2 * linux/arch/arm/mm/proc-xscale.S
4 * Author: Nicolas Pitre
5 * Created: November 2000
6 * Copyright: (C) 2000, 2001 MontaVista Software Inc.
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
12 * MMU functions for the Intel XScale CPUs
15 * some contributions by Brett Gaines <brett.w.gaines@intel.com>
16 * Copyright 2001 by Intel Corp.
19 * Completely revisited, many important fixes
20 * Nicolas Pitre <nico@cam.org>
23 #include <linux/linkage.h>
24 #include <linux/init.h>
25 #include <asm/assembler.h>
26 #include <asm/procinfo.h>
27 #include <asm/hardware.h>
28 #include <asm/pgtable.h>
30 #include <asm/ptrace.h>
31 #include "proc-macros.S"
34 * This is the maximum size of an area which will be flushed. If the area
35 * is larger than this, then we flush the whole cache
37 #define MAX_AREA_SIZE 32768
40 * the cache line size of the I and D cache
42 #define CACHELINESIZE 32
45 * the size of the data cache
47 #define CACHESIZE 32768
50 * Virtual address used to allocate the cache when flushed
52 * This must be an address range which is _never_ used. It should
53 * apparently have a mapping in the corresponding page table for
54 * compatibility with future CPUs that _could_ require it. For instance we
57 * This must be aligned on a 2*CACHESIZE boundary. The code selects one of
58 * the 2 areas in alternance each time the clean_d_cache macro is used.
59 * Without this the XScale core exhibits cache eviction problems and no one
62 * Reminder: the vector table is located at 0xffff0000-0xffff0fff.
64 #define CLEAN_ADDR 0xfffe0000
67 * This macro is used to wait for a CP15 write and is needed
68 * when we have to ensure that the last operation to the co-pro
69 * was completed before continuing with operation.
72 mrc p15, 0, \rd, c2, c0, 0 @ arbitrary read of cp15
73 mov \rd, \rd @ wait for completion
74 sub pc, pc, #4 @ flush instruction pipeline
77 .macro cpwait_ret, lr, rd
78 mrc p15, 0, \rd, c2, c0, 0 @ arbitrary read of cp15
79 sub pc, \lr, \rd, LSR #32 @ wait for completion and
80 @ flush instruction pipeline
84 * This macro cleans the entire dcache using line allocate.
85 * The main loop has been unrolled to reduce loop overhead.
86 * rd and rs are two scratch registers.
88 .macro clean_d_cache, rd, rs
91 eor \rd, \rd, #CACHESIZE
93 add \rs, \rd, #CACHESIZE
94 1: mcr p15, 0, \rd, c7, c2, 5 @ allocate D cache line
95 add \rd, \rd, #CACHELINESIZE
96 mcr p15, 0, \rd, c7, c2, 5 @ allocate D cache line
97 add \rd, \rd, #CACHELINESIZE
98 mcr p15, 0, \rd, c7, c2, 5 @ allocate D cache line
99 add \rd, \rd, #CACHELINESIZE
100 mcr p15, 0, \rd, c7, c2, 5 @ allocate D cache line
101 add \rd, \rd, #CACHELINESIZE
107 clean_addr: .word CLEAN_ADDR
112 * cpu_xscale_proc_init()
114 * Nothing too exciting at the moment
116 ENTRY(cpu_xscale_proc_init)
120 * cpu_xscale_proc_fin()
122 ENTRY(cpu_xscale_proc_fin)
124 mov r0, #PSR_F_BIT|PSR_I_BIT|SVC_MODE
126 bl xscale_flush_kern_cache_all @ clean caches
127 mrc p15, 0, r0, c1, c0, 0 @ ctrl register
128 bic r0, r0, #0x1800 @ ...IZ...........
129 bic r0, r0, #0x0006 @ .............CA.
130 mcr p15, 0, r0, c1, c0, 0 @ disable caches
134 * cpu_xscale_reset(loc)
136 * Perform a soft reset of the system. Put the CPU into the
137 * same state as it would be if it had been reset, and branch
138 * to what would be the reset vector.
