_abs_timeout != NULL) {
1615 if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) {
1616 kfree(ax);
1617 return -EFAULT;
1619 } else
1620 memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout));
1622 ax->mqdes = mqdes;
1623 ax->msg_len = msg_len;
1625 ax->d.type = AUDIT_MQ_SENDRECV;
1626 ax->d.next = context->aux;
1627 context->aux = (void *)ax;
1628 return 0;
1632 * __audit_mq_notify - record audit data for a POSIX MQ notify
1633 * @mqdes: MQ descriptor
1634 * @u_notification: Notification event
1636 * Returns 0 for success or NULL context or < 0 on error.
1639 int __audit_mq_notify(mqd_t mqdes, const struct sigevent __user *u_notification)
1641 struct audit_aux_data_mq_notify *ax;
1642 struct audit_context *context = current->audit_context;
1644 if (!audit_enabled)
1645 return 0;
1647 if (likely(!context))
1648 return 0;
1650 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1651 if (!ax)
1652 return -ENOMEM;
1654 if (u_notification != NULL) {
1655 if (copy_from_user(&ax->notification, u_notification, sizeof(ax->notification))) {
1656 kfree(ax);
1657 return -EFAULT;
1659 } else
1660 memset(&ax->notification, 0, sizeof(ax->notification));
1662 ax->mqdes = mqdes;
1664 ax->d.type = AUDIT_MQ_NOTIFY;
1665 ax->d.next = context->aux;
1666 context->aux = (void *)ax;
1667 return 0;
1671 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
1672 * @mqdes: MQ descriptor
1673 * @mqstat: MQ flags
1675 * Returns 0 for success or NULL context or < 0 on error.
1677 int __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
1679 struct audit_aux_data_mq_getsetattr *ax;
1680 struct audit_context *context = current->audit_context;
1682 if (!audit_enabled)
1683 return 0;
1685 if (likely(!context))
1686 return 0;
1688 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1689 if (!ax)
1690 return -ENOMEM;
1692 ax->mqdes = mqdes;
1693 ax->mqstat = *mqstat;
1695 ax->d.type = AUDIT_MQ_GETSETATTR;
1696 ax->d.next = context->aux;
1697 context->aux = (void *)ax;
1698 return 0;
1702 * audit_ipc_obj - record audit data for ipc object
1703 * @ipcp: ipc permissions
1705 * Returns 0 for success or NULL context or < 0 on error.
1707 int __audit_ipc_obj(struct kern_ipc_perm *ipcp)
1709 struct audit_aux_data_ipcctl *ax;
1710 struct audit_context *context = current->audit_context;
1712 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1713 if (!ax)
1714 return -ENOMEM;
1716 ax->uid = ipcp->uid;
1717 ax->gid = ipcp->gid;
1718 ax->mode = ipcp->mode;
1719 selinux_get_ipc_sid(ipcp, &ax->osid);
1721 ax->d.type = AUDIT_IPC;
1722 ax->d.next = context->aux;
1723 context->aux = (void *)ax;
1724 return 0;
1728 * audit_ipc_set_perm - record audit data for new ipc permissions
1729 * @qbytes: msgq bytes
1730 * @uid: msgq user id
1731 * @gid: msgq group id
1732 * @mode: msgq mode (permissions)
1734 * Returns 0 for success or NULL context or < 0 on error.