140 * loc: location to jump to for soft reset
143 ENTRY(cpu_xscale_reset)
144 mov r1, #PSR_F_BIT|PSR_I_BIT|SVC_MODE
145 msr cpsr_c, r1 @ reset CPSR
146 mrc p15, 0, r1, c1, c0, 0 @ ctrl register
147 bic r1, r1, #0x0086 @ ........B....CA.
148 bic r1, r1, #0x3900 @ ..VIZ..S........
149 mcr p15, 0, r1, c1, c0, 0 @ ctrl register
150 mcr p15, 0, ip, c7, c7, 0 @ invalidate I,D caches & BTB
151 bic r1, r1, #0x0001 @ ...............M
152 mcr p15, 0, r1, c1, c0, 0 @ ctrl register
153 @ CAUTION: MMU turned off from this point. We count on the pipeline
154 @ already containing those two last instructions to survive.
155 mcr p15, 0, ip, c8, c7, 0 @ invalidate I & D TLBs
159 * cpu_xscale_do_idle()
161 * Cause the processor to idle
163 * For now we do nothing but go to idle mode for every case
165 * XScale supports clock switching, but using idle mode support
166 * allows external hardware to react to system state changes.
170 ENTRY(cpu_xscale_do_idle)
172 mcr p14, 0, r0, c7, c0, 0 @ Go to IDLE
175 /* ================================= CACHE ================================ */
178 * flush_user_cache_all()
180 * Invalidate all cache entries in a particular address
183 ENTRY(xscale_flush_user_cache_all)
187 * flush_kern_cache_all()
189 * Clean and invalidate the entire cache.
191 ENTRY(xscale_flush_kern_cache_all)
197 mcrne p15, 0, ip, c7, c5, 0 @ Invalidate I cache & BTB
198 mcrne p15, 0, ip, c7, c10, 4 @ Drain Write (& Fill) Buffer
202 * flush_user_cache_range(start, end, vm_flags)
204 * Invalidate a range of cache entries in the specified
207 * - start - start address (may not be aligned)
208 * - end - end address (exclusive, may not be aligned)
209 * - vma - vma_area_struct describing address space
212 ENTRY(xscale_flush_user_cache_range)
214 sub r3, r1, r0 @ calculate total size
215 cmp r3, #MAX_AREA_SIZE
216 bhs __flush_whole_cache
219 mcrne p15, 0, r0, c7, c5, 1 @ Invalidate I cache line
220 mcr p15, 0, r0, c7, c10, 1 @ Clean D cache line
221 mcr p15, 0, r0, c7, c6, 1 @ Invalidate D cache line
222 add r0, r0, #CACHELINESIZE
226 mcrne p15, 0, ip, c7, c5, 6 @ Invalidate BTB
227 mcrne p15, 0, ip, c7, c10, 4 @ Drain Write (& Fill) Buffer
231 * coherent_kern_range(start, end)
233 * Ensure coherency between the Icache and the Dcache in the
234 * region described by start. If you have non-snooping
235 * Harvard caches, you need to implement this function.
237 * - start - virtual start address
238 * - end - virtual end address
240 * Note: single I-cache line invalidation isn't used here since
241 * it also trashes the mini I-cache used by JTAG debuggers.
243 ENTRY(xscale_coherent_kern_range)
247 * coherent_user_range(start, end)
249 * Ensure coherency between the Icache and the Dcache in the
250 * region described by start. If you have non-snooping
251 * Harvard caches, you need to implement this function.
253 * - start - virtual start address
254 * - end - virtual end address
256 * Note: single I-cache line invalidation isn't used here since
257 * it also trashes the mini I-cache used by JTAG debuggers.
259 ENTRY(xscale_coherent_user_range)
260 bic r0, r0, #CACHELINESIZE - 1
261 1: mcr p15, 0, r0, c7, c10, 1 @ clean D entry
262 add r0, r0, #CACHELINESIZE
266 mcr p15, 0, r0, c7, c5, 0 @ Invalidate I cache & BTB
267 mcr p15, 0, r0, c7, c10, 4 @ Drain Write (& Fill) Buffer
271 * flush_kern_dcache_page(void *page)
273 * Ensure no D cache aliasing occurs, either with itself or
276 * - addr - page aligned address
278 ENTRY(xscale_flush_kern_dcache_page)
280 1: mcr p15, 0, r0, c7, c10, 1 @ clean D entry
281 mcr p15, 0, r0, c7, c6, 1 @ invalidate D entry
282 add r0, r0, #CACHELINESIZE
286 mcr p15, 0, r0, c7, c5, 0 @ Invalidate I cache & BTB
287 mcr p15, 0, r0, c7, c10, 4 @ Drain Write (& Fill) Buffer
291 * dma_inv_range(start, end)
293 * Invalidate (discard) the specified virtual address range.
294 * May not write back any entries. If 'start' or 'end'
295 * are not cache line aligned, those lines must be written
298 * - start - virtual start address
299 * - end - virtual end address
301 ENTRY(xscale_dma_inv_range)
302 mrc p15, 0, r2, c0, c0, 0 @ read ID
303 eor r2, r2, #0x69000000
304 eor r2, r2, #0x00052000
306 beq xscale_dma_flush_range
308 tst r0, #CACHELINESIZE - 1
309 bic r0, r0, #CACHELINESIZE - 1
310 mcrne p15, 0, r0, c7, c10, 1 @ clean D entry
311 tst r1, #CACHELINESIZE - 1
312 mcrne p15, 0, r1, c7, c10, 1 @ clean D entry
313 1: mcr p15, 0, r0, c7, c6, 1 @ invalidate D entry
314 add r0, r0, #CACHELINESIZE
317 mcr p15, 0, r0, c7, c10, 4 @ Drain Write (& Fill) Buffer
321 * dma_clean_range(start, end)
323 * Clean the specified virtual address range.
325 * - start - virtual start address
326 * - end - virtual end address
328 ENTRY(xscale_dma_clean_range)
329 bic r0, r0, #CACHELINESIZE - 1
330 1: mcr p15, 0, r0, c7, c10, 1 @ clean D entry
331 add r0, r0, #CACHELINESIZE
334 mcr p15, 0, r0, c7, c10, 4 @ Drain Write (& Fill) Buffer
338 * dma_flush_range(start, end)
340 * Clean and invalidate the specified virtual address range.
342 * - start - virtual start address
343 * - end - virtual end address
345 ENTRY(xscale_dma_flush_range)
346 bic r0, r0, #CACHELINESIZE - 1
347 1: mcr p15, 0, r0, c7, c10, 1 @ clean D entry
348 mcr p15, 0, r0, c7, c6, 1 @ invalidate D entry
349 add r0, r0, #CACHELINESIZE
352 mcr p15, 0, r0, c7, c10, 4 @ Drain Write (& Fill) Buffer
355 ENTRY(xscale_cache_fns)
356 .long xscale_flush_kern_cache_all
357 .long xscale_flush_user_cache_all
358 .long xscale_flush_user_cache_range
359 .long xscale_coherent_kern_range
360 .long xscale_coherent_user_range
361 .long xscale_flush_kern_dcache_page
362 .long xscale_dma_inv_range
363 .long xscale_dma_clean_range
364 .long xscale_dma_flush_range
366 ENTRY(cpu_xscale_dcache_clean_area)
367 1: mcr p15, 0, r0, c7, c10, 1 @ clean D entry
368 add r0, r0, #CACHELINESIZE
369 subs r1, r1, #CACHELINESIZE
373 /* ================================ CACHE LOCKING============================
375 * The XScale MicroArchitecture implements support for locking entries into
376 * the data and instruction cache. The following functions implement the core
377 * low level instructions needed to accomplish the locking. The developer's
378 * manual states that the code that performs the locking must be in non-cached
379 * memory. To accomplish this, the code in xscale-cache-lock.c copies the
380 * following functions from the cache into a non-cached memory region that
381 * is allocated through consistent_alloc().
388 * r0: starting address to lock
389 * r1: end address to lock
391 ENTRY(xscale_icache_lock)
394 bic r0, r0, #CACHELINESIZE - 1
395 mcr p15, 0, r0, c9, c1, 0 @ lock into cache
396 cmp r0, r1 @ are we done?