1736 int __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode)
1738 struct audit_aux_data_ipcctl *ax;
1739 struct audit_context *context = current->audit_context;
1741 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1742 if (!ax)
1743 return -ENOMEM;
1745 ax->qbytes = qbytes;
1746 ax->uid = uid;
1747 ax->gid = gid;
1748 ax->mode = mode;
1750 ax->d.type = AUDIT_IPC_SET_PERM;
1751 ax->d.next = context->aux;
1752 context->aux = (void *)ax;
1753 return 0;
1756 int audit_bprm(struct linux_binprm *bprm)
1758 struct audit_aux_data_execve *ax;
1759 struct audit_context *context = current->audit_context;
1760 unsigned long p, next;
1761 void *to;
1763 if (likely(!audit_enabled || !context || context->dummy))
1764 return 0;
1766 ax = kmalloc(sizeof(*ax) + PAGE_SIZE * MAX_ARG_PAGES - bprm->p,
1767 GFP_KERNEL);
1768 if (!ax)
1769 return -ENOMEM;
1771 ax->argc = bprm->argc;
1772 ax->envc = bprm->envc;
1773 for (p = bprm->p, to = ax->mem; p < MAX_ARG_PAGES*PAGE_SIZE; p = next) {
1774 struct page *page = bprm->page[p / PAGE_SIZE];
1775 void *kaddr = kmap(page);
1776 next = (p + PAGE_SIZE) & ~(PAGE_SIZE - 1);
1777 memcpy(to, kaddr + (p & (PAGE_SIZE - 1)), next - p);
1778 to += next - p;
1779 kunmap(page);
1782 ax->d.type = AUDIT_EXECVE;
1783 ax->d.next = context->aux;
1784 context->aux = (void *)ax;
1785 return 0;
1790 * audit_socketcall - record audit data for sys_socketcall
1791 * @nargs: number of args
1792 * @args: args array
1794 * Returns 0 for success or NULL context or < 0 on error.
1796 int audit_socketcall(int nargs, unsigned long *args)
1798 struct audit_aux_data_socketcall *ax;
1799 struct audit_context *context = current->audit_context;
1801 if (likely(!context || context->dummy))
1802 return 0;
1804 ax = kmalloc(sizeof(*ax) + nargs * sizeof(unsigned long), GFP_KERNEL);
1805 if (!ax)
1806 return -ENOMEM;
1808 ax->nargs = nargs;
1809 memcpy(ax->args, args, nargs * sizeof(unsigned long));
1811 ax->d.type = AUDIT_SOCKETCALL;
1812 ax->d.next = context->aux;
1813 context->aux = (void *)ax;
1814 return 0;
1818 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
1819 * @len: data length in user space
1820 * @a: data address in kernel space
1822 * Returns 0 for success or NULL context or < 0 on error.
1824 int audit_sockaddr(int len, void *a)
1826 struct audit_aux_data_sockaddr *ax;
1827 struct audit_context *context = current->audit_context;
1829 if (likely(!context || context->dummy))
1830 return 0;
1832 ax = kmalloc(sizeof(*ax) + len, GFP_KERNEL);
1833 if (!ax)
1834 return -ENOMEM;
1836 ax->len = len;
1837 memcpy(ax->a, a, len);
1839 ax->d.type = AUDIT_SOCKADDR;
1840 ax->d.next = context->aux;
1841 context->aux = (void *)ax;
1842 return 0;
1846 * audit_avc_path - record the granting or denial of permissions
1847 * @dentry: dentry to record
1848 * @mnt: mnt to record
1850 * Returns 0 for success or NULL context or < 0 on error.
1852 * Called from security/selinux/avc.c::avc_audit()
1854 int audit_avc_path(struct dentry *dentry, struct vfsmount *mnt)
1856 struct audit_aux_data_path *ax;
1857 struct audit_context *context = current->audit_context;
1859 if (likely(!context))
1860 return 0;
1862 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1863 if (!ax)
1864 return -ENOMEM;
1866 ax->dentry = dget(dentry);
1867 ax->mnt = mntget(mnt);
1869 ax->d.type = AUDIT_AVC_PATH;
1870 ax->d.next = context->aux;
1871 context->aux = (void *)ax;
1872 return 0;
1876 * audit_signal_info - record signal info for shutting down audit subsystem
1877 * @sig: signal value
1878 * @t: task being signaled
1880 * If the audit subsystem is being terminated, record the task (pid)
1881 * and uid that is doing that.
1883 void __audit_signal_info(int sig, struct task_struct *t)
1885 extern pid_t audit_sig_pid;
1886 extern uid_t audit_sig_uid;
1887 extern u32 audit_sig_sid;
1889 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1) {
1890 struct task_struct *tsk = current;
1891 struct audit_context *ctx = tsk->audit_context;
1892 audit_sig_pid = tsk->pid;
1893 if (ctx)
1894 audit_sig_uid = ctx->loginuid;
1895 else
1896 audit_sig_uid = tsk->uid;
1897 selinux_get_task_sid(tsk, &audit_sig_sid);