397 add r0, r0, #CACHELINESIZE @ advance to next cache line
402 * xscale_icache_unlock
404 ENTRY(xscale_icache_unlock)
405 mcr p15, 0, r0, c9, c1, 1 @ Unlock icache
411 * r0: starting address to lock
412 * r1: end address to lock
414 ENTRY(xscale_dcache_lock)
415 mcr p15, 0, ip, c7, c10, 4 @ Drain Write (& Fill) Buffer
417 mcr p15, 0, r2, c9, c2, 0 @ Put dcache in lock mode
418 cpwait ip @ Wait for completion
421 orr r3, r2, #PSR_F_BIT | PSR_I_BIT
424 mcr p15, 0, r0, c7, c10, 1 @ Write back line if it is dirty
425 mcr p15, 0, r0, c7, c6, 1 @ Flush/invalidate line
427 ldr ip, [r0], #CACHELINESIZE @ Preload 32 bytes into cache from
428 @ location [r0]. Post-increment
429 @ r3 to next cache line
430 cmp r0, r1 @ Are we done?
433 mcr p15, 0, ip, c7, c10, 4 @ Drain Write (& Fill) Buffer
435 mcr p15, 0, r2, c9, c2, 0 @ Get out of lock mode
439 * xscale_dcache_unlock
441 ENTRY(xscale_dcache_unlock)
442 mcr p15, 0, ip, c7, c10, 4 @ Drain Write (& Fill) Buffer
443 mcr p15, 0, ip, c9, c2, 1 @ Unlock cache
447 * Needed to determine the length of the code that needs to be copied.
450 ENTRY(xscale_cache_dummy)
453 /* ================================ TLB LOCKING==============================
455 * The XScale MicroArchitecture implements support for locking entries into
456 * the Instruction and Data TLBs. The following functions provide the
457 * low level support for supporting these under Linux. xscale-lock.c
458 * implements some higher level management code. Most of the following
459 * is taken straight out of the Developer's Manual.
465 * r0: Virtual address to translate and lock
468 ENTRY(xscale_itlb_lock)
470 orr r3, r2, #PSR_F_BIT | PSR_I_BIT
471 msr cpsr_c, r3 @ Disable interrupts
472 mcr p15, 0, r0, c8, c5, 1 @ Invalidate I-TLB entry
473 mcr p15, 0, r0, c10, c4, 0 @ Translate and lock
474 msr cpsr_c, r2 @ Restore interrupts
480 * r0: Virtual address to translate and lock
483 ENTRY(xscale_dtlb_lock)
485 orr r3, r2, #PSR_F_BIT | PSR_I_BIT
486 msr cpsr_c, r3 @ Disable interrupts
487 mcr p15, 0, r0, c8, c6, 1 @ Invalidate D-TLB entry
488 mcr p15, 0, r0, c10, c8, 0 @ Translate and lock
489 msr cpsr_c, r2 @ Restore interrupts
493 * Unlock all I-TLB entries
496 ENTRY(xscale_itlb_unlock)
497 mcr p15, 0, ip, c10, c4, 1 @ Unlock I-TLB
498 mcr p15, 0, ip, c8, c5, 0 @ Invalidate I-TLB
502 * Unlock all D-TLB entries
504 ENTRY(xscale_dtlb_unlock)
505 mcr p15, 0, ip, c10, c8, 1 @ Unlock D-TBL
506 mcr p15, 0, ip, c8, c6, 0 @ Invalidate D-TLB
509 /* =============================== PageTable ============================== */
511 #define PTE_CACHE_WRITE_ALLOCATE 0
514 * cpu_xscale_switch_mm(pgd)
516 * Set the translation base pointer to be as described by pgd.
518 * pgd: new page tables
521 ENTRY(cpu_xscale_switch_mm)
523 mcr p15, 0, ip, c7, c5, 0 @ Invalidate I cache & BTB
524 mcr p15, 0, ip, c7, c10, 4 @ Drain Write (& Fill) Buffer
525 mcr p15, 0, r0, c2, c0, 0 @ load page table pointer
526 mcr p15, 0, ip, c8, c7, 0 @ invalidate I & D TLBs
530 * cpu_xscale_set_pte(ptep, pte)
532 * Set a PTE and flush it out
534 * Errata 40: must set memory to write-through for user read-only pages.
537 ENTRY(cpu_xscale_set_pte)
538 str r1, [r0], #-2048 @ linux version
541 orr r2, r2, #PTE_TYPE_EXT @ extended page
543 eor r3, r1, #L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_WRITE | L_PTE_DIRTY
545 tst r3, #L_PTE_USER @ User?
546 orrne r2, r2, #PTE_EXT_AP_URO_SRW @ yes -> user r/o, system r/w
548 tst r3, #L_PTE_WRITE | L_PTE_DIRTY @ Write and Dirty?
549 orreq r2, r2, #PTE_EXT_AP_UNO_SRW @ yes -> user n/a, system r/w
550 @ combined with user -> user r/w
553 @ Handle the X bit. We want to set this bit for the minicache
554 @ (U = E = B = W = 0, C = 1) or when write allocate is enabled,
555 @ and we have a writeable, cacheable region. If we ignore the
556 @ U and E bits, we can allow user space to use the minicache as
559 @ X = (C & ~W & ~B) | (C & W & B & write_allocate)
561 eor ip, r1, #L_PTE_CACHEABLE
562 tst ip, #L_PTE_CACHEABLE | L_PTE_WRITE | L_PTE_BUFFERABLE
563 #if PTE_CACHE_WRITE_ALLOCATE
564 eorne ip, r1, #L_PTE_CACHEABLE | L_PTE_WRITE | L_PTE_BUFFERABLE
565 tstne ip, #L_PTE_CACHEABLE | L_PTE_WRITE | L_PTE_BUFFERABLE
567 orreq r2, r2, #PTE_EXT_TEX(1)
570 @ Erratum 40: The B bit must be cleared for a user read-only
573 @ B = B & ~(U & C & ~W)
575 and ip, r1, #L_PTE_USER | L_PTE_WRITE | L_PTE_CACHEABLE
576 teq ip, #L_PTE_USER | L_PTE_CACHEABLE
577 biceq r2, r2, #PTE_BUFFERABLE
579 tst r3, #L_PTE_PRESENT | L_PTE_YOUNG @ Present and Young?
580 movne r2, #0 @ no -> fault
582 str r2, [r0] @ hardware version
584 mcr p15, 0, r0, c7, c10, 1 @ Clean D cache line
585 mcr p15, 0, ip, c7, c10, 4 @ Drain Write (& Fill) Buffer
595 .type __xscale_setup, #function
597 mcr p15, 0, ip, c7, c7, 0 @ invalidate I, D caches & BTB
598 mcr p15, 0, ip, c7, c10, 4 @ Drain Write (& Fill) Buffer
599 mcr p15, 0, ip, c8, c7, 0 @ invalidate I, D TLBs
601 mov r0, #0 @ initially disallow access to CP0/CP1
603 mov r0, #1 @ Allow access to CP0
605 orr r0, r0, #1 << 6 @ cp6 for IOP3xx and Bulverde
606 orr r0, r0, #1 << 13 @ Its undefined whether this
607 mcr p15, 0, r0, c15, c1, 0 @ affects USR or SVC modes
608 mrc p15, 0, r0, c1, c0, 0 @ get control register
609 ldr r5, xscale_cr1_clear
611 ldr r5, xscale_cr1_set
614 .size __xscale_setup, . - __xscale_setup
618 * .RVI ZFRS BLDP WCAM
619 * ..11 1.01 .... .101
622 .type xscale_cr1_clear, #object
623 .type xscale_cr1_set, #object
632 * Purpose : Function pointers used to access above functions - all calls
636 .type xscale_processor_functions, #object
637 ENTRY(xscale_processor_functions)
638 .word v5t_early_abort
639 .word cpu_xscale_proc_init
640 .word cpu_xscale_proc_fin
641 .word cpu_xscale_reset
642 .word cpu_xscale_do_idle
643 .word cpu_xscale_dcache_clean_area
644 .word cpu_xscale_switch_mm
645 .word cpu_xscale_set_pte
646 .size xscale_processor_functions, . - xscale_processor_functions
650 .type cpu_arch_name, #object
653 .size cpu_arch_name, . - cpu_arch_name
655 .type cpu_elf_name, #object
658 .size cpu_elf_name, . - cpu_elf_name
660 .type cpu_80200_name, #object
662 .asciz "XScale-80200"
663 .size cpu_80200_name, . - cpu_80200_name
665 .type cpu_8032x_name, #object
667 .asciz "XScale-IOP8032x Family"
668 .size cpu_8032x_name, . - cpu_8032x_name
670 .type cpu_8033x_name, #object
672 .asciz "XScale-IOP8033x Family"
673 .size cpu_8033x_name, . - cpu_8033x_name
675 .type cpu_pxa250_name, #object
677 .asciz "XScale-PXA250"
678 .size cpu_pxa250_name, . - cpu_pxa250_name
680 .type cpu_pxa210_name, #object
682 .asciz "XScale-PXA210"
683 .size cpu_pxa210_name, . - cpu_pxa210_name
685 .type cpu_ixp42x_name, #object
687 .asciz "XScale-IXP42x Family"
688 .size cpu_ixp42x_name, . - cpu_ixp42x_name
690 .type cpu_ixp46x_name, #object
692 .asciz "XScale-IXP46x Family"
693 .size cpu_ixp46x_name, . - cpu_ixp46x_name
695 .type cpu_ixp2400_name, #object
697 .asciz "XScale-IXP2400"
698 .size cpu_ixp2400_name, . - cpu_ixp2400_name
700 .type cpu_ixp2800_name, #object
702 .asciz "XScale-IXP2800"
703 .size cpu_ixp2800_name, . - cpu_ixp2800_name
705 .type cpu_pxa255_name, #object
707 .asciz "XScale-PXA255"
708 .size cpu_pxa255_name, . - cpu_pxa255_name
710 .type cpu_pxa270_name, #object
712 .asciz "XScale-PXA270"
713 .size cpu_pxa270_name, . - cpu_pxa270_name
717 .section ".proc.info", #alloc, #execinstr
719 .type __80200_proc_info,#object
723 .long PMD_TYPE_SECT | \
724 PMD_SECT_BUFFERABLE | \
725 PMD_SECT_CACHEABLE | \
726 PMD_SECT_AP_WRITE | \
731 .long HWCAP_SWP|HWCAP_HALF|HWCAP_THUMB|HWCAP_FAST_MULT|HWCAP_EDSP
733 .long xscale_processor_functions
735 .long xscale_mc_user_fns
736 .long xscale_cache_fns
737 .size __80200_proc_info, . - __80200_proc_info
739 .type __8032x_proc_info,#object
742 .long 0xfffff5e0 @ mask should accomodate IOP80219 also
743 .long PMD_TYPE_SECT | \
744 PMD_SECT_BUFFERABLE | \
745 PMD_SECT_CACHEABLE | \
746 PMD_SECT_AP_WRITE | \
751 .long HWCAP_SWP|HWCAP_HALF|HWCAP_THUMB|HWCAP_FAST_MULT|HWCAP_EDSP
753 .long xscale_processor_functions
755 .long xscale_mc_user_fns
756 .long xscale_cache_fns
757 .size __8032x_proc_info, . - __8032x_proc_info
759 .type __8033x_proc_info,#object
763 .long PMD_TYPE_SECT | \
764 PMD_SECT_BUFFERABLE | \
765 PMD_SECT_CACHEABLE | \
766 PMD_SECT_AP_WRITE | \
771 .long HWCAP_SWP|HWCAP_HALF|HWCAP_THUMB|HWCAP_FAST_MULT|HWCAP_EDSP
773 .long xscale_processor_functions
775 .long xscale_mc_user_fns
776 .long xscale_cache_fns
777 .size __8033x_proc_info, . - __8033x_proc_info
779 .type __pxa250_proc_info,#object
783 .long PMD_TYPE_SECT | \
784 PMD_SECT_BUFFERABLE | \
785 PMD_SECT_CACHEABLE | \
786 PMD_SECT_AP_WRITE | \
791 .long HWCAP_SWP|HWCAP_HALF|HWCAP_THUMB|HWCAP_FAST_MULT|HWCAP_EDSP
792 .long cpu_pxa250_name
793 .long xscale_processor_functions
795 .long xscale_mc_user_fns
796 .long xscale_cache_fns
797 .size __pxa250_proc_info, . - __pxa250_proc_info
799 .type __pxa210_proc_info,#object
803 .long PMD_TYPE_SECT | \
804 PMD_SECT_BUFFERABLE | \
805 PMD_SECT_CACHEABLE | \
806 PMD_SECT_AP_WRITE | \
811 .long HWCAP_SWP|HWCAP_HALF|HWCAP_THUMB|HWCAP_FAST_MULT|HWCAP_EDSP
812 .long cpu_pxa210_name
813 .long xscale_processor_functions
815 .long xscale_mc_user_fns
816 .long xscale_cache_fns
817 .size __pxa210_proc_info, . - __pxa210_proc_info
819 .type __ixp2400_proc_info, #object
823 .long PMD_TYPE_SECT | \
824 PMD_SECT_BUFFERABLE | \
825 PMD_SECT_CACHEABLE | \
826 PMD_SECT_AP_WRITE | \
831 .long HWCAP_SWP|HWCAP_HALF|HWCAP_THUMB|HWCAP_FAST_MULT|HWCAP_EDSP
832 .long cpu_ixp2400_name
833 .long xscale_processor_functions
835 .long xscale_mc_user_fns
836 .long xscale_cache_fns
837 .size __ixp2400_proc_info, . - __ixp2400_proc_info
839 .type __ixp2800_proc_info, #object
843 .long PMD_TYPE_SECT | \
844 PMD_SECT_BUFFERABLE | \
845 PMD_SECT_CACHEABLE | \
846 PMD_SECT_AP_WRITE | \
851 .long HWCAP_SWP|HWCAP_HALF|HWCAP_THUMB|HWCAP_FAST_MULT|HWCAP_EDSP
852 .long cpu_ixp2800_name
853 .long xscale_processor_functions
855 .long xscale_mc_user_fns
856 .long xscale_cache_fns
857 .size __ixp2800_proc_info, . - __ixp2800_proc_info
859 .type __ixp42x_proc_info, #object
863 .long PMD_TYPE_SECT | \
864 PMD_SECT_BUFFERABLE | \
865 PMD_SECT_CACHEABLE | \
866 PMD_SECT_AP_WRITE | \
871 .long HWCAP_SWP|HWCAP_HALF|HWCAP_THUMB|HWCAP_FAST_MULT|HWCAP_EDSP
872 .long cpu_ixp42x_name
873 .long xscale_processor_functions
875 .long xscale_mc_user_fns
876 .long xscale_cache_fns
877 .size __ixp42x_proc_info, . - __ixp42x_proc_info
879 .type __ixp46x_proc_info, #object
887 .long HWCAP_SWP|HWCAP_HALF|HWCAP_THUMB|HWCAP_FAST_MULT|HWCAP_EDSP
888 .long cpu_ixp46x_name
889 .long xscale_processor_functions
891 .long xscale_mc_user_fns
892 .long xscale_cache_fns
893 .size __ixp46x_proc_info, . - __ixp46x_proc_info
895 .type __pxa255_proc_info,#object
899 .long PMD_TYPE_SECT | \
900 PMD_SECT_BUFFERABLE | \
901 PMD_SECT_CACHEABLE | \
902 PMD_SECT_AP_WRITE | \
907 .long HWCAP_SWP|HWCAP_HALF|HWCAP_THUMB|HWCAP_FAST_MULT|HWCAP_EDSP
908 .long cpu_pxa255_name
909 .long xscale_processor_functions
911 .long xscale_mc_user_fns
912 .long xscale_cache_fns
913 .size __pxa255_proc_info, . - __pxa255_proc_info
915 .type __pxa270_proc_info,#object
919 .long PMD_TYPE_SECT | \
920 PMD_SECT_BUFFERABLE | \
921 PMD_SECT_CACHEABLE | \
922 PMD_SECT_AP_WRITE | \
927 .long HWCAP_SWP|HWCAP_HALF|HWCAP_THUMB|HWCAP_FAST_MULT|HWCAP_EDSP
928 .long cpu_pxa270_name
929 .long xscale_processor_functions
931 .long xscale_mc_user_fns
932 .long xscale_cache_fns
933 .size __pxa270_proc_info, . - __pxa270_proc_info